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Abstract

SIMD computers have proved to be a useful and cost e�ective approach

to massively parallel computation. On the other hand, there are algorithms

which are very ine�cient when directly translated into a data-parallel pro-

gram. This paper presents a number of simple transformations which are

able to reduce this SIMD overhead to a moderate constant factor. It also

introduces techniques for reducing the remaining overhead using Markov

chain models of control 
ow. The optimization problems involved are NP-

hard in general but there are many useful heuristics, and closed form op-

timizations for a probabilistic variant.

Keywords: Markov chain, NP, optimization, parallel search, SIMD MIMD em-
ulation.

1 Introduction

Single Instruction Multiple Data computers are a quite e�ective approach to mas-
sively parallel computation. Since instructions are stored and decoded centrally,
the processing elements (PEs) do not need instruction memory or a control unit.
This makes it feasible to integrate many simple PEs on an area normally required
for one single processor of a MIMD machine. In addition, the synchronous nature
of SIMD processing often makes programming easier.

On the other hand, there are algorithms which are very ine�cient when di-
rectly translated into a data-parallel program. This happens whenever there is a
loop with a small number of iterations on most PEs for which there is at least
one PE with a much larger number of iterations. In this case all PEs have to
wait until the last PE �nishes. For programs whose execution time is dominat-
ed by such loops, a SIMD computer performs very poorly. A simple example is
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the task to compute the Mandelbrot set [15]; the number of iterations necessary
to compute a point varies widely. In [6] methods for restructuring nested loops
which are typical for numerical applications are discussed. Even more complex
control 
ow patterns can be observed for irregular nonnumeric applications. In
the following, depth-�rst tree search is used as an example.

Let s be a stack containing only the root node

of a subtree to be processed on this processor

LOOP

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN printSolution(top(s))

WHILE noMoreSiblings(top(s)) DO

pop(s)

IF isEmpty(s) THEN stop

replace top(s) with nextSibling(top(s))

ELSE push(�rstSuccessor(top(s)))

Figure 1: Nonrecursive generic depth-�rst search.

The pseudocode in Figure 1 gives the kernel of a nonrecursive, parallel depth-
�rst search algorithm which searches for leaves constituting a solution. It is
assumed that a load balancer takes care that each PE gets a di�erent subtree of
the search space. A subtree is represented by its root. Interior nodes are expanded
by pushing their �rst successor on the stack. For leaf nodes, it is checked whether
they constitute a solution. Then the program backtracks to the next node with
unsearched siblings.

For many problems, the while-loop responsible for backtracking performs very
few iterations on the average; but on some PEs the number of iterations may
be the full depth of the tree. Additional complications could be introduced by
heuristics, or by loops inside the application-speci�c functions isLeaf, �rstSucces-
sor, etc.

This paper presents techniques for removing the o�ending loops and pro-
ducing an equivalent, more e�cient program. It is an extended version of the
conference paper [13]. Section 2 presents the basic techniques and a number of
ideas for optimization. Then Section 3 models control 
ow of programs using
Markov chains. The results make it possible to �nd optimizations with less trial
and error. In Section 4 these techniques are applied to a heuristic search prob-
lem raised by an open question in cellular automata theory. Section 5 discusses
a di�erent approach to transforming programs into synchronous form which is
used by many other researchers. It turns out that it can be viewed as a special
case of our transformation approach and that the Markov chain models again
yields interesting insights. It is also proved that even for this special case, one
of the basic optimization problems considered is NP-hard. Finally, Section 6
summarizes the results.
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2 Transformation into synchronous form

initialization

LOOP

IF g1 THEN o1
IF g2 THEN o2
...

IF gn THEN on

Figure 2: Test loop suitable for a SIMD machine.

The general idea for \SIMD-izing" an algorithm is very simple. Every MIMD
program can be transformed into a SIMD program of the general form of a test

loop given in Figure 2.
The oi are elementary operations (still to be determined) which do not contain

loops. (More precisely, loops with a globally known number of iterations are no
problem.) The statement IF gi THEN oi is a test for operation oi. More gen-
erally, for many applications it makes sense to decompose the program (possibly
dynamically) into a sequence of test loops | each with a di�erent arrangement
of tests | but, since the loops can be investigated one at a time, we can restrict
ourselves to one loop.

