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Solution X-ray Scattering Studies of Metalloproteins 

Abstract. Proteins participate in a multitude of biological processes. The great 

diversity of proteins is correlated with the immense number of possibilities that exist for the 

sequence of amino acids, being the building blocks of proteins, and their three-dimensional 

association. Thus, knowledge of protein conformation, conformational changes or protein 

assembly is a major step towards understanding the relationship between structure and 

function of biological molecules. In view of the complexity of such a field, it is obvious that 

only combinations of techniques along with interdisciplinary co-operation will prove 

successful. The application of physical, in particular spectroscopic methods plays a 

significant role in present-day molecular biology. 

Solution X-ray scattering, a technique using monochromatic X-rays which are scattered 

elastically, has been applied to investigate the conformation and conformational changes of 

proteins. This method is very well suited to elucidate the geometrical structure of 

macromolecules in solution. Its major advantage is the possibility to perform measurements 

under almost physiological conditions. However, X-ray scattering from such totally 

disorderd samples implies only low to medium resolution information and thus necessitates 

model calculations to interpret the experimental scattering results. A reliable and effective 

data interpretation is particularly possible if scattering pattem simulations are based upon 

available high resolution crystallographic structures of related proteins. These structures can 

serve as starring points for molecular modeHing studies. 

In the framework of this thesis two families of metalloproteins have been investigated. This 

class of proteins is characterized by one or a few metal ions among the several thousand 

atoms that constitute the molecule. The metal atoms affect critically the structural and 

functional properties of these proteins. Transferrins are the principal iron binding and 

transport proteins in vertebrates and thus of great importance in iron metabolism. 

Furthermore, due to their high affinity for iron, transferrins can retard or suppress microbial 

growth by depriving microorganisms of iron or making iron relatively unavailable. Besides 

iron, transferrins are capable of binding a great variety of other metals. They are therefore 

also of considerable toxicological interest. The family of nitrite reductases, including 

copper-containing enzymes, are found in a wide range of bacteria and take part in the 

denitrification pathway. They are key proteins in the stepwise reduction of nitrite to nitrous 

oxide and dinitrogen. 

The analysis of the solution X-ray scattering data shows that all transferrins undergo a 

similar conformational change when iron is taken up and that both iron-binding halves (the 

so-called N- and C-lobe) exist in an open conformation when no metal ion is bound. This 
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observation demonstrates a clear difference between crystal structure and structure in 

solution. The conformational changes induced by metals other than iron (so-called non­

physiological metals) depend strongly on the metal ion coordination. Moreover, the aspartic 

acid residue, an amino acid involved in metal binding, could be deduced to be a key residue 

in triggering the closed conformation. In the case of the copper-containing nitrite 

reductases, the combined approach of X-ray scattering and molecular modelling has 

allowed to define their trimeric structure in solution. In addition, scattering pattern 

simulations for the interpretation of experimental data could be improved by considering a 

hydration layer around the protein. 

The experiments reported here have been carried out at the Daresbury Synchrotron 

Radiation Source (U.K.). The study of proteins under conditions close to physiological 

environment is desired (e.g. low protein concentrations of about 5 mg/ml were used). 

However, in view of the relatively weak X-ray scattering arising from these molecules, the 

presented experiments would be hardly if at all possible with any conventional X-ray 

source. The use of highly intense and collimated synchrotron radiation allowed to record 

statistically significant data going beyond the traditional small-angle range. It is precisely 

this extended scattering region that enables the detection of conformational changes due to 

different subunit (domain) arrangements in proteins. The conformation of domains plays an 

important role for both the interpretation of functional aspects and the classification of 

proteins. 
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Röntgen-Kleinwinkelstreuung an Metall-Proteinen in Lösung 

Zusammenfassung. Eine große Zahl biologischer Prozesse wird von Proteinen getragen. 

Ihre Vielfalt steht in engem Zusammenhang mit den zahlreichen Möglichkeiten der 

räumlichen Anordnung der Protein-Bausteine, den Aminosäuren. Ein bedeutender Teil der 

molekularbiologischen Forschung befaßt sich gegenwärtig mit dem Studium der 

dreidimensionalen Struktur von Proteinen, um über die Kenntnis ihrer Konformation und 

ihrer Konformationsänderungen als auch über deren Aggregation mit anderen Protein­

Untereinheiten Rückschlüsse auf biologische Funktionen ziehen zu können. Die 

Komplexität dieses Arbeitsgebietes erfordert interdisziplinäre Zusammenarbeit. 

Physikalische, insbesondere spektroskopische Techniken zur Strukturbestimmung nehmen 

dabei einen gewichtigen Rang ein. 

Zur Untersuchung der Konformation sowie der Konformationsänderungen von Proteinen 

wurde im Rahmen der hier vorgestellten Untersuchungen die Methode der Klein­

winke/streuung angewandt. Es handelt sich dabei um eine Technik zur Ermittlung der 

geometrischen Struktur von Makromolekülen in wässriger Lösung mit Hilfe elastischer 

Streuung monochromatischer Röntgenstrahlung. Ein besonderer Vorteil dieser Methode 

besteht darin, daß die Messungen unter angenähert physiologischen Bedingungen 

durchgeführt werden können. Allerdings bedingt die damit verbundene Unordnung der 

Moleküle in wässriger Lösung eine geringere räumliche Auflösung, so daß Modell­

rechnungen zur Analyse der Streuexperimente unerlässlich sind. Sie müssen auf der Grund­

lage bereits bekannter Information vorgenommen werden, erst dann ist eine schlüssige 

Dateninterpretation möglich. Die Röntgen-Kleinwinkelstreuung kann besonders wirkungs­

voll eingesetzt werden, wenn Atomkoordinaten aus kristallographischen Untersuchungen 

verwandter Proteine verfügbar sind. Diese können als Ausgangspunkt für molekulare 

Modellierungsstudien dienen. 

In der vorliegenden Arbeit werden zwei Familien von Metall-Proteinen vorgestellt. Es sind 

Proteine, die infolge der Bindung eines oder weniger Metallionen entscheidend in ihrer 

Struktur und Funktion beeinflußt werden. Die Familie der Transferrine erfüllt in 

Wirbeltieren die wichtige Aufgabe des Eisentransports. Sie ist daher für den Eisen­

metabolismus von tragender Bedeutung. Transferrine haben darüberhinaus infolge der 

Fähigkeit zur spezifischen Eisenbindung die Funktion, schädlichen Mikroorganismen Eisen 

vorzuenthalten oder zu entziehen, um deren Wachstum zu verlangsamen oder zu 

unterdrücken. Angesichts der Eigenschaft, neben Eisen noch eine Vielzahl anderer Metalle 

zu binden, sind die Transferrine für die Toxikologie von außerordentlichem Interesse. Die 

Familie der Nitrit Reduktasen, zu denen Kupfer bindende Proteine gehören, bilden ein 
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Schlüsselglied in der Enzymkette zur schrittweisen Reduktion von Nitrat zu Stickstoff, d.h. 

sie sind maßgeblich am Respirationsprozeß (Stickstoff-Zyklus) von Bakterien beteiligt. 

Die Analyse der gewonnenen Daten zeigt, daß alle Transferrine nach Eisenheiadung 

ähnliche Konformationsänderungen eingehen. Zudem konnte im Gegensatz zu kristallo­

graphischen Ergebnissen festgestellt werden, daß in physiologischer Umgebung beide 

Eisenbindungsstellen (im sogenannten N- und C-Lobe) vor der Aufnahme des Metallions 

durch eine offene Konformation charakterisiert sind. Die Experimente mit nicht­

physiologischen Metallen ergaben eine deutliche Abhängigkeit der Konformationsänderung 

von der Koordinationszahl des gebundenen Metallions. Außerdem konnte die Schlüsselrolle 

einer Aminosäure, die an der Metallbindung beteiligt ist und maßgeblich zur geschlossenen 

Konformation beiträgt, aufgezeigt werden. Im Falle der Kupfer bindenden Nitrit 

Reduktasen konnte die Trimer-Struktur des Enzyms in wässriger Lösung festgelegt werden. 

Die Modellrechnungen zur Interpretation der experimentellen Streudaten lassen sich zudem 

durch Einbeziehung einer das Protein umgebenden Hydrathülle wesentlich verbessern. 

Die in dieser Arbeit beschriebenen Experimente wurden am Synchrotron Radiation 

Labaratory in Daresbury (U .K.) durchgeführt. Röntgenstrahlen werden an Proteinen 

grundsätzlich nur äußerst schwach gestreut. Darüberhinaus sollten in den Messungen 

nahezu physiologische Bedingungen erreicht werden (Proteinkonzentrationen von etwa 

5 mglml). Die hier beschriebenen Untersuchungen sind daher mit konventionellen 

Röntgenquellen nur schwerlich, wenn überhaupt möglich. Die hohe Intensität und die 

gegebene Bündelung der benutzten Synchrotronstrahlung erlauben hingegen die Aufnahme 

statistisch bedeutsamer Streudaten bis über den sogenannten Kleinwinkelstreubereich 

hinaus. Es ist gerade dieser auf einige Winkelgrade ausgedehnte Streubereich, der 

Konformationsänderungen von U nterstrukturen, der sogenannten Domänen der Proteine, 

erkennbar macht. Die Domänenanordnung in Proteinen ist von entscheidender Bedeutung. 

Sie kann sowohl zur Interpretation spezifischer Funktionen als auch zur Klassifizierung von 

Proteinen herangezogen werden. 
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Chapter 1 : Introduction 

Many proteins that play a crucial role in living systems contain one or a few metal atoms 

arnong the several thousand atoms that constitute the biomolecule. These so-called 

metalloproteins form a large fraction (between one-fourth to one-third) of all known 

proteins. The metal atoms participate directly in the function of the protein and are therefore 

among the most interesting parts of the structure to study. The main goal of present-day 

research in molecular biology is the understanding of the relationship between structure and 

function of biological molecules such as metalloproteins. In view of the complexity of 

processes in biological systems, it is obvious that only combinations of techniques along 

with interdisciplinary co-operation will prove successful. The application of physical, in 

particular spectroscopic methods plays an outstanding role in these endeavours. 

At present, X-ray crystallography [1, 2] and multidimensional NMR in solution [3] are the 

major experimental techniques used to develop models of biological macromolecules on 

atomic scale. NMR is a relatively young method compared with X-ray crystallography and 

is restricted to rather small molecules (S 20 000 D1). X-ray diffraction from single-crystals 

remains the indisputable method for obtaining high resolution ( < 2.5 A) structures of 

proteins with molecular mass up to millions of Dalton. However, for such resolution, 

crystals with a high degree of static long-range order in the arrangement of the molecules 

are a prerequisite. Furthermore non-trivial questions conceming phase determination and 

consistency between crystal and solution structures have to be solved. 

X-ray scattering offers itself as a further promising method to investigate the 

structure of biological macromolecules in solution, i.e. in an environment close to 

physiological conditions [4, 5]. In this case there is no, or very little order in the 

arrangement of the molecules, since a disordered state will be considered. It is thus a 

technique of low to medium resolution (> 10 A). This fact seems to make the method of 

solution X-ray scattering less attractive, since the structure of a biological system cannot be 

defined at a sufficient resolution with confidence. But it will be shown that solution X-ray 

scattering in combination with molecular modelling is able to contribute to the 

understanding of structure and function of proteins in general and metalloproteins in 

particular. It will be reported on the application of solution X-ray scattering to two species 

of metalloproteins : 

• the transferrins, as the dominant class of iron binding and transport proteins in 

vertebrates and 

• the nitrite reductases, proteins involved in the biological electron transfer mechanism 

of denitrifying bacteria. 

1 Throughout the thesis Dalton (D) as atomic mass unit (1 D = 1.6605 ·I0-27 kg) and Angstrrem (A) as unit 
of length (1 A = 10-10 m) will be used. 
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The major advancement in an understanding of the structure and function of the studied 

metalloproteins is primarily attributed to 

• the use of highly collimated X -rays from a synchrotron radiation source (here: SRS 

Daresbury, U.K.) including high quality optics, X-ray detectors and efficient data 

aquisition systems, 

and 

• the combination of molecular modeHing and computer simulations for data inter­

pretation using crystal structures from related protein species as the starring model. 

The next two chapters should actually be regarded as a continuation of the introduction so 

as to describe the biological (protein sarnples, Chapter 2) and physical aspects (principles of 

solution X-ray scattering and moleclar modelling, Chapter 3) of the present work. Chapter 4 

is dedicated to the experimental section, where some details for the generation of 

synchrotron radiation and X-ray scattering data collection are given. Chapter 5 will shed 

light on data reduction and analysis. In Chapter 6, X-ray scattering results for the two 

different biological molecules are presented and their significance is discussed. A 

conclusion concerning continuing experiments based on the samples studied here will 

complete this thesis. Some indication is given for future applications of solution X-ray 

scattering experiments in the context of structural studies in biology. 

A general remark should be added : The study of the interaction of various types of 

biological matter is becoming an increasingly important branch. Certainly, any results 

arising therefrom will have far-reaching applications and significant impacts on 

biotechnology and medicine. Thus the riches of structural biology pose enormous 

challenges on scientists of different disciplines. The exploration of the three-dimensional 

structure determines the chemical and physical behaviour and an understanding of the 

mechanistic basis of the resulting function of biomolecules. It also provides an insight into 

life on a molecular Ievel. The progress in structure determination, of course, goes hand in 

hand with biochemical developments such as protein purification, preparation and 

modification, also genetic engineering has to be mentioned in this context as a novel 

technique of great importance. 
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Chapter 2 : Metalloproteins 

The purpose of this chapter is not to present a comprehensive overview on proteins, but to 

give a brief insight into the interesting and important link between the conformation of a 

protein and its function and to introduce some technical terms. Two metalloproteins have 

been studied in the framework of this thesis and will be explained in more detail. The 

methods developed in this work are not restricted to only this class of proteins but are of 

wider applicability. 

2.1 Protein functions and structural principles 

Proteins are the most abundant macromolecules in cells, constituting more than 50% of 

cellular dry weight. Being the product of genes, proteins are the instruments by which the 

genetic 'machinery' implements cell functions. They are the most versatile of the macro­

molecules, e.g. they 

• catalyze the chemical reactions of metabolism (enzymes), 

• transport and exchange nutrient and waste material, 

• communicate information between cells (hormones }, 

• function in the immune system of defense against foreign cells (antibodies), 

• determine cell association and adhesion, 

• synthesize structural elements or act as structural elements themselves. 

The building blocks of proteins are the amino acids which are linearly linked to one another 

in unique sequences forming non-branched chains (polypeptide chains). Twenty different 

amino acids are found in proteins, each with a specific side group. It is the chemical 

properties of these side groups andin particular their non-covalent interactions (exception: 

the covalent disulphide bonds) which determine the conformation of a protein (see also 

Appendix A). The number and sequence of amino acids in a polypeptide chain is described 

by the prim.ary structure. Hydrogen bonds, the most specific of the 'weak' non-covalent 

bonds can lead either to contracted helical (a-helix) or sheetlike (ß-sheet) configurations, 

known as secondary structure. These regular regions along with chain segments that show 

no simple regularity produce a complex, quite often, globular shape, the three-dimensional 

form of the protein, called the tertiary structure. It represents the energetically most 

favourable arrangement of the polypeptide chain. To complete the picture, large single­

chain proteins (monomers) are usually composed of compact folded units, so-called 

domains, that appear separate from the rest and are often stable in solutionon their own. 

Most of the domains or single peptide chains contain between 150 and 250 amino acid 

residues [6]. This structurallevel of macromolecules is termed quarternary structure and 
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concems also interactions by which two or rnore polypeptide chains associate in a specific 

rnanner (oligorners) to form biologically active proteins. 

The various properties of globular proteins2 appear to arise frorn their modular 

construction, i.e. the quR.I-temary structure is of critical importance to the proper biological 

functioning. Moreover the flexibility of parts of a protein which arrange or rnove 

substantially are particularly interesting in terms of the requirernents for protein activity. 

The conformational changes and arrangernents will be discussed here in rnore detail since 

the rnethod of X-ray solution scattering provides an outstanding tool to detect different 

structural configurations of a protein. Nevertheless, no technique can provide a full 

description on its own. Although crystallographic results contribute irnrnensely to this 

subject of structural, rnolecular biology, different techniques are essential to cornplete the 

view of such ingenious rnolecules as proteins, the building blocks of life. 

2.2 Flexibility, rigidity and assernbly 

It is a thermodynarnic requirernent that rnolecules of the size of proteins show substantial 

transient fluctuations. Protein flexibility involves movernents of widely varying 

magnitudes, ranging frorn small-scale rnovernents or vibrations of bond lengths and angles 

or groups of atorns (at the Ievel of amino acid side chains, e.g. ring flipping) up to the other 

end of the spectrum, where individual domains of large proteins undergo large-scale 

transitions between different conformations. Here, 'large' means that the motion involves at 

least 15% of the mass of the protein where single atoms move condsiderably (~ 10 A). The 

phenomenon of protein flexibility is rnany-sided and cornplicated, consequently the term 

jlexibility cannot be weil defined. A detailed review on structural and functional aspects of 

protein flexibility including selective examples was given by Bennet & Huber (1984) [7] 

and Huber (1987) [8]. Here only the rigid-body movernent of large segrnents of a rnolecule 

relative to one another (dornain or hinge flexibility) and the geornetric arrangernent of 

subunits (assembly process) will be considered. Two exarnples of these categories have 

been studied experimentally during this work. 

Domain flexibility and subunit assernbly have clear biological functions. Catalytic proper­

lies and specifity of proteins (enzyrnes) are determined by the chemical groups in the region 

of the protein called the active site. The active site, which is often found in a cleft between 

two dornains of a molecule or at the interface between two rnolecules, has the purpose of 

substrate binding and/or catalytic action. 

The process of substrate (Iigand) binding to proteins often results in a substantial 

change in the conformation, i.e. quartemary structure, which alters a protein's activity 

2 Two classes of proteins exist: The often laterally crosslinked, fibrous and water-unsoluble proteins (e.g. <X­
keratin of hair and skin or collagen of tendons) and the biologically active and water-soluble proteins 
which have globular and compact structures (e.g. enzymes). Only the latter class will be considered here. 
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critically. These ligand-induced conformational changes are usually limited to short 

segments or single peptide units, called hinges, that connect domains changing their relative 

orientation to each other as rigid bodies. It appears plausible that the trigger for such 

conformational transitions comes from the interaction of the substrate with a single amino 

acid occupying a key position. Then the final conformation is stabilized by a multitude of 

substrate-protein or newly formed protein-protein interactions. In this respect it should be 

mentioned that already the modification (mutation) of single amino-acids (either in 

naturally occurring variants or engineered by protein chemistry, a technique which will 

provide a wealth of new information concerning protein structure and function) is able to 

affect conformational changes considerably [9]. 

Quartenary structure changes can also occur spontaneously as aggregation of 

separate molecules. lt is the principle of self-assembly that opperates in order to build larger 

(e.g. oligomeric proteins) or even more complicated structures (e.g. cell membranes or 

viruses). The development of favourable contacts between constituent molecules drives the 

association and affects, that segments exposed in the isolated molecules, become buried in 

the multisubunit aggregate. This drastic change of environment will again alter the 

biological properties. 

Finally it should be mentioned, that proteins are macromolecules in an aqueous 

environment, thus the interactions with the solvent are of vital importance and increase the 

complexity of the system. Although the unique configuration in proteins (nonpolar side 

groups are isolated into internal regions and polar groups are more abundant in surface 

areas) prevents water from penetrating and converts newly made polypeptide chains into 

compact shapes during the folding process. The final protein conformation and its activity 

strongly depends on hydration and water accessible areas araund the protein surface. 

2.3 The role of metal ions 

Metal ions are of particular importance in protein biochemistry. From about 25 elements, 

that have been recognised as essential and indispensible to life, 15 are metals. At least five 

of them (Na, K, Mg, Ca and Fe) appear tobe crucial to every known form of life, whereas 

the others (V, Cr, Mn, Co Ni, Cu, Zn, Mo, Wand Se) are required only insmall amounts by 

some living organisms [10, 11]. The participation of metal ions is essential in fundamental 

biological processes such as electron storage and transfer, dioxygen binding, storage and 

activation, and substrate transport, catalysis and activation. The following roles of metal 

ions on a molecular Ievel can be specified in connection with protein activity and 

confonnation. They are 

• integral to the protein structure, 

• involved in determining and stabilizing the structure of a protein, 
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• part of the active site of enzymes, 

• complexed to a substrate or being the substrate themselves. 

The metalloproteins are of major interest as they perform largely varying biological 

functions. The metal sites in these proteins have attracted much interest recently. The 

extremely elaborate coordination complexes and the relationships which exist between 

these sites and synthetic model complexes have led to the emergence of the 

interdisciplinary field of bioinorganic chemistry. The detailed knowledge of coordination 

chemistry will improve the understanding of the role of metal ions in biological systems. In 

biological molecules such asproteins the metal ion is often coordinated by oxygen, sulfur, 

or nitrogen atoms. However, the presence of metal ions does not only determine and affect 

the environment of the binding site (or active site) but can also influence decisively the 

conformation, i.e the tertiary and quartemary structure and the stability of proteins. 

2.4 Example 1 : Transferrio 

Iron is one of the most widespread metals in living systems, it participates in a variety of 

biological activities. Thus a large amount of iron is required (e.g. the concentration is 

normally 40-50 mg Fe/kg in the human body). However, there are two major chemical 

problems associated with the biological use of iron : the poor solubility of iron at 

physiological pH values and the involvement of iron in the production of extremely reactive 

radicals of potential toxicity. These complications have led to the evolution of ingenious 

protein-dependent systems for storage and transport of iron. Transferrin is the protein 

which complexes and transports iron in vertebrates. Apart from its traditional role in iron 

metabolism (transport and delivery of iron to iron-requiring cells by means of receptor­

mediated endocytosis), transferrin acts as inhibitor of bacterial growth (conservation and 

control of iron Ievels in body fluids). This versatility is subject of various medical, 

biochemical and spectroscopical studies so as to understand its functional properties in 

relation with structural peculiarities (see e.g. Refs. [12-15] for reviews on the physical 

chemistry and biology of transferrins). 

Transferrin is the general term for a family of monomeric and evolutionarily-related glyco­

proteins with the property of reversibly binding ferric iron (Fe3+). The primary members of 

the transferrin family are 

• serum transferrin (ST) in blood plasma and other extracellular fluids, 

• ovotransjerrin (OT), in egg white, 

• lactoferrin (LF), in milk and other secretory fluids, 

• melanotransjerrin (MT), in the plasma membrane of melanoma cells. 
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Amino acid sequence determination of a number of transfeiTins provided clear signs for 

structural similarities: There is an extensive sequence homology (identical amino acid 

residues) not only among transferrin species (ranging from about 50% to 60% identical 

residues in corresponding positions [16]), but also between the N- and C-terminal halves of 

the molecule. Thus the protein consists of two similar Iobes (the so-called N- and C-lobe) 

each of which contains one iron binding site. Some structural properties have been 

summarised in table 2.1 referring to the three transferrin species, in particular, which have 

been studied in this work. 

