3. Jahrestagung der GI-Fachgruppe
Logik in der Informatik

Karlsruhe

31. Mai — 2. Juni 1995

In diesem Internen Bericht der Fakultit fiir Informatik der Universitidt Karlsruhe sind
die Zusammenfassungen der Vortrage enthalten, die auf der dritten Arbeitstagung der
GI-Fachgruppe 0.1.6 Logik in der Informatik gehalten wurden. Nach dem konstituie-
renden Treffen der Fachgruppe 1993 in Leipzig, dem Treffen 1994 in Paderborn fand
1995 die Arbeitstagung vom 31.5. bis 2.6. in Karlsruhe statt.

Was verbirgt sich hinter dem Sammeltitel Logik in der Informatik? Kann man an-
hand der Vortrége in diesemn Bericht Schwerpunkte oder Trends feststellen? Diese
Frage ist schnell beantwortet: das einzige Schwerpunktthema sind Dynamische Alge-
bren (evolving algebras). Was nicht sehr verwunderlich ist, da zu diesem Komplex
eine Sondersektion eingerichtet worden war. Ansonsten ist die thematische Breite
des Vortragsprogramms beeindruckend. Natiirlich diirfen die klassischen Themen aus
der mathematischen Logik, wie Rekursionstheorie und Entscheidbarkeitsfragen aber
auch Induktive Logik, nicht fehlen. Daneben ist das Automatische Beweisen vertre-
ten, das einem wohl als erstes in den Sinn kommt, wenn man nach einem Beispiel fiir
Logik in der Informatik gefragt wird. Der Vortrag zu diesem Thema leitet dieses Mal
auch gleichzeitig {iber zu einem weiteren zentralen Beitrag der Logik fiir die Informa-
tik, ndmlich dem der Modellbildung und formalen Beschreibung. Dafl Logik in der
Informatik nicht bei theoretischen Betrachtungen stehen bleibt wird durch die Arbei-
ten zur operativen Prozeffithrung und zur Plangenerierung belegt. Mit dem letzten
Einzelthema, das ich hervorheben mdochte, sind wir dann doch bei den Trends ange-
kommen: bei dem Trend, die Bedeutung der visuellen Darstellung in der Vermittlung
von Information und Wissen stérker zu betonen — sogar bis hin zur Ausrufung einer
neuen Wissenschaft, der Visualistik. Der hier enthaltene Beitrag zu diesem Thema
wirkt da doch wesentlich realistischer um nicht zu sagen kiihl.

Ich mochte mich an dieser Stelle bedanken bei allen, die zum Gelingen der Arbeits-
tagung beigetragen haben. Bei der Fakultét fiir Informatik der Universitdt Karlsruhe
und der Karlsruher Hochschulvereinung e. V. fiir die finanzielle Unterstiitzung, bei
meinen Mitarbeitern Bernhard Beckert, Reiner Hiahnle und Joachim Posegga fiir die
Arbeit wéhrend der Vorbereitung und der Durchfithrung der Tagung, bei Herrn Ale-
xander Leitsch fiir seine Bereitschaft den eingeladenen Vortrag zu halten.

Peter H. Schmitt, Karlsruhe, April 1995

Inhalt

Eingeladener Vortrag:

Alexander Leitsch (TU Wien):
Hyperresolution and Automated Model Buildingcco i, 1

Oksana Arnold (Universitét Leipzig) und Klaus P. Jantke (HTWK Leipzig):

Anwendung einer Logik der Constraints in der operativen Prozeffihrung 13

Bernhard Beckert und Joachim Posegga (Universitdt Karlsruhe):
leanEA: A Poor Man’s Fvolving Algebra Compiler 28

Jochen Burghardt (GMD Berlin):
FEine entscheidbare Klasse n-stelliger Horn-Prddikate 38

Guiseppe Del Castillo (Universitit Pisa):
An FEvolving Algebra Model for the APE 100 Parallel Architecture 48

Igor Durdanovié¢ und Uwe Glésser (Universitdt Paderborn):

An Fvolving Algebra Abstract Machine i, 52

Harald Feibel (DFKI Saarbriicken):
IGLOO — A Graphic Supported Proof Development System 35

Reiner Hahnle (Universitat Karlsruhe):
Horn Formulas in Many-Valued Logic i .. 65