If the control logic of an algorithm can be implemented by a �nite automaton
then the test loop can be constructed by introducing one elementary operation
for each state. For example, Algorithm 1 can be transformed into the test loop
depicted in Figure 3.

The key observation is that every problem can be cast into this shape:

1. Without loss of generality assume that all PEs run the same process (Single
Program Multiple Data programming model).

2. Eliminate calls to procedures which contain loops with a varying number
of iterations. This can be done by inlining or by replacing procedure calls
by appropriate stack manipulations and control structures.

3. Implement loop control by goto-statements.

4. The code sections between goto-labels now constitute the set of elementary
operations; i.e. a code section label: code is replaced with
IF state = LABEL THEN code and a jump goto label is replaced with the
assignment state := LABEL. (The labels are replaced with unique constants.)

This transformation could, for example, be performed by a compiler. For manual
use however, it is better to step back and select states which have a meaningful
interpretation in the application domain.

Note that there are two di�erent kinds of control 
ow. One is the control

ow of the problem to be emulated. We call this the asynchronous control 
ow
or simply control 
ow. The other is the control 
ow of the test loop which
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initialize as in Algorithm 1

state := Search

LOOP

IF state = Search THEN

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN state := Solution

ELSE state := GetNextChoice

ELSE state := MakeChoicePoint

IF state = MakeChoicePoint THEN

push(�rstSuccessor(top(s))); state := Search

IF state = GetNextChoice THEN

IF noMoreSiblings(top(s)) THEN

pop(s)

IF isEmpty(s) THEN stop

state := GetNextChoice

ELSE top(s) := nextSibling(top(s)); state := Search

IF state = Solution THEN
printSolution(top(s)); state := GetNextChoice

Figure 3: Depth-�rst search controlled by an automaton.

deterministically cycles through the tests. Here we talk about the position in the
test loop.

A test loop along the pattern of Figure 2 still contains two sources of ine�-
ciency: First, the required number of iterations through the outer loop can vary
from PE to PE. But this problem of load imbalance is a general problem of paral-
lel computing which also occurs on MIMD computers. Therefore, load balancing
strategies are not discussed here. Furthermore, during a test for an operation oi,
all PEs for which gi does not hold, are deactivated. (We call this an unproductive

test.) This remaining SIMD overhead depends on the complexity of the program
and not on the problem size. Therefore, every MIMD program can be emulated
by a SIMD program with constant overhead. Still, in practice it is important to
keep this constant small in order to be competitive with MIMD machines.

2.1 Optimizing the test loop

So far, we have always considered test loops which test for every operation exactly
once in some arbitrary order. But we are free to select any order of tests. We
can even duplicate tests if this helps. As a general heuristics, it is a good idea to
test for cheap, frequently needed operations more often than for expensive, rarely
needed ones. Also, the tests should be ordered in such a way that a maximum
total number of productive tests per iteration of the test loop is performed.

For example, let us assume that interior nodes of the trees to be traversed
by Algorithm 3 have many descendents, that there are very few solutions and
that operation Solution takes 10 units (of time) while all other operations cost 1
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unit. The control 
ow is therefore dominated by subsequences of the form Search;

GetNextChoice; Search; GetNextChoice; : : : The test loop Search; GetNextChoice;

MakeChoicepoint; Solution takes 13 units and about 2 productive tests per itera-
tion are performed. The test loop Search; GetNextChoice; Search; GetNextChoice;

MakeChoicepoint; Solution on the other hand, takes 15 units but about 4 produc-
tive tests per iteration are performed | its almost two times more e�cient.