Recent crystallographic structure analyses of a number of transfeiTins (see refs. [24-29]) 

have contributed decisively to the understanding of the structural organization of these 

proteins. Therefore the polypeptide folding pattern for all transfeiTins can be characterized 

by two separate globular Iobes of roughly 330 residues, connected by a short bridging 

peptide. Bach lobe is comprised of two dissimilar domains (NI, Nil and Cl, CII) defining a 

cleft for the metal binding site at the domain interface (figure 2.1). This interdomain cleft 

represents a common motif in proteins, facilitating the reversible binding of a substrate [7]. 

Table 2.1 : Comparison of some structural and compositional properlies of three 
transferrin species. 

HumanSerum Human Chicken Ovo-
Transfertin (HST) Lactoferrin (HLF) transferrin ( COT) 

molecular mass* 75 700D 77 200D 76 800D 

no. of amino acids 679 691 686 

N-terminal half (N -lobe) 1-332 1-333 1-332 

C-terminal half (C-lobe) 338-679 345- 691 342-686 

homology between Iobes 43% 37% 35% 
(identical residues) 

disulphide bridges 
in N-lobe 8 6 6 
in C-lobe 11 10 9 

carbohydrate properties# 
molecular mass 4400D 4700D 1900D 
no. of glycans 2 2 1 
attachment C-lobe N- and C-lobe C-lobe 

iron-binding strength~·* 1000 261 000 4000 

isoelectric point§.t 
apo protein 6.1 9.2 6.7 
diferric protein 5.5 8.2 5.8 

* calculated from the amino acid composition; # see ref. [17]; ~ calculated from equilibrium dialysis data, 
given is the constant K1 for the binding of the first Fe3+ to the corresponding apo-protein; * see refs. [18-
20]; § defined by the pH value at which the net charge on the protein is zero; t see refs. [21-23] 
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N-Lobe 

C-Lobe 

Figure 2.1: 
Ribbon drawings3 of the molecular organization and conformation of the transferrins. 
The structures of Fe2-HLF [25] (on the left) and apo-HLF [26] (on the right) show the 
characteristic folding into two Iobes (N-lobe and C-lobe) joined by a connecting peptide 
(cp) and four domains (NI, Nil, CI and CII). A helix (pe) forms the C-terminal end of 
the polypeptide chain. Iron atoms are represented as red spheres. The conformational 
difference between iron-loaded and iron-free state of parts of the N-terminal half is 
clearly visible. 

With the determination of the crystal structure of human apolactoferrin [26], the metal-free 

state of lactoferrin, a major insight into the substantial conformational change 

accompanying iron binding was provided. In comparison with diferric lactoferrin, it tumed 

out that the Nil domain of the molecule follows a rotation of -54° relative to the NI domain 

about a hinge at the back of the iron-binding site. This large-scale conformational change 

causes the interdomain cleft in the N -Lobe to open wide. Curiously, in this crystal structure 

representation the structure of apo-HLF revealed that in the C-lobe the iron binding cleft is 

closed even though no metal iron is present (see figure 2.1). 

Although crystallographic findings shed light on a number of open questions regarding the 

structure-function relationship in the transferrins, so far only limited structural information 

is available on the conformation of these macromolecules in solution [30-32]. Further 

studies of the interdomain interactions in the various members of the transferrin family will 

3 The ribbon representation of a structure shows the smoothed path of the polypeptide chain. Important parts 
of a molecule such as helices are refelcted clearly. 
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lead to additional structural explanations related to the different tasks of the transferrins. 

Moreover the crystallographic difference between the two lobes when no metal is bound, 

represents a surprising feature. 

Being glycoproteins, one or more carbohydrate units (sugars) are attached covalently to the 

transferrins. The carbohydrate chains (glycans) are specific for each transferrin and even 

specific to different species. Glycosylation sites vary in number (see also table 2.1) and are 

widely distributed over the molecular surface. Crystallographic studies revealed little 

evidence of defined carbohydrate structure presumably due to its high mobility and spatial 

disorder. These results together with the fact that the removal of the carbohydrate does not 

affect the physiological functions, may argue against any structural or functional role for 

transfeiTins [33]. 

The understanding of the tight binding of two Fe3+ ions per molecule which is strong 

enough to resist hydrolysis gained substantially from crystallographic structure determi­

nations. Concomitant with the metal binding of each iron atom, a carbonate anion (C032-) is 

bound and serves as a fundamental bridging ligand between the metal and the protein. This 

so-called synergistic anion along with four amino acid residues provide the unique feature 

of iron-binding in an octahedral geometry (figure 2.2). In addition, unlike other metallo­

proteins where the metal-binding ligands are contributed by a rather small segment of the 

Figure 2.2: 
A view of the iron binding site of the 
N-lobe of rabbit serum transferrin 
[29]. Fe3+ is bound by four protein 
ligands (Asp63, Tyr95, Tyr188, 
His249) and by a carbonate anion in 
a bidentate fashion, thus providing 
an octahedral geometry at the iron 
site. This Iigand arrangement (Asp63 
is part of domain NI (green ribbon 
trace), Tyr188 of domain Nil (blue 
ribbon trace), Tyr95 and His249 
come (dark blue ribbon trace) from 
each of the two backhone strands 
connecting the two domains at the 
back of the iron site) forms an 
elegant compensation of the metal 
ion in concert with the carbonate 
anion. Hydrogen bonds are 
represented as green dashed lines 
and highlight both the anchoring of 
the carbonate as well as the network 
of interdomain hydrogen bonds. In 
this respect the aspartic acid (residue 
number 63 in human serum transferrin numbering) is not only a Iigand to iron but also 
guarantees the interdomain stability. 
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polypeptide chain (e.g. in copper proteins [34], calcium-binding [35] or zinc-binding 

proteins [36]), the four ligating residues in transfeiTins are widely separated in the amino 

acid sequence and belong to distinct domains of the protein [37]. 

TransfeiTins can bind many other metal ions, including as weil the transition metals as 

many lanthanides and actinides (reviewed in [12] and [13]). It is this property which 

attributes the biomedical relevance to this serum protein. For instance, the use of Ga2+ or 

Jn2+ Iabelied transfeiTins for medical imaging or the identification of transfeiTins as a carrier 

of AI3+ or heavy metals with the possible implication for toxicity and destructive power to 

living cells, show the role of transfeiTins in the biodistribution of markers or impurities in 

organisms. In this respect the structural information so far available has also raised further 

questions : If transferrin interacts specifically with a variety of other metal ions, generally 

with a high positive charge, how does the binding and the likely concomitant structural 

change of one metallic cation compare with another? What is the trigger for the 

conformational change after metal uptake and are there metals or other effects which might 

reduce or even inhibit such a structural change? Here the strongly developing field of 

protein engineering can also provide outstanding possibilities to study the peculiarities of 

the characteristic metal binding site in transferrins. Furthermore transferrin binding to 

specific cell receptors (glycoproteins embedded in the cell membrane) is an essential 

question with respect to iron delivery to certain tissues and might be related to a particular 

conformation or structural feature. 

Many of these questions cannot be answered promptly by X-ray crystallographic studies. In 

addition not all modifications of transferrin molecules (e.g. any replacement of iron by 

other metals or site-specific mutants of transferrin) can be induced to form crystals suitable 

for X-ray structural analysis. Thus X-ray solution scattering provides a unique tool by 

studying the samples under conditions close to physiological environment and due to 

known overall structures of the molecule, models can be built 'easily' to interpret the 

scattering data. 

2.5 Example 2 : Nitrite Reductase 

Electron transfer over considerable distances with high specificity and efficiency is central 

to a large nurober of biological processes. The reduction and oxidation of key molecules are 

mediated by a diversity of proteins associated with soluble components of both aerobic and 

anaerobic energy-generating systems. Copper-containing proteins play an essential role in 

substrate activation as well as being the redox centre of the electron donors or acceptors. 

For instance in the global nitrogen cycle, i.e. in the process of denitrification, bacteria use 

NO 3- and N02- as terminal electron acceptors to produce gaseous nitrogenaus products 

(NO, N20, and N2). During this course of reduction various copper-containing enzymes are 
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involved. Understanding the denitrification pathway on a molecular Ievel not only reveals 

fundamentals of the biological electron transfer mechanism but can also help to gain control 

of the environmental and health hazard caused by the present-day nitrate pollution. The 

improper application of fertilizer with a high nitrate content has tremendous negative 

consequences on the underground water, natural locations, and forest ecosystem. An 

efficient process of nitrate removal was reported only recently based upon the exploitation 

of denitrification enzymes which have been immobilized on a solid substrate in order to 

construct a bioreactor capable of converting nitrate to gaseous dinitrogen [38]. 

Nitrite Reductase (NiR) is a key enzyme in the stepwise reduction of nitrate. NiRs are 

classified in copper- and iron-containing enzymes [39, 40] catalyzing the reduction of 

nitrite ions (N02 -) to nitric oxide (NO). Many copper-containing NiRs have been purified 

and characterized from a variety of bacteria and these enzymes show considerable variation 

in their physicochemical properties such as molecular weight, number of subunits, and 

number and types of copper centre that they contain. Table 2.2 gives some structural details 

concerning the copper-containing NiRs of Achromobacter cycloclastes (AcNiR), 

Achromobacter xylosoixidans (AxNiR) and Alcaligenes faecalis (AfNir), which will be of 

interest here. The information obtained with standard biochemical techniques is at variance 

and clearly suggests structural differences among the different bacterial enzymes. However, 

in all NiRs the enzyme-bound copper ions play an essential role in the catalytic, nitrite 

reducing activitiy. Decreasing the copper content either by dialysis of the enzyme against 

cyanide or by use of copper chelating agents, a significant decrease of activities can be 

observed. 

The Cu2+ ions in copper proteins have been classified according to characteristics in their 

electron spin resonance (ESR) spectra. Accordingly, a narrow and sharp hyperfine splitting 

in the ESR spectrum characterizes the so-called type I Cu2+, whereas the typical type II 

Table 2.2 : Comparison of structural properties of three copper-containing 
Nitrite Reductases based upon biochemical and spectroscopical 
investigations. 

colour 
molecular subunit Cu content& reference 

mass composition and types§ 

AfNiR green 110kD*# tetramer 4.5 (I+ ID [41, 42] 

AcNiR green 69kD* dimer 2 (I+ II) [43-45] 

AxNiR blue 149 kD# tetramer [46] 

70kD* dimer 1.6 (only I) [47] 

* by gel filtration, # by Sedimentation equilibrium centrifugation, & by atomic absorption spec­
troscopy, § based upon ESR spectra 
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Figure 2.3: 
Ribbon drawing of the trimeric assembly of AcNiR (on the left) and the Iigand arrangement 
around the type I (blue sphere) and type II (pink sphere) copper sites (on the right) based on 
the 2.3 A X-ray structure [50]. Hydrogen bonds at the monomer-monomer interface are 
shown as green dashed lines. 

Cu2+ exhibits a broader hyperfine splitting [48]. This difference is reflected not only in the 

atomic absorption spectra but also in the geometric arrangement and type of the copper 

ligands. A type I copper centre is characteristically Iigated by two histidine (His), one 

methionine (Met) and one cysteine (Cys) residue in a tetrahedral geometry. The strong 

absorption bands around 450 and 600 nm is mainly associated with the Cu-S (Cys) 

chromophore. In a type II site, the copper is predominantly bound by three to four histidine 

ligands. 

Since copper ions (Cu2+ and Cu+) prefer different Iigand coordination, the binding or 

release of an electron would be expected to produce a change in the protein structure or, 

conversely, the orientation and position of the coordinating ligands could define either a 

Cu2+ or Cu+ state. Thus the effects of copper binding on the protein and the effect of the 

protein on copper affinity are linked functions. Regarding the incompatible results of 

subunit composition and copper content, a variation in the activities of these enzymes 

should be realized. However, all copper-containing NiRs can catalyze the reduction of 

nitrite to nitric oxide and the necessity of both types of copper being present seems more 

and more established. In contrast to the previous work, the recent determination of the 

copper content in AxNiR supports the presence of both type I and type II copper centres in 

approximately equal proportions [ 49]. 
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Furthermore the structural insight provided by the crystal structure detennination of AcNiR 

[50] revealed unexpected details about the molecular assembly, copper types and ligation. 

Surprisingly, the crystals of this enzyme contained trimeric molecules (figure 2.3). Since 

the degree of association in the crystalline state might be biased by crystal packing forces 

and crystallisation conditions (e.g. high sample concentration), so as to favour trimer 

formation, a reinvestigation of the molecular weight by sedimentation equilibrium 

centrifugation gave also clear evidence of a trimeric species in solution [50]. Three obvious 

kinds of interactions can be specified that would stabilize the trimeric structure in solution : 

• The type II copper site is bound by residues not within a singlemonomer but from 

each of two monomers of the trimer (see figure 2.3). 

• Extensive intermonomer contacts are situated in the vicinity of the copper II site. 

• A polypeptide extension in the form of a long arm reaches from one monomer to 

another monomer in the trimer. 

Although these structural details do not support a trimeric association specifically, recent 

structure determinations of unrelated proteins [51, 52] show that this principle of trimer 

aggregation is an effective but simple feature for the crucial formation of catalytic sites. In 

addition, this kind of subunit assembly including polypeptide segments which project away 

from globular parts of one monomer seems to stabilize and approach a structure which is 

known from some membrane bound proteins forming diffusion channels within pores of 

cell walls [53]. 

Regarding the conflicting results with respect to molecular weight and subunit organization 

not only among the different species of NiR, the oligomeric conformation of this enzyme in 

solution is still an open question. On the basis of the known atomic structure of AcNiR, the 

technique of solution X-ray scattering and molecular modelling should be able to provide 

additional, unambigous information about the subunit assembly of NiR in solution. Due to a 

close relationship in the amino acid composition between AcNiR and AxNiR [49], the 

comparison of solution scattering results and crystallographic findings of different species 

will be possible. 
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Chapter 3 : Solution Xmray Scattering 

3.1 Introduction 

Size and shape of biological macromolecules are the rnost obvious questions to be answered 

in order to find a rnore comprehensive understanding of their functioning and effectivity. 

There aredifferent techniques available to tackle these structural questions, which provide 

information at various degrees of reliability and detail. 

The rnost informative method for deterrnining macromolecular size and shape involves 

working with samples in the 'solid state'. X-ray diffraction from crystalline samples is one 

of the central sources of structural information for biology at high resolution (at atomic 

Ievel) and has taught us more about the structure of large rnolecules than any other method. 

However, one of the major difficulties in macromolecular crystallography is growing good 

periodic crystals of proteins and polynucleotides, especially when these biomolecules are 

composed of several domains or assernbled into larger functional units. Forthis reason, X­

ray scattering from totally disordered sarnples such as solutions of proteins or larger 

molecular assernblies represents an alternative, though being a low to medium resolution 

technique, to acquire useful information about macromolecular structure in solution with a 

characteristic length of the order of tens to hundreds of Angstrrem. 

-
Figure 3.1: 
Basic geometry of an X-ray scattering 
experiment. The scattering vector s for elastic 
X-ray scattering is the difference vector 
between the scattered, S;n, and the incident 
photon wave vector, Soul. In elastic scattering 
the magnitude of S;n, and Soul is unchanged. 
Denoting 28 the scattering angle and A. the 
X-ray wavelength, the magnitude of the 
scattering vecor s, follows the equation 

s = lsl = 2lstnl sin 8 = ~ sin 8. 
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All atoms in a scattering object, 

independently of their distribution, will 

scatter in phase along the direction of an 

impinging X-ray beam. The scattered X­

rays are characterized by the scattering 

vector s (as shown in figure 3.1). As the 

rnolecules of interest are only a minority 

component, the measurement consists of 

the scattering from macromolecules­

plus-solvent over that of pure solvent 

alone. Regarding the form of the strong 

intensity decay in the forward X-ray 

scattering, information about the overall 

shape and size of the scattering molecule 

can be obtained. 

Nevertheless, the advent of 

synchrotron radiation sources opened up 

new ways to probe biological structures 

at the subcellular Ievel. Consequently, 



the high intensity and collimation of syrichrotron X-rays provide an outstanding possibility 

to perform X -ray scattering studies during considerably shorter measurement periods than 

were ever possible with conventional laboratory sources. Moreover, the observation of 

generally very weak scattering features is possible which are associated with the intemal 

structures of the molecules in solution. Particularly, this latter feature is usually not 

included in the traditional small-angle scattering region. Thus, in the context of synchrotron 

radiation the range of the traditional small-angle X-ray scattering (SAXS) has to be 

extended and defined with the term X-ray scattering from diserdered systems or solution X­

ray scattering. 

It is beyond the scope of this thesis to develop the theory of X-ray scattering in detail, the 

reader is therefore referred to textbooks and in particular to review articles or specific 

papers conceming applications in biology (see e.g. refs. [54-59]). Only the theoretical basis 

that is important for the comprehension of this work will be presented. Formulas used for 

data analysis and interpretation are given. Some emphasis has been put especially on the 

Simulation of solution X-ray scattering spectra in connection with molecular modelling. 

3.2 General principles 

Since solution X-ray scattering investigates distances that are large compared to interntornie 

distances, the scattering is described as arising from objects of some electronic density 

imbedded in a medium of another density. Assuming the elementary scattering objects are 

molecules, these may be isolated in the sample or distributed according some type of spatial 

correlations. Hence, the scattering profiles contain information on the size of the particles as 

well as on the interactions between them. Here, the following restrictions on the scattering 

system will be dealt with. The system 

• is diluted and monodisperse 

(ideal solution of identical molecules with uniform electron density), 

• comprises isotropic scatterers (elastic scattering), 

• is not subject to multiple and inelastic scattering, 

• contains samples with negligible absorption properties. 

These assumptions are experimentally acceptable. In order to approach physiological 

conditions, where most of the water-soluble proteins are found in low concentrations (only 

a few mg!ml), biological molecules are separated widely enough from each other; thus 

interparticle effects can be neglected. Inelastic scattering (Compton scattering) is negligible 

as only small scattering angles are cori.sidered, where it is extremely small with respect to 

elastic scattering. Multiple scattering becomes noticeable only in the case of strong 

scatterers and a large sample thickness, however, this does not apply to solution X-ray 
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scattering experiments from proteins reported here. The absorption properties, though being 

very small, have been tak:en into account during data reduction. 

Thus, each molecule will contribute independently to the elastically scattered intensity. The 

instantaneous scattering amplitude of one single molecule is just the molecular structure 

factor given by 

N 
F(s) = Lfn(s)e2Hisrn 

n=l 

where the sum is tak:en over all N atoms in the molecule and fn (s) is the atomic structure 

factor which is characterized by the · number of electrons in individual atoms4 . 

Experimentally only the intensity or the square of the amplitude is measured 

N N 
l(s) = F(s). F'\s) = L Lfnfm e2Hisrnm (E3.1) 

n=l m=l 

with r nm = rn - rm defining the difference vector between atom n and m. During the 

measurement period of an X-ray scattering experiment in solution, each molecule will 

assume all possible rotational orientations. Moreover, a collection of macromolecules will 

be observed which will also represent all possible orientations at any time. Therefore what 

is actually observable is 

N N 
(I(s)) = L Lfnfm J e21T:isrnmd.Q 

n=l m=l 

The integral tak:es all possible relative orientations of each vector rnm and the scattering 

vector s into account. The computation results in the so-called Debye formula [60] 

N N . 2 (I(s)) = 4n L Lfnfm sm nsrnm 
n=l m=l 2nsrnm 

(E3.2) 

with s and rnm now being scalar quantities. Thus the observed scattering intensity is a 

function only of the scattering angle 2 (} between incident and observed radiation and does 

not depend on their orientation in space (see figure 3.1). 

4 The atomic scattering or structure factor describes the coherent scattering of X-rays from anatomvalid for 
X-ray energies which are large compared with the binding energy of all the electrons in the atom. In the 
small angle Iimit ( s ~ 0) the atomic structure factor corresponds to the electronic charge of each atom. 
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3.2.1 Radius of gyration 

In the limit of very small scattering angles ( 8 ~ 0) equation E3.1 can be expanded as a 

power series in s 

Selecting the origin so that L~=lfn rn = 0 and using the expression 

(E3.3) 

which defines the radius of gyration (Rg) of the molecule, the rearrangement yields 

(E3.4) 

This representation is known as Guinier's law [61] derived under the assumption of isolated 

molecules in solution with an intermolecular distance being much larger than their 

intramolecular size. 

The Guinier approximation is widely used for the determination of Rg which is related to 

the overall size of the molecule. It gives the root mean square distance from the electronic 

centre of gravity which corresponds to the ordinary centre of gravity in the low angle 

scattering limit. In addition the molecular weight can also be calculated from I (0). 

However, it will not be followed up here, since its accuracy is rather limited due to the 

difficulty in extracting absolute scattering intensities in synchrotron radiation scattering 

experiments. 

3.2.2 Distance distribution function 

By looking only at small angles, limited information at very low resolution is obtainable. It 

is obvious that higher resolution information can be obtained by extending the data to 

higher scattering angles. A more detailed interpretation of scattering profiles for randomly 

oriented molecules involves the determination of the distance distribution function p(r). 

The scattered intensity /(s) (the spatial average denoted by ( ... )will be omitted from now 

on) in equation E3.2 can also be formulated as 
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l(s)=4nfp(r)sin2nsr dr 

0 
2nsr 

(E3.5) 

The distance distribution function represents the probability of finding the distance r 

between two scattering centres (atoms) within the particle. Consequently, p(r) drops to zero 

at r = D, the maximum intraparticle distance. The distance distribution function is related 

to the averaged self-convolution of the density distribution of a particle 

y(r) = p(r)r2 = (p(f}*p(-r)) 

and is also known as spherical averaged Patterson or correlation function [62]. Theinverse 

transform of equation E3.5 can be written as 

Smax 

p(r) = ~ J l(s) 2nsr sin2nsr ds 
2n: 

Smin 

(E3.6) 

where the finite s range of the scattering curve has been already taken into account. At very 

low angles, the range is limited by the presence of the direct beam and at large angles by 

detector dimensions and low scattering intensities. For this reason the direct Fourier 

transform is usually replaced by indirect tranform procedures inclusive of effects from 

counting statistics, restrictions due to finite scattering range and instrumental resolution [63-

66]. 

