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Abstract. Byzantine Agreement requires a set of nodes in a distributed
system to agree on the message of a sender despite the presence of arbi-
trarily faulty nodes. Solutions for this problem are generally divided into
two classes: authenticated protocols and non-authenticated protocols. In
the former class, all messages are (digitally) signed and can be assigned
to their respective signers, while in the latter no messages are signed. Au-
thenticated protocols can tolerate an arbitrary number of faults, while
non-authenticated protocols require more than two thirds of the nodes
to be correct.

In this paper, we investigate the fault tolerance of protocols that require
signatures in a certain number of communication rounds only. We show
that a protocol that is to tolerate one half of the nodes as faulty needs
only few authenticated rounds (logarithmic in the number of nodes),
while tolerating more faults requires about two authenticated rounds
per additional faulty node.

Keywords: Byzantine Agreement, fault tolerance, distributed systems, authen-
tication

1 Introduction

The problem of Byzantine Agreement (introduced in [LSP82]) arises when a
set of nodes in a distributed system need to have a consistent view of mes-
sages uttered by one of them, despite the presence of arbitrarily faulty nodes.
The problem is defined as follows: One of the nodes is distinguished as sender
who attempts to transmit a value to the rest of the nodes. A protocol solving
Byzantine Agreement must fulfill the following conditions:

— Each correct node eventually decides for a value.
— All correct nodes decide for the same value.
— If the sender is correct, all nodes decide for the value of the sender.

Protocols solving Byzantine Agreement are generally divided into two classes:
authenticated protocols and non-authenticated protocols. In authenticated pro-
tocols, all messages are signed digitally in a way that the signatures cannot be
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forged and a signed message can be unambiguously assigned to its signer. This
mechanism allows a node to prove to others that it has received a certain message
from a certain node. Authenticated protocols can tolerate an arbitrary number
of faulty nodes. In non-authenticated protocols, no messages are signed. These
protocols require more than two thirds of the participating nodes to be correct
([LSP82]).

While signatures allow for very fault-tolerant protocols, signing messages is
a time-consuming action; typical durations for an RSA signature with a 512
bit key are 50 to 100 ms. Hence, it is useful to investigate the fault tolerance
properties of authenticated protocols which require as few signatures as possible.

In this paper, we have a closer look at protocols where the nodes have to sign
messages in certain communication rounds only. One implication of our results is
that tolerating one half of the nodes as faulty requires a number of authenticated
rounds logarithmic in the number of nodes, while tolerating more faults needs
about two authenticated rounds per additional faulty node.

2 Preliminaries

2.1 System Model

Our world consists of n nodes connected by a complete network. We assume
that ¢ of the nodes may behave in an arbitrary manner, while ¢ = n — ¢ be-
have correctly. The nodes operate at a known minimal speed, and messages are
transmitted reliably in bounded time. The receiver of a message can identify its
immediate sender, and we assume the existence of an authentic signature scheme
such that a signature cannot be forged and each node knows whom a signature
on a message belongs to.

During a protocol execution, the nodes communicate in successive rounds.
In each round, a node may send messages to other nodes, receive the messages
sent to it in the current round and perform some local computation. m of the
rounds (s1,...,Sm) are distinguished as authenticated rounds. In these rounds,
all messages are to be signed.

2.2 The FIG Protocol

Our examinations are based on the Exponential Information Gathering (EIG)
protocol which was introduced by Bar-Noy et al. [BNDDS87], based on the
protocol in [LSP82]. In this protocol, the sender starts by sending its value to
all other nodes. In the following ¢ rounds, each node forwards all messages it
received in the previous round to the other nodes'.

During protocol execution, each node maintains an EIG tree which contains
the received information in a structured manner. Such a tree has ¢t + 1 levels, one
level per communication round. The root has n — 1 children, and in each of the

! In [FL82, DS83] it is shown that ¢t + 1 rounds are necessary and sufficient to reach
agreement with or without authentication.