Similar ideas are discussed in [3, 1, 10]. In [10] it is argued that duplicating
tests is useless since some PEs are actually delayed due to large deviations from
the average control 
ow. But this is not always a problem. Often all PEs have
quite similar control 
ow characteristics, and even if there are PEs which are
delayed, this only means that operation duplication has increased load imbalance

which only results in a longer execution time if the load balancer is not able to cope
with the additional imbalance. Depth-�rst tree search for example, can be a very
irregular problem anyway and a load balancer which works for a simple test loop
has no trouble handling the minor additional imbalance from test duplication.

2.2 Selecting Operations

So far, we have assumed that the set of operations is �xed. However, there are a
number of useful transformations on operations which help to increase e�ciency:

Splitting: An operation of the form

�

IF c THEN �




can be replaced with the following three operations:

o�: �; state := (IF c THEN o� ELSE o
)
o�: �; state := o

o
 : 


This is useful if the branch � is rarely taken or very expensive. Since � is an
operation of its own now, it can be tested for less frequently than other cheaper or
more important operations. For the case discussed in Section 2.1 for example, it is
a good thing to have an independent operation Solution instead of making it part
of the operation Search. Still, sometimes the inverse operation of incorporating
an operation into another is also useful in order to decrease control overhead.
It should have become clear now that it is not clear at all when to apply what
transformation. This is the reason why Sections 3 and 5 develop mathematical
models which help to make these decisions.

Simpli�cation:

In traditional programs, most code need not be �ne-tuned since only the small
fraction of code in the inner loop is critical. In our approach the entire test loop
is the inner loop. So, tuning rarely used operations can have an unexpected
impact on performance. On the other hand, traditional programs often pro�ts
from optimized treatment of some special cases. In a SIMD program however,
this approach may back�re since the code for the special case incurs additional
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SIMD overhead. In a sense, removing optimizations is sometimes the better
optimization.

Merging: If two operations are almost identical like

o1: �; state := o01
o2: �; state := o02

they can be merged into the single operation

o12: �; state := follow

if other operations assign the proper value to follow before setting state to o12.
This transformation reduces the number of operations and therefore decreases
SIMD overhead. Often, splitting and simpli�cation of operations can be used
to produce candidates for merging. Essentially, merging is a primitive kind of
procedure call and the idea can be expanded to nested calls and recursion by in-
troducing a return stack. In [3] a method called common subexpression induction

is mentioned which automatically recognizes mergeable parts of code.

3 Modeling control 
ow with Markov chains

It can involve a lot of trial and error to apply the optimizations in Sections 2.1
and 2.2. Therefore, this section develops mathematical tools which help to select
appropriate transformations.

The �rst step is to abstract from the problem of load balancing which is
application dependent and not a speci�c problem of SIMD computing. This can
conveniently be done by assuming in�nite load on every processor. Performance
is then naturally expressed as the average number of productive tests per unit
of time (throughput). The choice of the next operation depends on the current
operation and some unknown (hidden) computation we assume to be random.
Under these assumption the operations can be identi�ed with the states of a
Markov chain. Let pij designate the transition probability i.e. the probability
that the operation oi follows oj in the asynchronous control 
ow. Let ci be the
cost of testing for operation oi. This model was developed independently from
[10] where it is used in a slightly di�erent and simpli�ed setting.

3.1 Assessing the performance of a test loop

Using the Markov chain model above it is possible to predict the performance of a
candidate test loop. This can be done using a kind of symbolic execution: Given
the transition probabilities and a vector containing the probabilities that the
asynchronous control 
ow is currently in a given state, it is possible to compute
the impact of the next test on this vector. By keeping track of the cost of tests
and the fraction of PEs which do productive tests and by iterating a few times
through the test loop, a cost function expressing the average cost per productive
test can be approximated. (For details refer to [12].)

This is equivalent to modeling asynchronous control 
ow and a speci�c test
loop by a Markov chain: A state sik represents a situation where oi is the operation
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needed next and k is the current position in the test loop. Using this approach,
the cost function can be computed by solving a large, sparse eigenvector equation.
The above symbolic execution approach can be viewed as an iterative solver for
this eigenvalue equation which implicitly exploits the sparseness of the transition
matrix.

