Performing High-L evel Synthesisvia Program Transfor mationswithin a
Theorem Prover *

Christian Blumenrohr, Dirk Eisenbiegler
Institute for Circuit Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid),

University of Karlsruhe, Germany

e—mail: {blumen,eisen}@ira.uka.de

http://goethe.ira.uka.de/fsynth

Abstract

In this paper, we present a new methodology towards
performing high-level synthesis. During high-level synthe-
sis an algorithmic description is mapped to a structure of
hardware components. In our approach, high-level synthe-
sis is performed via program transformations. All trans-
formations are performed within a higher order logic the-
orem prover thus guaranteeing correctness. Our approach
is not restricted to data flow graphs but supports arbitrary
computable functions, i.e. mixed control/data flow graphs.
Furthermore, the treatment of algorithmic and interface de-
scriptions is orthogonalised, allowing systematic reuse of
designs.

1. Introduction

In hardware synthesis, design errors may be extremely
expensive. This implies that one has to find a design
methodology, that is safe in a sense that it guarantees cor-
rectness throughout the design process. Due to the com-
plexity of nowadays circuits, simulation can never be ex-
haustive. Also post-synthesis verification is always NP-
complete. This paper presents an approach towards design
correctness where synthesis is performed via a sequence
of logical transformations thus guaranteeing correctness by
construction.

This paper addresses synthesis at the algorithmic level.
It is part of our ongoing work towards a formal synthesis
tool named HASH (higher order logic applied to synthesis
of hardware). In our previous work [3], algorithmic synthe-
sis was restricted to pure data flow graphs. The extensions
to be presented in this paper allow synthesising arbitrary al-
gorithmic descriptions i.e. mixed control/data flow descrip-
tions.

*This work has been financed by the Deutsche Forschungsgemein-
schaft, Project SCHM 623/6-1.

Our work is based on a formal hardware description lan-
guage named Gropius! ranging from the gate level to the
system level. Gropius [2] is a language with a formally ex-
act semantics, where each construct is derived from logic
within the HOL [7] theorem prover. In this paper, we will
introduce the part of Gropius, that is related to the algorith-
mic level (section 2), and we will present a new formal hard-
ware synthesis methodology, where the implementation is
derived by applying a sequence of program transformations.

There are many hardware description languages. How-
ever, there are several reasons, why we believe that Gropius
is superior to most conventional description languages.
Gropius is defined with a precise formal semantics, it is
functional, strongly typed, higher order and polymorphic.

There are also other approaches, where the synthesis
process is based on a transformational design style. Un-
like such approaches, we formalise the algorithmic descrip-
tion in a mathematical manner and perform the transforma-
tions directly in this representation style within the theo-
rem prover HOL. Due to the fact that deriving theorems in
HOL is restricted to a small core of rules and axioms, our
approach can be considered to be extremely safe as to cor-
rectness. This design style, that we call formal synthesis,
is superior to those, where the correctness of transforma-
tions is proved, but the correctness of their implementation
is not. In those approaches, there are only paper&pencil
proofs for the correctness [9] or the circuit transformations
are based on a (non-mathematical) formalisation. Proofs
are performed by intuition and not within a mathematical
logic [8]. In the CAMAD system [11] for instance, the al-
gorithmic description is given in a Pascal-like notation. For
transforming the program, it is translated into a formalisa-
tion based on timed Petri-nets. Both the transformations
from Pascal to Petri-nets and the transformations within the
Petri-nets are pieces of software that are complex and safety
critical. There is no explicit proof for the correctness of

LWALTER GROPIUS (1883-1969), founder of the BAUHAUS (form fol-
lows function).

the implementation of these safety critical parts. There are
also other formal synthesis approaches, where circuit trans-
formations are performed by applying basic mathematical
rules within a theorem prover. However, these are mostly
restricted to lower abstraction levels (e.g. Lambda/Dialog
[6]) or they are restricted towards checking some plausibil-
ity criteria rather than performing a complete proof. See
[10] for a survey on formal synthesis approaches.

The starting point for high-level synthesis is an algorith-
mic description. The result of high-level synthesis is a struc-
ture at the Register Transfer level (RT-level). Usually, hard-
ware at the RT-level consists of a data-path and a controller.
In the conventional approaches [5], several control states are
introduced along a given control/data flow description thus
partitioning it into small cycle free pieces of program, each
corresponding to one clock tick. Then scheduling, alloca-
tion and binding are performed on this exponential num-
ber of cycle-free pieces leading to a data-path and a sym-
bolic state transition table. Afterwards, the controller and
the communication part are generated.