Daniel Matuschek, Klaus P. Jantke (HTWK Leipzig) und
Oksana Arnold (Universitdt Leipzig):
Generierung von Therapieplinen mit Mitteln der logischen Programmierung 75

Matthias Ott (Universitdt Karlsruhe):
Aufzihlungsspiele auf partiellen Funktionen i i .. 79

Arnd Poetzsch-Heffter (TU Miinchen):
Specification and Prototyping of Programming Languages Using the
MAX-SYSTETL « oo 85

Franz Regensburger (TU Miinchen):
HOLCF: Higher Order Logic of Computable Functions 95

Frank Stephan (Universitdt Karlsruhe):
Learning via Queries and Oracles i 110

Kirsten Winter (Universitit Freiburg):
Modellierung und Spezifikation mit dynamischen Algebren 120

Hyperresolution and Automated Model Building

A. Leitsch, TU Vienna
(joint work with C. Fermdiller)

1 Introduction

Finding and investigating models of abstract structures is at the very heart of math-
ematical activity. Consequently the value of using models in Automated Deduction
is widely admitted. But although mathematical logic has uncovered an impressive
body of knowledge about models of first order formulas, very little is known about
algorithmical methods for model building. In the area of first order prefix classes,
most of the research was directed to prove the ezistence of models, without giving
explicit representations of models. In particular, the existence of finite models for
satisfiable formulas of a class A (such classes are called finitely controllable) implies
the decidability of A. Thus showing finite controllability of classes is a key proof
technique in the theory of decidable classes [DG79]. A characteristic of this technique
is to compute a recursive bound «(F) for every F in A s.t. F' is satisfiable iff there
exists a model of domain size < «(F'). The transformation of such a proof into an
algorithmical method results in exhaustive search through all finite domain interpreta-
tions of size < a(F'). But, even for small a(F'), this is clearly inadequate for practical
computing. In more recent time algorithmical finite model building based on theorem
proving methods has been investigated by T. Tammet [Tam91],[Tam92], Manthey and
Bry [MBS88], Caferra & Zabel [CZ91],[CZ93] and J. Slaney [S1a92], [S1a93]. An earlier
approach of S. Winker [Win82], although practically relevant and successful, did not
define a general algorithmic method.

Tammet’s approach, like ours, is based on resolution decision procedures. But his
finite model building method applies to the monadic and Ackermann class only and is
based on the termination of an ordering refinement. In the resulting model description
the interpretation of the function symbols is given completely, but the interpretation
of predicate symbols is only partial. Moreover, Tammet uses narrowing and works
with equations on the object language level. In our approach the model building
is based on termination sets for hyperresolution (which yield other decision classes).
The finite model building method presented here is based on the transformation of
Herbrand models; it does not use equality reasoning but filtration.

Caferra and Zabel define an (equational) extension of the resolution calculus, specif-
ically designed for the purpose of finite model construction. They give complete
representations of Herbrand models but don’t specify finite models completely (only
the interpretation of the predicate symbols is given). Their method is not based on
“postprocessing” of termination sets of resolution but considerably alters the inference
system itself. Moreover, the decidable classes are completely different from ours.

Manthey and Bry describe a hyperresolution prover based on a model generation
paradigm in [MB88]. Their method of model building, although similar in case of
the class PVD, . differs from ours in several aspects. They essentially use splitting of
positive ground clauses and backtracking, features that are avoided in our approach.
Moreover, we can handle cases, where no ground facts are produced. While Manthey

and Bry construct Herbrand models only, the final products of our procedure are finite
models.

Slaney [S1a92] devised the program FINDER that identifies finite models (of reason-
ably small cardinality) of clause sets whenever they exist. The algorithm is a clever
variant of exhaustive search through all possible interpretations and is not referring
to resolution or any other inference system. In [Sla93] Slaney investigates the ad-
vantages of combining the resolution based theorem prover OTTER [McC90] with
FINDER. Although the methods underlying this approach are quite different form
ours its main point—demonstrating the usefulness of model building in Automated
Deduction—serves well as motivation also for our work.