The mathematical treatment is dependent on the properties of the functions p(r) and 

l(s). As a consequence of the globular shape of biological macromolecules, p(r) vanishes 

beyond D. Thus, the sampling theorem of Fourier transform [67] teils us how to measure 

the scattering curve by use of a certain increment L1s. In practice one will have to stay weil 

below the Iimit (2D r 1. 

Finally, it is possible to calculate the radius of gyration also fromp(r), using the expression 

(E3.7) 

3.3 Interpretation of scattering proflies 

Apart from a few cases of distinct symmetry, structural details from solution X-ray 

scattering experiments have to be deduced indirectly. The Guinier analysis (see equation 
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E3.4) is valid in the low angle limit and assumes spherical symmetry of the particle. In 

order to deduce the overall dimension or the shape of the particle, the X-ray scattering data 

in the extended or wide angle scattering regime is essential for structural interpretations. It 

is this scattering region which provides information about the internal subunit arrangement 

of macromolecules in solution. The analysis has tobe based on the assumption of various 

models. Traditionally the scattering curves for simple geometric objects of uniform density 

(e.g. spheres, ellipsoids, cylinders) are calculated. A trial-and-error technique is applied in 

optimizing the fit to the experimental curve. 

As an example, it should be mentioned that a simplistic molecular shape of human 

serum transferrin was determined from solution scattering data [30] almost ten years before 

the crystal structure of rabbit serum tranferrin was solved. This low angle data [30] was in 

good agreement with an oblateellipsoid with semi-axes of length 47 A, 47 A and 16A. It 

compares fairly well with the maximum dimensions of 95A X 60A X 50A from 

crystallographic studies of rabbit serum transferrin. 

Another example which illustrates the power of solution scattering in detecting 

conformational changes is given in figure 3.2. It shows three scattering profiles calculated 

from a simple model of two ellipsoids which define different conformational states of a 

molecule. It is clear from figure 3.2, that X-ray scattering data at relatively higher angles (2° 

to 3°, i.e. s > 0.025 A-1) is particularly sensitive for detecting conformational differences. 
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Figure 3.2: 
Two ellipsoids (semi­
axes of length 25A, 
25A and 15A) have 
been arranged in an 
open, half-open and 
closed state. Overall 
dimensions correspond 
approximately to one 
lobe of transferrin. The 
differences in the 
calculated scattering 
profiles are quite 
obvious. The most 
distant parts of the two 
ellipsoids from the 
hinge point move 
considerably. However, 
the radius of gyration 
shows only small 
changes. 

Such models are particularly helpful when no other structural information about the 

molecule is available. However, this can only be a qualitative measure of the molecular 
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shape and the uniqueness of the solution is not guaranteed. The procedure is based upon the 

goodness of the fit between experimental and calculated scattering data corresponding to 

various model structures and thus reflects the potential ambiguity in structure 

detennination. A müdel-independent approach is based on the multipole expansion method 

using spherical harmonics which was first proposed by Stuhrmann [68, 69]. The formalism 

of multipole coefficients is difficult in its practical implementation but the evaluation could 

be improved now by a special minimization procedure [70]. However, an unambigous 

determination of more detailed quarternary structures of proteins needs statistically 

significant scattering data in a wide angular range. This condition can only be provided by 

the high brilliance of synchrotron radiation sources and will certainly pay off in future 

applications. 

Far more detailed models can be considered when specific information about the structure 

of the macromolecule is available from other techniques in particular from high resolution 

protein crystallography. Of special interest are proteins composed of several subunits or 

domains because the interaction between these subunits can be comparable with the forces 

in the crystal. Therefore the crystalline state and the solution structure may not necessarily 

be identical. Solution X-ray scattering gives an accurate scattering pattem in just the region 

which is sensitive to large intemal structural changes or molecular associations. Thus, the 

crystal structure must be certainly regarded as the starting point for studies and 

interpretations of the conformational behaviour in solution. 

The calculation of solution X-ray scattering profiles from atomic coordinates of 

biological macromolecules can be rather computer intensive. Hence, calculation methods 

have been proposed which are less time-consuming and allow various molecular models to 

be tested efficiently. For example, the so-called cube method devides the molecule into 

small cubes for calculating X-ray scattering curves [71, 72]. Subsequent modifications and 

improvements of the method have been introduced, e.g. consideration of solvent accessible 

cavities within the molecule has been made [73, 74]. There are a variety of methods based 

on Debye's formula (equation E3.2), including those involving a Monte Carlo procedure 
that uses a subset of intramolecular distances 'nm [75] or a method that involves the 

expansion of the Fourier transform into spherical Coordinates [76]. These provide a more 

rigorous basis for interpretation and prediction of X-ray scattering proflies of biological 

molecules in solution. 

In the present work, a modification of the so-called sphere method [77] has been 

applied which is also based on Debye's formula. The computation of the scattering proflle is 

performed using the equation 

D . 2 
I() ( ) ~ ( )szn nsr; s =gs ~Pr; __ __._ 

n=O 2n sr; 
l 
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where p(yt) gives the histogramme of distances between every pair of atoms. Distances are 

binned and weighted according to the product of the number of electrons belonging to the 

corresonding pair of atoms. Since a molecule is represented by a volume with a certain 

shape, each scattering centre (given by its atomic coordinates) is associated with a 

geometrical volume which is introduced mathematically by the shape factor g(s) [78]. 

Assuming a spherical shape for each atom, g(s) is given by the squared form factor of a 

sphere of radius R 

( ( 3(sin~- ~ cos~)J2 . h J:. 2 R g S) = 3 Wlt '::> = 7rS . 
~ 

A sphere radius of 1.7A was used which correlates with the.average radius of non-hydrogen 

atoms in proteins. Although this procedure gives a fairly accurate description of the solvent­

excluded volume occupied by the macromolecule, tightly bound water molecules on the 

outer surface are not tak:en into account unless their positions are resolved in the crystal 

structure, even though the scattering data in this range (s ~ 0.035.Ä-1) contains such 

information. For this reason, an approach has been developed in order to create solvent 

water positions around the macromolecule and to test particularly the influence of the water 

shell on solution X-ray scattering. The work presented here shows that the incorporation of 

a hydration layer up to about 3A from the molecular surface improves the scattering pattem 

Simulations significantly. 

3.4 Molecular Modelling 

The interpretation of solution X-ray scattering profiles benefits from crystallographic 

structure information. Although solution scattering is only a low to medium resolution 

technique, its combination with molecular modelling using atomic coordinates from crystal 

structures can prove advantageous in defming realistic 'high' resolution models of biological 

macromolecules in solution. 

Nowadays molecular structures can be studied easily, clearly and accurately using powerful 

computer graphics systems. Visualizing biological molecules is essential to an active 

process of understanding and interpreting macromolecular structures [79]. It is not only 

helpful for looking at the proteins but in concert with molecular model-building it is an 

outstanding tool for elucidating the relationship between biological function and molecular 

structure. ModeHing techniques include calculations based on an empirical, essentially 

classical potential energy function. Such a potential function (see Appendix A) can be used 

in optimization of geometry ( molecular mechanics) or in studies of atomic motion in 

macromolecules (molecular dynamics). During the last decade the results of these 
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calculations in concert with experimental data have led to a more complete understanding 

of biological molecules. The relatively up-to-date review from Karplus et al. [80] gives 

impressive insights in theoretical approaches of protein dynamics. 

In the following, three principal concepts will be mentionned where solution X-ray 

scattering in conjunction with molecular modelling can provide useful structural 

information of proteins in solution. 

• The structural reasons why many proteins change their conformation specifically as they 

perform their functions (e.g. shape modifications by the action of small molecules or 

ligands that activate or inhibit them) have been studied extensively in recent years. 

Energy minimization and molecular dynamics have been employed to explore atomic 

motions, binding events and enzymatic reactions on the picosecond time scale 

corresponding to local dynamics such as atomic vibrations or movements of side chains. 

These fluctuations have been detected by far-infrared and Raman spectroscopy 

techniques [81] and most recently by inelastic neutron scattering which allowed an 

improved understanding of the form of the potential energy surface [82]. However, the 

important tertiary or quarternary structural changes, the phenomenon of protein 

flexibility, i.e. large-scale motions which represent time scales up to the order of 

seconds, are still immensely complicated and have yet to be determined. The present 

understanding is rather limited. Thus, a specific deformation of a protein backhone (e.g. 

stretching or twisting at a location in the structure) can be modelled by combining 

information from other related structures. This procedure is purely geometric, foregoing 

any energetic or steric considerations. It is clear that this kind of model-building goes 

band in band with the interpretation of solution scattering data. In this connection the 

model-building based on homology of protein sequences and protein docking needs to 

be mentioned. Also, an understanding of protein-protein-interactions is an important 

field of research and approaches of molecular modelling and their experimental 

verification will certainly increase significantly. 

• Another topic of considerable current importance in modelling studies is the treatment of 

solvent effects. The interaction of amino acids with the surrounding water molecules is 

probably one of the dominant factors in protein folding and thus for the final 

conformational shape of a protein [83]. In this respect solution X-ray scattering can 

certainly provide interesting results since water molecules close to the protein contribute 

significantly to the scattered intensities. The reason for this is the formation of a 

hydration layer (water and salt) associated with the protein surface which has an electron 

density very similar to that of proteins. In order to improve the simulation of X-ray 

scattering profiles with respect to experimental findings this solvent layer has to be taken 

into account. Unfortunately, X-ray crystallographic experiments do not reveal all the 
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positions of protein-bound water molecules belanging to the hydration shell due to 

relatively higher disorder and limited resolution. Thus, the solvent structure must be 

generated by computational techniques. For the purpose of generating surface solvent 

molecules, an approach, including energy minimization, was developed and is described 

briefly in Appendix B. 

• The most ambitious goal of molecular modeHing is to predict the secondary and tertiary 

structure of a protein from its amino acid sequence. The occurrence of large significant 

and non-random arrangements of specific structural motifs has been discovered and can 

provide ideas about the determinants of tertiary structure and folding [84, 85]. Thus a 

knowledge-based modeHing approach (using the sequence homology with proteins of 

known three-dimensional structure and empirical energy functions to derive the 

conformation of minimum potential energy) in conjunction with computer graphics 

applications is receiving increasing attention. It will be of great importance to test the 

possible models. In this respect solution X-ray scattering provides a powerful means of 

shape deterrnination in the absence of structures solved to atomic resolution. In addition 

X-ray scattering intensities and distance distribution functions calculated on the basis of 

known crystal structures will make structure interpretations easier. The installation of a 

corresponding database was proposed only recently [86]. 

Finally, all developments and improvements in the field of graphical and molecular 

representation which have certainly increased the generat view of understanding protein 

structures, provide only models. Many models are rather accurate, because they are based 

on substantial quantities of data, but they are still models none the less. 
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Chapter 4 : Experimental 

4.1 Synchrotron Radiation Sources 

Synchrotron radiation is the electromagnetic radiation emitted by charged particles 

accelerated to relativistic energies moving along a curved trajectory under vacuum. A wide 

spectral range of radiation is covered, from the infrared to the X-ray region. The 

dependence of the total radiated power P on the particle energy E, its rest mass moc2 and 

the bending radius R of the trajectory is given by 

e2c r4 
P=--·-

6neo R2 
with 

E r=­
moc2 

This relationship explains why electrons (positrons) are by far the most important particles 

generating this kind of radiation since the mass of other particles such as the proton is much 

!arger than that of the electron (m~l«ctro" I mCroto" = 1/1836). 

Until the late 1950's synchrotron radiation was mainly studied because of its 

negative role in electron accelerator technology. The radiated power ofrelativistic electrons 

corresponds to a considerable energy loss which has to be compensated by radio frequency · 

(RF) elements in order to maintain the relativistic velocity of the circulating electrons. 

However, its usefulness in many aspects of X-ray physics was recognized early and during 

the last twenty years synchrotron radiation has become a unique tool for many disciplines 

(from basic research to technical applications). Until the mid-1970's the radiation was 

obtained as a by-product from accelerators built for high energy physics. This parasitic use, 

however, did no Ionger satisfy the requirements of synchrotron radiation users. Circular 

electron accelerators were built and dedicated for synchrotron radiation experiments. This 

type of synchrotron radiation sources produced radiation from bending magnets which 

keep the electrons on a closed orbit. During the last decade the development of so-called 

insertion devices (wiggler and undulator) led to further improvements particularly 

conceming the size and divergence of the photon beam. 

The components of a synchrotron radiation source are shown in figure 4.1 giving the 

example of the Synchrotron Radiation Source (SRS) at Daresbury (U.K.). The SRS is the 

Iongest established, dedicated, high energy synchrotron radiation source in the world. 

Although it has been in operation since 1981 a number of improvements and extensions 

have been made to keep up with the standards of an up-to-date synchrotron radiation source 

[87]. Closely related with the evolution and exploitation of synchrotron radiation is the 

development of adequate X-ray optics and highly efficient X-ray detectors and assocoiated 

data aquisition systems in order to cope with the increasing amount of photon flux. The 
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Figure 4.1: 

Booster Synchrotron 
(600 MeV, 32m circumference) 

------:::::--...;..,.,__ 

Experiment Hutches 

Linear Accelerator 
(12 MeV) 

Sehemarie diagram of the instrumentation required to produce high energy electrons at the 
Daresbury SRS (U.K.). 10 out of 16 bending magnets (ports 1-8, 12, 13) are in operation to 
provide synchrotron radiation for experimental purposes. Port 9 is equipped with a wiggler 
magnet of 5 Tesla peak field. Another wiggler (6 Tesla peak field) has just been installed 
(1992) and awaits the construction of additional experimental stations. The energy loss of 
the circulating electrons is compensated by 4 RF resonant cavities which transfer energy 
back into the stored beam supplied by the RF klystron. 

experiments which will be reported here have been carried out on the bending magnet line 

on experimental station 8.2 at the SRS, which is well suited for static X-ray scattering 

measurements of weak scatterers such as biological molecules in solution. 

4.2 Bending Magnet Radiation 

The spectral distribution5 of the bending magnet radiation can be described theoretically in 

terms of the photon flux 1" which is a function of the photon wavelength A, and depends on 

the intensity of the field B of the dipole bending magnet (which defines the bending radius 

R), the electron energy E, and the beam current I 

1' [ photons ] = 2.457·1013 E[GeV] l[A] ~c j Kst3(~)d~ 
s mrad(horizontal) O.l%bandwidth /l.. 1."/ 

~="'j,t 

5 Equations have been given in practical units (see e.g. [88-90]). 
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K s13 is a modified Bessel function of second order [91] and llc, the so-called critical 

wavelength, is defined as 

Ac divides the spectrum into two parts of equal power, thus representing an essential 

parameter in defining the spectral output of a synchrotron radiation source. The spectral 

photon density, i.e. the vertically integrated photon flux of a dipole magnet at the Daresbury 

SRS is shown in figure 4.2. The emitted radiation is tightly collimated in the forward 

direction [92] having a mean opening angle -ö = 1/y (for the relativistic case where y » 1) 

between the direction of emission and that of electron motion. The instantaneous cone of 

radiation is swept out in the electrons' orbital plane generating a fan of radiation as 

symbolized by a lighthouse . 

..... 
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Figure 4.2: 
Spectral distribution 
of the bending mag­
net radiation at the 
Daresbury SRS. lt8.2 

denotes the wave­
length selected at 
beamline 8.2. 

It is the special combination of synchrotron radiation properties where no conventional 

source (X-ray tube or rotating anode) can compete with and which have led to far-reaching 

applications in the fields of biology and many others. High flux, collimation, and spectral 

continuity as weil as time structure and polarization of the photon beam are unique 

properties that made synchrotron radiation an outstanding tool for research. 

Macromolecules in solution are well-known for their weak scattering behaviour. 

Mainly consisting of low Z atoms (hydrogen, carbon, nitrogen and oxygen), proteins give 

rise to relatively weak X-ray scattering. The typical scattering power is between IQ-5 to IQ-8 

times the incident beam intensity [93]. Thus, the large flux and small beam size of 
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synchrotron radiation make the observation of previously unseen scattering features 

possible. 

4.3 X-ray Scattering Station 8.2 at Daresbury 

The availability of synchrotron radiation along with high quality optics and X-ray detectors 

offers an excellent starting point to perform scattering studies on biological systems. The 

following two sections will be used to give a few details concerning the instrumentation and 

are based upon beamline 8.2 at the Daresbury SRS. Most of these details are similar to the 

SRS station 2.1, where extra intensity enables time-resolved studies (in the msec region) to 

be carried out [94]. 

4.3.1 Camera system 

Despite the remarkable characteristics of the bending magnet radiation, a collimation 

system is necessary in order to produce a well-defined beam and a low background. This is 

achieved by focussing optics in combination with slits. Due to the very weak intensities 

measured in solution X-ray scattering experiments, the slit system has to be designed 

carefully to keep the background as low as possible. 

The following experimental set up of the camera system refers to figure 4.3. Behind 

the beam splitter a water cooled aperture A and a beam position monitor MBP are present. 

The aperture consists of vertical and horizontal slits and has the purpose of reducing the 

Detector 

I~ 
____ ,......_ICl SL2 

s ............ OOI[""oo.c ... 

w 

Figure 4.3: 

Beamline 8.1 
(EXAFS) 

[

inner 
shielding wall 

tend 

Beam ~ 
Splitter 

Schematic Iayout of a camera system for solution X-ray scattering based on beamline 8.2 at 
the Daresbury SRS. Focusing optics and slits provide high intensity and collimation of the 
photon beam combined with a low parasitic background. In addition this monochromator­
mirror arrangement produces a very stable focal spot and thus offers profitable experimental 
conditions (for details see text). 
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heat load on the monochromator. The flat, triangularly shaped Ge (111) monochromator 

crystal is aligned such that radiation of 1.54 A is selected. This wavelength is the best 

compromise in order to account for absorption of sample and optical system, scattering 

power of samples, source emission characteristics and spectral response of the detector 

system. The wavelength resolution of ß'A/ 'A~ 4 ·10-3 assures that no significant broadening 

of scattering peaks or overlap of scattering orders occurs. The asymetrically cut 

monochromator crystal (asymmetry angle of 10.5°) reduces the angular divergence of the 

X-rays and accepts 5.4mrad of horizontal aperture. The radiation monochromator is at a 

distance of 21m from the tangent point (TP) of the bending magnet. The monochromator is 

equipped with a bending mechanism which allows horizontal focusing (3:1). The slits SLM 

cut off scattering and fluoresence from the monochromator. The beam is vertically focussed 

(3:1) by grazing incidence on a bent, uncoated quartz mirror located 22.2m from the TP. 

The pair of slits SL1 and SL2 behind the mirror determine the opening angle for the photon 

beam and further cutdown scattering from components of the bearnline. The mica window 

W marks the back end of the main vacuum system (pressure < 10-6mbar) and is required as 

interface to the sample area. Mica is a very suitable window material because it produces 

mainly scattering in well-defined directions at high scattering angles due to its crystalline 

structure. Although the source (TP at the bending magnet) and the specimen S are separated 

by a distance of 25m, this monochromator-mirror configuration with the combination of 

defining slits provides a beam cross-section of 4mm x 1mm and a flux of1011 photon/s at the 

sample position (for the SRS running at 2 Ge V and 200 mA). 

The sample cell is positioned between two ion chambers IC1 and IC2, which are 

used to monitor the incident intensity and sample absorption, respectively. The necessary 

air path at the sample position is kept as short as possible (20-30mm) to reduce air scatter 

which contributes to the background. The evacuated pipe EP between sample and detector 

has a variable length of 1-4m. The experiments reported here were carried out with a 

sample-to-detector-distance of 3m. A Iead beamstop Bs is used to capture the direct beam 

thus preventing radiation darnage to the detector. The end of the vacuum pipe EP has a 

diameter of 500mm and is sealed by a mylar foil. 

4.3.2 Detection system 

A multiwire quadrant chamber and data acquisition system [95, 96] were used to record the 

scattering data. The delay line detector is designed specifically for use with circularly 

symmetric pattems, such as those arising from solution scattering with a characteristically 

steep intensity fall off at higher scattering angles. Table 4.1 gives the main specifications of 

the quadrant chamber and figure 4.4 represents a schematic diagram of the detector 

composition. 
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Table 4.1 Quadrant detector characteristics 

operating pressure latm 

active depth 20mm 

aperture 200mm 
(active length) 

angle of quadrant 70" 

gas filling Xe, Ar, C02 

efficiency 95% 

anode wire diameter lOJ.lm 

anode wire spacing lmm 

cathode spacing lmm 

delay line length lOOns 

spatial resolution 250J1m 
(FWHM) 

maximum count rate 850kHz 

The sector shaped active area increases as a 

function of distance from the primary beam 

and thus improves the statistics in the 

weak:er portions of the scattering pattem. 

The major feature is the special rear cathode 

that consists of a printed circuit board 

(P.C.B.) and has concentric tracks forming 

the pick-up electrodes to match with the 

circularly symmetric scattering pattern. It 

replaces the wire plane found in commonly 

used area chambers for particle detection 

(see e.g. [97]). The P.C.B. is connected to a 

delay line where charge pulses induced by 

the gas ionization process arrive. The charge 

can travel in either direction along the delay 

line, the difference in the arrival time of the 

electric pulses at each end of the line 

determines the position of the primary photon event. 

The two signals from the delay line are preamplified and transmitted to the data acquisition 

system where the pulses are converted into digital signals by constant fraction 

discriminators (CFD) in order to allow the time to amplitude converter (TAC) to extract 

accurate timing information. The TAC generates an analogue pulse whose amplitude is 

proportional to the time difference between the start and stop pulse provided by the CFDs. 

Figure 4.4 : Exploded view of the quadrant detector 
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Due to the use of a bipolar 

TAC, information might be 

lost in the case where the 

time difference between 

start and stop pulses is close 

to zero. For this reason the 

T AC is adjusted to a few 

millivolts positive which 

produces a gap between 

slightly negative and 

positive pulses leading to a 

few blank channels in the 

centre of the data (TAC 

hole). The whole active 

length of the detector is 

covered by 512 channels. 



The timing information from the TAC which corresponds to a specific scattering angle, is 

then digitized by an analogue to digital converter (ADC) and stored in a histogramming 

memory accessable by the station computer (LSill). A CAMAC time frame generator 

facilitates the collection of data in time frames. Data pre-selection can be performed by 

displaying the scattering profile on a graphics screen (i.e. rejection of 'spikey' data caused 

by non-linearities in the electronics system). For further processing, the raw scattering data 

is transmitted to another computer system (a central VAX computer). 

In data processing, variations in the detector efficiency have to be taken into account. High 

X-ray fluxes lead to photo-chemical reactions in the detector's gas mixture, which produce 

impurities that deposit on the wire planes and affect the electric field within the chamber. 

