
Automatic Data Distribution for Nearest Neighbor Networks

Michael Philippsen

Universit�at Karlsruhe

D����� Karlsruhe� F�R�G�

phlipp	ira�uka�de

This paper appeared in� Frontiers���� The Fourth Symposium on the Frontiers of Massively

Parallel Computation� pages ��	
�	�� McLean� Virginia� October ��
��� ����

Abstract

An algorithm for mapping an arbitrary� multidimen�
sional array onto an arbitrarily shaped multidimen�
sional nearest neighbor network of a distributed mem�
ory machine is presented� The individual dimensions
of the array are labeled with high�level usage descrip�
tors that can either be provided by the programmer or
can be derived by sophisticated static compiler analy�
sis�

The presented algorithm achieves an appropriate
exploitation of nearest neighbor communication and
allows for e�cient address calculations�

We describe the integration of this technique into
an optimizing compiler for Modula��� and derive ex�
tensions that render e�cient translation of nested par�
allelism possible and provide some support for thread
scheduling�

� Introduction

An important problem facing numerous projects on
distributed memory machines is that of distributing
array data over the available processors� There is
widespread agreement about the two goals of data dis�
tribution� 	
� Data locality� All data elements should
be stored local to a processor that executes some state�
ments upon it� reducing the amount of communication
and resulting in minimal run�time� 	�� Parallelism�
Perfect data locality and the minimal communication
cost are achieved by employing only a single processor�
In general� however� the run�time can be improved by
exploiting the full degree of parallelism provided by
the hardware� An appropriate trade�o� between the
con
icting goals of data locality and parallelism must
be found�

Whereas the goals are agreed upon� totally di�er�
ent approaches to reach them have been developed�
In many programming languages the user must pro�
gram the data layout explicitly� Some languages re�

quire an explicit mapping of the data onto the topol�
ogy �
�� ��� 
�� 
�� ��� others are more abstract and
provide either sets of directives for the compiler or in�
teractive or knowledge�based environments that help
determine alignment of array dimensions and mapping
functions ��� 
�� 
�� 
�� 
� 
�� ��� Even a data distri�
bution language has been developed for this purpose
���� Recent work ��� �� �� 
�� 

� focuses on static
compile�time analysis to automatically �nd data de�
composition that achieves both goals�

The approaches based on directives and on auto�
matic decomposition often use a high�level interme�
diate representation where transformations are done�
dimensions of di�erent arrays are grouped together�
super�arrays and corresponding index transfer func�
tions are derived� usage patterns are exploited� etc�
After this complex compiler phase the resulting data
structures which can again be understood as arrays�
are straightforwardly mapped onto the available pro�
cessors of the hardware�

However� we feel that the mapping of the 	result�
ing� arrays onto the topology could be improved to
reach the following goals� 	�� Exploit fast communi�
cation patterns if there is special hardware support
for a particular communication pattern� 	�� Simple
address calculations� The computation of processor
numbers and addresses of data elements must be fast�
Otherwise� evaluation of complex expressions easily
consumes too much computational power�

Therefore� we present an algorithm for mapping an
arbitrary� multidimensional array onto an arbitrarily
shaped multidimensional nearest neighbor network of
a distributed memory machine�

After a short introduction of nearest neighbor net�
works and the notation we use� we identify some allo�
cators that are commonly used� In the fourth section
we present our strategy for determining the data dis�
tribution� The strategy consists of several steps each
of which is based on the available information and
re�nes the distribution function� In the last two sec�
tions� we describe the integration of this technique into



an optimizing compiler for Modula���� and derive ex�
tensions that render e�cient translation of nested par�
allelism possible and provide some support for thread
scheduling�

� 
k�Coordinate n�dimensional Nearest
Neighbor Networks

In a �k�coordinate n�dimensional neighbor network �k�
NNn� each processor is connected to two neighbors in
each of the n dimensions� In other words� each node
participates in n di�erent NN� subnetworks� one per
dimension� The number of processors in each of these
dimensions is given by �k � 	k�� k�� � � � � kn�� In a NNn

the degree of each node is �n�
Some NNn have been used successfully in parallel

machines and� thus� have received special names� For
example� a �k�NNn with �k � 	�� �� � � � � �� is called a
hypercube� A two� or three�dimensional processor grid
is a NN� or a NN�� resp� For our purposes� it does not
matter whether a given �k�NNn is a hypertorus� where
the NN� subnetworks are rings� or a hypermesh� where
they are linear arrays� We restrict our considerations
to �k�NNn with dimensions that are powers of two� i�e��
there exist �i such that ki � ��i for all 
 � i � n�

The number of bits that are necessary to encode
the address of a node along dimension i is given by �i�
Along a dimension the nodes are numbered continu�
ously� The complete address of a node in the network
needs

Pn

i��
�i bits� It is constructed by concatenating

the address segments of length �i� Bits are numbered
as follows

���� � � � � �� � �� �z �
��

� ��� � � � � �� � �� � �� �z �
��

� � � � �

n��X
i��

�i� � � � �

nX
i��

�i � �

� �z �
�n

From the address of a given node the address of a
neighboring node along dimension i can be derived by
incrementing or decrementing the according segment
of �i bits 	�i��� �i�� � 
� � � � � �i � 
�� i�e�� by adding
�
 � ��i�� � We de�ne �� � � for notational conve�
nience�

� Array Allocation

By studying several approaches for explicit declaration
of layout patterns �
�� ��� 
�� 
�� ��� 
� 
�� �� 
�� 
�� 
��
�
� and for intermediate representation of allocation
information in modern compilers ��� �� �� 
�� 

� 
���

we realized that a set of three machine�independent
types of distribution information is used most often�

Consider a m�dimensional array� Each of the di�
mensions can be labeled with either spread� cycle�
or local� These hints for data distribution are either
derived from the explicit speci�cation by the user or
they are a result of compiler analysis of reference pat�
terns� The semantics of these hints are as follows�

� spread� Dimensions that are attributed spread

are divided into segments� one for each of the
available processors� A vector with l elements is
assigned to P processors by allocating a segment
of length dl�P e to each processor� While utilizing
all available processors� it minimizes the cost of
nearest�neighbor communication�

� cycle� Dimensions labeled with cycle are dis�
tributed in a round�robin fashion over the avail�
able processors� In contrast to spread� cycle

maximizes the cost of nearest�neighbor commu�
nication� neighboring array elements are always
in di�erent processors� leading to better proces�
sor utilization if a parallel algorithm operates on
subsegments of a vector at a time�

� If either spread or cycle apply to several dimen�
sions� the distribution of the data on the proces�
sors must try to generalize the above communica�
tion behavior and requirements for potential par�
allelism for all these dimensions�

� local� Array elements whose indices di�er only
in a dimension that is labeled local are associat�
ed with the same processor� This facility is used
to avoid distribution of data in a given dimen�
sion� By �unrolling� all given local dimensions
into one pseudo�dimension with a length that is
the product of the lengths of the individual di�
mensions only one single local dimension must
be considered�

We focus our considerations on an array with m di�
mensions� The vector �l � 	l�� l�� � � � � lm� denotes the
number of elements in each of the dimensions� We as�
sume that the dimensions are rounded up to the next
power of two� i�e�� there exist �j such that lj � ��j for
all 
 � j � m�

The number of bits that are necessary to encode
the subscript of one dimension j is given by �j� In to�
tal�

Pm

j�� �j bits are required to encode all subscripts�
Without loss of generality we consider the dimensions
of the array to be sorted such that the following label�



ing holds�

j �

��
�


 � � � s � spread

s � 
� � � c � cycle

c� 
� � �m � local

Note that replication and other distribution patterns�
e�g� wrapped�k�� are reducible to the allocators given
above� by adding additional address bits or by simply
splitting the original array address in two segments�

� Data Distribution

To distribute array data we present a mapping func�
tion that operates in four major steps� Mapping is
based on bit representations of the addresses of da�
ta elements in a virtual address space� First� we de�
cide how many bits of this virtual address space are
mapped onto both the processor address and the local
address� Second� we allot the limited number of bits in
the processor address to dimensions of a given array�
Third� we ful�ll the intention of spread and cycle by
deciding which of the address bits of the dimensions
will go into the processor address� Finally� the bits in
the processor address are reshu�ed to align spread di�
mensions with axes in the network to support e�cient
nearest neighbor communication�

�� Processor Bits and Local Bits

The
Pm

j�� �j address bits that are necessary to encode
the o�set of the array elements must be mapped onto
a real topology� Therefore� the virtual address is split
into two parts on distributed memory machines�

� the number of bits used for the processor address�

bp � min	
nX

i��

�i�

cX
j��

�j�

� the number of bits used for the local part of the
address� referring memory cells in the local mem�
ory of the processors�

bl �

������
�����

mP
j�c��

�j if
cP

j��

�j �
nP

i��

�i

mP
j��

�j �
nP

i��

�i otherwise

In this paper we deal with the general case� where
there are fewer processor bits available than are re�
quired in total by all spread and cycle dimensions�

Therefore� the processor fraction of the address of a
data element consists of bp �

Pn

i��
�i bits and the lo�

cal fraction consists of the remaining bl �
Pm

j��
�j�bp

bits�

�� Allotting of Processor Bits

In step 
� we have determined how many of the bits
that are required to address all array elements are im�
plemented by the node number and how many are
mapped to addresses in the local memory of the nodes�
In step �� we allot the available number of processor
bits to individual dimensions of the array� i�e�� given
the number of bits that are necessary to encode a sub�
script in a particular dimension� we decide now how
many thereof are mapped onto the processor address�

For each dimension j we �nd numbers pj � IN and
qj � IN with �j � pj � qj� Let pj denote the num�
ber of bits that are mapped onto bits of the processor
address� The number of local bits is denoted by qj�

We propose a distribution that re
ects the relation
of the number of elements in individual dimensions�
i�e�� a dimension that has twice the number of ele�
ments than another dimension� should receive a twice
as many processor bits� One can think of other al�
lotting schemes� e�g�� a simple even distribution solely
based on the number of dimensions or an allotment
driven by weights that are based on detailed program
analysis� For simplicity� however� we favor the follow�
ing distribution�

pj �

�����
����

min	�j �
lj
cP

���

l�

� bp� if 
 � j � c

� if c� 
 � j � m

The number of local bits qj for a dimension 
 � j � m
is thus qj � �j � pj� Work on comparing di�erent al�
lotting schemes and on deriving allotting information
from programs is in progress�

�� Semantics of spread and cycle

Although for the address in each dimension the num�
ber of bits that end up in the processor address or in
the local fraction of the address have been determined�
it is still unclear to which group each particular bit be�
longs if both pj and qj are non�zero�

The selection is based on the semantics of spread
and cycle�

� spread� by assigning the �rst pj bits of the coor�
dinate address to the processor bits� the semantics



of spread is ful�lled� neighboring data elements
whose addresses di�er only in the lowest bits re�
side in the same processor�

� cycle� for cyclic dimensions� the processor bits
are assigned from the rear� Thus� neighboring
data elements end up in di�erent processors�

For example consider the data distribution for an ar�
ray with one dimension 	length l� � ��� ���� on a ma�
chine with �k processors� i�e�� a �k�NN�� Although
�� � 
� bits are required to represent the address of
an array element� only �� � 
� � p� bits of processor
number are available�

A
lsbhsb

processor number local
address

SPREAD

A
lsbhsb

processor numberlocal
address

CYCLE

The �gure shows the selection of those p� bits of the
address that end up in the processor address 	shaded�
in case of both a spread and a cycle labeling of the
dimension�

Assume a subscript vector 	x�� x�� � � � � xm�� For the
local address� each dimension with qj �� � contributes
qj bits� These bits are concatenated� i�e�� shifted ac�
cording to the sum of all q� of earlier dimensions and
added together� For spread dimensions� the last qj
bits of xj are extracted by computing xj mod �qj � The
�rst qj bits of a subscript xj in a cycle dimensions
are derived by xj div �pj �

localAdr �
mX
j��

x�j � �

j��P
���

q�

with x�j �

��
�

xj mod �qj if j � f
 � � �sg
xj div �pj if j � fs� 
 � � � cg
xj if j � fc� 
 � � �mg