Either way, we now have a tool for quickly screening a number of alternative
test loops without having to run the program once the parameters pij and ci
have been measured for typical input data. Unfortunately, the task of �nding an
optimal test loop for a given control 
ow turns out to be NP-hard. In order to
make this more precise we formulate our problem as a decision problem in the
format of [4]:
TEST LOOP SCHEDULING

INSTANCE: Operations o1; : : : ; on and costs ci 2 N0; transition probabilities
pij 2 Q, a test loop length m and a cost bound C 2 Q+.
QUESTION: Is there a test loop of length m for which the Markov chain model
predicts a cost C 0 � C?

TEST LOOP SCHEDULING is NP-hard because it is a generalization of
the SUBINTERPRETER SCHEDULING problem to be discussed in Section 5.2.
Even for moderate numbers of operations we therefore have to resort to heuristics
like hill climbing or genetic algorithms in order to arrive at good test loops.

3.2 Optimal probabilistic test loops

Since assembling optimal test loops turns out to be intractable, it is a logical idea
to further simplify the model in order to be able to derive closed form results.
Therefore, we now abstract from the execution order in the asynchronous control

ow and the test loop: We assume that operations can be fully characterized
by their frequency pi of occurrence in the asynchronous control 
ow. (It can
be measured by counting how often an operation is actually executed.) Now we
want to know at which frequency fi operation oi should be tested for in order
to achieve optimal throughput. This frequency is de�ned by a probabilistic test
loop which randomly decides which operation is tested for next:

LOOP choose i with probability fi; IF gi THEN oi ENDLOOP

For this program, we can de�ne a cost function C(f1; : : : ; fn) which gives the
average cost for performing one productive test. Stated probabilistically, this
means the ratio between the expected time

P
fici for executing a test, and the

probability a of a productive test.

C(f1; : : : ; fn) :=

Pn
i=1 fici

a(f1; : : : ; fn)
(1)

In order to determine a, the asynchronous control 
ow is modeled by a Markov
chain with the states A for \active" andWj for \waiting for a test for oj". Figure 4
shows the states and the transition probabilities. If the control 
ow is waiting
for a test for oj , this operation is tested for next with a probability of fj and the
Markov chain makes a transition to the active state, else waiting continues. If the
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Figure 4: Markov model of the asynchronous control 
ow ((n + 1) states).

Markov chain is in the active state and the next operation in the asynchronous
control 
ow is oj but oj is not tested for next, there is a transition to the waiting
state Wj. Summing probabilities for the remaining cases yields a probability ofP
pifi for a transition from active to active.
Now, the a(f1; : : : ; fn) we are looking for, is the equilibrium probability to

�nd the Markov chain in the active state. This probability can be obtained by
solving the eigenvalue equation

0
BBBB@

P
pifi f1 � � � fn

p1(1 � f1) 1� f1 0
...

. . .

pn(1 � fn) 0 1� fn

1
CCCCA

0
BBBB@

a

w1

...
wn

1
CCCCA =

0
BBBB@

a

w1

...
wn

1
CCCCA (2)

which corresponds to the following homogeneous linear equation system:

0
BBBB@

(
P
pifi)� 1 f1 � � � fn

p1(1� f1) �f1 0
...

. . .

pn(1� fn) 0 �fn

1
CCCCA

0
BBBB@

a

w1

...
wn

1
CCCCA = 0

Adding all rows eliminates the top row. After dividing row i by fi we have

a
pi(1� fi)

fi
= wi:

Adding these equations and using the additional condition a+
P
wi = 1 yields

a
X pi(1 � fi)

fi
= 1 � a or a =

1Pn
i=1

pi
fi

: (3)

Substituting this result into Equation 1 completes the cost function.

