
Submission to WESS in May 2000

Do Design Patterns Improve Communication?

An Experiment with Pair Design

Barbara Unger and Walter F. Tichy (unger,tichy@ira.uka.de)
Fakult�at f�ur Informatik, Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

Abstract

One of the main advantages claimed for software de-
sign patterns is improved team communication. This
paper reports on an experiment that tests this hypoth-
esis. Team communication among pairs of designers
with and without design pattern knowledge is observed
in a maintenance setting and analyzed by protocol anal-
ysis. The results indicate that shared pattern knowl-
edge leads to a more condensed explanation phase and
a balanced give-and-take among team members during
design work.

1 Introduction

Design patterns as described by Gamma et al. [3],
Buschmann et al. [2], and others are quite popular.
They are thought to improve software maintenance and
team communication. The e�ects of design patterns on
maintenance have already been tested in a number of
experiments by the authors [4, 5, 6, 7]. This paper re-
ports on an experiment regarding team communication.

Members of two-person teams received a program de-
sign for maintenance. One member of each team was
given time to study the design beforehand. In a �rst
phase, this team member explained the design to his
partner. Subsequently, each pair of programmers dis-
cussed how to design given requirements changes into
the existing program. Protocol analysis of the interac-
tions were performed before and after each team took
part in a design patterns course. The results showed
that without shared pattern knowledge, there is no pro-
nounced explanation phase and the discussions were
dominated by one individual (not necessarily the person
who studied the design beforehand). After the design
patterns course, there is a clearly identi�able explana-
tion phase followed by a balanced give-and-take during
the actual design work.

These results con�rm what Buschmann et al. describe
as follows: "Pattern-sharing establishes a common vo-
cabulary for design problems. It allows members of
the growing community to identify, name, and discuss
both problems and solutions more e�ectively [2, page

xii]". The net e�ect of improved communication could
be faster work, fewer errors, and lessened architectural
drift.

Our results also have implications for pair program-
ming, a practice in which two programmers work side-
by-side, continuously collaborating on the same design,
implementation, or test [1]. Our observations suggest
that balanced team work does not simply "happen", at
least not in the short term. Instead, a common un-
derstanding of problems and solution patterns must be
developed. This common understanding, at least in pair
design, might be boosted by knowledge of design pat-
terns.

2 Description of the Experiment

The experiment tests the following hypothesis: If team
members have common design pattern knowledge and
vocabulary, they can communicate more e�ectively
than without.

The experiment compares teams with and without pat-
tern knowledge communicating about program designs.
Verbal communication is captured with audio and video
and the protocols analyzed. Communication is consid-
ered more e�ective if there are clear episodes of expla-
nation by one member and balanced discussions during
design work.

2.1 Design

For evaluating the hypothesis one needs to observe sub-
jects in situations in which they are talking freely about
programs or program designs. There are several ways
to observe talking subjects, but one has to be careful
that the communication remains natural. Think-aloud
protocols or telling answers to an advisor are not natu-
ral for team work. Instead, we chose to group subjects
into two-person teams and recorded their interactions
while performing a design maintenance task.

For eliciting an explanation phase, one subject of each
team is given one hour of extra time in advance. During
this time, this subject studies requirements and design

1



documents of the program. This team member will be
referred to as the expert. Then the second team mem-
ber joins as novice. The expert explains the program
design to the novice. Subsequently, both team members
collaborate on two maintenance tasks. This strategy
provides a chance for observing two interesting com-
munication phases: (1) The phase of explanation by
expert to novice, and (2) the teamwork phase between
two maintainers.

The independent variable is design pattern knowledge.
First, teams are given a pretest, then they participate in
a three-month lab course on design patterns, and �nally
they receive a posttest. The course provides practical
exercises for all patterns relevant for the tests (as well
as other patterns).

The experiment employs two di�erent applications.
Teams are divided into two experimental groups work-
ing on di�erent applications. The applications are
switched from pre- to posttest. For fairness to the stu-
dents, the roles of expert and novice are also switched.
Table 1 summarizes the experiment design.

pretest posttest

program1 program2

group1 person1 = expert person2 = expert

person2 = novice person1 = novice

program2 program1

group2 person1 = expert person2 = expert

person2 = novice person1 = novice

Table 1: Design of the experiment.