The detection efficiency not only changes locally but also a general deterioration takes 

place with time. Most of the detector's non-uniforrnities and spatial inhomogeneities can be 

corrected by periodically recording images of the detector response (figure 4.5). This is 

done by irradiating the detector uniformly with X-rays emitted from a 55Fe source. The 

5.9keV photon energy is close to the selected synchrotron X-ray energy (8.1keV). The 

detector response is usually recorded during the refilling period of the electron beam into 

the synchrotron (every 12 or 24 hours). 

610S 
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4.4 Sampie Preparation 

4.4.1 Transferrin 

ChannelNo. 

Figure 4.5: 
A typical detector 
response recorded 
for two hours by 
irradiating the de­
tector using a 55Fe 
source. 

Transferrin samples (human serum transferrin HST, human lactoferrin HLF and chicken 

ovotransferrin COT) were purchased from SERVA (Heidelberg) and used without 

additional purification. All chemieals were analytical grade. Individual C and N-terminal 
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half-molecules of COT were prepared following the procedure reported by Oe et al. [98]. 

The protein was dissolved in 20mM NaHC03, 50mM MES6, 50mM HEPPS adjusted to pH 

7.5. Iron, copper, indium, gallium, aluminium, hafnium and thorium-transferrin were 

prepared by adding 50% excess of fresh 5mM metal solutions (Fe-NTA 7, CuS04, InCl3, 

GaN03, AlK(S04)2, Hf-NTA7, Th-NTA7, respectively) to the protein. Excess metal was 

removed by dialysis. Prior to use, the samples were filtered through a 0.2j.lm syringe filter. 

The metal Saturation was confmned by UV Nis spectroscopy. 

A low protein concentration of 5mglml was used to minimize molecular 

aggregation. It is also similar to the conditions in serum, where the transferrin concentration 

ranges from 2 to 3mglml and thus the solution scattering measurements are expected to 

define the molecular conformation under quasi-physiological conditions. 

Recent success in protein engineering provided mutants of the N-terminal 

fragment of human serum transferrin (HST/2N), comprising 337 residues along with a 

single iron binding site. Two site-directed mutants, where the aspartic acid 63 is replaced by 

both a serine (D63S) and a cysteine residue (D63C), and the corresponding wild type have 

been provided by Prof. Woodworth and Dr. Mason (University of Vermont, U.S.A.). They 

have been expressed in baby hamster kidney cells and purified to homogeneity [99, 100]. 

The aspartic acid 63 (Asp63) plays an important role with respect to iron binding and 

interdomain stability (see also figure 2.2). The protein concentration was 5mglml in a 

100mM HEPES buffer (pH 7.5). The ferric HST/2N molecules were saturated with iron by 

addition of freshly prepared 5mM Fe-NT A solution (see above ). 

4.4.2 Nitrite Reductase 

The copper-containing dissimilatory NiR of Achromobacter xylosoxidans was isolated from 

cells grown anaerobically with nitrite as the terminal electron acceptor and purified to 

homogeneity on SDS-PAGE, by a combination of (N"H4)2S04 fractionation and ion­

exchange chromatography [ 49]. After dialysis against 50mM phosphate buffer (pH 7 .2) 

containing 50mM NaCl enzyme concentrations of 5 and 10mglml have been prepared. Due 

to hydrophobic properties the enzyme is only scarcely soluble in water. 

The NiR of Alcaligenes faecalis was isolated and purified from algae growing in 

sludge according to the procedure reported previously [41, 47]. The amount of 5mg of the 

enzyme has been kindly provided by Prof. Beppu (University of Tokyo, Japan). It was 

dissolved in 10mM Tris HCl (pH 8.0) containing 70% (N"H4)2S04. In view of the 

6 The following abbreviations have been used: MES, 4-morpholineethanesulphonic acid; HEPPS, 4-(2-
hydroxyethyl)-1-piperazine-propanesulphonic acid; NT A, nitrilotriacetic acid; HEPES, 4-(2-
hydroxyethyl)-1-piperazine-ethanesulfonic acid; SOS-PAGE, sodium dodecyl sulphate polyacrylamide gel 
electtophoresis, which is a rapid and efficient way of removing small amounts of contaminating materials; 
Tris, Tris(hydroxymethyl)aminoethane. 

7 The metal-NT A solutions were prepared by combining equal volumes of a lOmM metal solution (FeCl3, 
HfC4, ThC4) in 2M HCI and a 40mM NT A. This solution was neutralized by successive addition of small 
amounts of solid NaHC03. 
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unphysiologically high saJt concentration the solution was dialysed against 20mM Tris HCl 

(pH 8.0) buffer until a negligible amount of ammoinium sulphate was reached. The final 

AfNiR concentration amounted to 5mg/ml. 

The dialysis buffer was used throughout the solution scattering experiments as a cell blank 

for the different protein samples, respectively. 

All proteins as well as buffer materials were filled into a sample cell consisting 

of a brass holder with two mica windows (15mm in diameter and 25J.1m thick) which were 

tightened by a brass screw. The windows are kept into position on both sides of a teflonring 

defining a cylindrical cavity of 1.5mm length and a volume of lOOJ.l/. The use of teflon is 

necessary in order to prevent the protein from getting in touch with the metal surface of the 

sample cell. All samples are injected from the top through a capillary-like opening in the 

teflon ring. 

4.5 Experimental Protocol 

After setring up the camera length, i.e. the length of the evacuated pipe between sample cell 

and detector, and focusing the X-ray beam on the detector position, alignment and 

calibration of the detector need to be carried out. 

Due to the relatively high interaction depth of X-rays (20mm) in the gas-filled 

detector, parallactic effects occur for photons incident at high angles. This can Iead to 

serious resolution broadening, distorting the scattering pattem at high angles. For this 

reason the tilt angle of the detector had to be chosen correctly. This can be done in 

combination with the calibration of the detector using the diffraction pattem from a sample 

of wet rat tail collagen exposed to the beam at the specimen position (see figure 4.6). The 

1st order of collagen partly 
masked by the beamstop 

50 100 150 200 250 300 350 400 

ChannelNo. 
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Figure 4.6: 
Scattering profile 
from a wet rat tail 
collagen sample 
vertically oriented to 
the length of the 
incident X-ray 
beam. The data were 
recorded with a 
camera length of 3m 
and an exposure 
time of 5min. The 
profile is already 
corrected for detec­
tor response and 
TAC hole. 



determination of the average spacing between the first ten diffraction peaks (orders) of 

collagen allows to calculate the Oth order which corresponds to the centre of the quadrant 

chamber. A proper detector alignment is given if this order coincides with the position of 

the direct beam and real detector centre. The use of a special pulse generator circuit 

connected to the cathode P.C.B. yields the channel number where the centre of the quadrant 

detector is located (usually channel50). 

The positions of the collagen orders were used to convert detector channels into 

scattering vectors s. The camera length of 3m allowed reliable measurements up to a 

maximum s value of 0.035 A -1 (up to 22 orders of collagen could be clearly identified) with 

an average sampling length of 0.00012 A-1. 
Mylar films in front of the detector are necessary in order to attenuate the flux of 

scattered photons reaching the quadrant chamber. However, in the case of buffer and 

protein solutions, which show smoothly varying profiles without any sharp peaks, the 

acceptable local countrate (photons/mm2) of 8kHz was not exceeded. The overallcountrate 

didn't exceed the criticallirnit of 150000 counts/s. Thus no photon flux attenuators had tobe 

used. 

The sample cell was mounted on a horizontally and vertically movable table to 

allow for accurate positioning. The position of the impinging X-ray beam was checked by 

colour change of an X-ray sensitive tape sticked on the opening of the cell window. The 

incident and transrnitted photon flux were measured by placing ion chambers on either side 

of the sample and values were recorded in calibration channels. All experiments were 

carried out at room temperature (22 to 24°C). 

The data collection was performed in a cyclic process. Time frames of usually 100s 

were collected successively so as to check for potential radiation darnage or aggregation of 

material on the cell window, as well as to establish the reproducibility of data obtained in 

repeated measurements. Each sample was exposed to X-rays for no Ionger than 15min. In 

order to rninirnize errors due to the subtraction of background and instrument function, 

measurements of buffer (blank cell) and sample (protein and buffer) were made altemately 

for equal time intervals. 
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Chapter 5 : Data Reduction and Analysis 

After transmission from the local LSI11 data acquisition system to the central VAX 

computer, the raw data is available for off-line analysis. Calculations were mainly 

performed using the software packages OTOKO [101] and GNOM [102]. OTOKO is a 

programme for data reduction (normalization, background subtraction, corrections for 

detector response and removal of TAC-hole, and allows the extraction of the scattering 

pattem I(s) arising from the protein sample) and analysis (calibration, radius of gyration). 

Subsequently, reading the final one-dimensional scattering curve into GNOM, the 

evaluation of the particle distance distribution function p(r) can be accomplished. No slit 

corrections had to be applied since it is unnecessary in view of the point collimation and 

extremely small divergence of the X-ray beam used in the present experimental camera set 

up. 

5.1 Normalization 

Even though the X-ray beam from a storagering is stable, the beam intensity decays slowly 

with time. The monitoring of the beam decay allows one to correct the data in such a way 

that identical experimental conditions can be considered during the measurement of protein 

sample and blank cell. The normalization is carried out by dividing the collected scattering 

pattem by the transmitted intensity. The correction value provides the integrated beam 

intensity over every time frame. This procedure also ensures the automatical compensation 

for absorption of proteins in a buffer solution as weil as for absorption of the buffer itself. 

5.2 Check on Radiation Darnage 

An important requirement for the samples is that they must not be changed by the radiation 

during exposure time. As the data was collected in a series of time frames (the exposure 

time of 15min and time frames of lOOs give nine frames per data set for a certain sample), a 

check on radiation darnage could be perforrned. This was monitored by dividing two frames 

(in most cases the frrst and last frame of a data set was sufficient), to see whether a change 

in the profile occurred. No detectable change was observed that could be due to either 

radiation darnage or deposits on the sample cell windows over a period of 20 minutes. Thus 

data on a protein .sample was collected for only 15 minutes to ensure their integrity. After 

this time interval a fresh sample was filled in a newly prepared sample cell consisting of 

unused or cleaned mica windows. 

5.3 Background Subtraction 

The elimination of the background scattering is a crucial point in the data analysis. In order 

to obtain the protein scattering curve, the difference between the scattering of the buffer 
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solution (blank cell), Ibs(s), and the protein solution (buffer and protein), Ips(s), must be 

calculated. The total scattering of the protein solution is the square of the sum of the 

scattering amplitudes (see equation E3.1) generated by electron density inhomogeneities 

along the X-ray path through the sample 

I ps(s) =I Fs(s) + F p(s) + F pj(S) + Fsj(s) 1
2 

Fs(s), Fp(s), Fpf(s) and Fsf(s) are the scattering amplitudes arising from the solvent, the 

protein, internal electron density fluctuations in the protein, and fluctuations within the 

solvent, respectively. For the sake of simplicity, background contributions from the 

scattering of windows, the sample cell, windows from the camera and air scatter have been 

omitted as they are the same for the blank cell and the protein sample. Since the blank 

scattering, I bs (s) is given by 

the difference I ps(s)- Ibs(s) is actually not identical to the scattering arising fom the 

protein alone because of the cross or interference terms. 

Nevertheless, it is a reliable approximation due to the fact that density fluctuations 

within protein and solvent cannot be resolved and its contribution to the background is 

negligibly small. However, the interference term of solvent and protein, Isp(s), as well as 

protein-protein interactions or aggregations can not be removed using this method of 

background subtraction. The latter contribution can be significant in the case of high protein 

concentrations and is usually eliminated by extrapolation to zero concentration 

(measurements of concentration series need to be carried out). The concentration effect 

disappears for measurements up to higher angles. It usually becomes negligible beyond 

values of s · D > 1 (where Dis the maximum dimension of the particle). Unless otherwise 

mentioned only low concentrations were used (5mglml) during the course of this work 

where concentration effects could be neglected. 

Consequently, a good approximation for the true protein curve8 I(s) in the case of 

sufficiently low protein concentrations is given by 

I(s) =I ps(s)- aibs(s) 

The factor a takes account of variations in the concentration for the buffer and protein 

solutions. In order to determine a the following procedure was developed for the present 

work. A good empirical description for the scattering intensity of biological macro-

8 The contribution from solvent-protein interactions is still included (i.e. the effect of hydration) and has tobe 
taken into account during data interpretation. 
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molecules is given by a s-4 dependence for large s values [103, 104]. Along with the 
approximation that Ibs(s) can be taken as a constant in the measured angular range, the 

scattering profiles for buffer and protein solution should coincide for large s values 

(s ~ oo ). Forthis reason the ratio I ps(s)/Ibs(s) should approach 1, provided the buffer used 

in blank cell measurement and the buffer for the protein solution are of exactly the same 

concentration. Thus, a Ieast-squares fit to the ratio I ps(s)/fbs(s) was performed by means of 

the model function 

f(s) = a + ß (channel)-4 

for the upper end of the spectrum9 (channels 400-470). Since the discontinuity in the spectra 

was the same in the blank cell and the protein solution pattem, the effect of the detector 

response was cancelled out by this quotient. 

The fit parameter a determined for each data set according to this procedure (whose 

values ranged from 0.98 to 1.02) allowed a reliable subtraction of background scattering 

due to the buffer and other instrumental factors. 

5.4 Division by Detector Response 

Spatial inhomogeneities in the sensitivity and the sector shaped active area of the quadrant 

detector requires normalization. This is done by measuring the detector's sensitivity with a 

Fe55 source (see figure 4.5) and dividing the scattering pattems by this response function. 

This does not only smooth out the spikey profiles but also corrects for the increased 

detection area at higher scattering angles. In order for the quality of scattering data not to be 

limited by low statistics in the detector response, it was collected for two to three hours. 

5.5 Removal ofT AC hole 

The gap in the centre of the data is caused by electronical settings in the time to analogue 

converter (TAC), which was described in section 4.3.2, and does not contain any data. The 

gap extended from channel 252 to 261 and was removed by shifting the upper block of 

channels to join the remaining lower channel block. 

Finally all data sets belonging to a certain protein sample were added together and 

averaged. As can be seen from figure 5.1, the signal to noise ratio improved significantly. 

Despite the favourable synchrotron X-ray intensities, a total data collection time of 90min 

9 This procedure was still applied to uncalibrated spectra. The knowledge of s-values is not necessary at this 
stage of data analysis. In order to complete the picture, the given channel range corresponds to s values 
between 0.030A-1 and 0.035A-1• Due to the limited sensitivity of the detector in the outermost part of the 
spectra (see figure 4.5), the last 40 channels had tobe disregarded. 
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and more turned out to be essential in order to collect sufficient statistics at higher 

scattering angles. The range of three orders of magnitude is also typical of the strong 

intensity fall-off in solution scattering experiments (note the logarithmic scale). 

w·I 

w-2 

,--., 

~ 
>. lrP .<;:: 
tll 

= .g 
.s 

w·I 

w·2 

10.3 L......L....J.......L.......I--L...-'--L......J.......J-..L.....J.--L.......L.....JL-.L..--'--..L-..1.--'-..L-..J--L...-'--L...-.I.l-J.L!J 

200 230 260 290 320 350 380 410 440 470 
OlannelNo. 

5.6 Calibration 

Figure 5.1: 
Improvement of the 
statistics by averaging 
different data sets of a 
specific protein sample. 
A section of the outer­
most region of the 
scattering pattern of 
diferric human serum 
transferrin is shown 
after 15min (top) and 
90min (bottom) data 
collection time. 

The position calibration was accomplished by the diffration peaks from a wet rat tail 

collagen specimen, as shown in figure 4.6. The pattern contained up to 22 orders of 

diffraction. The recorded refelection orders correspond to a spacing of (670At1. To create 

an x-axis channel numbers had tobe converted into the reciprocal space parameter. A plot 

of the s values (spacing referring to a certain collagen order) as a function of the position of 

the order (channel number) is shown in figure 5.2 (the position of the detector centre was 

also included). A polynomial fit of 6th order guaranteed an accurate calibration over the 

entire measured s-vector range. 
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Figure 5.2: 
Plot of the detector 
channels where the 
collagen diffraction 
peaks are observed as 
a function of the 
reciprocal space para­
meter s. The poly­
nomial fit of 6th order 
included the position 
of the incident X-ray 
beam (position of the 
detector centre). 

Detector dimensions and the camera length of 3m defined the distance scale probed by the 

experiments. In view of the indispensable beam stop and limitations in the detector's 

sensitivity, reliable scattering data were collected in the range 0.005A-1< s < 0.035A-1. 

Thus, according to the sampling theorem [67], the highest spatial resolution rres which can 

be achieved, is rres = (2smax)-1
, i.e. 14.3A. Considering a wavelength of 1.54A the 

scattering angles corresponding to s < 0.035.A-l are smaller than 3.1 °. 

5.7 Radius of Gyration 

The small-angle part of the data was used to scale the scattering curves at zero angle against 

each other and thus enabled a comparison between spectra resulting from metal-loaded and 

metal-free transferrins or from the two different species of nitrite reductase. According to 

the Guinier approximation (see equation E3.4) the intensity distribution in the innermost 

scattering region can be expressed as 

2 
ln{/(s)) = ln{/(0))-

4
; R'fs2 (E5.1) 

where /(0) denotes the intensity at zero scattering angle or forward scattering and Rg, the 

radius of gyration, is related to the overall shape of the particle. /(0) is not directly 

accessable because of the beamstop, which protects the detector against radiation damage. 

A linear fit to the small angle scattering data in the so-called Guinier plot, ln{/(s)) versus 

S2, provided both quantities, /(0) and Rg. Thus, the value of Rg can be extracted without 

any assumptions regarding the structure of the molecule. The low scattering region is 

usually defined by the inequality s · Rg< lfn. However, the maximum scattering vector, 

which may be included, depends on the shape of the molecule and can be estimated by the 
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Figure 5.3: 
Typical Guinier plots for 
(top) the intact protein 
and (bottom) the N-lobe 
fragment of iron-free 
chicken ovotransferrin 
(protein concentration 
5mglml) obtained after 
an exposure time of 
15min. Only the data 
points in the linear 
Guinier range, shown as 
filled symbols, were 
used to calculate R g· It 
should be noted that the 
Guinier range extends to 
higher s-values for the 
smaller N-lobe fragment 
(s ~ 0.014 A-1) com­
pared with the whole 
protein (s ~ 0.012 A-1). 

linearity of the Guinier plot. The value of I (0) was used to normalize the scattering curves 

to unity at zero scattering angle. Figure 5.3 shows two typical Guinier plots, one for the 

intact protein and the other for the N-lobe fragment of chicken ovotransferrin (COT). The 

linearity of these plots in the low-angle regime ensured the reliability of the normalization 

procedure. 

The radius of gyration was also calculated from the distance distribution function 

(see equation E3.7). This method can yield more accurate results than the Guinier 

approximation as the whole available scattering curve can be included in the calculations. 

5.8 Distance Distribution Function 

The distance distribution functipn p(r) was evaluated using the indirect transform method, 

as implemented in the programme GNOM10• The main equations relating the scattering 

10 Due to the limited s-vector range a conventional Fourier transfonn (see equation E3.5) can result in strong 
artificial oscillations in the p(r) function that it becomes useless. This tennination effect can be minimized 
with the help of the indirect transfonn method. However, its main difficulty isthat small errors in l(s) may 
Iead to large errors in p(r). Forthis reason a regularization technique was introduced to stabilize the 
solution [66] and to construct a criteria for the quality of the solution [105]. 
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intensity to the distance distribution function were already described in section 3.2.2. The 

data treatment with GNOM allowed a reliable estimation of errors with the help of a 

polynomial smoothing procedure. The search for the p(r) function of a monodisperse 

system in real space was performed without taking account of effects such as wavelength 

smearing or beam divergence. 

The following parameters can influence the results decisively: Smin and Smax• which define 

the interval in reciprocal space and D, which defines the interval in real space, where the 

distribution function is assumed to be non-zero. Although the experimental setup 

determines the scattering range and has to be adapted accordingly, Smin was selected so that 

protein aggregation resulting in elevated intensities close to zero scattering angles was 

excluded. In view of the low protein concentrations used, calculations could be performed 

for all samples, apart from lactoferrin, with the entire scattering range between 

O.OOSA-1< s < 0.035A-1. Lactoferrin tends to aggregate at the measured pH and thus, the 

lower s-vector Iimit came to 0.008.4-1. 

Since GNOM is based on the indirect transform technique, the maximum particle diameter 

Dis required as an input parameter, though being an unknown structural quantity. Forthis 

reason D was chosen in a trial-and-error procedure so as to obtain a plausible solution by 

determining the optimum value of the regularization parameter [105]. Of course, a priori 

information from crystallographic structures proved helpful to assess the reliability of the 

solution. 

5.9 Scattering Pattern Calculation and Computer ModeHing 

Theoretical scattering profiles were computed from crystallographic coordinates11 of HLF 

[25, 26], RST [28, 29] and AxNiR [50] including all non-hydrogen atoms. According to the 

explanations given in section 3.4, FORTRANprogrammes have been written and run on the 

CONVEX C220 at the Daresbury computing facility. The more versatile programme 

DALAI which has been developed at the Daresbury Laboratory [108] could also be used for 

test purposes. It allows the treatment of structural models in form of closely packed spheres 

that can represent units as large as individual domains or as small as individual atoms of a 

molecule. 

A pre-requisite for the calculations is the binning of intraparticle distances (a binsize of 

O.lA was used) and results in the maximum particle dimension D. The radius of gyration Rg 

11 Crystal structure data from the proteins that have been investigated during the course of the present work 
were kindly provided by the authors prior to deposition in the Brookhaven Protein Data Bank (PDB) [106, 
107]. This computer-based archive contains at present over 800 protein coordinate data sets. 
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was also calculated from the crystallographic atomic coordinates using equation E3.3 in the 

form 

L;z;Rl 
L; 2i 

(E5.2) 

Here z; is the atomic number of atom i and R; is the atomic distance from the centre of the 

electron charge distribution in the molecule. 

In order to assess and interpret the measured scattering spectra computermodeHing was 

performed on a Stardent TITAN and Silicon Graphics INDIGO Workstation using the 

molecular graphics and modelling programmes BIOGRAF (Version 2.0, BioDesign Inc., 

CA, USA) and INSlOHT (Version 2.2, Biosym Technologies Inc., San Diego, CA, USA). 

Starring from the crystal structure coordinates various modifications have been explored to 

study the principal features of the scattering proflies observed for the proteins in solution. 