We have developed a methodology that totally differs
from the standard. In our approach, the implementation
is derived via program transformations. Synthesis is per-
formed in two steps. The first step transforms the program
into an equivalent program with a specific shape that we
call SLF-representation (section 4). In this step, pre-proven
program equations are applied. In the second step, a pre-
proven implementation theorem is applied for mapping the
SLF-program to a RT-level structure (section 3). There are
several of such implementation theorems each correspond-
ing to a specific pattern for the interface behaviour of the
hardware implementation.

2. Formal representation of programs

At the algorithmic abstraction level, the behaviour of the
circuit, that has to be synthesised, is represented as a pure
software program. The concrete timing of the circuit is not
yet considered. Gropius offers appropriate means for this
level of abstraction. We will now briefly introduce them —
for a detailed description see [1, 2].

In Gropius, we distinguish between two different al-
gorithmic descriptions: DFG-terms and P-terms. Both
DFG-terms and P-terms can be used as a starting point
for synthesising hardware. DFG-terms represent simple,
non-recursive programs that always terminate (Data Flow
Graphs). P-terms are a means for representing arbitrary
computable functions (Programs).

Both P-terms and DFG-terms are functions. DFG-terms
always terminate. The evaluation of P-terms, however, may
not terminate. In our approach, P-terms are used for repre-
senting entire programs as well as blocks. Blocks are used
for representing inner pieces of programs. Blocks are based

on conditions and basic blocks. Both basic blocks and con-
ditions are DFG-terms with basic blocks having same in-
put and output type and conditions having a boolean output
type.

In Gropius, there is a small core of 8 basic control struc-
tures for building arbitrary computable blocks and programs
based on basic blocks and conditions: PARTIALIZE (con-
vert a basic block into a block), WHILE (loop), THEN (se-
quence of blocks), IFTE (conditional branching), LOCVAR
(local variable), LEFTVAR and RIGHTVAR (apply block
to left/right part of state), PROGRAM (convert a block into
a program)

The syntax of DFG-terms, blocks and programs are de-
fined with the following Backus-Naur form:

vblock ::= variable | "({vblock","} vblock)"

expr ::= variable | "(” {e»(pr } expr)’ | operator ”(” expr)"
DFG-term ::= ”A” vblock ”.” { ”let” vblock ”=" expr "in” } expr
block ::= "PARTIALIZE” basic_block | "WHILE” condition block |

block "THEN” block | "IFTE” condition block block |
”LOCVAR” constant block |
"LEFTVAR” block | "RIGHTVAR” block

program ::= "PROGRAM” constant block

Providing only a small basic language for representing pro-
grams leads to a small number of syntactic constructs to
be considered and therefore reduces the number of program
transformations that have to be derived. However, Gropius
allows deriving new control structures by the programmer.
Here are some examples:

F NOP = PARTIALIZE (Az.)
F FORmnsA =
LOCVAR m
(WHILE (A(z,h). h < n)
(A THEN (PARTIALIZE (A(z, k). (z,h + $)))))
F LOOP Ac¢B = ATHEN (WHILE ¢ (B THEN A))
= REPEAT Ac = LOOP A c¢NOP

In our approach, the mapping from an algorithmic de-
scriPtion to hardware is performed in two steps: programs
are first turned into a specific pattern called single-loop form
(see section 4) and then an implementation theorem is ap-
plied for mapping the SLF program to hardware (see section
3). Programs in SLF have the following shape.

PROGRAM o_init (LOCVAR v_init (WHILE ¢ (PARTIALIZE a)))

In this expression o_init and v_init denote arbitrary con-
stants, c is a condition and a an arbitrary basic block.

3. Converting programsto the Register Trans-
fer level

The algorithmic description only defines the mapping
from input values to output values. Time is not yet consid-
ered. To bridge the gap between the algorithmic description
and the hardware implementation, the interface behaviour

has to be described, specifying how the algorithm commu-
nicates with its environment.

Many approaches in the high-level synthesis domain use
a notation, where algorithmic description and interface de-
scription are mingled [11]. In our approach algorithmic de-
scription and interface description are strictly separated. A
fixed set of interface patterns is provided. The circuit de-
signer can first write some ordinary, time independent algo-
rithm and can then select one of the interface patterns, thus
defining the way the circuit communicates with the environ-
ment. It is easy for the designer to switch from one interface
behaviour to another without changing the program. There-
fore, this methodology supports the reuse of designs in a
systematic manner.