2.2 Applications and tasks

Both applications used in the experiment are from do-
mains that are easy to understand.1

Application ChiCo is a front end for version control
systems such as RCS, RCE, or others. ChiCo also con-
trols �le access on a team basis. It consists of 15 classes
and 76 methods and contains the patterns Observer,
Bridge, and Singleton.2 The �rst maintenance task
is to enhance the at team structure into a hierarchy.
Users from superprojects also have access to �les in sub-
projects. The second work task is to display all �les that
are checked out for a user and to delete checked-out, but
unchanged, work �les.

Application Timmie is a time and defect tracking sys-
tem for managing software projects and teams. Is con-
sists of 13 classes and 102 methods. It is designed
with Composite, Visitor, Chain of Responsibil-

ity, Observer, and Singleton. Only the team man-
agement and time tracking is provided. The �rst main-
tenance task is to add the defect management. The

1The original documents including the program designs and
work tasks are available upon request.

2For de�nition of these patterns, see [3]

subjects' task is to add recording and tracking of de-
fects, noti�cation of the appropriate developers, noti-
�cation of the teams for defect logging, and an undo
mechanism. The second work task involves adding time
accounting and defect logs of private projects. Private
projects are included in private statistics but not in the
overall project reports.

2.3 Subjects, teams, and groups

The 15 subjects were computer science graduate stu-
dents in their 7.8th semester on average (median 8th

semester). On a preliminary questionnaire they were
asked about their previous programming experience.
On average they had 5.8 years of programming expe-
rience (median 5.5 years) and on a �ve level scale they
had been programming on average between 3000 and
30000 LOC. In the pretest, three students had prac-
tical experience with design patterns relevant for the
experiment. Theses cases are discussed separately in
the results (see Section 3).

The subjects were allowed to choose their team mem-
bers. In the pretest, the partners of only one team
did not know each other. Due to subject loss (sub-
ject s13 did not participate in the lab course, subjects
s11 and s12 did not have time for the posttest), one
new posttest-only team was established (T8: s14, s15),
see Table 2. The team members of this team did not
know each other. The teams were randomly divided
into groups.

subject team in program team in program

pretest in pretest posttest in posttest

s1

s2
T1 Timmie T1 ChiCo

s3

s4
T2 Timmie T2 ChiCo

s5

s6
T3 Timmie T3 ChiCo

s7

s8
T4 Timmie T4 ChiCo

s9

s10
T5 ChiCo T5 Timmie

s11 { {

s12
T6 ChiCo

{ {

s13 { {

s14
T7 ChiCo

s15 { {
T8 Timmie

Table 2: Team composition in pretest and posttest. Due to

subject loss, T6 and T7 do not appear in the posttest and

T8 is newly established.

2.4 Experiment conduct

The pretest was performed in April 1999 and the
posttest in July and August 1999. The test sessions

2



were scheduled individually. They took place in a room
where the two subjects had a table large enough for
all documents, a ip chart for graphical explanations,
chairs, paper and pencils. A video camera was set up in
one corner of the room and an audio recorder was placed
on the table. The experimenter was present through-
out all tests for questions, but sat with the back to the
team and worked on di�erent things, in order not to
interfere.

2.5 Threats to validity

This experiment is not a controlled experiment be-
cause several important variables were not controlled.
Chief among these is learning e�ect. Subjects could
have learned additional communication skills during the
pretest. The subjects might have been unexperienced
in team discussions and might therefore perform better
in the posttest. There are two indicators that mini-
mize this concern. First, the expert of team T8 did
not participate in the pretest, so was not exposed to
this learning environment. Yet, the results of T8 in the
posttest are consistent with other teams. Second, most
team members knew each other before, so there should
be no e�ects from getting to know each other. One
team, T3, had worked together before for some time
and had pattern knowledge. This team displayed the
same characteristics in the posttest as the other teams,
though not in the pretest.

There is clear evidence that there were large di�erences
in interpersonal communication skills. Some teams
worked together well while others performed poorly.
Changing the expert/novice roles could inuence team
performance from pretest to posttest. It is unclear if
and how this threat to internal validity biases the re-
sults.