C(f1; : : : ; fn) =

 
nX
i=1

pi

fi

! 
nX

i=1

fici

!
(4)

This equation can be used to determine the optimal testing frequencies fi by
looking for roots of the partial derivatives

@C

@fk
= �

pk

f2k

X
i

cifi +

 X
i

pi

fi

!
ck

!
= 0:
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Moving the k-dependent terms to the left yields

ckf
2
k

pk
=

P
cifiP pi
fi

:

Equating two instances of these equations removes the sums

ckf
2
k

pk
=

cjf
2
j

pj
or

fk

fj
=

q
pk
ckq
pj

cj

;

and introducing the additional condition
P
fk = 1 gives the result

fj =

q
pj

cjPn
i=1

q
pi
ci

: (5)

Since this is the only candidate for an extremal point and since C approaches
in�nity if any of the fi approaches zero or one, this solution constitutes the global
optimum.

The potential speedup due to unequal testing frequencies can be estimated by
substituting the optimal testing frequencies from Equation 5 and the straightfor-
ward case fi = 1=n into the cost function from Equation 4.

S =
Cnaive

Copt

=

Pn
i=1 ci�Pn

i=1

p
pici

�2 (6)

The value for Cnaive also indicates that it is not a good idea to use a probabilistic
test loop for the actual implementation because on the average every operation
has to be tested for once before the right one is found. For a simple deterministic
test loop which tests for every operation once this is the absolute worst case; it is
more likely that testing for about half the operations is enough on the average.
Nevertheless, we can expect that the frequencies computed for the probabilistic
case are also useful for a deterministic implementation. The simple formulas can
be used to quickly estimate the impact of one of the operation transformations
in Section 2.2 or to construct initial test loops as a starting point for manual or
automatic iterative improvement (refer to Section 5.3 for an example) and they
can be used to roughly estimate the SIMD overhead and its possible reduction
before one sets out to \SIMD-ize" a program.

4 An example application

The �ring squad synchronization problem (FSSP) is a classical problem of cellular
automata theory (for more details see [14]): Determine a one-dimensional cellular
automaton with von Neumann-neighborhood (communication with immediate
neighbors only) and the following properties:

� The initial con�gurations of interest have the form GZ
s�1
0 where G is called

the general state, Z0 is the quiescent state and s is the size of the cellular
array.
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� The (local) transition table � has the property that
�(Z0; Z0; Z0) = �(Z0; Z0; Border) = Z0 i.e. neither areas of quiescent cells nor
the cell at the right border are able to initiate any activity by themselves.

� The cellular array eventually reaches the con�guration F
s. F is called the

�ring state.

� No cell �res before all others �re.

� The automaton is allowed to use a �xed number of states while working for
arbitrary sizes. This excludes trivial solutions using a counter in each cell.

The �gurative interpretation is that a general (the leftmost cell) wants to make
all his soldiers �re synchronously using neighborhood communication only. In
[16] it has been shown that at least 2s � 2 transitions are necessary to achieve
synchronization and time optimal solutions have been developed in [16], [2], [5],
and [9] employing 16, 8, 7, and 6 states respectively.

In order to answer one of the prominent remaining question, whether there
are time optimal solutions with less states, an algorithm performing a depth-�rst
search for transition tables has been developed:

� The root node is a transition table full of unde�ned entries.

� The main loop simulates the behavior of the automaton beginning with the
smallest number of cells.

� When an unde�ned entry is encountered (a choice point), each possible
result for this entry forms a new branch of the search tree.

� When the simulation violates the speci�cation of the FSSP (too early or
too late �ring), backtracking is initiated.

� There is a special heuristics for pruning subtrees which cannot yield new
information: During backtracking it is checked whether the choice point
under consideration can in
uence the error that led to backtracking. This
can be done using a special mode of simulation called error simulation.

� There are two special cases where pruning can be done without error sim-
ulation.

4.1 SIMD Implementation

The techniques described in the preceding sections have been applied to the
FSSP search algorithm which would be prohibitively slow when naively trans-
lated into a data-parallel program since there are three interwoven asynchronous
loops: Simulation, backtracking and error simulation. The implementation uses
a 16384-processor MasPar MP-1 and the data-parallel ANSI-C extension MPL.
All measurements were done using FSSP search with four states.

