THIS PAPER APPEARED IN: FRONTIERS’92: THE FOURTH SYMPOSIUM ON THE FRONTIERS OF MASSIVELY

PARALLEL, COMPUTATION, PAGES 178-185, McLEAN, VIRGINIA, OCTOBER 19-21, 1992

Automatic Data Distribution for Nearest Neighbor Networks

Michael Philippsen
Universitat Karlsruhe
D-7500 Karlsruhe, F.R.G.
phlipp@ira.uka.de

Abstract

An algorithm for mapping an arbitrary, multidimen-
sional array onto an arbitrarily shaped multidimen-
sional nearest neighbor network of a distributed mem-
ory machine is presented. The individual dimensions
of the array are labeled with high-level usage descrip-
tors that can either be provided by the programmer or
can be derived by sophisticated static compiler analy-
Sis.

The presented algorithm achieves an appropriate
exploitation of nearest neighbor communication and
allows for efficient address calculations.

We describe the integration of this technique into
an optimizing compiler for Modula-2* and derive ex-
tensions that render efficient translation of nested par-
allelism possible and provide some support for thread
scheduling.

1 Introduction

An important problem facing numerous projects on
distributed memory machines is that of distributing
array data over the available processors. There is
widespread agreement about the two goals of data dis-
tribution: (1) Data locality. All data elements should
be stored local to a processor that executes some state-
ments upon it, reducing the amount of communication
and resulting in minimal run-time. (2) Parallelism.
Perfect data locality and the minimal communication
cost are achieved by employing only a single processor.
In general, however, the run-time can be improved by
exploiting the full degree of parallelism provided by
the hardware. An appropriate trade-off between the
conflicting goals of data locality and parallelism must
be found.

Whereas the goals are agreed upon, totally differ-
ent approaches to reach them have been developed.
In many programming languages the user must pro-
gram the data layout explicitly. Some languages re-

quire an explicit mapping of the data onto the topol-
ogy [19, 20, 12, 16, 2], others are more abstract and
provide either sets of directives for the compiler or in-
teractive or knowledge-based environments that help
determine alignment of array dimensions and mapping
functions [4, 13, 10, 18, 1, 14, 3]. Even a data distri-
bution language has been developed for this purpose
[7]. Recent work [8, 9, 5, 17, 11] focuses on static
compile-time analysis to automatically find data de-
composition that achieves both goals.

The approaches based on directives and on auto-
matic decomposition often use a high-level interme-
diate representation where transformations are done:
dimensions of different arrays are grouped together,
super-arrays and corresponding index transfer func-
tions are derived, usage patterns are exploited, etc.
After this complex compiler phase the resulting data
structures which can again be understood as arrays,
are straightforwardly mapped onto the available pro-
cessors of the hardware.

However, we feel that the mapping of the (result-
ing) arrays onto the topology could be improved to
reach the following goals: (3) Exploit fast communi-
cation patterns if there is special hardware support
for a particular communication pattern. (4) Simple
address calculations. The computation of processor
numbers and addresses of data elements must be fast.
Otherwise, evaluation of complex expressions easily
consumes too much computational power.

Therefore, we present an algorithm for mapping an
arbitrary, multidimensional array onto an arbitrarily
shaped multidimensional nearest neighbor network of
a distributed memory machine.

After a short introduction of nearest neighbor net-
works and the notation we use, we identify some allo-
cators that are commonly used. In the fourth section
we present our strategy for determining the data dis-
tribution. The strategy consists of several steps each
of which is based on the available information and
refines the distribution function. In the last two sec-
tions, we describe the integration of this technique into

an optimizing compiler for Modula-2*, and derive ex-
tensions that render efficient translation of nested par-
allelism possible and provide some support for thread
scheduling.

2 k-Coordinate n-dimensional Nearest
Neighbor Networks

In a k-coordinate n-dimensional neighbor network k-
NN,,, each processor is connected to two neighbors in
each of the n dimensions. In other words, each node
participates in n different NN; subnetworks, one per
dimension. The number of processors in each of these
dimensions is given by k = (k1, k2, ..., k,). In a NN,
the degree of each node is 2n.

Some NN, have been used successfully in parallel
machines and, thus, have received special names. For
example, a k-NN,, with k& = (2,2,...,2) is called a
hypercube. A two- or three-dimensional processor grid
is a NNy or a NNg3, resp. For our purposes, it does not
matter whether a given k-NN,, is a hypertorus, where
the NN; subnetworks are rings, or a hypermesh, where
they are linear arrays. We restrict our considerations
to k-NN,, with dimensions that are powers of two, i.e.,
there exist k; such that k; = 2% for all 1 < ¢ < n.

The number of bits that are necessary to encode
the address of a node along dimension i is given by ;.
Along a dimension the nodes are numbered continu-
ously. The complete address of a node in the network
needs Y ., ; bits. It is constructed by concatenating
the address segments of length «;. Bits are numbered
as follows

n—1 n
0,1,...,/11—1,/11,...,/114—/12—1,...,E Hi,...,g Ky — 1
=1 =1

=1 K2

Kn

From the address of a given node the address of a
neighboring node along dimension ¢ can be derived by
incrementing or decrementing the according segment
of k; bits (ki—1,ki—1+ 1,...,k; — 1), i.e., by adding
+1.2%-1. We define kg = 0 for notational conve-
nience.

3 Array Allocation

By studying several approaches for explicit declaration
of layout patterns [19, 20,12, 16,22, 1,14, 4, 13, 18, 10,
21] and for intermediate representation of allocation
information in modern compilers [8, 9, 5, 17, 11, 15],

we realized that a set of three machine-independent
types of distribution information is used most often.
Consider a m-dimensional array. Each of the di-
mensions can be labeled with either spread, cycle,
or local. These hints for data distribution are either
derived from the explicit specification by the user or
they are a result of compiler analysis of reference pat-
terns. The semantics of these hints are as follows:

e spread: Dimensions that are attributed spread
are divided into segments, one for each of the
available processors. A vector with [elements is
assigned to P processors by allocating a segment
of length [{/P] to each processor. While utilizing
all available processors, 1t minimizes the cost of
nearest-neighbor communication.

e cycle: Dimensions labeled with cycle are dis-
tributed in a round-robin fashion over the avail-
able processors. In contrast to spread, cycle
maximizes the cost of nearest-neighbor commu-
nication: neighboring array elements are always
in different processors, leading to better proces-
sor utilization if a parallel algorithm operates on
subsegments of a vector at a time.

e If either spread or cycle apply to several dimen-
sions, the distribution of the data on the proces-
sors must try to generalize the above communica-
tion behavior and requirements for potential par-
allelism for all these dimensions.

e local: Array elements whose indices differ only
in a dimension that is labeled local are associat-
ed with the same processor. This facility 1s used
to avoid distribution of data in a given dimen-
sion. By “unrolling” all given local dimensions
into one pseudo-dimension with a length that is
the product of the lengths of the individual di-
mensions only one single local dimension must
be considered.

We focus our considerations on an array with m di-
mensions. The vector { = (I1,l2,...,Ly) denotes the
number of elements in each of the dimensions. We as-
sume that the dimensions are rounded up to the next
power of two, i.e., there exist A; such that [; = 2% for
all 1 <7 <m.

The number of bits that are necessary to encode
the subscript of one dimension j is given by A;. In to-
tal, Z;n:l A; bits are required to encode all subscripts.
Without loss of generality we consider the dimensions
of the array to be sorted such that the following label-

ing holds:

1 ...s spread
j=<¢ s+1...c cycle
c+1...m local

Note that replication and other distribution patterns,
e.g. wrapped(k), are reducible to the allocators given
above, by adding additional address bits or by simply
splitting the original array address in two segments.

4 Data Distribution

To distribute array data we present a mapping func-
tion that operates in four major steps. Mapping is
based on bit representations of the addresses of da-
ta elements in a virtual address space. First, we de-
cide how many bits of this virtual address space are
mapped onto both the processor address and the local
address. Second, we allot the limited number of bits in
the processor address to dimensions of a given array.
Third, we fulfill the intention of spread and cycle by
deciding which of the address bits of the dimensions
will go into the processor address. Finally, the bits in
the processor address are reshuffled to align spread di-
mensions with axes in the network to support efficient
nearest neighbor communication.