External validity concerns are about the small program
and task sizes, small team sizes, and the experience of
the subjects.
Program and task size: In real situations, programs and
tasks are more complex. But if there is a communica-
tion improvement it might help even more on complex
tasks.
Team size: Larger team sizes increase the required com-
munication so if there is a communication improvement
in small teams the improvement is expected to help in
larger teams.
Experience: The programming experience varied from
small student exercises to students with their own soft-
ware company. But in all teams except T3, we observed
similar communication improvements.

3 Results

One of the authors transcribed the audio and video pro-
tocols into written protocols and then coded them with

a simple coding scheme. The coding scheme identi�es
the speaker and the type of utterance. See Table 3 for
utterance types. Especially important are atomic as-
sertions about the designs because they carry crucial
design information. Sometimes answers are mixed with
assertions ("Yes, because this is a visitor"). In this case
the assertion is counted in addition to the question.

For graphical analysis of the coded protocols, each as-
sertion by the expert is counted as +1 and each asser-
tion by the novice as -1. A moving average over 70 data
points is computed. The plot of the moving averages is
called a communication line. If the contributions of the
team members are equal, the moving average should be
0.

utterance type example

atomic assertion This variable counts the number of developers.

question What is this variable for?

answer yes, no

feedback Ok, I understand.

Table 3: Types of talking and examples.

The communication lines appear in Figures 1 to 7.3 In
the pretest, all communication lines are heavily unbal-
anced (except for T3), while most of the communication
lines in the posttest exhibit a "hump" of explanation at
the beginning and then become balanced around 0.

3.1 Results of the Pretest

We can categorize the communication lines from the
pretest into two types of unbalanced communications:
expert dominated and novice dominated. Expert dom-
inance is clearly observable in teams T4 and T5 and
partly in T3, while the novice dominates in the others.

Expert dominance: The entire conversation is dom-
inated by the expert. Either the novice does not gain
enough knowledge from the explanation or he does not
rely on this knowledge in the design task. Both situa-
tions mean that the explanation phase is ine�ective.

Novice dominance: The novice takes over the con-
versation almost immediately. Two common situations
occur: The novice generates his own hypotheses and
con�rms them on his own or asks the expert for con-
�rmation. There is almost no explanation phase. The
novice does not even listen to the expert. Again this
means that the explanation phase is ine�ective.

What is not obvious from the diagrams is that two
teams did not complete their maintenance tasks. Team
T1 was stopped after the �rst work task because they
didn't get the point of the task. The novice did not rely
on the expert at all and often tried to get ad hoc infor-
mation from the documents. He missed major points of

3Team T7 was not evaluated because this was a foreign lan-
guage pair and they sometimes switched to Russian.

3



-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400

"Pr-T1-70.data"

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400

"Po-T1-70.data"

Figure 1: Communication lines of Team T1. Left: Pretest. Right: Posttest.

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900

"Pr-T2-70.data"

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300

"Po-T2-70.data"

Figure 2: Communication lines of Team T2. Left: Pretest. Right: Posttest.

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600

"Pr-T3-70.data"

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180

"Po-T3-70.data"

Figure 3: Communication lines of Team T3. Left: Pretest. Right: Posttest.

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600

"Pr-T4-70.data"

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

"Po-T4-70.data"

Figure 4: Communication lines of Team T4. Left: Pretest. Right: Posttest.

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140

"Pr-T5-70.data"

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450

"Po-T5-70.data"

Figure 5: Communication lines of Team T5. Left: Pretest. Right: Posttest.

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450

"Pr-T6-70.data"

Figure 6: Communication line of Team T6 in

pretest.

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600

"Po-T8-70.data"

Figure 7: Communication line of Team T8 in

posttest.

the design. Team T2 also stopped after the �rst work
task because team members were too exhausted. They
had worked for more than three hours. Others took
only about 1 1/2 hours for both tasks. In this team the
expert provided a lot of wrong information.

Team T6 su�ered from an uncooperative novice. He
dominated the conversation even though he was aware
that he did not understand the program. He frequently
tried to break o� and go home.

3.2 Results of the Posttest

In all posttest graphs, there is a clear explanation
"hump" at the beginning followed by a balanced team-
work phase. The explanation phase is close to 1 and
the teamwork phase alternates around 0. Even team
T8, whose expert did not participate in pretest, shows
this behavior.