The modeHing procedure will be reported in detail in the corresponding sections of the 

following chapter. 
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Chapter 6 : Results and discussion 

6.1 Transferrio 

X-ray crystal structures have been reported from a number of members of the transferrin 

family (see Chapter 2.4). The nature and extent of the large conformational change 

accompanying iron uptake and release gave ample insights into the mechanism of molecular 

flexibility. However, the fact that parts of the N-terminal half appear to move substantially 

whereas no conformational change appears to take place in the C-terminal half, was a most 

curious feature revealed by the crystal structure of the metal-free state of human lactoferrin 

[26]. So far, only limited structural information was available on the conformation of these 

molecules in solution [30-32]. Solution X-ray scattering isaweil established technique and, 

with the availability of a dedicated synchrotron radiation source, the determinination of 

overall conformations and domain movements of the transfeiTins with respect to metal 

binding is feasible under conditions close to physiological environment. 

6.1.1 X-ray scattering from intact molecules 

The high intensity from the SRS at Daresbury and the use of a quadrant detector have 

allowed measurements of X-ray scattering data for dilute transferrin solutions with reliable 

statistics up to scattering vectors of 0.035 A-1. For the frrst time the experimental scattering 

proflies of Human Serum Transfertin (HST), Chicken Ovotransferrin (COT) and Human 

Lactoferrin (HLF), bothin the iron-free and iron-loaded state (shown in figure 6.l(a) to (c)), 

could be compared directly in this scattering range. The scattering data for the three 

transferrin species show a major change in the intensity curves when iron is bound. While 

the differences in the two conformations are scarcely resolved in the small-angle range, they 

are clearly evident in the region ofmedium s-vectorvalues (0.020 A-1 < s < 0.035 A-1). The 

observed differences between the apo- and holo-proteins are very similar for the three 

species, suggesting comparable conformational changes when iron is bound. This result is 

also supported by the distance distribution functions (see insets in figure 6.1 ). 

In view of the close sequence homology among the three proteins (ranging from 50% to 

60% identical residues in corresponding positions [16]), the experimental scattering proflies 

of the transfeiTins were compared to theoretical proflies based on the crystal structures of 

apo- and diferric HLT. The calculated scattering curves l(s) as weil as their radial 

distribution functions p(r) are shown in figure 6.2. They agree favourably with the overal 

changes observed in the experimental data. In particular, two characteristic features, the 

intersection at s = 0.024 A-1 and the noticeable difference between the apo- and holo-forms 

in the medium s-vector range are consistent with the observed scattering proflies for 

proteins in solution. Nevertheless, a detailed comparison of the theoretical curves (based on 
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Figure 6.1: 
Experimental results for the iron-free (dotted lines) and iron-loaded (solid lines) 
samples of intact transferrin molecules. The scattering profiles as well as the distance 
distribution functions (insets) of (a) HST, (b) COT and (c) HLF are shown. 
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Figure 6.2: 
Calculated scattering spectra and distance distribution functions based on the two 
crystallographic conformations of HLF. Like in figure 6.1, all scattering profiles have 
been normalized at s=O and the p(r) functions were plottedrelative to each other by 
normalizing the area under each curve to unity. 

crystal structure Coordinates) with the experimental data reveals significant differences : the 

intersection at the small scattering angle corresponding to S=0.013 A-1 is not observed in the 

experiment. Moreover, the radial distribution function of the crystallographic apo-structure 

appears to be shifted towards smaller distances. This underlines a subtle difference between 

the conformational changes due to the metal uptake in the crystalline state and in the 

aqueous solution, respectively. This difference can also be deduced from the Guinier 

analysis (see table 6.1). Whereas the holo-form of the transferrins in solution seems tobe 

more compact, characterized by a smaller radius of gyration Rg (as previously observed by 

Kilar & Sirnon [31] and Vigh et al. [32]), the opposite behaviour was deduced from 

changes observed in the apo-HLF crystal structure. The Rg values for HST agree rather weil 

with those published for apo- and holo-HST [32], respectively, whereas for apo- and holo­

HLF the values are somewhat larger and the difference between the two protein states is 

more pronounced. 

The experimental values for Rg are significantly higher than those calculated with the 

atomic coordinates of the crystal structures. This difference can be due to several factors 

e.g. in the theoretical curves no account has been taken of the carbohydrate structure of the 

glycoprotein, the hydrated volume and possible molecular aggregation. The carbohydrate 

content of the three transferrins certainly contributes to the differences in the measured Rg 
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Table 6.1 : Radii of gyration for intact transferrin molecules. The experimental 
Rg values were obtained by Guinier approximation of the scattering 
curves observed for a protein concentration of 5 mg/ml. The standard 
deviations given were derived by the average of different data sets. 
The theoretical R g values were computed from the atomic 
coordinates (according to equation E5.2). 

sample RR fAJ MR 
0 

[A] 

Experimental 

Apo-HST 32.5 ± 0.2 (33.0 *) 

Fe2- HST 31.4 ± 0.2 (31.5 #) - 1.1 (- 1.5 #) 

Apo- COT 30.5 ±0.2 

Fe2- COT 29.7 ±0.2 -0.8 

Apo-HLF* 33.3 ± 0.2 (36.4 #) 

Fe2- HLF* 33.0 ± 0.2 (34.0 #) - 0.3 (- 2.4 #) 

Theoretical 

Apo-HLF 28.4 (29.8 ,) 

Fe2- HLF 29.5 + 1.1 (- 0.3 ,) 

• Lactoferrin displays a marked tendency to aggregate which is possibly due to its high 
isoelectric point (table 2.1); # values for zero concentration as reported by Vi'gh et al. [32]; 
, calculated from the modelled structure of a fully opened apo-HLF molecule, i.e. where the C­
lobe is represented by an open conformation analogaus to the N-lobe (see section 6.1.3). 

values among the species. Both HLF and HST have two sugar side chains (HLF: one in N­

and C-terminal half, respectively, HST : both in the C-terminal half), whereas COT only 

has a single glycan unit in the C-terminal half (see table 2.1). Furthermore, strongly bound 

water molecules (by two or morehydrogen bonds) form a hydrationshell surrounding the 

protein with properties different from bulk water. In general, these water molecules create 

an ordered surface layer in order to keep an average orientation [83]. In addition, surface­

exposed areas of the three subclasses of the transferrin family show quite different 

properties (indicated by different isoelectric points, see also table 2.1). Thus, since the 

carbohydrate, which has not yet been resolved in the crystal structure, presumably due to its 

high mobility or disorder, and the dynamic solvent shell around the molecules have not 

been considered in the calculations, experimental and simulated data are not in full 

agreement (different absolute intensities). However, including this contribution to X-ray 

scattering will only modify the overall size of the molecule but not the internal subunit 

arrangement. The effect of hydration on the X-ray scattering profilewill be discussed in 

connection with the N-lobe ofHST in section 6.1.5. 
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6.1.2 X-ray scattering from N- and C-terminal fragments 

Individual N- and C-terminal fragments of COT offer an excellent opportunity for 

investigating the differences in behaviour which may exist for the two Iobes when iron is 

taken up. Figures 6.3(a) and (b) show the scattering patterns for the two Iobes in the apo­

and holo-state. No additional information was provided by the distance distribution 

functions, which are therefore not presented. It is obvious that both Iobes undergo similar 

conformational changes. Despite differences in the absolute intensities scale (as discussed 

above), the observed scattering pattern for the N-lobe can be simulated closely using the 

crystallographic information for the N-lobe of the intact HLF molecule. In contrast, the data 

for the C-lobe cannot be reproduced when similar information from the crystallographic 

structures is used (figure 6.3(c) and (d)). 
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Figure 6.3: 
Comparison of the experimental scattering patterns for the apo (dotted lines) and ferric 
(solid lines) N-terminal (a) and C-terminal (b) fragments of COT with the results of the 
simulations obtained from the N-tenninal (c) and the C-terminal (d) crystal coordinates of 
HLF in the iron-free (dotted lines) and iron-loaded (solid lines) configurations. In order to 
guide the eye, spline fits to the experimental scattering curves are given. 

The results of the Guinier analysis in the low angle range were compiled in table '6.2. The 

experimental and theoretical Rg values for the N-lobe of COT agree within 0.4 A, whereas 

they differ by about 1.5 A in the case of the C-lobe. It is interesting to note that the only 

glycosylation site of COT is located in the C-lobe and indeed may be responsible for the 

higher Rg value in the experimental data. 
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Table 6.2: Radii of gyration for N- and C-lobe fragments. The experimental 
Rg values were obtained at a protein concentration 5 mg/ml. 

0 

MI!. 
0 

sample R!!. [A] [A] 

Experimental 

Apo- N- COT 22.0±0.2 

Fe- N- COT 20.1 ± 0.2 - 1.9 

Theoretical 21.6 

Apo- N- HLF 

Fe- N- HLF 19.7 - 2.1 

Experimental 

Apo- C- COT 21.8 ± 0.2 

Fe- C- COT 20.8 ±0.2 - 1.0 

Theoretical 

Apo- C- HLF 19.3 (21.3 *, 20.3 #) 

Fe- C- HLF 19.3 ± 0.0 (- 2.0 *,- 1.0 #) 

* calculated from a modelled 'open' C-lobe structure with an opening equivalent to that of 
the N-lobe of HLF observed in the crysrtal structure data; # computed with an opening 
equivalent to 75% of the N-lobe apo-HLF crystal structure (see section 6.1.3). 

The experimental data for the apo- and holo-forms of individual Iobes of COT provide clear 

evidence that very similar conformational changes take place in both forms when iron is 

bound. In view of the good agreement between the calculated and experimental scattering 

data for the N-lobe, an attempt was made to achieve a similar opening for the apo-C-lobe. 

6.1.3 Computer modeHing and simulation 

In order to assess the measured differences between iron loaded and iron free transferrins, 

computer modeHing was performed on a TITAN Graphics workstation (Stardent Computer 

Corporation) using the molecular graphics programme BIOGRAF (Version 2.0, BioDesign 

Inc., California, USA), starting from the crystal structure coordinates obtained from the 

2.8 Aresolution analysis of Human Lactoferrin. HLF is divided into two lobes : the N-lobe 

consists of amino acids 1-333 and the C-lobe includes 345-691. The remaining eleven 

residues make up the connecting peptide, in the case of HLF a three-tum a-helix. The N­

and C-lobe can be further subdivided into domains (NI, Nil, CI, and CII) of approximately 
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Figure 6.4: 
Difference in Ca positions bet­
ween the two crystal confor­
mations Fe2-In..F and apo­
HLF after superimposing the 
main chain atoms of the 
corresponding C-terminal 
Iobes using a Ieast-squares fit. 
The fact that the C-terminal 
half keeps a closed confor­
mation even in the apo-state, 
guarantees the best Super­
position. The difference plot 
shows large displacements of 
domain Nil whereas domain 
NI as weil as the connecting 
peptide ( cp) seem to undergo 
only minor movements. 

25 

20 

~ 
t:l 15 

u 
<l 10 

5 

100 

Nil 

200 300 400 500 600 691 

Nll NI2 cp Cll CII CI2 

Residue number and tertiary structure 

160 residues. As a consequence of the high sequence homology (identity about 40% [16]), 

the two Iobes have similar structures. In addition, the close structural similarities of the 

domains (NI, CI, and Nil, CII, respectively) are highly favourable in terms of transferring 

conformational features from one lobe to the other. This procedure (see below) was used to 

model a possible opening of the C-terminal half in the apo-protein. A graphical 

representation of the confonnational difference between apo- and diferric lll..F in the 

crystalline state can be seen in figure 6.4, which has been obtained by minimizing the 
difference of the Ca positions for the CI and CII domains of the apo- and holo-lll..F. An 

'opened' C-lobe was created essentially by a displacement of domain CII as follows. The 

main chain atoms of 118 amino acid residues belonging to domain CI were superimposed to 

domain NI (the root-mean-square (r.m.s.) deviation is 0.75 A!atom). Keeping the positions 

of domains NI, CI, and Nil of the apo-HLF crystal structure fixed, only domain CII was 

moved in order to match domain Nil. This was done by Superposition of the 113 amino 

acids forming part of domain CII with equivalent residues of domain Nil (the r.m.s. for the 

main chain is 0.59 A!atom). The newly generated co-ordinates for the C-lobe were used to 

form an intact ('completely opened') apo-lll..F structure in solution by simply replacing the 

coordinates of the C-lobe in the crystal structure by the modelled Coordinates of the open 

configuration. 

It needs a mention that these manipulations are structurally sensible and do not 

cause steric hindrance between different parts of the molecule. The main constraint imposed 

upon the modelling seems to be a disulphide bridge ( 483-677), which is only present in the 
C-lobe and joins domains CI and CII. The resulting distance between the Ca-atoms of the 

half-cystines was calculated tobe 7.5 A compared to 5.3 A for the closed conformation in 
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Figure 6.5: 
In order to explain the discrepancy between the experimental solution scattering results 
and the crystallographic calculations the scattering pattem of an opened C-lobe was 
simulated (a) and compared to the liganded closed state. On the right band side the space­
filling models (only main chain atoms) of the closed crystal structure (a) and simulated 
open structure (ß) of the metal free C-lobe are shown. The theoretical scattering profiles 
(b) of aC-lobe intermediate, which is defined by a 75% opening compared to the N-lobe, 
or a mixture of an opened and closed conformation can also be used to interpret the 
experimental findings. 

the iron loaded state. This could be achieved by increased conformational strain in the 

disulphide bonds and to some extent by modification in the neighbouring regions. 

The agreement between the scattering profile from the modelled open structure and the 

experimental curve has improved considerably (see figure 6.5(a)). An even better overall 

correspondence could be achieved by an opening of the apo-C-lobe equivalent to 75% of 

the opening of the N-lobe (the value of Mg. which is a more reliable quantity than the 

absolute Rg value, is in excellent agreement with the observed difference, table 6.2). Thus, 

the structural mechanism responsible for the large-scale conformational change appears to 

be quite similar in both Iobes. However, since the nature of the experiments is suchthat 

inforrnation is obtained about time and space-averaged molecular configurations, the 

possibility that the solution X-ray scattering results arise from a mixture of closed and 

opened conformations cannot be ruled out (figure 6.5(b)). 
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Nevertheless, there is no doubt about a distinct wide opening of the C-lobe in solution 

similar tothat observed for the N-lobe in the crystal structure of apo-HLT when iron is not 

bound. This is furthermore supported by looking at the intact protein : As a consequence of 

the modelling studies, differences for the whole protein in the apo- and holo-state are also 

reproduced accurately when an opened C-lobe conformation (analogous to that of the N­

lobe) is assumed for the intact apo-protein of HLF (figure 6.6). In this case, the apo-protein 

structure represents a less compact conformation compared with the holo-protein (for this 

model a larger radius of gyration for the apo-protein (29.8A) compared with the closed iron 

bound configuration (29.5Ä) could be derived, table 6.2). 

The question arises, how an intact transferrin molecule where one lobe is in an open and the 

other in a closed conformation, would affect the experimental X -ray scattering data. An 

example may be a variant human serum transferrin identified by Evans et al. [109]. This 

variant has been found to differ markedly from the normal type of transferrin in its iron 

binding properties in the C-terminal half. Keeping in mind the simulation of apo-HLF using 

the crystal structure and modelledopen structure (figure 6.6), the solution X-ray scattering 

results presented in figure 6.7 indicate a conformation where both lobes cannot be fully 

closed even in the presence of two bound iron atoms. This is also suggested by the analysis 

of the Rg values: 32.4 A for the iron-free variant (which agrees weil with the native protein, 
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Figure 6.6: 
Comparison of the scattering proflies and radial distribution functions for HLF 
calculated for the closed iron-loaded conformation (crystal structure) and the iron-free 
conformation with N- and C-lobe opened (modelled structure). From this simple 
model using the coordinates of all non-hydrogen atoms the essential characteristics of 
the experimental results (see figure 6.1(c)) could be reproduced. The curves resulting 
from the apo-HLF crystal structure (N-lobe open and C-lobe closed) arealso included. 
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Figure 6.7: 
Scattering proflies and distance distribution functions for the apo- and diferric state 
of a variant of HST (5 mg/ml). The scattering data of the differic protein appears to 
result from a closed N-lobe and an open C-lobe (see text). 

table 2.1) and 32.7 A for the diferric variant. As the N-lobe is expected tobe normal [110] 

(i.e. closure of the interdomain cleft in the presence of iron), differences may be due to an 

open C-lobe in the iron-bound variant protein. However, only Jor s ~ 0.023 A-1 the 

scattering data for the diferric variant protein resembles the calculated scattering data 

obtained from the crystal structure of human apo-lactoferrin. The pronounced difference 

around s = 0.017 A-1 pointsout a different nature of domain and lobe arrangements12 as 

known from the conformation with one opened and one closed lobe. 

The conformational behaviour of the variant protein can be rationalized at an atomic 

level. Sequence studies [110] revealed aC-lobe in which a glycine (Gly394), two residues 

after the aspartic acid (Asp392) involved in iron binding, is replaced by an arginine13 . It is 

likely that the positively charged guanidinium moiety of the arginine will interact with the 

negatively charged carboxylate group of Asp392. Such an interaction will certainly prevent 

the normal binding of Asp392 to the iron as weil as the formation of interdomain hydrogen 

bonds [111], which are thought tobe crucial on closing the interdomain cleft upon binding 

of iron. Thus, the C-terminal domains are left in an 'open' configuration in the iron-bound 

12 The effects of the connecting peptide joining both Iobes and subsequent differences in the arrangement of 
Iobes with respect to each other are still difficult to determine and thus have not been taken into account. 
By considering only a singlelobe of transferrin (e.g. N-lobe), the possibilities of structural rearrangements 
upon metal binding are reduced and modelling studies are 'easier' to deduce (see section 6.1.5). 

13 See also figure 2.2. Most of the residues located in the iron binding cleft are conserved in both Iobes, so 
that only the numbering of the residues needs to be adapted, e.g. Asp392 in the C-lobe corresponds to 
Asp63 in the N-lobe. 
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Figure 6.8: 
Smoothed backhone structure of the completely opened apo-HLF molecule as modelled for 
solution scattering. The movement of residues relative to diferric HLF crystal structure, is 
represented by colour changes from red to yellow to green to cyan to blue to magenta. Red 
represents minimum movement. In order to illustrate the conformational change with respect 
to the diferric structure, a superposition of the main-chain atoms of 236 amino acid residues 
belonging to the core of the domain NI and CI was performed for the two structures (apo­
and Fe2-HLF). The leastsquarefit resulted in a r.m.s. value of 0.95 A!atom and a minimum 
and maximum movement of 0.4 A and 32.5 A. The differences between the minimum amd 
maximum movement were divided into 30 colours and are used for shading the structure of 
the fully opened apo-structure in solution. Large-scale movements of the domains II in both 
Iobes (N-lobe at the top, C-lobe at the bottom) are clearly illustrated by the green and blue 
colours. 
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variant protein due to a break: down of the hydrogen bonding network in the metal binding 

cavity resulting from a single mutation (Gly394 ~ Arg). 

In summary, the use of solution X-ray scattering data in concert with crystal structure 

information allowed the successful determination of interdomain movement for the two 

Iobes of transferrin. In the presence of iron, both sites are found in a closed configuration 

(with the exception of a variant of human transferrin), consistent with crystallographic data. 

However, in the absence of iron, both the N- and C-terminal site open substantially. This 

behaviour could be deduced from studies of the intact protein and from the individual C­

and N-lobes of COT. The large-scale movements of the subdomains in the apo-protein 

relative to the structurally stable liganded conformation of the diferric protein is 

demonstrated in figure 6.8. 

The conformational changes are likely to be of functional importance and may play 

a crucial role in receptor recognition. The mechanism of transferrin binding to the receptor 

as well as the effect of the receptor on iron release from transferrin is yet not well 

understood. It is known that under physiological conditions (pH 7.4) the affinity of the 

receptor for diferric transferrin is 25 times higher than for apo-transferrin [112]. 

Interestingly, a ten times reduced binding constant was found for the complex of the 

receptor and the iron-loaded variant transferrin discussed above [113]. It is tempting to 

soggest that the closed conformation of the iron-loaded protein increases the specifity of 

receptor binding and thus facilitates the incorporation of iron into the iron-requiring cells. 

6.1.4 TransfeiTins loaded with other non-physiological metals 

Under physiological conditions in vivo, only about 25% to 30% of the iron-binding sites of 

serum transferrin are occupied [114]. Besides iron, a variety of non-physiological metals 

(frrst series transition metals, main group elements, lanthanides and actinides) are capable 

of binding specifically to the transferrins as demonstrated extensively by a variety of 

spectroscopic methods (see references in [13]). Two of these metals, Ga and In, are 

exploited for medical use (tracer and imaging studies), most of the other metals are of 

toxicological interest, e.g. Al, which is associated with senile plaques in Alzheimer's 

disease [115] and the actinides which are present in minute quantities in our normal 

environment as well as potential hazard due to nuclear fall out and their use as nuclear fuel. 

Although many non-physiological metals, including plutonium, are bound to transferrin in 

the blood [ 116, 117] and are often found intracellularly bound to ferritin, they do not follow 

the metabolic pathways of iron14. Despite sharing the same transport protein, i.e. transferrin, 

non-physiological metals show a significant organ specificity and primarily deposit in the 

14 One of the primary functions of serum transferrin is the transport of ferric iron from sites of absorption and 
storage to sites of utilization, e.g. from the liver to the hone marrow for incorporation in haem (ahout 80% 
of the circulating iron is found in the reticulocytes of the red hone marrow [118]). 
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liver and on the bone surfaces [119]. Thus, if the closed conformation of iron-loaded 

(d) 

10"2 

tcr3 ~~~~~~~~~~~~~auw 
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Figure 6.9: 
Solution X-ray scattering proflies of (a) Al2-, 
(b) Cu2-. (c) Ga2- and (d) In2-COT (solid 
lines) compared with Apo-COT (dotted lines) 
and Fe2-COT. For the sake of clarity the latter 
is represented in each plot by the smooth 
curve resulting from a spline fit to the data 
shown in figure 6.1(b). 
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transferrin is the key element for 

receptor recognition, it is of interest 

to know whether transferrin 

undergoes similar conformational 

changes when metals other than iron 

are bound. 

Solution X-ray scattering 

experiments have been performed to 

find out whether the uptake of Al, 

Cu, Ga, Hf, In and Th causes 

subdomain movements similar to 

iron. Hf and Th were used as they 

have been extensively studied as a 

convenient analogue of Pu because 

of its similar size, tetravalent 

character and metabolic behaviour 

[120, 121]. UVNis spectroscopy 

clearly indicates the binding of two 

Hf4+ ions [122] as well as two Th4+ 

ions [123] per transferrin molecule. 

The experimental scattering proflies 

for Al, Cu, Ga and In Iabelied COT 

in comparison to the iron-loaded and 

metal-free protein are shown in 

figure 6.9. It is clear that these 

metals induce conformational 

changes in COT similar to iron. 

However, surprisingly, no closure of 

the interdomain clefts takes place 

when Hf or Th is taken up by COT, 

instead an 'open • structure like that of 

the apo-protein is observed (figure 

6.1 0). These findings are also 

confmned by the analysis of the radii 

of gyration (see table 6.3). Analo­

gous results have been obtained for 

HST and m..,p (not shown). 



The specifity of metal binding, 

e.g. binding one appropriate 

metal ion much more tightly 

than others, can be obtained 

from molar absorptivities 

derived from ultraviolet differ­

ence spectroscopy. In table 6.3 

the metal binding affinity 

relative to iron is given for the 

metals studied here. 

It is obvious 

from the X-ay scattering data 

that the overall conformation 

of the metal-loaded protein 

explains the weak binding of 

Hf and Th. Thus, it is 

interesting to ask why the 

specific incorporation of Hf4+ 

or Th4+ does not induce the 

closure of the molecule. In 

table 6.3, the ionic radii of 
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Figure 6.10 : 
Comparison of the scattering patterns for 
Hf2- and Th2-COT with respect to the metal­
free apo-protein. 

Hf4+ and Th4+ are compared with the radii of the other metals. There is no significant 

difference in the size of Hf4+ compared to In3+ which displays the closed conformation. In 

any case, the structure of dicupric lactoferrin in which the carbonate was substituted by 

oxalate [124] has demonstrated that the metal binding site has enough flexibility to 

accommodate larger ions. Thus, it is more likely that the tetravalent nature of Hf and Th and 

their preference for 8-fold coordination [10, 125] may cause significant changes in the metal 

binding region, disabling the trigger for the closure of the interdomain cleft. 

Assuming that Pu, like Hf or Th, does not induce any conformational change 

upon binding to transferrin, its metabolic beviour can now be explained at a molecular Ievel. 

In blood, Pu and many other non-physiological metals are transported by the iron carrier 

protein transferrin and subsequently deposited in several tissues, specific for the individual 

metal. This organ specificity has been suggested to be a function of the ionic radius of the 

metal [119]. For Pu, the target organs are the bone surfaces and the liver, where it is bound 

to the iron storage protein ferritin. Although this actinide is bound to the proteins of iron 

metabolism, it does not share the metabolic fate of iron. If transferrin-bound Pu (and many 

other non-physiological metals) followed the receptor mediated endocytosis process [126], 

as it is reported for iron transferrin, then red blood cells, which express a very high nurober 

55 



Table 6.3: Radii of gyration for metal-loaded COT and some metal ion properties 

metal ion R * metal binding outer main ion radius * g strength # electron coordination 0 0 

[A] (relative to Fe3+) configuration numbert [A] 

Fe3+ 29.7 1Q2 3d5 6 0.65 

Cu2+ 29.9 < lQ-1 3d9 5 0.65 
6 0.73 

AI3+ 29.7 lQ-6 2p6 6 0.54 
Ga3+ 29.8 wo 3ct10 6 0.62 
In3+ 29.8 1Q2 4dl0 6 0.80 
Hf4+ 30.4 < lQ-10 4f14 8 0.83 
Th4+ 30.4 < lQ-10 6p6 8 1.05 

no metal (apo) 30.5 

* R8 values were calculated using the Guinier approximation, the statistical error amounts to 0.2 A; # only 
the order of magnitude is given because of missing quantitative considerations or slight disagreements in 
Iiterature mainly owing to different experimental conditions; ~ in transferrins Fe3+ is coordinated in a 
distorted octahedral geometry in both Iobes, wheres Cu2+ coordination is square pyramidal in the N-lobe 
and distorted octahedral in the C-lobe; * ion radii are taken from Shannon [128] and refer to the given 
coordination numbers. 

of transferrin receptors, would be expected to contain Pu. However, this is not the case 

[127]. 

Considering the other metals (Al, Cu, Ga and In) it is difficult to infer the strength of metal 

binding from the X-ray scattering studies since these metals induce large-scale 

conformational changes similar to iron. Despite slightly different ionic radii, their most 

common coordination numbers from the stereochemistry of inorganic structures (table 6.3) 

clearly suggest the iron-like behaviour but cannot provide a basis for explanations on an 

atomic Ievel (i.e. local differences in the Iigand arrangement). Further structural work 

including X-ray crystallography and X-ray absorption fine structure (XAFS) is required to 

address this point. XAFS is a technique which is sensitive to the metal binding environment 

and like solution scattering has the advantage of allowing the study of the protein under 

quasi-physiological conditions. 

Nevertheless, the question arises whether a protein structure which is the same for different 

bound metals (such as Al, Cu, Ga and In), implies that these metals could be delivered to 

cells equally weil as iron. In the light of the scattering results, the overall conformation 

should be indistiguishable towards receptor recognition. 

The similarity between the molecular conformation of Fe2- and Cu2-HLF has 

recently been observed crystallographically. The crystal structure of dicupric lactoferrin has 

been resolved to 2.1 Aresolution [27]. Despite the differences in the vicinity of the binding 

sites (in contrast to Fe2-HLF where both metal sites reveal a distorted octahedral geometry, 

only the C-lobe Cu2+ is 6-fold coordinated, whereas the N-lobe Cu2+ is 5-fold coordinated; 
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this was also found by XAFS sturlies of Cu2-COT (Garratt et al., 1991)), the dicupric 

protein structure is the same as for diferric HLF. Thus, if the receptor recognition is 

provided through the molecular conformation, and if this copper complex was to circulate 

in vivo in the blood stream then it could possibly compete with diferric transferrin for the 

receptor mediated intema!ization into the target cells. It is, however, not clear whether the 

physiological conditions that are appropriate for iron release are equally suitable for copper. 

In any case, it is known that copper, once ingested, is bound by serum albumin which 

presumably delivers the metal to the liver where many of the copper oxidases circulating in 

the blood are synthesized [11]. With this separate 'handling system' for copper the organism 

is able to direct the two different metals to their target organs. 

Both Ga and In are bound to transferrin in plasma. Their radioisotopes 

(67Ga, 68Ga, lllin, 113In) are used in clinical medicine as a tracer for metabolic processes 

for the diagnostic scanning of various organs. However the indium transferrin complex 

differs markedly from other non-ferric metals: In3+ appears to bindtoserum transferrin and 

ovotransferrin with an affinity comparable to iron, and unlike other metal ions, it is not 

displaced from the protein by iron [129]. In addition the comparison of the metabolism of 

iron and indium bound transfeiTins in animals [130] revealed that In3+ was cleared more 

slowly from the plasma than iron but very little indium was taken up by the bone marrow or 

incorporated into red blood cells. Both proteins (di-indium and diferric transferrin) were 

found to have similar affinity for the receptors [131]. In contrast, Ga3+ is not as avidly 

bound to plasma transferrin as fu3+ suggesting that the transport of Ga3+ may be influenced 

by transmembrane diffusion of unbound metal ions depending on the transferrin 

concentration [132]. Due to its similar plasma distribution Ga is often considered as an 

analogue to Al in metabolic processes [133]. This is of particular interest in view of 

increased Ievels of Al in brain which has been implicated as a factor in Alzheimer's 

disease [ 134]. 

Like Ga, the molecular conformation of the aluminium transferrin complex 

shows a similar closure of the interdomain clefts upon incorporation of AI3+ into the 

molecule. Although transferrin is the major Al carrier protein in the plasma [135], AI3+ and 

Fe3+ are metabolized differently. Direct competition between At3+ and Fe3+ for binding 

sites on transferrin have shown an unexpected weaker stability constant for Al3+ [136]. 

This has been interpreted in terms of the smaller size of AI3+ (see table 6.3) leading to at 

least one of the protein metalligands notbeingable to bind to the metal [137]. Even though 

this is a plausible interpretation, it appears unlikely for two reasons: First, the 

crystallographic structure of Cu2-I-ll..F indicates that there is sufficient intemal flexibility in 

each binding cleft to allow adaptation in metal coordination [27] and second, Al3+ has a 

high preference for a 6-fold coordination. However, due to its strong preference for 6-fold 

coordination and a relatively smaller size, it is more likely that one or more of the protein 

ligands will move significantly to accomodate AJ3+. It could alter the hydrogen bonding 
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network in the metal binding cavity which reduces the stability conditions in the 

interdomain cleft. This may explain the more labile binding of Ga or its analogue Al by 

transfeiTins compared to Fe as weil as the increased susceptibility to changes in pH or to 

competing chelators and electrolyte composition [138]. The release of metals from 

transferrin depends on the presence of transferrin receptors on the cell surface. Although 

AI3+-saturated transferrin is assumed to bind to the cell surface of tumors of nervous tissues 

[139], it is not impossible that Al enters cells (including brain cells) via the formation of 

low-molecular-weight (e.g. Al-citrate) complexes which could cross the blood brain barrier 

more easily than protein-bound Al. 

Summarizing it can be stated that the solution X-ray scattering results have allowed to 

define structural changes for transfeiTins when different metals are bound. Hf4+ and Th4+ 

induce conformations that resemble closely the molecular conformation of apo-transferrin. 

In this case the closed conformation remains the neatest explanation for the high affinity of 

diferric transferrin for the receptor at the cell surface. Differences in the inorganic 

chemsitry between Fe and the other metals (Cu2+, AI3+, Ga3+, In3+), including the 

hydrolysis products and aqueous solubility need tobe brought into play in explaining their 

binding affinities and determining their biodistribution. The nature of the transferrin 

receptor and the exact mechanism of metal release in the cell are still far from being 

understood. Interestingly, studies on tumors and inflammatory lesions have shown that 

metal transport by transferrin may also play a secondary role. A likely modification of the 

plasma membrane permeability appears to be capable of accomodating metal ions ( e.g. 

Ga3+) bound to a low-molecular weight form and thus allowing metal accumulation in 

malignant cells [140]. 

6.1.5 Studies of mutants of the N-terminal fragment 

A very efficient and powerful method to study the specifity and function of the metal 

binding site is the replacement of single amino acids involved in metal binding, interdomain 

contacts or hinge bending regions. One example with the detrimental effect of iron 

defficiency was already mentioned: The variant of human serum transferrin in which a 

naturally occurring single point mutation in the interdomain cleft markedly modifies the 

overall conformation concomitant abnormal iron binding properties. In this section, variants 

(mutants) will be discussed in which one aminoacidwas modified site-specifically in the 

human transferrin sequence by protein engineering. 

Structural studies on transfeiTins have shown that four of the iron ligands are provided by 

the protein, only one of these, an aspartic acid, originates strictly from domain I [25, 28]. 

Examining the crystal structures suggests that the carboxylate group of this amino acid may 
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play a key role for the following reasons: It has a total charge of -1, divided between its two 

oxygen atoms. One oxygen atom binds to the metal, thus neutralizing the cation charge by 

-0.5. The other carboxyl oxygen is held in place in the active site by interdomain hydrogen 

bonds (see figure 2.2). The feature, i.e. binding the metal ion via one oxygen atom and 

stabilizing the interdomain stability by hydrogen bonding via the other oxygen atom, not 

only Iimits the flexibility of the interdomain cleft but also restrains the metal ion 

requirements with respect to coordination geometry. The X-ray scattering studies on Hf­

and Th-bound tranferrin have led to the suggestion that the 'correct' coordination of metal 

ion is important for inducing the closed conformation and that the closed conformation is 

likely to be of functional importance for recognition of receptor by the transferrin. 

In order to test directly the role of the aspartic acid (the variant discussed in section 

6.1.3 already revealed indirectly the importance of the aspartic acid), it has been replaced by 

site-directed mutagenesis and subsequently the mutated protein has been investigated by 

solution X-ray scatterting. Recently, it has become possible to express mutants of the 

amino-terminal half-molecule of human serum transferrin (HST/2N), a fragment of 337 

residues incorporating a single iron binding site [99, 100]. Two mutants, Asp63 ~ serine 

(D63S) and Asp63 ~ cysteine (D63C), both of which show weaker iron binding than the 

native protein (referred to as wild-type) have been examined by solution X-ray scattering in 

both the apo- and holo-forms. In the case of D63C, the cysteine residue is blocked by a 

disulphide bond formation and thus would not be available for ligation to iron. 

Consequently, the lobe would be expected to remain open. In the case of D63S, the 

mutation to an uncharged residue would weaken the strength of hydrogen bonds between 

the two domains and would probably reduce the closure of the interdomain cleft. 

Figure 6.11 shows the X-ray scattering results for the native protein and the mutants in the 

iron-free and iron-loaded state, respectively. Whereas the scattering curves for the wild-type 

exhibit the typical characteristics of a large-scale conformational change upon iron uptake, 

Table 6.4 : Radii of gyration for the wild-type and mutated amino­
terminal half-molecules of human serum transferrin. 

sample 
apo-state (iron-free) holo-state (iron-loaded) 

0 0 

R_g [ A] RR [A] 

native protein 23.0±0.2 21.4 ± 0.2 
(22.0 *' 22.7 #) (20.1 *, 21.0 #) 

Asp63 ~ Ser 23.5 ± 0.4, 22.3 ±0.2 
Asp63 ~ Cys 23.0±0.2 22.7 ±0.2 

* computed from the crystal structure and modelled open structure of RST/2N; 
# calculation including the first hydration shell (see text); , the scattering curve for 
this sample shows a small aggregation effect in the Guinier region, thus a larger error 
has been indicated. 
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Figure 6.11 : 
Scattering proftles of dilute solutions of the wild-type (top) and of the Asp63 ~ Cys 
(middle) and Asp63 ~ Ser half-molecules of human serum transferrin (bottom) 
recorded in the absence of iron (dotted line) andin the presence of iron (solid line) 
bound to the active site. Distance distribution functions calculated from the 
experimental data are shown as insets. 
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as known from the N-tenninal fragment of chicken ovotransferrin (figure 6.3(a)), the curves 

for the D63C mutant are almost indistinguishable, thus indicating no structural change upon 

binding of iron as predicted. The scattering curves for the D63S mutant show a small 

difference only in the low angle scattering range. In contrast, the scattering curves for the 

expressed native N-lobe differ over the whole range; the differences become very 

pronounced at s > 0.02A-1, where a distinct intersecnon point is observed. It is worth noting 

that all apo-proteins, both wild-type and mutants, do not differ significantly in their 

scattering behaviour. These findings are described quantitatively in terms of a Guinier 

analysis using only low-angle data (s < 0.0 14A -1) and are equivalent to the results 

calculated using the whole of the experimental scattering curves (applying equation E3.7 by 

means of the p(r) function). Table 6.4 gives the radii of gyration, Rg. for the apo- and holo­

states of the wild-type and the two mutants. Rg values for the three apo-proteins are 

essentially the same. For the D63C mutant, an insignificant reduction in Rg is observed 

when iron is bound while a small change is observed in the case of D63S. Insets of figure 

6.11 provide a comparison of distance distribution functions obtained by Fourier transform 

of the whole of the scattering pattems for the wild-type and two mutants. Thus, unlike Rg, 

the distance distribution function does not critically depend on the selection of scattering 

range and provides a more confident picture. The curves for D63C, show the identity of 

molecular conformation over the whole radial range. The distance distribution functions for 

D63S show a behaviour somewhat similar to those for the wild-type, except that the 

magnitude of change is significantly smaller. 

It is clear from these data that iron does not induce a structural rearrangement in the 

D63C mutant but the lobe remains in an open, 'apo-like', conformation. In contrast, the iron 

binding to the D63S mutant induces a small structural change which corresponds to a 

'slightly closed' conformation. These mutational studies represent an impressive test of the 

abrogation of normal iron binding 15. In both mutations an uncharged polar group replaced a 

negatively charged aspartic acid side chain. Although the serine side chain is of only a 

marginally different length, the substitution results in a major perturbation at the iron 

binding site, resulting in an inhibition of the domain closure and a lower affinity for iron. In 

this case, the negatively charged carboxylate group of the aspartic acid is replaced by an 

uncharged polar group. The energy contribution for a hydrogen bond to a charged residue is 

three fold more than the contribution due to an uncharged residue [142]. It is, therefore, 

mostprobable that the hydrogen bonds in the mutant are not sufficiently strong to tighten 

the metal binding cavity and bring the two domains closer together when iron is bound. The 

D63C mutant showed that with the non-availability of this Iigand for iron binding, the 

trigger mechanism for domain closure is completely switched off. This demonstrates the 

15 Mutational experiments [100] were initiated because of the amino acid modification (serine instead of 
aspartic acid) in the C-terminal lobe of melanotransferrin, a membrane-bound transferrin-like molecule 
which is present in mosthuman melanomas [141]. lts role in cellular iron metabolism is not yet known but 
seems to differ plainly from that provided by serum transferrin. 
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delicate balance which the molecule possesses in order not only to be specific to a receptor 

but also for a metal. 

The explanation of the 'slightly closed' conformation revealed by the scattering data of the 

D63S mutant requires an extensive process of computermodeHing not only on the basis of 

structural information but also owing to functional characteristics (e.g. the mechanism of 

iron uptake ). 

As a first step, it is important to reproduce reliably the experimental scattering 

features of the native protein in the iron-free and iron-loaded state. The simulation for the 

closed, iron-loaded conformation of the N-lobe of human serum transferrin (HST/2N) can 

be based on the crystal structure coordinates of the N-terminal half molecule of rabbit 

serum transferrin [29]. In view of the sequence homolgy between lactoferrin and serum 

transferrin, it is favourable to 'copy' the open configuration of the N-lobe of apo-lactoferrin 

into the N-terminal half of rabbit serum transferrin (RST/2N). This structural transferwas 

achieved similar to the procedure described in section 6.1.3: The Superposition of the main 

chain atoms of 113 residues from the core of domain Nil (r.m.s. deviation of 0.58 Ä/atom), 
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Comparison of experimental and theoretical scattering proflies and distance distribution 
functions for the iron-free and iron-loaded N-lobe fragment of serum transferrin. The 
simulated curves in (a) and (b) are based alone upon non-hydrogen atoms of the molecular 
models for the open and closed N-lobe. By including water oxygens of the frrst hydration 
layer a reliable fit to the experimental data could be obtained (c) and (d). In (d) only circles 
with error bars represent the experimental p(r) functions in order to emphasize the good 
agreement with the model calculations. 
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defines domain Nil being the basis of both the lactoferrin and rabbit serurn transferrin 

structure. Breaking up the peptide chain of RST/2N at residues 93 and 247, enables the 

opening of domain NI. This was done by matehing its counterpart, domain NI of apo­

lactoferrin (Superposition of the main chain atoms from 81 core residues yielded a r.m.s. 

value of 0.61 A/atorn). 

The calculations using the models for the apo- and holo-state of RST/2N were 

directly compared with the experimental results of native HST/2N in figure 6.12(a,b). 

Although the essential features representing the characteristic domain arrangement were 

achieved, the discrepancies between theory and experiment are obvious in the absolute scale 

of the scattering profiles as well as in the noticeable shift of p(r) functions. It was already 

mentioned in section 6.1.1 that hydration as well as carbohydrate content do affect the 

scattering intensity so as to modify the overall size of the molecule. Due to the absence of 

any carbohydrate in the N-lobe of human transferrin, only the hydration shell around the 

protein will contribute. This has been accounted for by incorporating the first water layer 

(up to 3 A from the protein's surface) into the scattering pattem simulations (see Appendix 

B). The used approach also includes the optimization of the opened configuration at 

positions where computer modelling introduced strains owing to the rupture of the 

polypeptide chain. The results presented in figure 6.12(c,d) clearly yielded a much better fit 

to the experimental data supporting the overall correspondence of the applied models. 

In order to deal in more detail with the strongly reduced interdomain closure of the iron­

loaded D63S mutant it will be essential to take functional models for iron uptake by 
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Figure 6.13 : 
Difference plot of Ca positions between the closed and open structure of 
the N-lobe of transferrin. The positions of the iron binding and carbonate 
anchoring ligands are indicated (residue numbering according to HST). 
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transfeiTins into consideration. As was suggested by Baker [24] and most recently by 

Lindley [111], the iron along with the synergistic carbonate anion binds to domain II 

including the ligands belonging to the two backhone strands (see again figure 2.2) while the 

protein is in the open conformation. Iron binding will be complete when the remaining 

Iigand of domain I, the aspartic acid, closes over the metal site to fulfil optimal iron 

coordination. This metal uptake mechanism may be used to develop a model for the D63S 

mutant in iron-loaded state: Figure 6.13 illustrates the Ca difference plot between the apo-

and holo-state of the N-terminal half molecule after superimposing the main chain atoms of 

domain Nil of both protein configurations. Assuming iron and carbonate binding at domain 

Nil has already taken place, this graph can also be interpreted as the Ca difference of the 

iron-loaded, closed structure and an intermediate, iron-loaded but still open structure: Apart 

from Asp63 and His249 the other ligands involved in iron binding (Tyr95 and Tyr188) and 

carbonate anchoring (Thr120, Arg124, Ala126 and Gly127) arealready in place owing to 

their almost unchanged positions in both structures (figure 6.13). The His249 is located at a 

position with minor constraints by the surrounding protein structure (no hydrogen bonds to 

any protein atom), so that no large-scale peptide movement would be necessary to approach 

the metal ion. In contrast, the binding of Asp63 would precede a more pronounced peptide 

movement which is indicated by the increased Ca differences in the vicinity of Asp63. 

Thus, the weak iron binding of the D63S mutant and its almost 'apo-like' conformation 

strongly suggest that Ser63 is not in contact with the metal ion, whereas His249 is. The 

adaptability of His249 may induce slight structural rearrangements from residue 250 

onwards (up to about 280) leading to the difference in overall conformation which has been 

observed in the scattering studies. 

Computer modelling of such an intermediate structure is still in progress. However, 

further experiments with a series of other mutants (where other iron binding ligands were 

exchanged site-specifically, e.g. Tyr95 ~ histidine) appear to support the suggested model. 

A vast amount of structural information on the transferrin family could be collected during 

the past few years. Although solution X-ray scattering is only a low resolution technique, 

the results presented here are significant and underline the importance of flexibility of 

transfeiTins in solution. However, many questions are still not or not completely answered. 

In the concluding chapter 7 some future prospects will be given and the role of solution X­

ray scattering in providing possible answers will be discussed. 
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6.2 Nitrite Reductase 

As was pointed out in Chapter 2.5, reports on the copper-containing nitrite reductases (NiR) 

from the denitrifying bacteria of Alcaligenes faecalis (AfNiR), Achromobacter cycloclastes 

(AcNiR) and Achromobacter xylosoxidans (AxNiR) vary in their molecular weights as well 

as their subunit arrangements in solution. Furthermore, deducing the oligomeric structure 

from sturlies of gel filtration and sedimentation equilibrium centrifugation revealed con­

flicting results within the same species (in the case of AcNiR [ 43, 50] and AxNiR [ 47, 49]). 