We present a fully algorithmical method for the construction of models out of termi-
nation sets of positive hyperresolution provers. Even more importantly, we develop
a formal framework for model building by resolution based on resolution operators
(inluding condensation and subsumption) and orthogonalization. Our key concept is
that of a (finite) atomic representation of an Herbrand model. We argue that such
atomic representations are suitable and useful as model descriptions by demonstrating
that it is decidable whether two given atomic representations are equivalent and that
arbitrary clauses can effectively be evaluated w.r.t. the represented models. Motivated
by special syntactical properties of the the investigated examples of decidable classes
we focus on linear atomic representations, i.e. sets of atoms in which a variable occurs
at most once. In particular, we show that linear atomic respresentations can be “or-
thogonalized”. this fact is exploited in order to project the corresponding Herbrand
models into finite models.

The basic idea of our approach to automated model building is the following: If
the (refutationally complete) theorem prover stops on a set of clauses C without
deriving O (contradiction) then C must be satisfiable. Having obtained the (finite)
set D of derivable clauses, we start to construct a model out of D (i.e., we use the
information provided by positive hyperresolution). The first step of model building
consists in transforming the set of derived positive clauses Dy into an a finite set of unit
clauses by iteratively applying hyperresolution operators. U is shown to be an atomic
representation of an Herbrand model of C. In general, this model is infinite since its
domain is the Herbrand universe. The second step is of a different flavor: As already
mentioned above, we present a method which, for a wide range of classes decidable by
hyperresolution, constructs finite models out of the atomic representations generated
by hyperresolution. Neither backtracking nor equality reasoning on the object level is
required (the latter in contrast to [Tam91], [Tam92] and [CZ91], the former in contrast
to [MB88] and [S1a92]).

Although the finite models obtained in this way are not minimal (w.r.t. domain size)
in general, the method is clearly superior to exhaustive search, since no kind of back-
tracking is involved. However, it is limited to syntax classes admitting filtration on
the termination sets (i.e., Herbrand models can be mapped into finite models under
preservation of truth values).

As the method presented here is based on termination of positive hyperresolution
with subsumption and condensing, the preprocessing step just consists of “ordinary”
theorem proving. Only in case O has not been derived, the proper model building
algorithm is applied to the termination set. This is also a characteristic of Tammet’s

work, while Caferra & Zabel start with a model building procedure at once. Together
with Tammet’s results on finite model building, this paper can be considered as a
starting point for model building methods based on resolution decision procedures for
first order classes.

All results mentioned here are presented and proved in [FL95].

2 Hyperresolution as Decision Procedure

All model building operations presented here are based on (positive) hyperresolution.
This resolution refinement is used first in a preproccessing manner, in the sense that
the model construction itself starts on finite termination sets, i.e. finite sets of clauses
that are satisfiable and closed w.r.t. the resolution operator. But also the computation
of atomic representations out of the termination sets essentially employs hyperreso-
lution. Termination sets are familiar from resolution decision theory (see [FT1.TZ93]).
In this section we formally define hyperresolution in terms of resolution operators.
Moreover we present some classes of clause sets that can be decided by hyperresolu-
tion. These classes serve as concrete examples for our model building procedures, to
be decribed in the section 3.

Definition 2.1 Let C, D be condensed clauses, where D is positive. The condensa-
tion of a binary resovent of C' and a factor of D is called @ PRF-resolvent. (PRF

abbreviates “positive, restricted factoring”.)

Remark. Throughout this paper we assume that clauses always appear in condensed
form, mostly without mentioning this fact explicitly. Note that a clause C is called
condensed if it does not contain a nontrivial factor which subsumes C.

Definition 2.2 Let C' be a non-positive clause and let the clauses D;, for 1 <1 < n,
be positive. Then the sequence I' = (C; D,..., D,,) is called a clash sequence.

Let Cy = C and C;11 be a PRF-resolvent of C; and Dy for i < n. If C, is positive
then it is called a clash (or hyper)resolvent defined by T.

Hyperresolution examplifies the principle of macro inference. It only produces positive
clauses or the empty clause O. In variance to the standard definition of hyperresolu-
tion we have included a restriction on factoring. The concept of “semi-factoring” is
investigated in [Nol80], where—inter alia—it is shown that positive hyperresolution
based on PRF-resolution is complete.

Below, we do not need to refer to hyperresolution deductions themselves but rather
are interested in the set of derived clauses. For this purpose the following operator
based description of hyperresolution seems most adequate.