Especially interesting is team T3. As mentioned, this

4



team has extensive experience with team work and pat-
terns. The explanation "hump" is already visible in the
pretest, but in the posttest this "hump" is longer than
the others and for about a fourth of the time it is per-
fectly 1.

One outlier in the posttest is T2. This team's com-
munication line is still unbalanced. The novice of this
team was too tired for the experiment after having a
long party the night before. This data can be ignored.

3.3 Implications

Comparing pretest and posttest, clear di�erences in the
communication lines are observable. First, consider the
teams with expert dominance in the pretest. All the
communication lines are balanced in the posttest. Re-
call that the roles of the team members were switched
from pre- to posttest. This behavior could be an indi-
cation that the pretest-novice is not as knowledgeable
as the pretest-expert. Switching the roles, the weaker
person can compensate by studying the materials be-
forehand, resulting in su�cient knowledge and con�-
dence. So the balanced work phase in this case does
not support the hypothesis.

Now consider the teams with novice dominance during
pretest, i.e. teams T1, T2, T6. In the posttest, after
the explanation "hump", the dominating pretest-novice
does not dominate the communication in the posttest
even though he now is the expert. The implication
is that the communication ability of the posttest novice,
who was a weak pretest expert, must have increased.
Reasons may be that either the weaker pretest-expert
has now more con�dence in his own knowledge gathered
from the explanations, or the pretest-novice relies more
heavily on the knowledge of his team member. The
authors believe that a major part of the improvements
are due to shared pattern knowledge.

The observed behaviors show that the communication
abilities improved from pre- to posttest. Due to lack
of control in this experiment, it is unclear how much
learning e�ects besides the design pattern knowledge
the lab course introduced.

4 Conclusion

The results show clear evidence that the communica-
tion lines of the design teams changed from pre- to
posttest. Without shared pattern knowledge, the expla-
nation phase is small or non existent, and the following
communication is dominated by one individual. After a
three month design pattern course a clearly identi�able
explanation phase is visible followed by a work phase
with balanced communication. These observations sup-
port the hypothesis that team members can communi-
cate more e�ectively with design pattern knowledge.

As an implication for team design tasks, especially for
pair programming, our observations suggest that col-
laborative team behavior not simply happen by chance.
Instead a common understanding of problems and so-
lutions must be developed. Design patterns can help
established shared understanding for design work.

5 Acknowledgments

Thanks to Anneliese von Mayrhauser for helpful and
fruitful discussions and to all our students who partici-
pated in this experiment.

References

[1] Kent Beck. Extreme Programming Explained: Em-

brace Change. Addison Wesley, Reading, PA, 1999.

[2] Frank Buschmann, Regine Meunier, Hans Rohn-
ert, Peter Sommerlad, and Michael Stahl. Pattern-
oriented Software Architecture: A Systems of Pat-

tern. John Wiley and Sons, West Sussex PO19 1UD,
England, 1996.

[3] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Entwurfsmuster: Ele-

mente wiederverwendbarer objektorientierter Soft-

ware. Professional Computing. Addison-Wesley,
1995 (deutsch 1996).

[4] Lutz Prechelt. An experiment on the usefulness
of design patterns: Detailed description and eval-
uation. Technical Report 9/1997, Fakult"at f"ur
Informatik, Universit"at Karlsruhe, D-76128 Karl-
sruhe, http://wwwipd.ira.uka.de/ prechelt/Biblio/,
June 1997.

[5] Lutz Prechelt and Barbara Unger. A series of con-
trolled experiments on design patterns: Method-
ology and results. In Proc. Softwaretechnik '98,
volume 18 of Softwaretechnik-Trends, pages 53{60,
Paderborn, Germany, August 1998. GI.

[6] Lutz Prechelt, Barbara Unger, and Michael
Philippsen. Documenting design patterns in code
eases program maintenance. In Proceedings ICSE

Workshop on Process Modeling and Empirical Stud-

ies of Software Evolution, pages 72{76, Boston, MA,
May 1997.

[7] Lutz Prechelt, Barbara Unger, and Douglas C.
Schmidt. Replication of the �rst controlled ex-
periment on the usefulness of design patters: De-
tailed description and evaluation. Technical Re-
port wucs-97-34, Department of Computer Science,
Washington University, St. Louis, MO 63130-4899,
http://www.cs.wustl.edu/cs/techreports/1997, De-
cember 1997.

5