There are many possible interface specification patterns.
Usually, the interface of the implementation not only con-
sists of the data signals from the algorithmic description,
but there are also additional control signals. They are used
to steer the communication and to allow interrupting the ex-

ecution of the algorithm.

The formula below shows the formal definition of a in-
terface specification pattern called IFC1. It describes the
relation between some interface signals input, reset, start,
output and ready with respect to some arbitrary program f.

IFC1 (input, reset, start, output, ready, f) =
Vt. (((t =0) V resett) A —(startt) = readyt) A
((ready t N —(start(t + 1))) =
(ready (t + 1) A (output (t + 1) = outputt))) A
((((t =0) V ready (t —) V resett) A startt) =
CASE (f (inputt)) O
Defined y
(Im.
((Vn < m.—(reset (t +n+1))) =
((output (t +m) =y) A ready (t +m))) A
(Vn < m.
(Vp < n.—(reset(t+p+1))) =
~(ready (¢ + n)))))
Undefined
(Ym.(Vn < m. —(reset (t +n +1))) =
~(ready (¢ + m)))

For each interface pattern, that we provide, we also give
a correct implementation pattern in terms of an implementa-
tion theorem. All implementation theorems expect the algo-
rithmic description to be in SLF. Figure 1 shows the struc-
ture of the general hardware implementation that we found
for interface pattern IFC1.

We represented this structure in logic and named it
IMP12. The following theorem states, that IMP1 fulfils

IFC1 for every program f being in SLF with some DFG-
terms a and c and arbitrary constants v_init and o_init.

F Va c v.init o_init.
IMP1 (input, reset, start, output, ready, a, c, v_init, o_init)
=
IFC1 (input, reset, start, output, ready,
PROGRAM o_init
(LOCVAR v_init (WHILE ¢ (PARTIALIZE a))))

2For sake of space we will not give the structural description in
Gropius. See [2] for structural RT-level descriptions in Gropius.

sart & , 3
reset ﬂ E >1 ready
1 MUX
: —rF
input T
| MUx| |
| —F a
| onit T MUX MUX
! »I'\:/qui F —F - output
L LT T :
bV init T
4‘13% D
2% =
| %]

Figure 1. RT-Implementation IMP1

When mapping an algorithmic description to hardware,
certain cost functions have to be considered. The main
critical aspects are consumption of area and timing behav-
iour. In general, these optimisation goals are contradictory.
When regarding the RT-level implementation in figure 1,
one can see that the two DFG-terms a and c directly deter-
mine the hardware costs.

4. Converting programsto single-loop form

Every P-term can be transformed into a SLF. However,
for every P-term there is not a unique SLF, but there are
several equivalent SLFs. Different SLFs lead to different
implementations with different costs with respect to hard-
ware consumption and execution speed. In our approach,
doing a good high-level synthesis means producing a SLF
which corresponds to a cost minimal implementation.

Within the HOL theorem prover environment, we have
proven several transformation theorems, which can be sub-
divided into two groups: SPT (standard program transfor-
mations) theorems and OPT (optimisation program trans-
formation) theorems. SPT theorems are used to convert
arbitrary programs to SLF. Rewriting with the set of SPT
theorems is confluent (i.e. applying them in an arbitrary or-
der always leads to the same result) and always leads to
a SLF. OPT theorems are used for optimising the control
structures.

The SPT theorem set comprises a fixed number of 27
equations (see theorem 1 for an example). In simplified
terms, the equations reduce the number of control structures
(THEN, WHILE,. . .) by adding new data variables holding

the current control information. Furthermore, local vari-
ables are shifted from the inside to the outside of control

structures.

F WHILE ¢; (LOCVAR init (WHILE c¢» (PARTIALIZE a))) =
LOCVAR init
LOCVAR F

WHILE (A((z, h), h2)-c1 @ V ha) @
PARTIALIZE (A((z, k1), hs).
MUX (¢2 (z,h1),(a (z,h1),T),((z,init),F)))

Currently, 12 OPT theorems have been proven. Unlike
the SPT theorem set, this set is not fixed and may be ex-
tended. A very powerful OPT-theorem implements loop-
unrolling. The theorem describes the equivalence between
a while-loop and an n-fold unrolled while-loop with sev-
eral loop-bodies which are executed successively. Between
two loop-bodies, the loop-condition is checked to guaran-
tee, that the second body is only executed, if the value of
the condition is still true. The advantage of loop-unrolling
is, that the combinatorial depth is increased, which reduces
the number of clock ticks that are required for executing the
program. Theorem (2) gives the definition of a special for-
loop FOR_N, which realizes an n-fold application of the
same function (see section 2). Theorem (3) shows the gen-
eral loop-unrolling theorem, and theorem (4) can be used to
remove the function FOR_N, after having instantiated n.