Definition 2.3 Let C be a set of clauses. By pp(C) we denote the set of all clash
resolvents definable by clash sequences of clauses in C. The hyperresolution operator
Ry and its closure Ry is defined by:

Rp(C) =CU pu(C),

R%(C) =C and RF'(C) = Ry (R (C)) fori < 0.
Ry(C) = Ry(C).

i>0
Combining hyperresolution with subsumption we get:

Definition 2.4 Let C be a set of clauses and sub be a subsumption reduction operator.
Then we have

Rys(C) = Sub(c U pH(C)),
R%4(C) = sub(C) and RiF:(C) = Rys(Ry(C)) fori <O0.
Ry5(€) = (U BL(C).

>0 >
R3¢ enjoys two important properties:

(1) Rps is complete, i.e. O € Ry 4(C) whenever C is unsatisfiable. Note that, by
definition of the subsumption operator, O € Rj;4(C) implies R} 4(C) = {O}.
(Since O subsumes all clauses.)

(2) Tf there exisits an 7 s.t. Ry 5(C) <. Rig2(C), i.e.if Rig(C) is a fixed point w.r.t.
Rps, then R} (C) = Ry 4(C) and R} 4(C) is finite. (Of course, C is assumed to
be finite.)

It is well known that hyperresolution remains complete when combined with subsump-
tion. The crucial fact here is that Rj;5(C) < R3(C). That condensation preserves
completeness is shown in [FLTZ93].

If for all C in a class of clause sets T’ there exists an i s.t. R};5(C) = Ry 5(C) then the
computation of the finite fixed point R};4(C) defines a decision procedure for I'; we
say that Rpg decides T'. Note that Rj;¢(C) € Rp(C), and therefore Rpg decides T
whenever Ry decides T'.

We now define two classes which can be decided by Rys.

Definition 2.5 PVD, is the set of all sets of clauses C s.t. for all C € C:
(1) V(Cy) CV(C2), and
(2) for all x € V(C1): Tmax(2,Cy) < Tax(z, C-).

(Observe, that (1) implies that all positive clauses in C must be ground.)

PVD, is a subclass of PVD, a class that has been demonstrated to be decidable
in [Lei93] and [FLTZ93]. But there is no loss of generality in investigating PVD
instead of PVD, since the decision procedure for PVD can be easily reduced to that
for PVD,: A clause set C is in PVD iff there is a renaming 7 of the signs of the literals
s.t. 7(C) € PVD,. To get a resolution decision procedure for PVD we first construct
an adequate renaming n and then apply Rps to n(C). Instead of transforming C to
n(C) one may also apply a different semantical setting (see [Lov78]) to C itself.

PVD, can be considered as a generalization of DATALOG to clause forms containing
function symbols. The decidability of PVD, restricted to Horn was shown in [Lei90].

Definition 2.6 OCCIN, is the set of all sets of clauses C s.t. for all C € C:

(1) OCC(z,Cy) =1 forallz € V(Cy), and
(2) Tmax(,C4) < Tpin(z, C2) for all x € V(C)NV(C_):

Like in the case of PVD,, C € OCCIN iff there exists a renaming 5 of the signs of
the literals s.t. n(C) € OCCIN,. OCCIN is shown to be decidable in [FLTZ93]; the
decidability of OCC1N} restricted to Horn clauses is proven in [Fer90].

PVDy is even decidable by positive hyperresolution without condensing (see [Lei93]).
However, in deciding OCC1N condensing is essential (but subsumption is not needed,
see [FLTZ93]). Clearly, if a resolution procedure terminates (i.e., if only finitely many
resolvents are produced) then this remains true if condensing and subsumption is
added. Therefore the cited results imply that Rps decides PVD, U OCCIN,. We
shall see that the reduction of the clause sets w.r.t. condensing and subsumption is
essential to the model building procedure.

In the following sections the sets R} 4(C) will serve as “raw material” for model
building. All results described here hold for the decidable classes PVD, and OCCIN,
but many of them are more general. A wider range of decidable classes (generalizations
of PVD) was obtained in [Lei93] using the concept of abstract measures of atom
complexity. All these classes are decidable by hyperresolution and admit the finite
model building procedure introduced in Section 3.

3 Automated Model Building

Observe that speaking of algorithms that construct models of clause sets is actually a
slight misuse of language. The output of a computer program can, of course, only be
a formal description or representation of a model. As long as we only deal with finite
models there is hardly a point in insisting on the difference between the model (as
abstract mathematical entity) and its representation (e.g., in form of multiplication
tables). However, in dealing with infinite structures the difference gets essential. Here
we are interested in Herbrand models (which are infinite in all but trivial cases) und
thus have to present a formal language for the representation of these structures. Tt
should be clear that there is no single formalism capable of representing all Herbrand
models (over a signature that contains at least one function symbol) in a finite manner,
since there are non-denumerably many.