Starting point for parallelization is a nonrecursive, sequential C-implementation
which can be naturally decomposed into seven elementary operations: Make a
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simple simulation step (advanceCol); advance simulation to the next time step
(advanceTime); advance simulation to the next array size (advanceSize); push a
choice point on the stack (makeChoicePoint); backtrack; make an error simula-
tion step (simulateError), get the next choice at a choice point (getNextChoice).
It can be argued that even the sequential algorithm became more manageable
by implementing control as a state machine (using GOTOs!) because the usual
\structured" programming approach tends to produce complicated nested loops
with contrived exit conditions.

The SIMD implementation keeps the state of control in a register and therefore
control overhead is negligible. The initial set of operations was transformed using
the rules in Section 2.2: Tuning a rarely used table access and removing one of
the special case heuristics at backtracking yield a 6 % and 17 % improvement re-
spectively. advanceCol and simulateError have an expensive transition table access
in common. These accesses were factored out using splitting and subsequently
merged into an operation recomputeEntry yielding a 50 % improvement. Simi-
larly, some common stack maintenance code in backtrack and makeChoicePoint

was factored out into an operation cleanTos. Finally, Formula 5 indicated that
advanceCol and advanceTime should now be tested for equally often, so they were
\unsplitted" to one combined operation. Table 1 shows statistics for the �nal set
of operations.

Table 1: Probability, cost and optimal (proba-
bilistic) testing frequency for operations of test
application.
Operation pi [%] ci [ticks] fi [%]
advanceCol 28.8 343 20.7
recomputeEntry 37.4 215 29.7
makeChoicePoint 3.5 256 8.3
backtrack 3.7 700 5.2
getNextChoice 2.3 352 5.8
cleanTos 8.0 399 10.1
simulateError 16.1 241 18.5
advanceSize 0.2 372 1.7

Table 2: Execution
times versus number of
PEs used, for test ap-
plication
# PEs T [s]
16384 12.7
8192 22.1
4096 40.7
2048 76.8
1024 148.4

Clever instruction ordering or duplication alone give limited speedup (less
than 10 %) but applied together they yield a 63 % improvement as compared to
testing for each operation once in random order. Instruction ordering was done
manually. All in all, the optimizations for decreasing SIMD overhead make the
program three times faster than the basic approach.

Together with an e�ective dynamic load balancing scheme for distributing
subtrees (see [14, 11]) which achieves a processor utilization of more than 80 %
and incurs a communication overhead of less than 15 %, the program achieves
about 38 times the performance of a sequential implementation on a SPARC-
2 workstation. Table 2 shows execution times for di�erent machine sizes. It
would be interesting to have �gures about the remaining SIMD overhead but
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this is di�cult since implicit globalor operations and overhead due to indirect
addressing complicate the picture.

5 A special case: Interpreter loops

initialization

LOOP

IF currentInstruction = I1 THEN execute I1
...

IF currentInstruction = In THEN execute In
IF TRUE THEN

save results

fetch next instruction

fetch operands

Figure 5: MIMD interpreter as a test loop.

There is quite a number of papers on emulating MIMD behavior (e.g. [3, 7, 8,
10]) which on the �rst glance are based on a slightly di�erent road to solving the
problem: The SIMD machine can interpret a locally stored program written in a
RISC like machine language. However, Figure 5 shows that such an interpreter
can be viewed as a special case of the general test loop of Figure 2. So far, we
have not used this approach because it has a number of problems:

� In order to limit SIMD overhead there can only be a small number of simple
instructions.

� Accessing instructions and operands requires several indirect memory ac-
cesses which are very slow on contemporary SIMD machines. Typically this
takes one or two orders of magnitude more time than executing an instruc-
tion like add. Finite state control as in our FSSP example, in contrast, has
almost no control overhead.

� Some of the operations of the FSSP might require hundreds of machine
instructions which have to be interpreted one by one.

� It is not even clear whether a program as complex as the FSSP example
would �t into the local memory of a MasPar PE. Complicated and time
consuming swapping schemes might be required.

For all these reasons, a pure interpreter approach cannot be expected to yield
practically useful performance on todays machines. On the other hand, inter-
preters have the conceptual appeal that they can handle arbitrarily complex pro-
grams with a �xed number of instruction, whereas the number of operations
derived from the control 
ow of a program can in principle grow without bound.
For some applications it might therefore be a good idea to take the best out of
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both worlds: A small general purpose instruction set for 
exibility, and addition-
al coarse-grained instructions speci�cally tuned for the program to be executed
which do most of the real computation.

We now apply the techniques derived in the preceding sections to the inter-
preter approach. This can also serve as an example how these techniques can be
adapted to incorporate other kinds of additional knowledge about control 
ow.

5.1 Modeling interpreters by Markov chains

In [1] interpreters are modeled using a Markov chain by assuming that instruc-
tions are independent and that an instruction Ii can be fully characterized by its
probability of occurrence pi and its cost ci. This can be viewed as a special case of
our Markov model for arbitrary test loops from Section 3. We introduce one oper-
ation for each instruction plus one special operation o0 for accessing instructions
and operands (with cost c0). We know the control 
ow of the interpreter. An
instruction is always followed by o0 and o0 is followed by one of the instructions
according to their probabilities. All other transitions are impossible.

pij =

8><
>:

1 : i = 0 and j > 0
pi : i > 0 and j = 0
0 : all other cases

As in Section 2.1, performance can be increased by optimizing the test loop.
The special structure of control 
ow implies that every sensible test loop can
be written as S1;o0;S2;o0;: : : ;Sk;o0 (up to cyclic permutation). Where each Sj

is a nonempty subset (called subinterpreter in [3]) of the instruction set. Its
instructions can be tested for in some arbitrary order. Test loops of a di�erent
form would contain tests which can never be successful.

5.2 The NP-hardness of subinterpreter scheduling

The interpreter loops described in Section 5.1 have a considerably simpler struc-
ture than general test loops. So, we might hope that there are e�cient methods
for optimizing them. We now show that this is not the case. Consider the decision
version of our optimization problem:
SUBINTERPRETER SCHEDULING

INSTANCE: Instructions I1; : : : ; In and costs fc0; c1; : : : ; cng � N; probabilities
pi 2 Q+ (

Pn
i=1 pi = 1), a subinterpreter count k 2 N, a test loop length m and a

cost bound C 2 Q+.
QUESTION: Is there a test loop with k subinterpreters and k +

Pk
j=1 jSjj = m

for which the expected cost per executed instruction is C � C?

Theorem 1 SUBINTERPRETER SCHEDULING is NP-hard.

Proof: Consider the well known NP-complete partition problem (quoted from
[4]):
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PARTITION

INSTANCE: A �nite set A and a \size" s(a) 2 Z+ for each a 2 A.
QUESTION: Is there a subset A0 � A such that

X
a2A0

s(a) =
X

a2A�A0

s(a) ?

We now transform an instance of PARTITION into an instance of SUBIN-
TERPRETER SCHEDULING:
Let n = jAj, fI1; : : : ; Ing = A, c0 = 0, c1 = � � � = cn = 1, pi = s(Ii)=

P
a2A s(a),

k = 2, m = n+ k and C = 3

4
n. This is a legitimate instance of the SUBINTER-

PRETER SCHEDULING problem and it can be constructed in polynomial time.
Consider an optimal test loop for this instance. It must have the form S1;o0;S2;o0
with S1[S2 = A and S1 \S2 = ;. Let � =

P
Ii2S1

pi. It is su�cient to show that
the cost measure C is 3

4
n if � = 1

2
and larger in all other cases.

The test loop can be modeled using a Markov chain with the following four
states:

A1: About to interpret S1 and control 
ow waits for an instruction from S1.

A2: About to interpret S2 and control 
ow waits for an instruction from S2.

W1: About to interpret S1 but control 
ow waits for an instruction from S2.

W2: About to interpret S2 but control 
ow waits for an instruction from S1.