Analogously� the preliminary processor address is de�
rived� Here the div and mod operations are exchanged
since for spread dimensions the �rst 	div �qj � and for
cycle dimensions the last 	mod �pj � bits must be ex�
tracted�

prelimProcessorNo �
mX
j��

x��j � �

j��P
���

p�

with x��j �

��
�

xj div �qj if j � f
 � � � sg
xj mod �pj if j � fs � 
 � � � cg
xj if j � fc� 
 � � �mg

Note that these address computations can be done by
masking and shifting� i�e�� by bit operations that can
e�ciently be executed on virtually all computers�

�� Network Topology

Although a preliminary processor address has been
determined in step �� this mapping does not use the
topology of the network� Due to the semantics of
spread� it is desirable to exploit as many of the n near�
est neighbor links provided by a NNn as possible for
mapping of spread dimensions� This can be achieved
by mapping the pj bits of a spread dimension onto
a segment of the processor address that represents a
NN� subnetwork� Therefore� the pj bits ideally should
start at bit position �� ��� � � � � or �n���

Step � gives a permutation for the bits in the pre�
liminary processor address� This permutation results
in an ordering such that the least signi�cant bits rep�
resenting spread dimensions are aligned with those
processor bits that correspond to axes of the network�
We present the permutation by means of an example
before it is given formally�

We assume that the spread dimensions of the given
array are sorted so that their relative sizes conform to
the relative sizes of the dimensions of the underlying
network�

Consider a 	��� ��� �	��NN� and an array with p �
	�� �� �� �� and s � �� c � �� i�e�� � bits of the �rst
dimension� � bits of the second dimension� � bits of
third dimension� and � bits of the fourth dimension
mapped onto the processor address� The �rst three
dimensions 	s � �� are labeled with spread� 	The
dimensions may have qj �� �� but we do not consider
the local part of the address in this example�� The
bits in the fourth dimension are not relevant to step �
since cycle dimensions do not need neighbor links�

The mapping after step � and before considering
the topology of the network is�

1
2345678

910111213
141516

0

bits dimension 3 bits dimension 2 bits dim 1

In general� the bits belonging to a spread dimension
are not aligned with axes of the given NN�� To achieve
alignment� processor address bits must be permuted�

The �rst dimension of the array is already aligned
with bit position � of the processor address� Formally�



we apply the 	identical� permutation	
� 

� 





The second dimension of the array 	shaded above� is
not aligned with the bits representing the second axis
of the network� This can be achieved by shifting the
address left by � positions�	

� � � � � � � � 
�
� � � � � � 
� � �




The �rst seven entries in the permutation implement
the shift of the bits that belong to the second dimen�
sion of the array to the desired position 	�� 
��� The
last two entries move those bits that are overwritten
by the shift to the released positions�

01
2345678

910111213
141516

12345678
910111213

141516 0

bits dimension 3 bits dimension 2 bits dim 1

The �nal permutation aligns the third dimension
	shaded above� with the third axis of the network�
Note that due to previous permutations� bits that be�
long to the third dimension are in various positions of
the processor address� Therefore� the results of previ�
ous permutations on earlier dimensions must be pre�
served� Since �ve bits �t into the third segment of the
processor address all �ve bits 	��
�� must be moved�
In this example� three target positions must be cleared
by moving the occupying bits away��
BBBB�

�	�� �	
�� 

 
� 
� 
� 
� 
�
� � � �


� 
� 
� 
� 
� �	�� �	
�� 


� � � �



CCCCA

12345678
910111213

141516 0

bits dimension 3 bits dimension 2 bits dim 1

1234567910111213
141516

08

We now present the permutation formally� Let the bits
in the processor address be numbered from � to bp�
�
Then the following permutation must be applied 
 �
� � min	n� s� times� i�e�� for each spread dimensions
the permutation is applied as long as the number of
axes is su�cient� Initially� �	i� � i holds�

���i� �

��������������������
�������������������

j �
���P
���

�� if i � ��j �
���P
���

p� �

� � � j � min�p�� ���

��i�min�p�� ���� if
���P
���

�� � i �

���P
���

p�

��i�min�p�� ���� if
���P
���

p� � i�min�p�� ���

� i�min�p�� ��� �
���P
���

��

i otherwise

The �rst of the above cases maps the appropriate num�
ber of the bits belonging to dimension � to their tar�
get positions� Cases � and � clean target positions by
moving the occupying bits away�

Note that again these address computations can be
done by simple bit operations� After the permutation
is applied� a sequence of bits that originally belong
to a single array dimension might run accros sever�
al network dimensions in the processor address� espe�
cially when mapping low�dimensional arrays on high�
dimensional networks� e�g�� on a hypercube� In this
case performance can be improved by gray�coding of
the bit sequence� which is also a fast bit operations�

� Data Allocation in Modula���

In Modula��� 	complete de�nition in ��
�� there is no
explicit mapping of data elements to processors� Da�
ta layouts are derived automatically by the compiler�
The mechanism is based on 	
� directives in the dec�
laration of the arrays that describe the intended use
of individual dimensions of the array on a high level
and 	�� on the analysis of run�time constants inside of
forall statements and their use in array subscripts�

In the �gure� the general architecture of the opti�
mization phase of our Modula��� compilers is depict�
ed� The compiler detects redundant synchronization
events by data dependence analysis� The elimination
process is described in more detail in �
�� ��� This
transformation is a prerequisite for an e�cient transla�
tion for MIMD machines� where synchronization is ex�
pensive� and it improvesmachines utilization on SIMD



machines� since larger code sections can be fused into
single virtualization loops�

Data allocation works on a per�procedure basis� i�e��
only one procedure at a time is analyzed� To separate
machine�independent from machine�dependent parts
of the allocation strategy and to limit the size of the
problem� we split data allocation hierarchically into
two parts�

Virtualization

Standard Optimization

Code

Data Allocation

inter-forall Heuristic

intra-forall Heuristic

machine
dependent
cost
functions

Elimination of Synchronization Events

Modula-2* Program

equivalent Modula-2* Program

The inter�forall heuristic� called Inter considers the
individual forall statements as black boxes� Inside
a given forall� the data distribution is �xed� The
inter�forall heuristic decides whether the actual distri�
bution remains unchanged between successive foralls�
or not� This decision is based on the result of the
intra�forall heuristic �Intra� which processes the se�
quence of statements inside a forall founded upon
known distributions of data elements� The questions
are where to compute and to store intermediate re�
sults� and where to handle scalar values 	front�end�
single processor� redundancy� etc��� Whereas Inter is
machine�independent� because it is based solely on the
cost values determined by Intra� the latter needs to
know about computation costs� the topology of the
network� and the communication costs�

Inter is based on Knobe�s work ��� ��� we con�
struct a graph of machine�independent alignment pref�
erences� i�e�� we decide which dimensions of two arrays
should be aligned to achieve locality of the elements�
Alignment is done by constructing super�arrays and
by providing functions that map the original arrays
onto the super�array� Dimensions of di�erent arrays

that are often used together in general end up in the
same dimension of the super�array� However� often
this graph of alignment preferences contains cycles�
Breaking a cycle is equivalent to redistributing array
data� Often there are di�erent ways to break cycles�
i�e�� there are di�erent possible redistributions�

Based on this �rst phase of alignment� the super�
arrays are distributed on the machine by means of the
mechanism presented in this paper� The distribution
is a prerequisite for realistic estimation of computation
and communication costs�

� Thread Scheduling in Modula���

The presented distribution technique can be extend�
ed to allocate processors to threads and to determine
virtualization� Nested parallelism can be handled as
well�

Thread Scheduling

Parallelism in Modula��� is not limited to simple vec�
tor operations� In a forall all Modula��� statements
are allowed� e�g�� if�while� procedure calls� and nested
foralls� Therefore� it is not su�cient to analyze ar�
ray occurences in a program� Data layout and thread
scheduling can be combined by the technique present�
ed above�

A forall statement creates a number of threads�
Each thread has a run�time constant� to which a
unique value of an enumeration type is assigned�
These threads must be distributed to the processes�
Since a thread is identi�ed by its run�time constant�
the array of these run�time constants describes all
threads created by the forall� Thus� by deriving a
data layout for this array� the threads are scheduled�

The analysis of the patterns in which the forall

constant is used results 	
� probably in a linear trans�
formation function re
ecting o�set and stride of the
usage patterns of the run�time constant and 	�� prob�
ably in an alignment with a particular array dimension
used inside of the forall� if any�

Consider the following example� We assume that A
is a �� � �� � �� array� and N � ���

FORALL i�����N� BEGIN

A�c�d�i� �� 	

END

Program analysis gives us that the run�time index i

which is created by the forall should be aligned with
the third dimension of array A� By applying the data



distribution technique both for the array A and the
array of run�time constants i� we �nd the following
situation�

For the assignment statement of the example only
�� � 
� of the processors are active� which is indicated
by the shaded fraction of the address bits of i� The
white fraction determines the size of the virtualization
loops� Since one bit reserved for i ends up in the local
address� each of the active processors must iterate and
perform two assignments� Thus� it is easy to derive
from the allocation of i to which processor the threads
are scheduled and what type of strip mining must be
done�

A

local
address

processor number

i

SPREAD SPREAD SPREAD

Nested Parallelism

The above concept is neatly extended for both nested
and recursive parallelism� as can be seen from a slight
extension of the previous example�

FORALL i�����N� BEGIN

FORALL j�����N� BEGIN

A�j�d�i� �� 	


P�����

END

END

Again� program analysis derives the set of active pro�
cessors and the iteration space for the virtualization
loops�
Consider the call of the procedure P� Assume P it�
self spawns additional parallelism� From the layout of
the run�time constants it is obvious� which processors
must call and virtualize it and which bits of the pro�
cessor address are free to be used for the additional
parallelism� In the example bits � to � can be used for
scheduling of the additional threads�

Because of control statements 	if� while� � � � � only
a small fraction of the total number of threads may

A

local
address

processor number

SPREAD SPREAD SPREAD

47

j i

be active at a procedure call� Thus� not all the bits of
the processor address assigned to the initial run�time
constants are really required� If the number of active
thread needs fewer bits to be coded� rescheduling these
threads� i�e�� redistributing the context stacks enables
a higher degree of parallelism for the called procedure�

	 Conclusion

An important problem facing numerous projects on
distributed memory machines is that of distributing
array data over the available processors� Although
some work has been done on aligning data structures
to reach data locality and a su�cient degree of paral�
lelism� by improving the �nal mapping of the data to
the processors� hardware supported nearest neighbor
communication can be exploited and address calcula�
tions can be simpli�ed� In this paper we have pre�
sented an algorithm for mapping an arbitrary� mul�
tidimensional array onto an arbitrarily shaped multi�
dimensional nearest neighbor network� This mapping
achieves these goals� It has partly been implemented
in optimizing compilers for a parallel language� and
it supports thread scheduling and the translation of
nested parallelism�

References

�
� American National Standards Institute� Inc��
Washington� D�C� ANSI� Programming Language
Fortran Extended �Fortran ���	 ANSI X
	����
���
� 
����

��� Ingo Barth� Thomas Br aunl� Stefan Engelhardt�
and Frank Sembach� Parallaxis 	vers� �� us�
er manual� Technical Report �!�
� Universit at
Stuttgart� February 
��
�



��� Barbara M� Chapman� Heinz Herbeck� and
Hans P� Zima� Automatic support for data dis�
tribution� In Proc	 of the �th Distributed Memo�
ry Computing Conference� pages �
"��� Portland�
Oregon� April �� " May 
� 
��
�

��� Geo�rey Fox� Seema Hiranandani� Ken Kennedy�
Charles Koelbel� Uli Kremer� Chau�Wen Tseng�
and Min�You Wu� Fortran D language speci�ca�
tion� Technical Report CRPC�TR������ Center
for Research on Parallel Computation� Rice Uni�
versity� December 
����

��� Manish Gupta and Prithviraj Banerjee� Auto�
matic data partitioning on distributed memory
multiprocessors� In Proc	 of the �th Distribut�
ed Memory Computing Conference� pages ��"���
Portland� Oregon� April �� " May 
� 
��
�

��� Ernst A� Heinz� Automatische Elimination
von Synchronisationsbarrieren in synchronen
FORALLs� Master�s thesis� University of Karl�
sruhe� Department of Informatics� November

��
�

��� K� Kennedy and H�P� Zima� Virtual shared mem�
ory for distributed�memory machines� In Proc	
of the �th Conference on Hypercubes� Concurrent
Computers and Applications� volume 
� pages
��
"���� Monterey� CA� 
���� ACM Press� New
York�

��� Kathleen Knobe� Joan D� Lukas� and Guy L�
Steele� Data optimization� Allocation of arrays
to reduce communication on SIMD machines�
Journal of Parallel and Distributed Computing�
�	���
��"

�� February 
����

��� Kathleen Knobe and Venkataraman Natarajan�
Data optimization� Minimizing residual interpro�
cessor data motion on SIMD machines� In Joseph
J#aJ#a� editor� Frontiers ����The Third Symposium
on the Frontiers of Massively Parallel Computa�
tion� College Park� University of Maryland� Oc�
tober �"
�� 
����

�
�� Charles Koelbel and Piyush Mehrotra� Support�
ing shared data structures on distributed memo�
ry architectures� In Proc	 of the 
nd ACM SIG�
PLAN Symposium on Principles and Practice of
Parallel Programming� PPOPP� pages 
��"
���
March 
����

�

� Jingke Li and Marina Chen� Index domain align�
ment� Minimizing cost of cross�referencing be�
tween distributed arrays� In Joseph J#aJ#a� editor�

Frontiers ���� The Third Symposium on the Fron�
tiers of Massively Parallel Computation� pages
���"���� College Park� University of Maryland�
October �"
�� 
����

�
�� MasPar Computer Corporation� MasPar Parallel
Application Language �MPL� Reference Manual�
September 
����

�
�� Piyush Mehrotra and John Van Rosendale� The
BLAZE language� A parallel language for scien�
ti�c programming� Parallel Computing� �����"
��
� November 
����

�
�� Michael Metcalf and John Reid� Fortran �� Ex�
plained� Oxford Science Publications� 
����

�
�� Michael Philippsen and Walter F� Tichy� Modula�
�� and its compilation� In First Internation�
al Conference of the Austrian Center for Paral�
lel Computation� Salzburg� Austria� ����� pages

��"
��� Springer Verlag� Lecture Notes in Com�
puter Science ��
� 
����

�
�� Prentice Hall� Englewood Cli�s� New Jersey�
INMOS Limited� Occam Programming Manual�

����

�
�� J� Ramanujam and P� Sadayappan� Access based
data decomposition for distributed memory ma�
chines� In Proc	 of the �th Distributed Memory
Computing Conference� pages 
��"
��� Portland�
Oregon� April �� " May 
� 
��
�

�
�� M� Rosing� R� Schnabel� and R� Weaver� DINO�
Summary and example� In Proc	 of the Third
Conference on Hypercube Concurrent Computers
and Applications� pages ���"��
� Pasadena� CA�

���� ACM Press� New York�

�
�� Thinking Machines Corporation� Cambridge�
Massachusetts� �Lisp Reference Manual� Version
�	�� 
����

���� Thinking Machines Corporation� Cambridge�
Massachusetts� C� Language Reference Manual�
April 
��
�

��
� Walter F� Tichy and Christian G� Herter�
Modula���� An extension of Modula�� for high�
ly parallel� portable programs� Technical Report
No� �!��� University of Karlsruhe� Department of
Informatics� January 
����

���� U�S� Government� Ada Joint Program O�ce�
ANSI�MIL�Std ���� A� Reference Manual for the
Ada Programming Language� January 
����


