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ABSTRACT

We study the dynamics of interacting bosons on a lattice which are coupled to the
environment. In the imaginary time formalism we derive a coarse-grained descrip-
tion for an order parameter which characterizes the phase coherence in the system.
We include ohmic damping on each lattice site. This translates into a non-ohmic
dynamics of the order parameter �eld,depending on the strength of the ohmic bath.
This remarkable fact in
uences the dynamical response of the system. The low fre-
quency behavior of the conductivity is qualitatively changed as the dynamics of the
order parameter �eld changes from sub-ohmic to super-ohmic. The conductivity at
the transition was argued to be universal. In our model its value is of the order of
the conductance quantum, but it depends on the dynamics of the order parameter
�eld.

1. Introduction

Interacting bosons at low temperature show interesting collective phenomena.

Repulsive interactions between the bosons may prevent the formation of long range
phase coherence and superconductivity. A su�ciently strong interaction leads to lo-
calization of the bosons,and Mott-insulating behavior. In a description in terms of the
phase of the boson �eld, the interaction introduces quantum e�ects. Strong quantum

uctuations may destroy long range phase coherence. An experimental realization are
Josephson junction arrays (JJA). The Cooper pairs, which form composite bosons,
are the relevant objects at low temperature. The environment will be taken into
account by coupling the phase of the boson �eld to a bath of harmonic oscillators.

In the physical realization of a JJA this means that we introduce resistive shunts to
the ground and between neighboring islands. The coupling to the environment sup-
presses the quantum 
uctuations which are induced by the interaction. This leads to
a phase transition as a function of the strength of the coupling. The question how the
environment in
uences the dynamical behavior of these systems will be the contents
of the present paper. The environment in
uences the response of the system intro-
ducing a damping mechanism. We will see that the dynamics of the order parameter
will generally be non-ohmic, although we started from a description which included
ohmic shunts only. At the transition we �nd a �nite value for the d.c. conductivity

which depends on the dynamics of the order parameter, but not on its strength.



2. E�ective Action

The starting point of our description is a phase model for JJA. At temperatures
well below the bulk transition temperature of the islands a superconducting order
paramenter is well de�ned on each island. The relevant dynamical variable is the
phase of the order parameter. Situations where the superconducting order parameter
of the islands itself is suppressed are not described in this paper. This phase model is
well suited to describe JJA and other bosonic systems where amplitude 
uctuations
may be neglected. We couple the phases and the phase di�erence across a junction
to an external bath. In JJA this means that we introduce resistors to the ground and

between the islands. The spectral density of the bath will be chosen such, that the
shunts are ohmic. The charges are then allowed to 
ow continuously and the action
is not periodic in the phase variables. The Euclidean action for the JJA reads

S = SC + SJ + SD (1)

with the charging part
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The capacitance matrix contains diagonal elements C0 and o�-diagonal elements C1,
a convenient energy scale is U = (2e)2=C0. The Josephson coupling part is
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the sum runs over nearest neighbors pairs only. After integrating out the bath degrees

of freedom the dissipative part of the action is given by
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For an ohmic bath the fourier transform of �ij(� ��
0) is given by j!�j (�0 + �1k

2) =2�

We includes shunts to the ground (�0 = RQ=R0) and shunts between the islands
(�1 = RQ=R1), where RQ = h=4e2.

3. Coarse-grained Description

In the coarse graining approximation we introduce a complex order parameter
�eld  via a Hubbard-Stratonovich transformation. The �eld  is chosen such that

its expectation value is proportional to that of exp(i'). An expansion in powers of  
yields the Ginzburg-Landau-Wilson (GLW) free energy functional
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The coe�cients in this free energy are determined by the phase-phase correlator g, it
is given by an expectation value with the gaussian action SC + SD.

g(� ) = hexpfi'(i; � )� i'(j; � 0)gi

= �ij exp
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The k-dependence may be treated exactly. We are, however, interested in the slow
modes and use C(k) = C0 + C1k

2; �(k) = �0 + �1k
2, with a cuto� at the Debye

wave-number. For low temperature and su�ciently large damping the sum can be

approximated by neglecting the !2� contribution in the denominator and introducing

a cuto� 1=�c = (2e)2�(k)=[2�C(k)] in the frequency sum. In order to do this we need
a �nite �0, a �nite value of C0 is also necessary for stability reasons. The correlator
is then approximated by

g(� ) =
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In the limit of zero temperature the correlator and its fourier transformed is given by

g(� ) = j�=�cj
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Here we notice, that the GLW free energy contains a dissipative part (/ j!�j
s
), with

s = 2=�� 1. In this way an ohmic bath produces a non-ohmic damping of the order
parameter. In two dimensions the value of � is expressed by the parameters of the
original model through