Our aim is to specify an algorithm that, given a satisfiable clause set C in a class that is
decidable by hyperresolution as indicated in Section 2, constructs a representation of
some Herbrand model of C. We shall show that these models allow for a particularily
simple and elegant representation in form of finite sets of atoms.

Definition 3.1 Let A be a finite set of atoms and H be an Herbrand universe con-
taining H(A). We say that A is an atomic representation of the set INT(A) of all
H-instances of A. Note that we identify Herbrand models with the set of true ground
atoms; therefore A may be considered as an atomic representation of the Herbrand

model INT(A). We abbreviate this by saying that A is an ARM (w.r.t. to H).

Observe that whenever only finitely many ground atoms are true in an Herbrand
model 7 then 7 (as a set of atoms) and its atomic representation coincide. However,
many more interesting Herbrand models admit atomic representations as well.

Example 3.1 . Let C = {P(f(a)), P(z)V P(f(x)), ~P(a)}. Then T = {P(f(1)) |
t € H(C)} is an Herbrand model of C. The set A = {P(f(x))} is obviously an atomic
representation of 7 w.r.t. H(C), i.e. T = INTg(c)(A).

Of course, there are (even quite simple) Herbrand models that do not have an atomic
representation. E.g., if we augment C by the clause =P(z) V = P(f(z)) then I’ =
{P(f®*V(a)) | n > 0} is the only Herbrand model of the new clause set. But 7’
cannot be represented by a finite number of atoms in the sense of Definition 3.1.

Whether a formalism is adequate for the representation of models not only depends
on which type of models we want to describe, but also on the intended applications.
However, even if we abstract from specific applications, there are some features which
seem desirable for any type of representation formalism:

e It should be (computationally) easy to decide whether a given ground atom is
true or false in the represented model. (E.g., an algorithm that evaluates ground
atoms in polynomial time w.r.t. the size of the atom and the repesentation of
the model would be adequate.)

o It should be possible to decide whether two given representations specify the
same model or not.

e There should be an effective method for the evaluation of arbitrary clauses w.r.t.
the represented model. L.e., there should be an algorithm that decides whether
a given clause is true or false in the model.

Observe that in the case of finite models the standard representation by multiplication
tables almost trivially fulfills these requirements of adequacy. However, as soon as we
want to represent infinite models it is not clear at all how to evaluate clauses or how
to test the equivalence of representations. For atomic representations of Herbrand
models it is clear that arbitrary ground atoms can be evaluated efficiently: Since a
ground atom B is true in INTg(A) iff there is some A € A s.t. B is an instance
of A, the evaluation consists in a linear number of instance checks und thus is at
most of quadratic time complexity. Indeed also the other features from the above list
hold. We do not know of any other representation mechanism for reasonable classes
of infinite models that shares these desirable properties.

Observe, that the possibility to evaluate effectively arbitrary clauses is a basic re-
quirement if one wants to use model constructing algorithms to find counter models
during proof search (e.g., in the frame of model elimination procedures.) Recently,
there is a lot of interest in this type of model based search pruning (see e.g. [S1a93]),
which is usually employed in a purely heuristic, ad hoc manner and still seems to
lack a theoretical foundation. Our results also contribute to this line of research. An-
other application for model representation mechanisms that allow for the evaluation
of clauses (and literals) consists in the possibility to use more sophisticated interpre-
tations than simple “settings” in the context of semantic resolution (see [Lov78]).

The decidable classes introduced in the last section not only allow for the construction
of atomic representation of models but also guarantee a very simple term structure of
the representing atoms. The resulting representations are called linear.

Definition 3.2 An expression E is called linear if each variable in E occurs only
once, i.e. OCC(x,F) =1 for all x € V(FE). A set of expressions is said to be linear
if all its elements are linear.

In [FL95] it is shown that every linear representation can algorithmically be trans-
formed into a finite sets of atoms that represents the same Herbrand model in an
“orthogonal” manner and consists of instances of the original atoms. These orthog-
onal representations can be applied to project the represented Herbrand models into
finite models.