However, the crystal structure determination of AcNiR [50] yields that the molecule must 

be a trimer which is in accord with Sedimentation equilibrium centrifugation studies. The 

similarity in the amino acid composition between AcNiR and AxNiR and the 

physicochemical properties (specific activities and copper content), which they have in 

common [49], strongly suggest the close structural relatedness of the two proteins. The 

amino acid composition and spectral properties of AcNiR are also similar to AfNiR, and, in 

addition, both NiRs receive electrons from closely related blue copper proteins [45]. On 

these assumptions one might expect similar molecular conformations in solution for the 

three species of copper-containing NiRs. 
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Figure 6.14 : 
Experimental scattering profiles for AxNiR (dashed line) and AfNiR (fullline) 
at a sample concentration of 5 mg/ml. The curves were normalized to unity at 
zero scattering angle. The inset shows the Guinier plots for both proteins from 
which the Rg values were derived. 
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6.2.1 Experimental results 

Solution X-ray scattering experiments on AxNiR (sample concentrations of 5 mg/ml and 10 

mg/ml) and AfNiR (sample concentration of 5 mg/ml) have been carried out in order to 

probe their overall conformation. Figure 6.14 presents the averaged and complete 

experimental scattering profiles for 5 mg/ml (the profile for 10 mg/ml of AxNiR was 

equivalent and is therefore not shown, thus indicating no obvious concentration 

dependence). The monodispersity of both species in solution is also given according to the 

linearity in the low angle range as seen in the Guinier plots (insets of figure 6.14). Both 

species (AxNiR and AfNiR) appear to have very similar conformations in solution which is 

also expressed in the comparison of the distance distribution functions (given in figure 6.15) 

and the derived distance parameters for AxNiR and AfNiR (compiled in table 6.5). 

Values of the radius of gyration Rg were calculated over the angular range Smin = 0.005 A-1 
to Smax = 0.009 A-1. The use of the Guinier approximation was further examined by 

computing Rg using equation E3.7. This enables a more accurate determination of Rg by 
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Rl! from Guiner [ A] 0 0 

sample concentration Rl! fromp(r) [ A] D [A] 

AxNiR 5mg/ml 28.7 (0.5) 28.0 (0.2) 76 (3) 

10 mg/ml 28.3 (0.5) 27.7 (0.2) 76 (3) 

AfNiR 5mg/ml 28.9 (0.5) 28.3 (0.2) 77 (3) 

Table 6.5 Experimental values of the radius of gyration (Rg) and the maximum 
particle size (D) of the two species of NiR (estimated standard deviations in 
parentheses ). 
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means of the whole information content of the scattering profiles (s ~ 0.035 A-1 ). The 

Guinier approximation is restricted to a small range (the innermost part of the scattering 

curve) which is not completely available due to the beamstop. Values of the maximum 

particle size D have been derived from the calculation of the p(r) function. 

6.2.2 Model building 

Calculation of the one-dimensional p(r) function and distance parameters of a molecule in 

solution is clearly not sufficient for the unambiguous determination of molecular structure. 

They provide constraints on the structure that can be used to construct models. Thus, 

structural information from other sources is essential and can be examined for consistency 

with the solution scattering results. A crucial source of information on the molecular 

conformation of AfNiR and AxNiR is the known high-resolution crystal structure of the 

related AcNiR [50]. In order to assess the effect of different oligomeric conformations on 

the scattering behaviour, molecular modeHing was performed, using as starting parameters 

the atomic coordinates from the 2.3A resolution analysis [50]. AcNiR is associated as a 

trimer (not as a dimeras previous studies suggested, see table 2.2). The monomeric subunit 

contains 340 amino acids and has a molecular mass of 36kD. Modelling studies included 

residues 8 to 340 as the actual position of the amino-terminal peptide of each monomer 

couldn't be resolved in the crystal structure (probably as a result of proteolysis [143]). This 

factwill not limit confonnational considerations since the amino-terminal end (i.e. residue 

8) lies close to the main body of the monomer in contrast to the carboxy-tenninal end which 

fonns a protruding arm and interacts with another monomer in the crystal structure. 

Apart from the trimeric assembly, several models of a dimer and tetramer of NiR were build 

in different ways (see figure 6.16). The structural basis for the model building was mainly 

geometric and included symmetry considerations as weil as distance constraints derived 

from the experimental scattering data. Moreover, the docking in the case of dimeric 

association was comprising the formation of a large interface which will help to exclude 

water and thus stabilize such a dimeric configuration in solution. The chemical nature of the 

molecular surface and, in particular, the maintenance of the type II copper site (at the 

monomer-monomer interface) have not been taken into account in all models. No energy 

minimization has been applied to the models since it only helps to find hydrogen bonds, 

correct side chain positions along the monomer-monomer interface and to perfect artificial 

complexes up to atomic resolution. However, the difference between the original and 

energy minimized structure will be hardly noticeable in the simulated, low to medium 

resolution scattering profiles. In addition, the energy values themselves are not meaningful. 

Finally, it has to be pointed out that this modeHing study assumes that the subunit 

association occurs without major conformational change in the monomers. 
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Figure 6.16 : 
Schematic representations of subunit arrangements for nitrite reductase. Models of 
dimeric (Dl-D5) and tetrameric (Tl-T3) molecules have been based on the trimer 
(figure centre) of AcNiR revealed by the 2.3A X-ray structure analysis [50]. The dimer 
D4 is obtained by taking a monomer away from the trimer and thus the association of 
the monomers in D4 is the same as in the trimer. Dimer D4 has been used as a template 
for tetramers Tl and TI. In the tetramer Tl the two dimers behave like two pairs of 
pincers that interlock or engage with each other without clashing. Apart from the 
models where the dimeric structure known from the trimer was maintained, only dimer 
D5 turned out to form a type II copper site at its monomer-monomer interface (see dark 
circle). Four histidine residues (2x His 255 and 2x His 306) can provide a tetrahedral 
Iigand arrangement around a copper atom. Thus, on the basis of 6 copper atoms in the 
trimeric structure, the copper content for the respective models would be 2 (Dl-03), 3 
(D4 and 05), 4 (T2) and 6 (Tl and T3). 
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Figure 6.17 : 
Comparison of the scattering curve l(s) and the distance distribution p(r) of 
AxNiR with those of the models shown in figure 6.16. The l(s) proflies are 
normalized at s = o.oosA-1 with respect to AxNiR, and p(r) functions are 
plotted by normalizing the area under each curve to unity. 

6.2.3 Which model is consistent with the scattering results ? 

Simulated scattering proflies and the corresponding distance distribution functions of the 

models are presented along with the experimental results for AfNiR (figure 6.17). Only 
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AxNiR is presented since the difference between the experimental data of AxNiR and 

AfNiR is not significant. The calculations (performed as described in Chapter 3.3) are based 

upon the crystal structure data of AxNiR [50], using 5148, 7722 and 10296 non-hydrogen 

atoms for the dimer, trimer and tetramer, respectively (copper atoms not included). The 

computational results for the structural parameters of the dimeric, trimeric and tetrameric 

models for NiR are compiled in table 6.6. In order to check the reliability of the oligomeric 

models, their solvent-accessible surface areas have been calculated with the Lee & Richards 

[144] algorithm implemented in the programme X-PLOR (Version 3.0, Yale University, 

New Haven, CT, USA). A probe radius RH2o of 1.4 A was used. It has been shown that the 

solvent-accessible surface area Asofan oligomeric protein, which is the sum of the areas of 

its component atoms, is directly related to its molecular mass [145, 146]. Values of As and 

the predicted accessible surface area Ap according to Miller et a/. [145] are also given in 

table 6.6. The models have accessible surface areas that lie within the Iimits of the predicted 

value (the power law by Miller et al. [145] predicts values to within 5% on average). 

Model 
0 

RR [A1 D [A1 As [ A2 1 Ao [ A2 1 llA I As 
Dimer Dl 24.7 103 27650 5.8% 

D2 24.7 96 28000 7.0% 
D3 25.3 122 27350 26050 4.8% 
D4 26.2 87 27110 3.9% 
D5 28.5 101 26420 1.4% 

Trimer 27.8 87 34760 35460 -2.0 % 
Tetramer Tl 29.2 105 40120 -9.9% 

T2 32.2 104 47250 44120 6.6% 
T3 33.2 121 47270 6.7% 

Table 6.6 : Structural parameters (Rg and D) of NiR models in figure 6.16 and their 
solvent-accessible surface areas (As and Ap). Theoretical values were calculated according 
to Ap = 5.3 M0·76 derived from 23 oligomeric proteins [145]. The mass of 36kD has been 
assumed for the monomer of NiR. The isolated monomer was calculated to have 15530 A2 

of solvent-accessible area. !!.NAs is the deviation of As from the predicted value Ap. 

It is apparent that the trimeric model is able to closely approximate the observed scattering 

data for the NiR molecule in solution at the concentrations used. This result is clearly 

shown by the data in reciprocal and in real space (figure 6.17). The alternative dimeric and 

tetrameric associations do not match the striking characteristics of the experimental 

scattering curve (the amplitude and periodicity of oscillation). The necessity of the 

scattering pattem simulation is obvious as the structural parameters as weil as the solvent­

accessible surface area do not determine the oligomeric conformation (dimer D5 and 

tetramer Tl have Rg values very similar to the experimental values). 

It needs a mention that interatomic distances greater than 77 A only contribute to 

0.03% of the total amount of interatomic distances in the trimeric association. However, this 

small contribution gives rise to a discrepancy (of more than 10 A) between experimental 
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and calculated D values for the trimer. This difference arises from small errors in intensity 

measurements in the low angle region. 

The simualtion of the scattering profile could be improved further by incorporating a 

hydration layer surrounding the trimeric structure (see figures 6.18 and 6.19). Although 

these water molecules arenot yet accessible crystallographically, an energy minimization 

procedure was used to estimate the amount of hydration (see Appendix B). A good fit to the 

experimental data can be obtained by including the frrst hydration shell up to a distance of 

about 3 A from the protein surface (here approximately 700 water molecules were 

included). This result can be associated with a hydration of approximately 0.12 g H20 per g 

protein and gives an estimate of the water content of NiR. However, this rather small 

solvent contribution compared to 0.38 g H20 I g protein corresponding to a full hydration 

[83] can only be considered as the amount of tightly bound water represe_nting a 'permanent' 

part of the trimer framework. A relatively conservative estimate of the total number of 

waters expected to be found in the crystal structure is one per residue, which here would be 

340 x 3 or 1020. However, a comparatively lower solvent contribution is indicated by the 

fact that 3950 A2, or 25.4%, of the monomer solvent-accessible surface area is buried upon 
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Figure 6.18 : 
Comparison of the experimental data of AxNiR (5 mg/ml) with the calculated 
scattering pattem and distance distribution function (inset) of the NiR trimer 
including the frrst hydration shell (about 700 water oxygens were added to the 
7722 non-hydrogen atoms of the trimer). Circles with error bars represent the 
experimental p(r) data. The radius of gyration of the hydrated structure is 
28.2A. The intensity proflles are normalized at s = 0.015A -1• 
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Figure 6.19 : 
The model of the hydrated trimer of NiR used for the scattering pattern simulation shown 
in figure 6.18. In order to illustrate the trimeric association, the monomers are represented 
by their smoothed backhone structure using different colours (red, green and blue ). Water 
oxygens are shown as yellow spheres. The copper atoms can be located as white spheres. 

trimerization. Conversely, the total accessible surface area of the trimer is 34% smaller than 

the area of an isolated, monomeric protein of the same mass (calculated according to [145]). 

Hence only about two thirds of the protein surface is accessible to the solvent compared to a 

monomeric protein of 1020 amino acid residues. This rather large solvent-inaccessible area 

is a clear sign of extensive intersubunit interaction and thus it also demonstrates the high 

stability of the trimeric geometry. 

A study of the hydropathy16 reveals that the solvent-accessible surface area of the 

trimer is 52.3% non-polar, 34.5% polar and 13.2% charged (for comparison, the accessible 

16 The hydropathy of a protein surface is a measure for the affinity for attracting or repelling water. It can be 
evaluated by dividing a protein into non-polar, polar and charged components. The relative contribution to 

72 



surface area of the isolated monomer is 54.5% non-polar, 34.5% polar and 11.0% charged). 

The accessible surface area for monomeric and oligomeric proteins are equally non-polar 

(57% to 58%) [146]. Thus, this balance between hydrophobic and hydrophilic contributions 

of the surface area as weil as of the buried interface area cannot be the driving force for 

trimerization. It is clear that each of the three copper atoms at the interfaces between two 

monomers do not only play a crucial role in enzyme activity but also in structure 

stabilization. 

A striking feature of the trimer of NiR is a large channel or pore (- 50 A long and 

between 1.5 A and 6 A wide) along the threefold symmetry axis [50]. An interesting result 

of the performed energy minimization is that the pore is filled with water molecules 

building a solvent channel (see also figure 6.19). On top of it, each type li copper atom 

(bound between two monomers) was found to be Iigated by one water molecule at a 

distance between 1.8 A and 1.9 A, though no water molecule has been located in the 

vicinity of the active site before starting the minimization procedure. This suggests clearly 

that a small molecule or substrate (such as NO:;) is easily capable ofreaching the interior of 

the pore, i.e. the active site of the enzyme. 

The trimeric structure as revealed by crystallographic studies is fully consistent with the 

solution scattering data, at least for the concentrations used here. On this basis, the copper­

containing nitrite reductases from the three species (Achromobacter cycloclastes, 

Achromobacter xylosoxidans and Alcaligenes faecalis) appear to have more similarities in 

terms of their solution properties and redox centres than previously thought. The crystal 

structure of AcNiR has revealed that the type II copper is bound at the interface of the 

monomeric subunits within the trimeric association [50]. Clearly, retention of the trimeric 

structure (or minimally a dimeric structure), is necessary to maintain the relative orientation 

of the two domains which bind the copper atom. The finding here, that AfNiR and AxNiR 

arealso trimers, and contain both type I and type II copper [41, 49] strongly suggests that a 

similar interface will be found in these two molecules. In addition,the model-building 

studies revealed that no dimeric association can be build that retains two type II copper 

centres at the monomer-monomer interface (assuming the monomers not to undergo a 

substantial conformational change). The difference in the colour of the two proteins (see 

table 2.2) may reflect a difference in the type I copper sites which dominates the absorption 

spectrum for visible light. Different ligands and/or a different coordination geometry are 

likely to be responsible for this absorption property. Further structural work will be 

necessary to understand these differences. 

the accessible surface area of each component detennines the hydropathy of the protein. All carbon atoms 
are assumed tobe non-polar. Nitrogen, oxygen and sulphur atoms are taken tobe polar when they carry no 
electric charge. Charged nitrogen and oxygen atoms appear in amino and guanidium groups (Lys and Arg) 
and carboxylate groups (Asp, Glu) as weil as in the N- and C-tenninal end of the polypeptide chain) 
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Chapter 7 : Conclusion and Future Objectives 

Solution X-ray scattering has been applied to study two families of metalloproteins, a class 

of proteins where one or a few metal ions are located at or near the active site. Two 

important aspects of protein conformation have been observed in the solution scattering 

sturlies on the family of transferrins and the copper-containing nitrite reductases: 

The transferrins change their conformation substantially after binding of particular 

metal ions and thus provide a prerequisite for receptor recognition and the subsequent metal 

transport across the cellular membrane. 

The nitrite reductase must adopt a certain oligomeric structure in order to facilitate 

its enzymatic function of nitrite reduction. The copper atoms do not only act as active 

centres of the protein but also stabilize its conformation. 

The determination of the solution structure of both metalloproteins brought further insights 

in the understanding of structural factors which control their function. However, we arestill 

left with more questions than answers. The technique of solution X-ray scattering in concert 

with model-builrling sturlies based on the available crystallographic information is certainly 

able to contribute answers to special problems related with protein conformations in 

solution. For considered continuing experiments, some perspectives and possibilities of 

solution X-ray scattering will be given. These comments are not restricted to the proteins 

sturlied in this work. 

The multi-domain composition of the transferrins confers their selectivity to act as a 

specific iron binrling protein in company with a characteristic, so-called synergistic anion 

(carbonate). X-ray crystallography has defined their tertiary structures and has markedly 

influenced the interpretation of functional aspects in the transferrin family. The crystal 

structure analysis of the metal-free protein has been possible so far only in one case [26] but 

it impressively revealed a large-scale conformational change which takes place with respect 

to the metal-loaded transferrin molecule. However, an inconsistent single-sided domain 

flexibilty in the crystal structures of human lactoferrin was observed (only in the N-lobe 

pronounced domain movements seemed to accompany the metal binding [25, 26]). The 

solution X-ray scattering sturlies in combination with molecular modelling reported here, 

clearly show that in solution both Iobes undergo a similar conformational change which is 

consistent with the transition from an opened to a closed interdomain cleft when iron is 

taken up by the protein. Thus, the "Venus' flytrap" model as suggested foranother bilobal 

protein [147], is a very appropriate picture to describe this phenomenon. The structural 

sturlies in solution were further extended to the uptake of non-physiological metals which 

also bind to transferrin with lower binding affinities compared to iron. These experiments 
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have led to the suggestion that the 'correct' coordination of metal ion is crucial for inducing 

the closed conformation and that the closed conformation is likely to be of functional 

importance for receptor recognition by the transferrin. Moreover, the first direct 

experimental evidence for the existence of a trigger mechanism for the closure of the 

interdomain cleft could be observed. This trigger mechanism is disrupted by mutation of the 

structurally important aspartic acid residue, which is the only ligand of iron from the main 

body of domain I. 

The role of basic residues in the iron binding site and in the interdomain hinge 

region is an important factor to elucidate. It is not only the mechanism of uptake but also 

release of iron which bears far-reaching consequences: The natural occurring variant of 

human serum transferrin gives an impressive example that mutations of residues in the iron 

binding cavity can have large effects on stability and functionality. A fact that is clearly 

proven by the metabolic abnormality of iron deficiency [109]. However, it is still difficult to 

predict effects of any substitution on protein structure and/or stability. Structural studies and 

examination of multiple mutations at the same positions can help to reveal the different 

factors that contribute to the stability of metal binding and subunit association. This, of 

course, is valid for any metalloprotein. Thus solution X-ray scattering experiments with 

mutant and wild-type proteins remain a challenge for the future, however, the validity of the 

deductions depends heavily on the quality of the models used. Fortunately, transfeiTins are a 

highly homologous family of proteins. All structures known to date have the same overall 

fold, similar active sites and presumably similar structural mechanism of metal uptake. 

Large conformati~nal changes involving rotation between domains induced by the 

binding of ligands is a recurring functionally important feature of a variety of proteins [7]. 

Little is known about the mechanism and dynamics associated with this type of change. In 

general, the transferrins offer outstanding possibilities to learn more about the 

conformational flexibility of interdomain or hinge regions. For example, the coupling of salt 

bridges can be of general importance to the stability and function of proteins [148]. There is 

a significant difference in the iron binding strength among the transfeiTins (see table 2.1). 

The remarkable structural similarities of the binding sites cannot account for this functional 

difference. Consequently, interactions between the two domains within a lobe have to be 

considered. It will be interesting to see whether an interdomain salt bridge in lactoferrin 

which is not present in serum transferrin can destabilize the domain arrangement and thus 

alter the iron binding properties. A salt bridge can be blocked e.g. pH-induced, by high salt 

concentrations ( counter ions are expected to neutralize the charges on the protein surface) or 

replaced by site-directed mutagenesis. 

The two complementary functions of transferrin (chelating ferric iron in a stable 

complex to prevent its hydrolysis by maintaining its solubility at physiological pH and 

binding to cell surface receptors to facilitate the uptake of iron) are likely to apply to other 

metals; There has been great interest in the role of transferrin in transporring metals not 
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nonnally present in the body, in particular those with possible toxicological consequences. 

The effect of metal uptake on transferrin confonnation was studied in this work only for a 

few metal ions. A more comprehensive examination would include a systematic 

investigation of the wide variety of metal ions. Despite the fact that the role of transferrin as 

a mediator of metal transfer may not be equivalent to iron, protein engineering brings 

exciting opportunities within the realms of possibility: For example, the replacement of 

residues at the iron binding site and interdomain cleft so that the protein is 'designed' to take 

up metal ions which are harmful for the body and excrete them again through specific 

organs. Interestingly, by virtue of their high affinity for iron, transferrins can retard the 

growth of microorgansims, which essentially require iron, by making this element available 

on a reduced Ievel. In addition, there is a striking resemblance of transferrins to other 

"Venus' flytrap" proteins (see below). This feature might even initiate the modification of 

transferrin as a chelator not only for metal ions but also for small molecules (e.g. drugs) 

which could be delivered to specific tissues. 

Future progress in understanding metal ion transport requires detailed infonnation of 

co-operative interactions with the transferrin receptor. Although structural studies on the 

soluble portion of the human transferrin receptor arealready in progress [149], the work on 

forming a stable transferrin-receptor complex is at an early stage. This is essential before 

reliable solution scattering studies will be feasible. 

The crystallographic structures of two copper-containing nitrite reductases from the 

denitrifying organisms Alcaligenes faecalis and Achromobacter xylosixidans are still not 

determined. Solution X-ray scattering provided an immediate way of establishing its 

similarity to the NiR from Achromobacter cycloclastes. Both species have been shown tobe 

trimers in solution at concentrations between 5 and 10 mg/ml, which implies that all three 

NiRs have very similar solution structures. The trimeric subunit arrangement was based 

upon the crystallographic studies of the related nitrite reductase from Achromobacter 

cycloclastes, where, unexpectedly, the enzyme was found to associate as a trimer [50]. 

Several questions arise in view of the role of the bound copper ions, in particular the type II 

coppers, which are coordinated by three histidines and an aquo or hydroxo moiety in an 

unusual pseudotetrahedral array at the interface between two subunits [50]. Thesecopper 

atoms may help to stabilize the trimeric association of the protein. Metal-induced protein 

stability and association is a well-known phenomenon in molecular interactions of 

biological molecules. For instance, the bacteriophage gene 32 protein (a single-'stranded 

DNA protein) contains one zinc atom per molecule. In the case of zinc bound to the protein 

a pronounced effect on the cooperativity of binding to nucleic acids can be detected [150]. 

In addition, results from NMR and X-ray scattering studies suggest that the apo-protein is 

monomeric whereas the zinc-containing protein is dimeric [151]. NMR experiments on a 
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synthetic peptide (representing one domain of the calcium-binding protein troponin-C) gave 

evidence for dimeric assembly in the presence of calcium [152]. 

