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Abstract

It is shown that the low energy spectrum of mesoscopic superconductors

coupled by Josephson interaction can be probed by two-electron tunneling

from a normal electrode. The Andreev re
ection in the NS junction of a

normal-superconductor-superconductor double junction (NSS transistor) pro-

vides a unique spectroscopic tool to probe the coherent Cooper pair tunneling

and the energy spectrum of the Josephson (SS) junction. The ground state

properties are re
ected in a resonant structure of the linear conductance; ex-

cited states with an energy as low as the Josephson coupling energy lead to a

threshold in the nonlinear I-V characteristic.
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The quantum states of a mesoscopic conductor (grain) connected by weak links to particle

reservoirs are signi�cantly in
uenced by charging e�ects. The charging energy restricts

tunneling of electrons between the grain and the reservoirs. At a discrete, periodic set of

values of the electrostatic potential of the grain, which can be tuned continuously by means

of a gate, states with di�erent grain charges may have the same electrostatic energy. In

the case of normal metals, many-body e�ects lead to a non-analytical variation of the grain

charge with gate voltage in the vicinity of these degeneracy points [1,2]. However, this

behavior develops only at very low temperatures, and has not been observed experimentally

so far. The chances for the observation of coherent charge transfer are larger if the grain

and particle reservoirs are in the superconducting state. Here the nature of the degeneracy

depends on the relative magnitude of the charging energy EC and the superconducting gap

�. If � < EC the degeneracy occurs between states having N and N + 1 electrons on the

grain. In the opposite regime, states with the numbers N and N + 2 may be degenerate

and coherent Cooper pair tunneling may become observable [3]. The crossover between the

two regimes was studied by measurements of the charge in an electron box [4] and of the

switching current in a Josephson double-junction [5].

The possibility of superpositions of di�erent charge states in a superconductor gives rise

to a number of interesting macroscopic quantum e�ects [6{9]. Measurements of the island

charge at low temperature and of the critical Josephson current provide information about

the ground state energy of the system [3], but leave inaccessible the energy spectrum and

structure of excited states [6{8]. On the other hand, for � > EC , the interplay between the

Josephson coupling and charging leads to quantization of this spectrum. At the points of

charge degeneracy the spacing between the corresponding discrete levels is of the order of

the Josephson coupling energy EJ , which for a weak link is much smaller than the gap �.

This hierarchy of energies should allow one to resolve the low-energy spectrum, if a suitable

spectroscopic tool is found.

In this paper we show that the I-V characteristic of a double tunnel junction connecting

a superconducting lead with a normal lead through a mesoscopic superconducting grain,

provides the needed spectroscopic tool. In the low-bias regime, the dominant mechanism of

transport in the NS junction between the grain and the normal electrode is due to Andreev

re
ection. Under these conditions we �nd that the linear conductance is sensitive to the

superposition of di�erent charge states in the wave functions of the Josephson junction

formed by the grain with the superconducting electrode. Speci�cally, near a degeneracy

point we �nd that the conductance has a resonant shape as a function of the electrostatic

potential of the grain. This resonance is directly related to the amplitudes of the states with

N and N +2 electrons on the grain involved in the superposition. In addition, the nonlinear

I-V characteristic displays a threshold voltage that reveals the existance of an excited state

with an energy on the order of EJ . At the threshold voltage, this state will be engaged in

electron transport, and as a result the conductance of the system will increase. The value

of the threshold voltage enables one to identify the energy of the excited state.

We consider a NSS transistor with a small superconducting island coupled via tunnel

junctions to a normal left (L) electrode and a superconducting right (R) electrode. A gate

at potential Vg is coupled capacitively to the island, and a bias voltage �V=2 is applied

symmetrically to the electrodes (V > 0). The charging energy of the transistor depends

on the number of electrons N on the island, and also on the number of electrons NR � NL
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which have passed through the transistor,

Ech(NL; N;NR) = EC

�
Qg

e
�N

�2

�
(NR �NL)

2
eV : (1)

Here C = CL + CR + Cg is the total capacitance of the island, i.e., the sum of the two

junction capacitances and the gate capacitance, and EC = e2=2C is the charging energy

corresponding to a single electron. The e�ect of the gate voltage is contained in the external

charge Qg = CgVg + (CL �CR)V . All the properties of the transistor are 2e-periodic in the

external charge. We, therefore, can restrict ourselves to the range 0 � Qg � 2e.