F FORNn A =FOR1n1 (LEFTVAR A) 2
F WHILE ¢ (PARTIALIZE @) =
WHILE ¢ ((PARTIALIZE) THEN 3)

(FOR.N n (PARTIALIZE (Az. MUX (c 2,0 2,7)))))

F FORNLIA = A A @
FORN (SUCn) A = ATHEN (FORNn A)

Within the HOL theorem proving system, we have
proven the SPT theorems and the OPT theorems by hand.
These theorems are powerful enough to derive SLFs in dif-
ferent ways. A given program is first optimised by applying
some optimisation theorems. The OPT theorems can either
be applied by hand or one needs to invoke some heuristics.
Afterwards the SPT theorems are applied and to produce
a SLF. This can be performed by pure rewriting, which is
fully automated by the HOL system.

Converting a program to a SLF corresponds to conven-
tional scheduling, allocation and binding techniques. In
our approach, design goals such as hardware consumption
and execution speed are reached by selecting suitable theo-
rems among the OPT-theorems. Other than with conven-
tional synthesis techniques, the schedule (the assignment
between operations and clock cycles) is not calculated ex-
plicitely but is implicitly derived during the theorem ap-
plications. Allocation and binding are performed after the
SLF-transformation within the basic blocks of the SLF. Per-
forming allocation and binding within basic blocks in for-
mal synthesis has already been presented in [3].

5. Conclusion

In this paper, we have presented a new methodology for
deriving RT-level structures from circuit descriptions at the
algorithmic level. It differs from other high-level synthesis
approaches in three aspects. First, it is formal. The im-
plementation is derived by applying basic logical transfor-
mations within a theorem prover thus guaranteeing correct-
ness implicitly. Second, it provides a new synthesis con-
cept. The implementation is derived by applying program
transformations rather than extracting a control and data
flow graph and analysing an exponential number of control
paths. Thirdly, the input language for our high-level synthe-
sis supports design reuse by using interface patterns rather
then mingling algorithmic aspects and interface behaviour.

Our hardware description language Gropius can be used
to describe circuits at different abstraction levels (see [4]).
It provides a consistent concept for a correctness-by-design
synthesis style ranging from the algorithmic level down to
the gate level.

References

[1] C.Blumenrdhr and D. Eisenbiegler. Deriving structural RT-
implementations from algorithmic descriptions by means of
logical transformations. In GI/ITG/GME Workshop ' 98.

[2] D. Eisenbiegler and C. Blumenrthr. Gropius — a hardware
description language for the reuse of designs. to be published
in REUSE’98.

[3] D. Eisenbiegler, C. Blumenrdhr, and R. Kumar. Implemen-
tation issues about the embedding of existing high level syn-
thesis algorithms in HOL. In TPHOLS 96.

[4] R. D. Eisenbiegler and C. Blumenrohr. A constructive ap-
proach towards correctness of synthesis-application within
retiming. In EDTC' 97.

[5] D. Gajski et al. High-Level Synthesis, Introduction to Chip
and System Design. 1994.

[6] E.M. Mayger and M.P. Fourman. Integration of formal meth-
ods with system design. In A. Halaas and P.B. Denyer, edi-
tors, International Conference on Very Large Scale Integra-
tion’91.

[7] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cam-
bridge University Press, 1993.

[8] P.Middelhoek et al. A methodology for the design of guaran-
teed correct and efficient digital systems. In IEEE Int. High
Level Design Validation and Test Workshop * 96.

[9] R. Camposano. Behavior-preserving transformations for
high-level synthesis. In Hardware Specification, \erification
and Synthesis: Mathematical Aspects, 1989.

[10] R. Kumar, C. Blumenrdhr, D. Eisenbiegler, and D. Schmid
. Formal synthesis in circuit design-A classification and sur-
vey. In FMCAD'’ 96.

[11] Z. Peng and K. Kuchcinski. Automated transformation of
algorithms into register-transfer implementations. TCAD,
13(2), Feb. 1994.