Although the roles of the different types of copper in NiR arenot yet clear, the type 

II copper site may be of functional importance in view of the fact that it is easily accessible 

by solvent (this was also found in energy minimization studies reported here), which is in 

marked contrast to the type I copper site being buried inside the protein and protected from 

waterandsmall ions. Interestingly, a copper-nitrosyl complex which has been identified as 

a possible intermediate in the enzymatic nitrite reduction [153], is likely to be correlated 

with the type II copper centre. 

As in the case of mutational studies of the iron binding site in transferrin, the 

understanding of the nature of the copper centres and their influence on the spectrochemical 

properties, on NiR activity as weil as on the protein conformation will definitely increase 

with the involvement of protein engineering. The replacement of key residues involved in 

copper-binding or in the subunit interface of the trimeric enzyme (even in a region remote 

from the active site) are expected to reveal substantial insights in specific molecular 

interactions, a question which is central to molecular biology. 

The self-organization of living matter in the form of complex macromolecular assernblies is 

unique in the physical world. Like the metal transfer mechanism correlated with the 

transferrin-receptor interaction, electron transfer reactions are ubiquitous in biological 

processes and are therefore subject of intense interest. The reduction of nitrite by the 

copper-containing NiRs requires small blue copper proteins as electron donors [39]. The 

structure of several of these donors have been solved crystallographically [34]. Thus, 

structural information on the complex formation will be necessary to understand the role of 

protein-protein interaction in the elementary electron transfer pathways. 

Interestingly, the tight trimeric complex, the existence of ß-barrel domains and the 

specific solvent channel which contains the active sites, evidently imply remarkable 

similarities between NiR and the porins, proteins in the bacterial outer membranes [53]. In 

parallel, structural analogues are established for the transferrins: Despite little sequence 

homology to the transferrins, the bacterial periplasmatic binding proteins (including 

proteins specific for phosphate and sulphate binding) reveal a striking similarity regarding 

domain structure, polypeptide chain folding and conformational flexibility due to substrate 

binding [154, 155]. Furthermore the recent crystal structure determination of a key enzyme 

in the heme pathway also yielded a close structural resemblance with a single lobe of 

transferrin [156]. These examples soggest that similar structural motifs are exploited by 

nature in carrying out very different biological functions. It is the main target of present-day 

. molecular biology to fit together the pieces of this tremendous puzzle. Certainly, it needs 

the combination of different interdisciplinary techniques and cooperative efforts. The 

impacts on biotechnology and medicine won't be long to wait for. 
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It should be obvious from the work presented in this thesis, that the technique of solution X­

ray scattering can certainly provide valuable and immediate information on the overal size 

and conformation of single molecules or complexes under 'physiological' conditions. 

Model-building studies are a necessity for interpreting solution scattering data. 

Crystallographic structure information of protein subunits and related, homologous 

proteins, are a prerequisite for unambigous structure determination in solution. Fortunately, 

such an information has been available for the proteins studied in this work. On the other 

hand, the biological functions are evident only with proteins in solution, outside the crystal 

lattice. In solution they have enhanced degrees of flexibility not apparent in the crystal 

structures and applies especially to multi-domain proteins. Therefore the identity of crystal 

and solution conformation must not be taken for granted. For instance, the metal-free 

conformation of apo-lactoferrin in the crystalline state and in solution revealed that the C­

lobe is held in a specific orientation owing to interactions with neighbouring molecules in 

the crystal. Specific aspects of the crystallization conditions (e.g. pH, sample and salt 

concentration) may also affect local features of the conformation. 

Nevertheless, the final optimal answer to structures of biological systems on atomic 

scale cannot be provided by solution scattering only bot has to await results from high­

resolution techniques such as X-ray crystallography or NMR. Moreover, electron 

microscopy is another technique capable of diagnosing overal molecular conformations. 

The chances of finding the right shape of a biological molecule are usually higher than for 

solution scattering since real space information is directly obtainable. Thus, one may ask, 

why do we need solution X-ray scattering? The following brief remarks will deal with this 

question and present some promising as well as critical aspects regarding solution X-ray 

scattering applied to biological systems: 

• Allliquid related problems (disordered systems) can be studied, i.e. experiments can be 

performed under approximate physiological conditions. It is important that the sample is 

highly purified and a biochemical characterization has been performed prior to the 

scattering studies. 

• Waterand its interactions with the protein plays a crucial role in the functioning of living 

systems, thus an understanding of protein hydration is of particular interest. The 

hydration layer has features which are quite different from bulk solvent. Only a 

technique that can be applied in hydrous solution will be able to provide reliable answers 

with respect to structural changes dependent on e.g. temperature, salt concentration or 

pHvalue. 

• Unfolding and refolding of proteins are processes which can only be studied in solution. 

By destroying the native state of a molecule (e.g. by extreme temperature or pH 

conditions), one hopes to obtain insights into the self-reorganization and possibly into 
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the folding mechanism of proteins. It is true that denaturation does not force the 

polypeptide into a random coil, on the contrary, there is some residual conformation. The 

information about such a system is still meagre. 

• Solution scattering offers clear advantages for systems where time resolution is essential 

(in particular the transient processes of biological systems such as enzyme reactions or 

the growth and differentiation of cellular components). This favourable factor has 

become very useful with the availability of intense synchrotron radiation sources: Time­

resolved scattering experiments with millisecond resolution are possible. In view of 

advances in technology (the third generation of synchrotron radiation sources with high 

flux and brilliance is being built), the time required for measurements will be even 

shortened significantly and processes in the sub msec region may be observable. 

• Crystallographic structures can be tested and used as propositions for solution structures 

('structural checking'). In addition, in the absence of crystal structures, a computer model 

on the basis of homologaus proteins can be used to interpret experimental results which 

will test it or differentiate between a nurober of competing models. However, the 

determination of the radius of gyration and maximum dimension of a molecule is not 

sufficient for an unambigous interpretation of experimental scattering profiles. The 

recording of scattering data up to medium resolution (10-20A) is a crucial condition. 

• The theoretical approach of molecular modelling based upon empirical force fields still 

needs further work before applying to more complicated systems. An optimal parameter 

set for general use in biomolecular simulations certainly requires the analysis of an 

increasing rate of experimental information in order to test predicted models which e.g. 

deal with overall conformations, hinge-bending mechanisms or intermolecular processes. 

An unwritten law of solution X-ray scattering says: "Never do anything that 

crystallographers or electron microscopists can do better". Solution X-ray scattering results 

will certainly become obsolete one time when high-resolution structures will be available. 

Nevertheless, the results presented point out clearly that this method is a useful and unique 

tool for providing detailed insight into the conformation of proteins in solution. It offers a 

variety of opportunities, which can contribute to the understanding of the structure-function 

relationship of biological molecules. An improvement on the experimental side will be the 

availability of highly intense and collimated X-rays from a new generation of synchrotron 

radiation sources along with elaborate data acquisition systems. Of course, being a low to 

medium resolution technique, its usefulness can only bear fruit on the basis of atomic 

coordinates as 'starting' data taken from X-ray crystallography and sophisticated molecular 

modelling procedures. 
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Appendix A : Theoretical Concept of Molecular Model-BuHding 

Proteins play a crucial role in all living systems. Knowledge of the three-dimensional 

structure of a protein is a pre-requisite to understanding its physical, chemical and 

biological properties. The number of different proteins in a human being is estimated to be 

of the order of 1Q5 to 106. Although it is expected that by the year 2000 about 10 000 

macromolecular models will have been experimentally determined, the ability to predict 

models based on known structures is gaining recognition and is likely to become an integral 

part of molecular biology. 

The building units of proteins are arnino acids, 20 in number, joined together to form the 

long molecular chains, known as polypeptides (see figure A.1). The polypeptidebackhone 

consists of a repeated sequence of three atoms: the amide N, the alpha carbon Ca and the 

carbonyl C. The numbering of the amino acid residues starts fom the aminoend (the N­

terminal). Moreover, globular proteins frequently contain so-called prosthetic groups such 

as metal ions or heme moities (iron-protoporphyrin complexes) and their biological 

functions include interactions with one or more small molecules (ligands, substrates, 

hormones) or another macromolecule. 

N-terminal C-terminal 

H 

residue1 residue 2 residue 3 

Figure A.l: 
Primary structure of a protein illustrating a portion of a polypeptide chain which begins 
with the a-amino group or N-terminal end and proceeds to the C-terminal end carrying a 
carboxyl group. At pH 7 the a-amino group is protonated and the carboxyl is deprotonated. 
Bach amino acid residue contributes a group to the main polypeptide chain (the N-Ca-C 
backhone) and possesses a characteristic side chain R that differs for each of the 20 amino 
acids. In principle, rotation may occur about any of the three bonds of the polypeptide 
backbone. However, since almost no rotation is possible about the peptide bond (all atoms 
in the marked box lie in the same plane) the polypeptide configuration is determined by the 
torsional angles 'I' and <p (indicated for amino acid residue 2) which are significantly 
affected by the nonbonded interactions of the side chains R. 
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The basic concept of molecular model-building isthat a molecule or a group of molecules 

assumes a given structure due to the interaction of forces upon it. lf these forces are allowed 

to assume their lowest possible values the most stable and lowest energy structure will 

ensue. In view of the large number of atoms constituting biological molecules only 

numerical methods can help to solve quantitative structural models. Due to the n2-

dependence of the degrees of freedom17, which have tobe optimized, the computation or 

CPU time increases strongly with larger molecules. However, the planar configuration of 

the peptide bond allows an enormous reduction in the number of variables necessary for a 

complete description of a protein molecule. Even though the force fields for molecular 

mechanics of extremely large molecules such as proteins and nucleic acids have to be 

simple as well as consistent with known experimental observations. 

Statical (e.g. energy minimization) as well as dynamical calculations (e.g. motions or 

interactions) for a macromolecule are performed by means of force field and potential 

energy functions. Since it is impracticable to obtain such functions by the methods of 

quantum chemistry, the empirical energy function to model macromolecular systems is 

typically of the form (an extensive treatment is given in the descriptions of macromolecular 

modelling prograrnmes such as AMBER [157], CHARMM [158] and GROMOS [159]) 

E = I, kb(b- bo)2 + I, k0 ( e- 80)
2 

bonds angles 

+ I, kq,[1+cos(n<P-o)] + I, km(m-m0 )
2 

dihedra/s impropers 

+ I, 4e - - -[( (J)12 ( (J)6] 
nonbonded pairs r r 

The frrst two terms represent the contribution from bond and angle deformations. The use 

of harmonic potentials is justified in most cases owing to ordinary temperatures and the 

absence of chemical reactions. The natural bond lengths and bond angles are given by bo 
and Oo, respectively, and kb and ko are the force constants for bond Stretching and angle 

bending. Along with the frrst two terms the third and fourth term belong to the intemal 

energy terms (resulting from bonded interactions) and describe energy contributions from 

torsion (dihedral angle) and chirality or planarity (improper torsion angle). These four .. atom 

based terms are defined according to figure A.2, their associated force constants (energy 

barriers) are kq, and km. The quantity mo is the reference value for improper torsions, 

whereas o is the dihedral reference angle (phase angle) and n is a dimensionless rotational 

1? Each non-linearily arranged molecule consisting of m atoms possesses 3m-6 intemal degrees of freedom. 
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Figure A.2: 
Definition of the dihed.ral angle cj> and 
the improper torsion angle ro. 

symmetry factor. Typical values for n are 2 and 3; for instance, two energy minima occur 

for n = 2 (corresponding to a sp2 bond), and there are three energy minima in the case n = 3 

(sp3 bond). 

The terms five and six make up the nonbonded interactions, hence the summations exclude 

interactions between bonded atomsandalso between atoms included in angle bending and 

in torsional terms. A potential function, that is frequently used in computer simulation 

studies, is the Lennard-Jones potential (fifth term) representing an approximation for the 

van der Waals energy. In this function the attractive force is proportional to r -6, while the 

repulsive force varies as r -l2. e gives the depth of the potential weil and a is the value of 

r for which the potential is zero. The van der W aals interaction is very small at long range 

and a saving in computational time can be achieved by neglecting the interaction for values 

of r greater than a cut-off value (about 9A). Coulombic interactions between partial charges 

on atoms in the molecule are given by the sixth term. Because of the need to Iimit the 

number of pair interactions, different schemes for truncating the electrostatic potential are 

used. These are primarily linked with the use of the dielectric constant D, which actually 

describes a bulk phenomenon. Although it has no real meaning when applied to the scale of 

individual atoms, the nature of buried amino acids in proteins suggest that proteins have an 

internal dielectric constant D of the order of 1 to 5 [160]. However, a value different from 

unity is often used to allow for the dielectric behaviour of a system in which the solvent is 

not explicitly included. A distance-dependent D (e.g. 1/r is in wide-spead use) 

approximates solvent screening and polarization effects, however, there is no physical 

justification for this. 

Contributions due to hydrogen bonding have been omitted in the above potential function. 

The effect of hydrogen bonds can be taken implicitly into account by appropriate 

parametrization of the partial charges and the van der Waals parameters. Nevertheless, a 

representation of an explicit hydrogen bonding term is advantageous for sturlies of H-bond 

network formation and protein-solvent interactions. Furthermore, in modelling sturlies the 

contribution from disulphide bridges plays a11 important role. Representing a crucial 
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conformational constraint, the connection between the sulphurs of two cysteine residues 

known to form a covalent bond, is usually incorporated in advance and treated as bonded 

interaction. 

The parameters used in this potential energy function have been frrst determined by the 

consistent force field method ofLifson and coworkers [161-163] which includes allrelevant 

and available experimental data (e.g. crystal structure parameters, vibrational and infrared 

spectra) of whole families of simple organic molecules. Extensive optimization [164-167] 

has been carried out in order to find the best agreement between calculated and 

experimental data. Nevertheless, the nonbonded parameters are the least wen defined and 

the most empirical in nature. These values have been derived mainly from crystal packing 

properties including sublimation energy as wen as from computer simulations of liquids and 

fit to quantum mechanical calculations to derive protein-atom partial charges. Thus an 

optimal parameter set for general use and advanced modelling approaches in biomolecular 

simulations requires the analysis of moreexperimental information. In addition, one has to 

keep in mind, the more accurate a parameter set the Ionger the calculation takes and the 

smaller the number of atoms that can be accomodated by the programme. For this reason 

the development of powerful computing machines contributes substantially to the progress 

of such theoretical studies. 
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Appendix B : Energy Minimization and Hydration 

Most of the functional properties of proteins are only evident in solution, outside the crystal 

lattice. It is necessary to describe their properties under these conditions. Thus, interactions 

between the protein and the hydration shell contribute considerably to the energy of such a 

system. The protein determines the structure of the water up to a certain distance from the 

protein 'surface' and the water influences the protein dynamics. A common approach to 

protein energetics uses theoretically based potential functions with terms such as bond and 

angle distortion energies, electrostatic energy and van der W aals energy (see Appendix A). 

However, the explicit simulation of water presents additional challenges, in part because 

water interacts with proteins through electrostatic and van der Waals as well as 

hydrophobic18 forces andin part because the structure of water is less weil understood than 

the structure of proteins. 

For modelling studies on biological macromolecules, it is of importance to consider also the 

solvent contribution. Unfortunately, X-ray diffraction experiments do not always reveal all 

the positions of protein-bound water molecules. Here, the solvent structure must be 

generated, completed or approximated by computational techniques. Due to the limited 

resolution of solution X-ray scattering, approaches of protein solvation have been proposed 

either by putting the dry molecule into a grid of water molecules [72] or by rescaling the 

crystal coordinates with a factor which approximates a hydrated model [ 169]. The method 

reported here, presents an approach based upon energy minimization to generate a hydration 

shell around a protein structure. Parts of this water shell will be included in the scattering 

pattern simulation in order to interpret and improve the fit to the solution X-ray scattering 

data. Fora macromolecular system, however, it is frequently impossible to determine the 

global energy minimum. The minimization of the total energy yields a local minimum of 

the energy surface, i.e. generally a minimum in the neighbourhood of the model structure is 

examined. Thus, the purpose of the minimization was to provide an energetically reasonable 

structure including a sufficient amount of water molecules, which represent the first 

hydration layer19 around the protein's surface. Furthermore, the minimization does not 

allow for large-scale or global changes, but rather optimizes the local structure where the 

protein had been modelled. The absolute value of the total energy is not meaningful. Here, 

only the models of the N-lobe of rabbit serum transferrin (RST/2N) in the crystallographic 

closed and in a modelled open state as well as the trimeric crystal structure of nitrite 

reductase (AcNiR) have been investigated. 

18 The hydrophobic intemction results from the orderlog of water molecules around non-polar atoms of a 
protein (e.g. pentagonal rings of water have been found in various high-resolution crystal structures of 
small proteins [168]). 

19 Although being labile the water molecules betonging to this first hydmtion shell can occupy the sarne sites 
on a protein surface repeatedly [170]. These would be the sites expected tobe seen in a X-ray experimenL 
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B.l Computational procedure 

The programme used in the present calculation was X-PLOR by A.T. Brünger (Version 3.0, 

Yale University, New Haven, CT, USA), a comprehensive programme for simulations and 

structural refinement of macromolecules. It has been implemented on a CONVEX computer 

system. X-PLOR has evolved from the CHARMM programme [158] and has therefore 

similar parameter and topology data structures as well as potential energy fu'nctions. An 

explicit hydrogen bond term completes the energy function given in Appendix A. Prior to 

any energy minimization, the positions of all hydrogen atoms which are needed for the 

force fields were generated. Finally, the structural models of transferrin and nitrite reductase 

were surrounded by solvent water using the programme BIOGRAF (Version 2.0, Biodesign 

Inc., CA, USA) running on a Stardent TITAN graphics workstation. Since the location and 

orientation of these water molecules (they have been placed on a diamond shaped grid) 

were still arbitrary, the deterrnination of an optimal structure was attained by the following 

energy minimization procedure. 

All calculations using X-PLOR were performed with the parameter set 'parmallh3x', 

extended by the parameters for the three site water model TIP3P [171]. Forthis water­

protein system, a dielectric constant D of 1 was used. The method of conjugate gradients 

according to the algorithm of Powell [172] was employed for all energy minimization 

calculations. The most time consuming portion of the minirnization is the calculation of the 

long range non-bonded and hydrogen bond interactions. Therefore, distance cutoffs are 

used to reduce the nurober of terms. However, simply cutting the non-bonded interactions 

off at a given distance Ieads to discontinuities in the energy and its derivatives. Thus, a so­

called switching function (starting at 8 A and reaching zero at 10 A) was introduced in 

order to smoothly turn off the interactions and guarantees the mitigation of the 

discontinuities. 

Enough water molecules were included to approximate solution. The water/vacuum 

interface was shifted up to a reasonable distance from the protein surface (7 A to 10 A) in 

order to eliminate energy discontinuities with respect to the first hydration layer. Thus, 

instead of using a convergence Iimit for the gradient of the total energy, the rninirnization 

calculation was considered to be converged when the nurober of water molecules within the 

first hydrationshell remained stable (see figure B.1). The convergence was checked after 

every 1 ()()th minimization step. 

Throughout the energy rninirnization the atoms of the metal binding sites (i.e. metal 

ion and atoms of the protein ligands) were kept fixed20. In addition, as soon as the protein 

started to shrink (noticeable by a decrease of the radius of gyration) the backhone atoms of 

the protein were also constrained to their positions. Thus, despite the large nurober of atoms 

20 No standard force fields for modelling metalloproteins are yet available. Even though several force fields 
for metal ions have been developed, there is the fundamental problern that they can be used only for 
certain sets of ligands and for a well specified stereochemistry of the binding sites. 
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Table B.l : Parameters of the energy minimization procedure for the three protein molecules 

thickness of 
molecule complete No. ofwater 

molecules water shell 

RST/2N (closed) 10.5A 3485 

RST/2N (open) 7.oA 1925 

AcNiR 7.5A 2807 

400 

350 

"' 300 0 
"3 
~ 250 -0 s 
!l 200 
t'l 
Cl: 150 ..... 
0 

0 100 z 
50 

No. of energy minimization steps 

total No. 
of atoms 

15626 

10943 

23670 

No. ofwater endof 
used molecules in frrst mini-
CPU hydration shell mizatio 

(start/end) n time 
(steps) 

90/300 2300 lOh 

110/350 1800 8h 

45onoo 1500 14 h 

Figure B.l: 
Integrated fractions of 
water molecules for 
distances between 2. 7 A 
and 3.2A from the 
protein surface of the 
iron-loaded N-lobe of 
rabbit serum transferrin 
evolving during the 
minimization procedure. 
The used convergence 
criterium required that 
the amount of water 
within about 3.0A from 
the protein surface came 
to a saturation. 

the computational efforts could be reduced. Some properties of the investigated structures 

are compiled in table B.l. 

B.2 Effect of protein on water 

The formation of hydration shells is clearly shown in figure B.2. Only the results for the 

closed, iron-loaded N-lobe of rabbit serum transferrin are presented. Similar results have 

been obtained for the other two structures, which are therefore not shown. The dramatic 

effect of the protein on the dustering of water molecules within 3 A from the protein 

surface (i.e. the frrst hydration shell) indicates that the simulation is realistic. It is also 

supported by the fact that the inclusion of this solvent contribution for calculating the 

theoretical X-ray scattering profiles improves significantly the fit to experimental data (see 

Chapter 6). Moreover, the amount of water within the frrst hydration shell agrees well with 

the number expected (as a rule of thumb, about one water molecule per amino acid residue 

mak:e up the closely bound solvent molecules). 
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Figure B.2: 
Distance distributions of water molecules from the surface of the iron-loaded N­
lobe of rabbit serum transferrin dependent on the course of energy rninimization. 
The distance is defined as the distance from a water oxygen to the closest non­
hydrogen atom of the protein. The amount of water molecules within the 
pronounced frrst hydration shell are a decisive factor in the structural composition 
and functional properties of a protein. 

Although the inclusion of water molecules is able to improve the simulation of solution X­

ray scattering profiles, this energy rninimization procedure for approximating a solvent shell 

around a protein cannot yet be considered accurate. On one band, there is no optimal 

parameter set for general use in molecular mechanics calculations and, on the other band, 

not only water but also salt molecules and other ions (as weil as carbohydrates in the case of 

glycoproteins) will contribute to the close environment of biological macromolecules in 

solution. Nevertheless, the lirnited resolution of solution X-ray scattering experiments does 

not require such an accuracy and the results presented here, indicate the importance of the 

frrst hydration layer as an additional contribution needed for the interpretation of X-ray 

scattering data. 

A suggestion for further studies would be the comparison of the location of water molecules 

which have been simulated with those which rnight be found in a crystal structure refined to 

an even higher resolution. This method has been already used in the case of small proteins 

in order to improve simulations and also to refine crystallographic structures. 
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