The states of the system jNL; N;NRi are characterized by the number of charges in the

electrodes and the island, NL; NR, and N , and furthermore, if present, by the energies of the

excitations in the leads and the island. We start from a reference state without quasiparticle

excitations, which we denote by j0; 0; 0i with charging energy Ech(0; 0; 0) = Q2
g=2C. Other

states participating in the two-electron transfer (Andreev re
ection in the left junction and

pair tunneling in the Josephson junction) are j0; 2;�2i, j � 2; 0; 2i, and j � 2; 2; 0i. Their

energies can be found from Eq. (1). The Andreev re
ection process involves an intermediate

state j � 1k; 1p; 0i, where one electron has been transferred through the NS junction onto

the grain. The energy of this state is Ekp = Ech(�1; 1; 0) � �k + �p, where �k and �p are the

quasiparticle energies in the normal and the superconducting grain respectively.

The Josephson coupling, which is characterized by the energy scale EJ , mixes charge

states di�ering by multiples of Cooper pairs in the two superconducting electrodes. If Qg

takes a value near e, and the bias V is small, the states j0; 0; 0i and j0; 2;�2i are nearly

degenerate and hence get mixed strongly. Similarly j � 2; 0; 2i and j � 2; 2; 0i are mixed.

Near the degeneracy points the eigenstates are a superposition of two states

 0 = �j0; 0; 0i + �j0; 2;�2i;

 1 = ��j0; 0; 0i+ �j0; 2;�2i (2)

with energies

E0(1) = EC +
(Qg � e)2

2C
+
eV

2
� (+)

1

2

q
�E2

ch + E2
J : (3)

Here the coe�cients are

�2 = 1 � �2 =
1

2

2
41 + �Echq

�E2
ch + E2

J

3
5 ; (4)

and we introduced the di�erence in charging energy, �Ech � Ech(0; 2;�2) � Ech(0; 0; 0),

which is �Ech = 4EC

�
Qg

e
� 1

�
+ eV . The coe�cient � is close to unity if the charging

energy of the state j0; 0; 0i lies below that of j0; 2;�2i, i.e. for �Ech > 0, and vanishes in the

opposite limit, while � shows the complementary behavior. The Josephson mixing of the

other two states leads to the following eigenstates

 0
0 = �j � 2; 0; 2i +�j � 2; 2; 0i ;

 0
1 = ��j � 2; 0; 2i+�j � 2; 2; 0i : (5)

3



The coe�cients � and � are the same as for the �rst pair, and the corresponding energies

are

E0
0(1) = E0(1) � 2eV : (6)

In the above consideration we neglected the e�ect of charging on the Josephson coupling

constant that leads to a relatively small enhancement [8,10] of EJ .

At low bias voltages the dominant process for charge transfer across the NS junction is

Andreev re
ection. Generalizing the expression derived in Ref. [11] for a NSN transistor, we

can write the amplitude for this second order tunneling process between the states  0 and

 0
0 as

Ak;k0( 0 !  0
0) = ��

X
p

t�kpt
�
k0�pupvp

�

 
1

E0 � Ekp

+
1

E0 � Ek0p

!
: (7)

In this process two electrons from the states k; " and k
0; # of the normal electrode tunnel

into the grain through a junction. The latter is characterized by the tunneling Hamiltonian

with matrix elements tkp. We suppressed the spin indices, and used the relation vp;" =

�vp;# between the coe�cients of the Bogoliubov transformation. The energies of the virtual

intermediate states Ekp and Ek0p where one electron has been transferred to the island enter

the denominators. The summation in Eq. (7) can be performed and, for �k; �k0 ! 0, yields

the result

Ak;k0( 0 !  0
0) = ��

�

2
�F0ht

�
kpt

�
k0�pip̂ : (8)

This expression involves the density of states of the island �, and an average over the

directions of the momenta p̂. We introduced the function

F0 �
4

�

�q
�2 � [Ech(�1; 1; 0) � E0]2

� arctan

vuut�� Ech(�1; 1; 0) + E0

�+ Ech(�1; 1; 0)� E0
: (9)

The rate for the Andreev re
ection process is obtained by the golden rule. After sum-

mation over the initial states k and k0 one �nds for low temperatures [11]

� ( 0 !  0
0)

=
2�

�h
(��)2

(GnRK)
2

16�2Neff

F 2
0 (E0 � E0

0)�(E0 � E0
0) : (10)

Here Gn is the normal state conductance of the NS junction, RK = h=e2 � 25:8k
 is the

quantum resistance (GnRK � 1), and Neff is the e�ective number of parallel channels in

the tunnel junction [11,12]. These parameters are conveniently absorbed in the de�nition of

the Andreev conductance, GA = G2
nRK=Neff . If the applied bias V is below some threshold