� =
4��1

log(1 + 4��1=�0)
= �0 + 2��1 +O(�2

1
) (9)

3.1. Static Properties

The in
uence of the dissipation on the static properties was intensively studied in
the discussion about the dissipative phase transition by many authors 1;2;3. The saddle
point solutions of Eq. (5) provide us with information about the mean �eld phase
diagram. The phase boundaries for various temperatures are shown in Fig. 1. We
use C1 = �1 = 0, �nite values of C1 and �1 will not change the picture qualitatively.
All lines are second order transitions. At zero temperature the correlator g(!� = 0)

diverges for � � 2. The dissipation suppresses quantum 
uctuations of the phase
and the system is super
uid for arbitrary small Josephson coupling J . At �nite
temperature this critical value of � does not exist, since g(!� = 0) � � is �nite.
The temperature dependence of the phase boundary shows reentrant behavior for
small values of the dissipation �. This is due to the fact that we allow continuous
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Figure 1: Phase boundaries as a function of the dissipation �0 for di�erent tem-

peratures. a: T=U/5, b: T=U/10, c: T=U/100 d: T=U/10000, e: T=0. With

C1 = �1 = 0. The superconducting phase is above the phase boundary.

charge 
uctuations, these charge 
uctuations stabilize the super
uid phase at �nite
temperature.

3.2. Dynamic Properties

In this section we focus our intention on the response of the system. We saw in the
derivation for the GLW free energy that the ohmic dissipation in the original model
leads to non-ohmic damping on the coarse-grained scale. From the gaussian part of
the free energy we can derive the 
uctuation conductivity. Only in the absence of
ohmic shunts between the islands (�1 = 0) it coincides with the total conductivity.
As a model we study the following GLW free energy
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The conductivity as a function of Matsubara frequencies is readily derived 4. In two
spatial dimensions it is
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In order to extract measurable quantities we have to analytically continue it to real
frequencies by identifying i!� = ! + i�. Therefore write the Matsubara-sum into a
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Figure 2: Frequency dependence of the conductivity: a) without damping; b) with

damping �!s
0
=� = 1, s = 1=2; �Q = 4e2=h.

contour integral. Due to the external frequency in Eq. (11) we have to introduce two
cuts. The deformation of the contours leads us to
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The advanced and retarded Green's functions on the real frequency axis are given by

GA=R(k; !) =
1

�+ k2 � �!2 + �j!js cos(�s=2) � i�j!jssign(!) sin(�s=2)
(13)

A numerical integration leads to the results shown in Fig. 2 and Fig. 3. We focus

on T=0. For small amount of the damping the real part shows a smeared excitation
gap (!2

0
= 4�=�). The imaginary part behaves capacitively, see Fig. 2. The d.c.

conductivity vanishes. The low frequency behavior depends qualitatively on the value
of s, the real part is shown in Fig. 3a. It shows a power law behavior with an exponent
smaller than two in the subohmic case (0 < s < 1), the exponent is larger than two
in the ohmic and super-ohmic case (s � 1). At this stage we can extract information
about the universal conductivity at the transition 5. The d.c. conductivity at the
transition (�! 0) is �nite, i.e. the system behaves metallic at the transition. Its value,

however, depends on the strength of the dissipation, it is a function of s = 2=� � 1
as shown in Fig. 3b. In the points s = 1 and s = 2 it coincides with former results 4.

4. Conclusions

We showed how the coupling of the phases to an ohmic bath leads to a GLW free
energy in which the damping of the order parameter is generally non-ohmic. This

free energy is a useful tool to study static and dynamic properties of these systems.
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Figure 3: a) Low frequency behavior of the real part of the conductivity for di�erent

exponents s from 0:25(upper curve) ; 0:5; 0:75; 1:0; 1:25; 1:5(lower curve) with the value

of the damping �!s
0
=� = 1. b) D.C. conductivity at the transition as a function of s.

Concerning the static properties, i.e. the phase diagram, we see a transition tuned by
the strength of the coupling to the environment. Su�ciently large damping suppresses
phase 
uctuations and favors global superconductivity. At zero temperature there

exists a critical value of the dissipation beyond which the system is superconducting
at arbitrarily weak Josephson coupling. The surprising fact that we arrive at non-
ohmic damping of the order parameter, although we coupled to ohmic baths has nice
consequences for the dynamic behavior of the model. The low frequency behavior
of the conductivity is qualitatively changed by changing the magnitude of the ohmic
shunts. And the value of the conductivity at the transition, which was argued to be
universal 5, is a function of the parameter s.
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