1. Processor Bits and Local Bits

The Z;nzl A; address bits that are necessary to encode
the offset of the array elements must be mapped onto
a real topology. Therefore, the virtual address is split
into two parts on distributed memory machines:

e the number of bits used for the processor address:
n c
b, = min(z K, Zx\j)
=1 ji=1

e the number of bits used for the local part of the
address, referring memory cells in the local mem-
ory of the processors:

m n
SN = Yk otherwise
ji=1 i=1

In this paper we deal with the general case, where
there are fewer processor bits available than are re-

quired in total by all spread and cycle dimensions.

Therefore, the processor fraction of the address of a
data element consists of b, = 2?21 x; bits and the lo-
cal fraction consists of the remaining b; = Z;n:l Aj—bp
bits.

2. Allotting of Processor Bits

In step 1, we have determined how many of the bits
that are required to address all array elements are im-
plemented by the node number and how many are
mapped to addresses in the local memory of the nodes.
In step 2, we allot the available number of processor
bits to individual dimensions of the array, i.e., given
the number of bits that are necessary to encode a sub-
script in a particular dimension, we decide now how
many thereof are mapped onto the processor address.

For each dimension j we find numbers p; € IV and
¢; € IN with A; = p; + ¢;. Let p; denote the num-
ber of bits that are mapped onto bits of the processor
address. The number of local bits is denoted by g¢;.

We propose a distribution that reflects the relation
of the number of elements in individual dimensions,
i.e., a dimension that has twice the number of ele-
ments than another dimension, should receive a twice
as many processor bits. One can think of other al-
lotting schemes, e.g., a simple even distribution solely
based on the number of dimensions or an allotment
driven by weights that are based on detailed program
analysis. For simplicity, however, we favor the follow-
ing distribution:

min(};, —2—-b,) if 1<j<c
p]: =1

0 if c+1<jij<m
The number of local bits ¢; for a dimension 1 < j <m
is thus ¢; = A; — p;. Work on comparing different al-
lotting schemes and on deriving allotting information
from programs is in progress.

3. Semantics of spread and cycle

Although for the address in each dimension the num-
ber of bits that end up in the processor address or in
the local fraction of the address have been determined,
it 1s still unclear to which group each particular bit be-
longs if both p; and ¢; are non-zero.

The selection is based on the semantics of spread
and cycle:

e spread: by assigning the first p; bits of the coor-
dinate address to the processor bits, the semantics

of spread is fulfilled: neighboring data elements
whose addresses differ only in the lowest bits re-
side in the same processor.

e cycle: for cyclic dimensions, the processor bits
are assigned from the rear. Thus, neighboring
data elements end up in different processors.

For example consider the data distribution for an ar-
ray with one dimension (length {; = 32,768) on a ma-
chine with 4k processors, i.e., a 4k-NN;. Although
A1 = 15 bits are required to represent the address of
an array element, only k1 = 12 = py bits of processor
number are available.

hsb SPREAD Isb
ALTTTTITITT I T IT]
processor number local
address
hsb CYCLE Isb
ALTTITITTTITITTITITITIT]
fdcgr'ess processor number

The figure shows the selection of those p; bits of the
address that end up in the processor address (shaded)
in case of both a spread and a cycle labeling of the
dimension.