When the Markov chain is in state A1 we can next book the successful execution
of an instruction and the test loop will next be ready to interpret an instruction
from S2. With probability 1�� the control 
ow will also wait for an instruction
from S2 now, resulting in a transition to state A2. In a similar way the other
transition probabilities can be found resulting in the following Markov chain:

W2

1
�!
 �
�

A1

1��
�!
 �
�

A2

1��
�!
 �
1

W1

Solving the corresponding eigenvector equation (as in Equation 2) yields the
equilibrium probability to �nd the Markov chain in either of the active states A1

or A2:

a =
1

2(�2 � � + 1)
:

Each traversal of the test loop incurs a cost n and results in two state changes of
the Markov chain. Therefore the expected cost per executed instruction is

C =
n

2a
= n(�2 � �+ 1): (7)

This cost measure takes the minimum 3

4
n for � = 1

2

2
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Figure 6: Markov model of probabilistic interpreter loop (n + 2 states).

5.3 Probabilistic test loops revisited

As in Section 3.2 the combinatorial explosion involved in determining the
optimal test loop can be avoided by looking at a probabilistic test loop. The
derivation only has to be changed to take the special role of o0 into account.
Figure 6 shows the Markov chain model of the interpreter loop. The \wait for
instruction" states Wj (j > 0) have the same transition probabilities as the op-
erations from Figure 4. What is new is that the active state has a mandatory
transition into the state W0. The Markov chain remains there until o0 is encoun-
tered and subsequently makes a transition analogous to the transitions from A

in Figure 4. A similar derivation as in Section 3.2 can now be used to derive the
expected cost per instruction execution. The result is

C(f0; f1; : : : ; fn) =

 
1

f0
+

nX
i=1

pi

fi

! 
f0c0 +

nX
i=1

fici

!
: (8)

We see that by introducing the arti�cial \probability" p0 = 1 we can write C as

C =

 
nX
i=0

pi

fi

! 
nX

i=0

fici

!
(9)

which is completely analogous to Equation 4. Since the derivation of the optimal
testing frequencies in Section 3.2 makes no use of the property

P
pi = 1, we can

immediately adopt the result

fj =

q
pj

cjPn
i=0

q
pi
ci

for 0 � j � n: (10)

Again, the probabilistic test loop is not directly useful as an implementation
strategy but quantitative results can be a valuable tool. For example, the for-

mula for the expected cost of the optimal test loop Copt =
�Pn

i=0

p
pici

�2
can

be used to compare di�erent instruction set designs without having to write an
optimized interpreter for each of them. Once an instruction set has been decided
upon, a heuristic procedure like the following might be used to construct a good
interpreter loop:
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1. Decide upon an approximate test loop length m > n. The larger m the
better the potential speedup but the more di�cult the �ne tuning.

2. Use k = max(round(mf0); 1) subinterpreters.

3. Make max(min(round(mfi); k); 1) replications of instruction i.

4. Partition the resulting multiset of instructions into k subinterpreters (sets
of instructions) such that the summed probabilities for the individual subin-
terpreters are about equal. (Using some heuristics.)

5. Fine tune using hill climbing techniques or additional knowledge about the
instruction set. It might also help to try di�erent values for m.

6 Conclusions

There is no clear-cut border between SIMD algorithms and MIMD algorithms.
A program with asynchronous control 
ow can be decomposed into a number
of elementary operations which can emulate asynchronous behavior on a SIMD
machine. For many applications, a small number of coarse-grained operations is
su�cient resulting in an acceptable emulation overhead. However, more compli-
cated programs may require a large number of operations or the decomposition
into very �ne-grained operations which resemble a machine instruction set. In
this case, the overhead may become prohibitive.

Using the techniques developed here, it is possible to transform a program into
a form more suitable for SIMD execution. The transformations can be applied
manually but the most important ones are also su�ciently well de�ned in order to
be performed by a compiler. Using a mixture of quantitative and qualitative tools,
the emulation can be made considerably more e�cient than a straightforward
approach.

The most interesting quantitative tools used here are Markov chain models of
control 
ow. They model the behavior of a test loop in a quite general setting and
for probabilistic test loops it is even possible to derive closed form expressions
for optimal testing frequencies. They also play a key role in proving that �nding
optimal deterministic test loops is an NP-hard problem.
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