Fig.1. An FIG tree

following levels, the vertices have one child less than those of the previous level.
Hence, on level ¢, each vertex has n — ¢ children which constitute the leaves of
the tree (we consider the root level as level 1).

The vertices have labels which are assigned in the following manner: The
root is labeled with the sender’s name. In the following levels, the children of
a vertex are labeled with the names of the nodes not yet on the path from the
root. We identify a vertex in the tree by the labels of the vertices from the root
to the vertex in question. Figure 1 depicts such a tree for n = 7. In this example,
we assume that F' and G are faulty; we have marked the respective vertices with
dashed circles.

In the first round of the protocol, each node stores the value received from
the sender in the root of its EIG tree. In the following rounds, each correct
node broadcasts the contents of the level of its tree most recently filled in, and
fills the next level with the messages it receives. If a node X receives a message
from Y claiming that it has stored v in vertex ABCDFE, X stores v in vertex
ABCDEY ofits FIG tree. Hence, a value in vertex ABC'DFEY is interpreted as
“Y said F said ... B said A said v”. If a node failed to send a value, a default
value is stored. A level that corresponds to an authenticated round will be called
authenticated level.

After a node has completed its tree (after round ¢+1), it applies the following
resolve function to the vertices: The resolved value for a vertex its stored value
iff it is a leaf, and the majority of the resolved values of its children otherwise.
If there is no such majority, a default value 1s used. The value a node eventually
uses as decision value is the resolved value of the root.

We require that a vertex on an authenticated level is to be resolved using
values signed by the node corresponding to the label of the vertex. Messages
without these signatures are not considered in the resolve function (they are not
even assigned a default value). If all children of a vertex are removed due to
missing correct signatures, it is treated as a leaf and resolved to its own value.
A vertex is called common, if its resolved value is the same in the trees of all
correct nodes for all possible executions of the protocol.



2.3 Compact EIG trees

For our purposes, we use binary trees as a more compact representation of the
original FIG trees. These binary trees only contain information about numbers
of correct and faulty children of a vertex, rather than actually listing all children.
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Fig. 2. Compact representation of an FIG tree

Figure 2 depicts the compact representation of the tree of Figure 1. It is
interpreted as follows: We assume that five nodes, including the sender, are
correct, and two nodes are faulty. Hence, the message of the sender is echoed
by four correct nodes and two faulty nodes. The echoes of the correct nodes are
echoed by three correct and two faulty nodes, those of the faulty nodes are echoed
by four correct and one faulty node(s). So a vertex in the compact tree represents
a class of vertices of the original EIG tree. Each class comprises vertices with
the same sequence of faulty/correct vertices on the path to the root. We call a
vertex in the compact tree common, if all the represented vertices of the FIG
tree are common; a vertex in the compact tree is said to be resolved to its stored
value if this is true for all represented vertices of the original EIG tree. A vertex
is called correct, if it represents messages of correct nodes, and faulty otherwise.
When referring to the levels of such a tree, we will start with level 1 for the root
level. Levels corresponding to authenticated rounds will be called authenticated
levels.

Each vertex in a tree is identified by a binary string. It represents the (unique)
path from the root to the vertex, including both ends: If we pass a correct vertex,
we append a “1” to the string, and a “0” otherwise. So, in our example, the vertex
with the value 2 on the third level is identified by the string “110”. We will write
z* for a succession of k equal characters 2. As variables for strings, we will use
o and T.

On these strings, we define functions |o|o, |o]1, and ||, giving the numbers
of 0Os and 1s in the string, and its length, respectively. Furthermore, we have a
function v(o) which gives the label of the vertex. It is defined as follows:

v(00) = max(0,¢ — |olo)

v(ol) = max(0,¢c— |o1).



Lemmal. The vertices of a binary FIG tree have the following properties:

(a) v(c0) =0 o =0"
(b) v(o1*1) > v(c1*0) = Vr,|7| < k 1 v(o71) > v(070)

Proof. Tmmediate from the definition of v(-). |

3 Correctness Requirements

If we express the conditions for Byzantine agreement in terms of resolving ver-
tices of the FIG trees, we have the following requirements: The EIG protocol is
correct iff

— In every execution of the protocol, the root is common and
— if the sender is correct, every node resolves the root of its tree to the value
it received in the first round.

The condition that the nodes eventually decide for a value is fulfilled trivially
by the limited height of the trees and the bounded time for the execution of a
round.

3.1 General Vertices

In order to find out the exact requirements for a correct protocol execution, we
first look at the requirements for a general vertex to be common. We have to
distinguish the cases of a correct and a faulty vertex:

Lemma2. A correct vertex o is common and resolved to its stored value iff at
least one of the following conditions is true:

(a) v(c) =0

(b) o] = 1+ 1

(¢) o is on an authenticated level

(d) v(cl) > v(c0) and ol is common and resolved to its stored value

Proof. “=”: by inspection of a vertex ¢ for which (a)-(d) do not hold. “<”: (a),
(b) and (d) are trivial. (¢): A correct node will only utter consistent messages
with the correct signature. Hence, all nodes store the same signed value in their
trees and resolve this vertex to the stored value. |

Recursive application of Lemma 2, making use of Lemma 1 (b), yields

Corollary 3. Let o be a correct vertex on a non-authenticated levell < t+1, and
let s be the next authenticated level after | or, if that does not exist, t + 1. Then
o is common and resolved to its stored value iff v(a1°~'=11) > v(a1*71710).



We state the requirements for faulty vertices to be common only for the special
case 0, because this will be the only case we need.

Lemma4. A faulty vertex 0' is common iff at least one of the following condi-
tions s true:

(a) 0'0 and 0'1 are common, and if l is an authenticated level, then v(0'1) > 0

(b) v(0") =0

Proof. “=":Suppose 0'0 or 0’1 is not common, and v(0") > 0. Then the resolved
values for 0' can differ, since the resolved values for the common children can
be chosen by the faulty nodes in a way that the non-common vertex is crucial
for the majority. If [ is an authenticated level and v(0'1) = 0, then 0'0 could
be resolved to unsigned values. Hence, 0" would be resolved to its stored value,
which is not common. If v(0'1) > 0 and a correct node has stored a signed value,
all other nodes will consider this signed value when resolving 0'. “<”: simple.O

Taking into account Lemma 1 (a), we get the following
Corollary 5. 0't! is common.

The next lemma shows that the requirements for a correct vertex to be common
are the same as for that vertex to be common and to be resolved to its stored
value.

Lemma6. A correct common vertex o is resolved to its stored value.

Proof. Suppose it is resolved to a different value. Then o has to be on a non-
authenticated level | # ¢ + 1 (Lemma 2). Let s be as in Corollary 3. From
Corollary 3 follows that v(s1*~'=11) < v(c1*~!=10) and o1*~/~10 is common.
With an argument similar to the proof of Lemma 4, the latter condition would
require that v(o1°~1=10!*+1=171=(s=1=1)) 5 () which contradicts Lemma 1 (a). O

This Lemma allows us to use Corollary 3 on Lemma 4 (a). Taking into account
Lemma 1 (b) and Lemma 2, we can transcribe Lemma 4 as follows:

Corollary 7. Let 0' be a faulty vertez on level | <t + 1, and let s be the next
authenticated level after | or, if that does not exist, t + 1. Then 0' is common iff
one of the following conditions s true:

(a) s> 141 and v(0"1*~1711) > v(0"17=*=10) and 0° is common.
(b) s=1+1 and 0° is common.

Note that the condition v(0'1*~'=11) > »(0'1'=*=10) in Corollary 7 (a) is equiv-
alent to ¢ >t — 2/ 4+ s (from the definition of v(-)). We will use this observation
in the next section.



3.2 Requirements for a Common Root

Having stated the requirements for general vertices, we can easily deduce the
requirements for a common root. We use Lemma 2 and Corollary 3 for a correct
sender, and Corollary 5 and Corollary 7 for a faulty sender.