Assume a subscript vector (21, #2, ..., &y). For the
local address, each dimension with ¢; # 0 contributes
q; bits. These bits are concatenated, i.e., shifted ac-
cording to the sum of all ¢, of earlier dimensions and
added together. For spread dimensions, the last ¢;
bits of z; are extracted by computing z; mod 2%/, The
first q; bits of a subscript z; in a cycle dimensions
are derived by z; div 2P4:

m JZ_: 9
localAdr = Z x§ - Qe=1
ji=1

z;mod 2% if je{l...s}
z; div2rs if je{s+1...c}
f jef{e+1l...m}

Analogously, the preliminary processor address is de-
rived. Here the div and mod operations are exchanged
since for spread dimensions the first (div 2%) and for
cycle dimensions the last (mod 2P9) bits must be ex-
tracted.

with xé =

—

Ly

-1
m > P
prelimProcessorNo = Z x}/ - 2e=1
ji=1

z; div2s if je{l...s}
z;mod2Pi if je{s+1...c}
z; if jef{e+1...m}

with x}/ =

Note that these address computations can be done by
masking and shifting, i.e., by bit operations that can
efficiently be executed on virtually all computers.

4. Network Topology

Although a preliminary processor address has been
determined in step 3, this mapping does not use the
topology of the network. Due to the semantics of
spread, it is desirable to exploit as many of the n near-
est neighbor links provided by a NN,, as possible for
mapping of spread dimensions. This can be achieved
by mapping the p; bits of a spread dimension onto
a segment of the processor address that represents a
NN; subnetwork. Therefore, the p; bits ideally should
start at bit position 0, k1, ..., or Ky—_1.

Step 4 gives a permutation for the bits in the pre-
liminary processor address. This permutation results
in an ordering such that the least significant bits rep-
resenting spread dimensions are aligned with those
processor bits that correspond to axes of the network.
We present the permutation by means of an example
before it is given formally.

We assume that the spread dimensions of the given
array are sorted so that their relative sizes conform to
the relative sizes of the dimensions of the underlying
network.

Consider a (2*28 2°)-NN3 and an array with p =
(2,7,5,3) and s = 3, ¢ = 4, i.e., 2 bits of the first
dimension, 7 bits of the second dimension, 5 bits of
third dimension, and 3 bits of the fourth dimension
mapped onto the processor address. The first three
dimensions (s = 3) are labeled with spread. (The
dimensions may have ¢; # 0, but we do not consider
the local part of the address in this example.) The
bits in the fourth dimension are not relevant to step 4
since cycle dimensions do not need neighbor links.

The mapping after step 3 and before considering
the topology of the network is:

1211109 8|7|6|5|4 3|2E@

bits dim 1

bits dimension 3 bits dimension 2

In general, the bits belonging to a spread dimension
are not aligned with axes of the given NN3. To achieve
alignment, processor address bits must be permuted.

The first dimension of the array is already aligned
with bit position 0 of the processor address. Formally,

we apply the (identical) permutation

0 1

0 1
The second dimension of the array (shaded above) is
not aligned with the bits representing the second axis

of the network. This can be achieved by shifting the
address left by 2 positions.

2 3 4 5 6 7 8|9 10

4 5 6 7 8 9 10|12 3
The first seven entries in the permutation implement
the shift of the bits that belong to the second dimen-
sion of the array to the desired position (4 — 10). The

last two entries move those bits that are overwritten
by the shift to the released positions.

12[11

212 o]
IlO

16151412H|8 7(6|5]4(3]|2 1919 110
[26] 15]14]

bits dim 1

bits dimension 3 bits dimension 2

The final permutation aligns the third dimension
(shaded above) with the third axis of the network.
Note that due to previous permutations, bits that be-
long to the third dimension are in various positions of
the processor address. Therefore, the results of previ-
ous permutations on earlier dimensions must be pre-
served. Since five bits fit into the third segment of the
processor address all five bits (9 — 13) must be moved.
In this example, three target positions must be cleared
by moving the occupying bits away.

7(9) w(10) 11 12 13| 14 15 16
=2 =3

14 15 16 | 7(9) =(10) 11
=2 =3

57 [6 5 [2 3|2t i]0]

H

68|7|6|5|4|3|2 151/|1|o|

bits dimension 3 bits dimension 2 bits dim 1

We now present the permutation formally. Let the bits
in the processor address be numbered from 0 to b, — 1.
Then the following permutation must be applied 1 <
p# < min(n, s) times, i.e., for each spread dimensions
the permutation is applied as long as the number of
axes is sufficient. Initially, #(¢) = ¢ holds.

p=1 p—1
]+ZHV if ZZW(]‘l‘ZPu)
v=1 v=1

A 0< 7 <min(py,ku)

n—1 n—1
(¢ + min(py, £u)) if Z Ky <1< Z Py
v=1 v=1

n—1
m(t —min(py, £u)) if Z pr <1 —min(py, K
=1
v et
A t—min(pu, ru) < Z Ay
v=1
7 otherwise

The first of the above cases maps the appropriate num-
ber of the bits belonging to dimension u to their tar-
get positions. Cases 2 and 3 clean target positions by
moving the occupying bits away.

Note that again these address computations can be
done by simple bit operations. After the permutation
is applied, a sequence of bits that originally belong
to a single array dimension might run accros sever-
al network dimensions in the processor address, espe-
cially when mapping low-dimensional arrays on high-
dimensional networks, e.g., on a hypercube. In this
case performance can be improved by gray-coding of
the bit sequence, which is also a fast bit operations.

5 Data Allocation in Modula-2%*

In Modula-2* (complete definition in [21]) there is no
explicit mapping of data elements to processors. Da-
ta layouts are derived automatically by the compiler.
The mechanism is based on (1) directives in the dec-
laration of the arrays that describe the intended use
of individual dimensions of the array on a high level
and (2) on the analysis of run-time constants inside of
forall statements and their use in array subscripts.
In the figure, the general architecture of the opti-
mization phase of our Modula-2* compilers is depict-
ed. The compiler detects redundant synchronization
events by data dependence analysis. The elimination
process is described in more detail in [15, 6]. This
transformation is a prerequisite for an efficient transla-
tion for MIMD machines, where synchronization is ex-
pensive, and it improves machines utilization on SIMD

machines, since larger code sections can be fused into
single virtualization loops.

Data allocation works on a per-procedure basis, i.e.,
only one procedure at a time is analyzed. To separate
machine-independent from machine-dependent parts
of the allocation strategy and to limit the size of the
problem, we split data allocation hierarchically into
two parts.

Modula-2* Program

l

| Elimination of Synchronization Events

'

equivalent Modula-2* Program

|

Data Allocation

inter-forall Heuristic
machine
dependent
cost

functions

intra-forall Heuristic

l

| Virtualization |

l

| Standard Optimization |

Code

The inter-forall heuristic, called Inter considers the
individual forall statements as black boxes. Inside
a given forall, the data distribution is fixed. The
inter-forall heuristic decides whether the actual distri-
bution remains unchanged between successive foralls,
or not. This decision i1s based on the result of the
intra-forall heuristic (Intra} which processes the se-
quence of statements inside a forall founded upon
known distributions of data elements. The questions
are where to compute and to store intermediate re-
sults, and where to handle scalar values (front-end,
single processor, redundancy, etc.). Whereas Inter is
machine-independent, because 1t is based solely on the
cost values determined by Intra, the latter needs to
know about computation costs, the topology of the
network, and the communication costs.

Inter is based on Knobe’s work [8, 9]: we con-
struct a graph of machine-independent alignment pref-
erences, i.e., we decide which dimensions of two arrays
should be aligned to achieve locality of the elements.
Alignment is done by constructing super-arrays and
by providing functions that map the original arrays
onto the super-array. Dimensions of different arrays

that are often used together in general end up in the
same dimension of the super-array. However, often
this graph of alignment preferences contains cycles.
Breaking a cycle is equivalent to redistributing array
data. Often there are different ways to break cycles,
1.e., there are different possible redistributions.

Based on this first phase of alignment, the super-
arrays are distributed on the machine by means of the
mechanism presented in this paper. The distribution
1s a prerequisite for realistic estimation of computation
and communication costs.

6 Thread Scheduling in Modula-2%*

The presented distribution technique can be extend-
ed to allocate processors to threads and to determine
virtualization. Nested parallelism can be handled as
well.

Thread Scheduling

Parallelism in Modula-2* is not limited to simple vec-
tor operations. In a forall all Modula-2* statements
are allowed, e.g., if, while, procedure calls, and nested
foralls. Therefore, it is not sufficient to analyze ar-
ray occurences in a program. Data layout and thread
scheduling can be combined by the technique present-
ed above.

A forall statement creates a number of threads.
Each thread has a run-time constant, to which a
unique value of an enumeration type 1s assigned.
These threads must be distributed to the processes.
Since a thread is identified by its run-time constant,
the array of these run-time constants describes all
threads created by the forall. Thus, by deriving a
data layout for this array, the threads are scheduled.

The analysis of the patterns in which the forall
constant is used results (1) probably in a linear trans-
formation function reflecting offset and stride of the
usage patterns of the run-time constant and (2) prob-
ably in an alignment with a particular array dimension
used inside of the forall, if any.

Consider the following example. We assume that &4
is a 32 - 32 - 32 array, and N = 32.

FORALL i:[1..N] BEGIN
Alc,d,il := 0
END

Program analysis gives us that the run-time index i
which is created by the forall should be aligned with
the third dimension of array A. By applying the data

distribution technique both for the array A and the
array of run-time constants i, we find the following
situation.

For the assignment statement of the example only
2% = 16 of the processors are active, which is indicated
by the shaded fraction of the address bits of 1. The
white fraction determines the size of the virtualization
loops. Since one bit reserved for i ends up in the local
address, each of the active processors must iterate and
perform two assignments. Thus, it is easy to derive
from the allocation of i to which processor the threads
are scheduled and what type of strip mining must be
done.

SPREAD SPREAD SPREAD

AT JEETTT JEETTT
! 1T]
LT PP PP PPyl d]d
processor number local

address

Nested Parallelism

The above concept is neatly extended for both nested
and recursive parallelism, as can be seen from a slight
extension of the previous example:

FORALL i:[1..N] BEGIN
FORALL j:[1..N] BEGIN
Alj,d,i] := 0;
P(...)
END
END

Again, program analysis derives the set of active pro-
cessors and the iteration space for the virtualization
loops.
Consider the call of the procedure P. Assume P it-
self spawns additional parallelism. From the layout of
the run-time constants it is obvious, which processors
must call and virtualize it and which bits of the pro-
cessor address are free to be used for the additional
parallelism. In the example bits 4 to 7 can be used for
scheduling of the additional threads.

Because of control statements (if, while, ...) only
a small fraction of the total number of threads may

SPREAD SPREAD SPREAD

AT BT e
j T T

processor number local
address

be active at a procedure call. Thus, not all the bits of
the processor address assigned to the initial run-time
constants are really required. If the number of active
thread needs fewer bits to be coded, rescheduling these
threads, i.e., redistributing the context stacks enables
a higher degree of parallelism for the called procedure.

7 Conclusion

An important problem facing numerous projects on
distributed memory machines is that of distributing
array data over the available processors. Although
some work has been done on aligning data structures
to reach data locality and a sufficient degree of paral-
lelism, by improving the final mapping of the data to
the processors, hardware supported nearest neighbor
communication can be exploited and address calcula-
tions can be simplified. In this paper we have pre-
sented an algorithm for mapping an arbitrary, mul-
tidimensional array onto an arbitrarily shaped multi-
dimensional nearest neighbor network. This mapping
achieves these goals. It has partly been implemented
in optimizing compilers for a parallel language, and
it supports thread scheduling and the translation of
nested parallelism.

References

[1] American National Standards Institute, Inc.,
Washington, D.C. ANSI, Programming Language
Fortran FErtended (Fortran 90). ANSI X3.198-
1992, 1992.

[2] Ingo Barth, Thomas Briaunl, Stefan Engelhardt,
and Frank Sembach. Parallaxis (vers. 2) us-
er manual. Technical Report 2/91, Universitat
Stuttgart, February 1991.

[3]

[10]

Barbara M. Chapman, Heinz Herbeck, and
Hans P. Zima. Automatic support for data dis-
tribution. In Proc. of the 6th Distributed Memo-
ry Computing Conference, pages 51-58, Portland,
Oregon, April 28 — May 1, 1991.

Geoffrey Fox, Seema Hiranandani, Ken Kennedy,
Charles Koelbel, Uli Kremer, Chau-Wen Tseng,
and Min-You Wu. Fortran D language specifica-
tion. Technical Report CRPC-TR90079, Center
for Research on Parallel Computation, Rice Uni-
versity, December 1990.

Manish Gupta and Prithvira] Banerjee. Auto-
matic data partitioning on distributed memory
multiprocessors. In Proc. of the 6th Distribut-
ed Memory Computing Conference, pages 43-50,
Portland, Oregon, April 28 — May 1, 1991.

Ernst A. Heinz. Automatische Elimination
von Synchronisationsbarrieren in synchronen
FORALLs. Master’s thesis, University of Karl-
sruhe, Department of Informatics,

1991.

November

K. Kennedy and H.P. Zima. Virtual shared mem-
ory for distributed-memory machines. In Proc.
of the 4th Conference on Hypercubes, Concurrent
Computers and Applications, volume 1, pages
361-366, Monterey, CA, 1989. ACM Press, New
York.

Kathleen Knobe, Joan D. Lukas, and Guy L.
Steele. Data optimization: Allocation of arrays
to reduce communication on SIMD machines.
Journal of Parallel and Distributed Computing,
8(2):102-118, February 1990.

Kathleen Knobe and Venkataraman Natarajan.
Data optimization: Minimizing residual interpro-
cessor data motion on SIMD machines. In Joseph
JaJa, editor, Frontiers '90:The Third Symposium
on the Frontiers of Massively Parallel Computa-
tion, College Park, University of Maryland, Oc-
tober 8-10, 1990.

Charles Koelbel and Piyush Mehrotra. Support-
ing shared data structures on distributed memo-
ry architectures. In Proc. of the 2nd ACM SIG-
PLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP, pages 177-186,
March 1990.

Jingke Li and Marina Chen. Index domain align-
ment: Minimizing cost of cross-referencing be-
tween distributed arrays. In Joseph JaJa, editor,

[18]

Frontiers ’90: The Third Symposium on the Fron-
tiers of Massively Parallel Computation, pages
424-433, College Park, University of Maryland,
October 8-10, 1990.

MasPar Computer Corporation. MasPar Parallel
Application Language (MPL) Reference Manual,
September 1990.

Piyush Mehrotra and John Van Rosendale. The
BLAZE language: A parallel language for scien-
tific programming. Parallel Computing, 5:339—
361, November 1987.

Michael Metcalf and John Reid. Fortran 90 Fz-
plained. Oxford Science Publications, 1990.

Michael Philippsen and Walter F. Tichy. Modula-
2% and its compilation. In First Internation-
al Conference of the Austrian Center for Paral-
lel Computation, Salzburg, Austria, 1991, pages
169-183. Springer Verlag, Lecture Notes in Com-
puter Science 591, 1992.

Prentice Hall, Englewood Cliffs, New Jersey.
INMOS Limited: Occam Programming Manual,
1984.

J. Ramanujam and P. Sadayappan. Access based
data decomposition for distributed memory ma-
chines. In Proc. of the 6th Distributed Memory
Computing Conference, pages 196-199, Portland,
Oregon, April 28 — May 1, 1991.

M. Rosing, R. Schnabel, and R. Weaver. DINO:
Summary and example. In Proc. of the Third
Conference on Hypercube Concurrent Computers
and Applications, pages 472-481, Pasadena, CA,
1988. ACM Press, New York.

Thinking Machines Corporation, Cambridge,
Massachusetts. *Lisp Reference Manual, Version

5.0, 1988.

Thinking Machines Corporation, Cambridge,
Massachusetts. C* Language Reference Manual,

April 1991.

Walter F. Tichy and Christian G. Herter.
Modula-2*: An extension of Modula-2 for high-
ly parallel, portable programs. Technical Report
No. 4/90, University of Karlsruhe, Department of
Informatics, January 1990.

U.S. Government, Ada Joint Program Office.

ANSI/MIL-Std 1815 A, Reference Manual for the
Ada Programmang Language, January 1983.