4



voltage Vth, the only transition possible at low temperatures is the Andreev re
ection be-

tween the states  0 and  
0
0. The resulting current Ires = 2e�( 0 !  0

0), due to the overlap

of the functions � and �, shows a pronounced structure as a function of gate charge, typical

for resonant tunneling. This is most clearly seen in the dependence of the linear conductance

on the gate charge

Gres(Qg) = GA

E2
J

16E2
C (Qg=e� 1)2 + E2

J

F 2
0

4
: (11)

The result is illustrated by the lower set of curves in Fig. 1. The width of the resonance is

characterized by EJ . On this energy scale, as long as ��EC
>
� EJ , the function F0 can be

considered constant.

Eq. (11) was derived under the assumption that the energy � + Ech(�1; 1; 0) of the

intermediate state lies above E0. The resonant shape changes drastically if the supercon-

ducting gap is lowered, such that these two energies can coincide. This occurs at two values

of charge, Qg = e� �Q�
g, where �Q

�
g is

�Q�
g

e
=

1

2

vuut�1 � �

EC

�2

�

�
EJ

2EC

�2

: (12)

If Qg lies within the window e��Q�
g � Qg � e+�Q�

g, the ground state is no longer composed

of even-charge states; rather the state j � 1; 1p; 0i with one electron transferred through the

NS junction has the lowest energy [4,13]. In the odd state the current is low; the maximal

conductance Gres(e), see Eq. (11), is not reached. Instead, within the abovementioned

charge window, the conductance assumes the low value G � GA(GnRK)
2 determined by

higher order tunneling processes through both junctions [14].

Even at � > EC�EJ=2, Andreev re
ection leads solely to transitions between the states

 0 and  
0
0 only, as long as the bias voltages are below a certain threshold. This threshold

voltage is determined by the condition Vth = (E1�E0)=2e. Its smallest value is Vth = EJ=2e.

If the junction capacitances are equal, CL = CR, we �nd

eVth =
4

3
EC

�
Qg

e
� 1

�
+

s�
8

3
EC

�
Qg

e
� 1

��2
+
1

3
E2
J : (13)

At higher voltages, V > Vth, Andreev re
ection processes can also lead to transitions between

the other states introduced above. In addition to the transition �( 0 !  0
0) we �nd

�( 0 !  0
1) = �4GA

4e2
F 2
0 [2eV � (E1 � E0)]�(V � Vth) ;

�( 1 !  0
0) = �4GA

4e2
F 2
1 [2eV + (E1 � E0)] ;

�( 1 !  0
1) = (��)2

GA

4e2
F 2
1 2eV : (14)

The function F1 is de�ned similar to F0, but with the energy of the initial state E0 replaced

by E1. Both F0 and F1 are approximately constant on the energy scale EJ if ��EC
>
� EJ .
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A master equation yields the probabilities W1, W0 for the system to be in the excited and

ground state, respectively. I.e.,

W1 =
�( 0 !  0

1)

�( 0 !  0
1) + �( 1 !  0

0)
�(V � Vth);

W0 = 1�W1: (15)

The current then is

I = 2e[�( 0 !  0
0) + �( 0 !  0

1)]W0

+ 2e[�( 1 !  0
1) + �( 1 !  0

0)]W1: (16)

The threshold dependence of the probability W1 on V � Vth allows one to determine the

Josephson energy EJ . This is illustrated with the help of Fig. 1. As long as the applied bias

eV is smaller than EJ=2, which is the smallest value of eVth, the gate voltage dependence

of the di�erential conductance G = dI=dV shows the resonance (11) (two lower curves in

Fig. 1). As soon as eV > EJ=2, the probability W1 can become nonzero, and an additional

channel for charge transfer opens up at two values of Qg (cf. Eq. (13)). This leads to a

stepwise change of the conductance (two upper curves in Fig. 1). The smallest bias voltage

at which these jumps occur enables one to determine EJ . The magnitude �G� of the two

jumps depends on the applied bias. If CL = CR we �nd

�G�(V ) = GA �8<
:1�

"
1 +

1

2

�
EJ

2eV

�2
#s

1 �

�
EJ

2eV

�2
9=
; F 2

1

2
: (17)

Another way to detect the Josephson energy is a measurement of the di�erential conductance

as a function of the bias voltage V at a �xed gate-potential, illustrated in Fig. 2. Depending

on the value of Qg, a jump occurs at a certain threshold Vth, cf. Eq. (13); the magnitude

�G(Vth) is given by Eq.(17).

The results obtained above can be summarized with the help of Fig. 3, where we plotted

the ratio I=V as a function of both V and Qg. The superposition of the macroscopically

di�erent charge states of the grain lead to the current resonance as a function of the gate-

charge near the degeneracy point Qg = e. The sudden increase of the current at a certain

threshold bias re
ects the presence of a low-lying state with an energy � EJ , which, when

it is excited, opens up an additional transport channel.

Spectroscopy of the Josephson coupling is only possible as long as real single electron

tunneling processes are suppressed. Similar to the case of an NSN junction [11], the Andreev

re
ection can get \poisoned" once such processes become possible. Poisoning occurs at a

certain threshold bias Vpoison, at which the energy of the odd-charge state is lower than E0.

If the applied bias eV exceeds eVpoison by an amount as little as the level spacing of the grain,

the probability Wo for the system to be in an odd charge state is approximately unity and

current will drop substantially. Therefore, for the spectroscopy of the Josephson coupling,

the condition Vth < Vpoison must be met. At resonance Qg ' e this condition is satis�ed if

� > EC + EJ=2.
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The resonance structure in the I(Qg)-dependence and the threshold structure in the

I(V )-dependence is most pronounced if the temperature is smaller than the width of these

features, which is given by the Josephson coupling energy EJ . In addition to intrinsic ther-

mal 
uctuations there exist 
uctuations due to the external electrodynamic environment.

They persist down to the lowest temperatures, causing voltage 
uctuations proportional

to the resistance of the external circuit. Therefore, a low impedance environment creates

the most favorable conditions for the observation of the e�ects discussed here. It is also

essential that there are no quasiparticles in the grain. This requires a su�ciently large su-

perconducting gap � > EC + EJ=2, a perfect BCS density of states, and not too large bias

voltages. In exchange for these restrictions we have a well controlled theory and unambigu-

ous predictions for experiments. We can mention that coherent tunneling of Cooper pairs

plays a role in a number of e�ects. Some examples are the gate voltage dependence of the

critical current of SSS transistors [5,10], and the resonant Cooper pair tunneling at �nite

bias voltage [9,15]. The latter e�ect is controlled by quasiparticle-induced dissipation or

in
uence of the environment. The spectroscopy of coherent mixing by Andreev re
ection

o�ers signi�cant advantages over these examples. It is more straightforward than inferring

the critical current from the runaway value [5], and requires only a direct measurement of

the I-V characteristic in a convenient regime of subgap voltages. In contrast to the experi-

ments of Haviland et al. [15], the suggested method does not rely on the 
uctuations due to

the hardly controllable electrodynamic environment of the junctions.

In conclusion, we studied the low energy spectrum of a NSS transistor in the presence of

charging e�ects. The charging energy restricts the 
uctuations of the number of electrons

on the grain. In the vicinity of a degeneracy point, only two charge states with N and

N + 2 electrons on the grain arise if � > EC . The Josephson coupling between the grain

and the superconducting electrode leads to two new eigenstates that are superpositions

of these, macroscopically di�erent, charge states of the grain. The separation between the

corresponding two discrete energy levels is on the order of the Josephson coupling energy EJ .

We have shown how Andreev re
ection in the NS-junction can probe the eigenstates. First,

the resulting linear conductance at low bias shows a resonance as a function of the gate-

voltage near the degeneracy point. This resonance is directly related to the amplitudes of the

charge states involved in the ground state wave function. Second, a �nite bias applied to the

junction allows one to engage the second discrete energy level into electron transport. The

corresponding threshold bias gives direct information about the discrete energy spectrum of

a mesoscopic Josephson junction.
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FIGURES

FIG. 1. Di�erential conductance G=GA of a NSS transistor as a function of the gate charge

Qg=e, for various values of eV=EC = :047; :049; :051; :053 (from bottom to top, curves o�-set for

clarity). The parameters are: EJ=EC = 0:1, CL = CR, and � is large compared to EC. The two

lower curves (eV < EJ=2) correspond to the resonance (11), the upper curves (eV > EJ=2) show

how threshold processes a�ect this resonance.

FIG. 2. Di�erential conductance G=GA as a function of bias voltage eV=EC, for various values

of Qg=e = :99; 1:0; 1:01 (from bottom to top, curves o�-set), parameters as in Fig. 1. A jump

occurs at V = Vth, Eq. (13). Its magnitude is given by Eq. (18): �G+ if Qg=e > 1� eVth=4EC, and

�G
�

in the opposite limit.

FIG. 3. Dimensionless conductance I=(GAV ) as a function of both eV=EC and Qg=e. Param-

eters as in Fig. 1.
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