Figure 3 gives an overview of the requirements in the two cases of a correct
and a faulty sender. We have sketched two binary FIG trees; the “>”-sign under
two vertices means that the label of the left vertex must be greater than that of
the right vertex. The horizontal lines denote authenticated levels.
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Fig. 3. Requirements for a correct protocol execution. Left: sender correct, right: sender
faulty

Sender correct: Requirement RC' distinguishes whether or not the root is on an

authenticated level:
_Je>1 if s =1
RC = {(czt—i—sl) else

Sender faulty: Here, we present the requirements in a recursive manner. A re-
quirement RF; deals with the tree above and including level s;. For the root to
be common with a faulty sender, RFy must hold:

RF, = RFl 1f81S2
s (c>t+s1—2)ARF; else



e i RFi+1 ifSi+1:SZ’—|—1
RFZ (2—1,,m—l)_{(CZt_2SZ+Sl+1)/\RFZ+1 else
c>1 if sy =1
RFm_{(cZQt—Zsm—}—l) else

Since the requirement (¢ >t + s; — 2) from RFy is subsumed by (¢ > ¢ + s1)
from RC', it will not show up in the following considerations.

Our aim is to determine authenticated rounds s; (¢ = 1,...,m) such that RC
and RFj are fulfilled for a minimal c. We will call these s; an optimal distribution
of authenticated rounds. It will be convenient to consider only distributions which
have no successive authenticated rounds except at the beginning of the protocol.
The next theorem shows that there is an optimal distribution with this property.

Theorem 8. There is an optimal distribution of authenticated rounds for which
the following holds: If there is a succession of more than one authenticated
rounds, 1t starts at round 1.

Proof. We show that a distribution with a succession of authenticated rounds
not starting at 1 can be optimized. From the assumption, there is a k such that
sp > 1, spp1 = sp + 1, and sp—1 < s — 1 (for convenience, we define sg to
be 0). From RFj_1 (or RC, if k = 1), we require ¢ > ¢ — 2sp_1 + s;. Now
consider another distribution with the same authenticated rounds s}, except
that s}, = s — 1. Now RFj_1 becomes ¢ >t —2s}, | + s, =t—2sp_1+ s — L.
Furthermore, RF} changes from no requirement to ¢ > ¢ —2s} +s} | =t—sp+3.
Both requirements allow for a smaller ¢ than the original RFj_; (note that
Sp—1 < 8§ — 2) O

So, for a distribution with a block of b successive rounds at the beginning, we
have the following inequations (note that we defined sq to be 0):

e>t—2si1+58 < 2551 —si+e>t(i=b+1,...,m) (1)
c>2t—2sp+1 & 25, +c>2t+1

Since we are interested in a minimal ¢, we replace the “>"s by “="s and solve the
resulting system of equations, including the information that the first & rounds
are authenticated (hence s; = ¢ for i = 1,...,b). These m + 1 linear equations
can be written as an (m + 1) x (m + 2)-matrix. Columns 1 to m represent the
coefficients of s; to s,,, the m + 1st column represents the coefficient of ¢, and
the last column represents the constants on the right hand side of the equations:
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O--- 0 1 Qc-vvev--- 0

0--- 0 2-1 0 01 ¢ (2)
0 evennn. 0 2—-1 01 ¢

Qcvevvevene 0 211 ¢

O cvvveneeanes 0 21241

Eliminating the elements below the diagonal yields matrix (3):

1 0 0 1
010 S 0 2

0--- 0 1 0 vvvvveeenn. 0 b

0. v 0=1 0------ 0 1 t— 2 3
[ I 0=1 0--- 0 3 3t — 4b (3)
[ I R | 02m—b—1_1(2m—b—1_1)t_2m—b—1b

0 vveeiee i s 0 =1 92m=b_ ('Zm—b_l)t_2m—bb

[0 I PPV | B/ (Lot e ol | 2m_b+1(t—b)+1

Finally, we multiply rows b+ 1 to m+ 1 by —1 and eliminate the elements above
the diagonal:

1 0- -0 1
010 -0 2
0 1 0-vvrvnnn 0 b
0 1 0--n--- 0 1.%4_2[, (4)
01 0:--0 3. L 4
[ I | 10(2m—b_1).%+2m—bb
2™ =P ()41

From matrix (4), we can deduce the following (real-valued) solutions for the s;
and c:
{i , 1 <i<b (only for b > 0)
S; =

2704 (270 — 1) HLZEED pci<m



9m=b+(4 _ ) 4 1
¢ Z 2m—b+1 —1 (5)

Replacing ¢ by n — ¢t and solving (5) for m yields (note that (5) can only be
fulfilled for n + b — 2t > 0):

m > logy(n+1—1)—loga(n +b—2t)+b— 1. (6)
Since we are interested in as few authenticated rounds as possible, we try to
minimize m. To find a b such that m is minimal, we solve m’(b) = 0 which leads
to:
1 —_—
C(n+b—2t)-In(2)

Since m'(b) = m > 0 and b > 0, we have the minimal m at:

1
b=max(0,2t —n + ——).

In(2)
N——’
~1.44
Together with (6), this yields:
log2(”n+_12_tt) -1 if2t <n-— ﬁ

1
m>{ logy(n+1—18)+2t—n+ () + log,(In(2)) — 1 else
= n

~—0.08

To summarize these results and to show how they are cast into integer values,
we state the following main theorem:

Theorem 9. Let n be a number of nodes with at most t of them being faulty.
Then there ts a protocol solving Byzantine Agreement with m authenticated
rounds, where

_ flogz(”n‘"_l;tt) - 1] if2t<n-2
[logo(n+1—1)+2t —n] else
With b = max(0,2¢ — n+ 2), the authenticated rounds s; (i =1,...,m) are:
K for 1 <i<b (onlyifb>0)
TN (2t (2 - 1) =2 b <i<m

Proof. We have to show that the constraints remain satisfied if we use rounded
m and s;. To round up m is valid, since that lowers the right hand side of (5) and
hence allows for even lower ¢. That rounding up the s; is valid follows from ¢ and
t being integer values: The constraints in (1) are of the form e >t — 2s;_1 + s;.
It follows that ¢ > ¢ — 2[s;_1] + s;. Since all summands except s; are integers,
we can safely deduce that ¢ > ¢ —2[s;—1] + [s;].

Finally, we show that the selected b is an optimal integer: Since there is
only one optimal real-valued b, the optimal integer-valued 4 must be one of
max(0,2t — n + 1.5 &+ 0.5). Since both bs yield the same values for m, we can
choose the higher one. O
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Fig.4. Minimal authenticated rounds for a given ¢ with n = 100.

Ezample. Figure 4 depicts the required number of authenticated rounds with
respect to the number of tolerated faults for n = 100. As expected, a maximum of
(n—1)/3 = 33 faulty nodes can be tolerated without authentication. To tolerate
n/2 = 50 faulty nodes, only [log,(n/2 + 1)] = [log,(51)] = 6 authenticated

rounds are necessary, namely rounds 1,2,4,7, 14, and 26.

4 Conclusion

We have investigated the fault-tolerance properties of Byzantine Agreement pro-
tocols when messages are signed in certain rounds only. We have shown how to
determine the authenticated rounds, depending on the number of faulty nodes to
be tolerated. One implication of the results is that n/2 faulty nodes can be toler-
ated with as few as [log,(n/2+ 1)] authenticated rounds, while each additional
faulty node requires about two more authenticated rounds.

Further work in this area is necessary. We have not yet shown that the results
in this paper are optimal, since other, maybe better-suited, resolve functions
in the EFIG protocol are possible. Furthermore, the EIG protocol is far from
efficient with respect to the number of messages, and does not employ early-
stopping mechanisms in case less than ¢ of the nodes actually behave faulty.
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