W.l.o.g. we speak of terms only in the following definitions. The generalization to
atoms is obvious.

Definition 3.3 Let T be a finite set of non-variable linear terms and H an Herbrand
universe containing H(T). T orthogonally represents the set of its ground H-instances
Gu(T) if for all s € Gy (T) there is exactly one t € T s.t. s is an instance of t.

T is an orthogonal extension of a set of terms T' (w.r.t. H) if T orthogonally rep-
resents Gp(T")(= Gg(T)) and if for each t' € T’ there is an H-instance t of t' in
T.

Example 3.2. T = {a, f(z, f(u,v)), fla,y), f(z,a)} represents Gu(T), where
H is the set of all terms built up from a and f only. Indeed, Gy(T) = H. T
is not an orthogonal representation since, e.g., f(a, f(a,a)) is an instance of both,
f(z, f(u,v)) and f(a,y). Ty = {a, f(x,y)} orthogonally represents H but it is not an
orthogonal extension of T since, e.g., no instance of f(a,y) occurs in Ty. However,
Ty = {a, f(z, f(u,v)), fla,a), f(f(x,y),a)} is an orthogonal extension of T w.r.t.
H.

Remark. Observe that T' is an orthogonal representation iff any two different terms
in T" are not unifiable.

In [F1.95] an algorithm is presented that constructs for any finite set T' of linear terms
an orthogonal extension of T'.

Above we have suggested to represent Herbrand models by (finite) sets of atoms. This
representation not only seems to be very natural, but also is also close to termination
sets of hyperresolution. Observe, that if Rps terminates on a set C of Horn clauses
then it produces an atomic representation of an Herbrand model of C. This is trivially
s0, since positive hyperresolution only produces positive unit clauses (or O). Therefore
the union over all hyperresolvents (i.e., the derivable positive clauses) constitutes an
atomic representation of a (minimal) Herbrand model of C. In this section we extend
the method to non-Horn termination sets of hyperresolution.

Definition 3.4 A set of clauses C is (Rps-)stable if Rps(C) =C.

Observe that the deductive closure R3,4(C) of C is always stable. Our investigations
mainly focus on finite stable sets, i.e., finite fixed points of Rps.

Definition 3.5 We call C positively decomposed (and write C € PDC) iff R3(C) is
finite and all clauses in P(Ry(C)) are decomposed.

PDC contains all sets of Horn clauses C where Rj; is finite. But also PVD, and
OCCIN, are subsets of PDC and all classes that are shown to be decidable by
hyperresolution in [FLTZ93] and [Lei93].

The following lemma provides the key technique for the reduction of a set of positive
clauses to an atomic representation. It states that, for stable sets of clauses, positive
clauses can be replaced by proper subclauses under preservation of satisfiability.

Lemma 3.1 Let C € PDC s.t. C is stable and contains a positive non-unit clause D.
For any atom P in D we have

(1) (C —{D})U{P} is satisfiable iff C is satisfiable, and
(2) (C—{D})U{P} implies C.

Remark. (1) and (2) together guarantee that, for satisfiable C, there exists a model
of (C —{D})U{P} which is also a model of C.

Remark. Lemma 3.1 relies essentially on the stability of the clause set C. Tt is clearly
wrong for non-stable clause sets: E.g., take C = {—=A, AV B}. C is satisfiable; but
if we replace AV B by A we obtain C' = {—A, A}, which is unsatisfiable. Clearly,
C is not stable; but its deductive closure R};4(C) = {—A, B} obviously represents an
Herbrand model of C.

The replacement of C by (C — {D}) U {P} can be described by an operator o which
selects a clause D in C and a literal P in D. The model construction consists in
alternately applying transformation a and computing the deductive closure (w.r.t.
R3;5) of the new set of clauses. (Note that (C — {D}) U {P} need not be stable,
so we have to apply Rpg after selecting a literal.) We actually need an operator T
transforming a stable set into a new stable set in which some non-unit positive clauses
are replaced by unit clauses. We define

T(C) = Rj;5(a(C)) for a stable set C € PDC, and

T°(C)=C, T™*(C)=T(T(C)) fori>0.

In [F1.95] it is shown that for all C € PDC there is a finite fixed point of T'. L.e., there
exists an 7 s.t. T*F1(C) = T*(C). Then the positive unit clauses of T%(C) represent an
Herbrand model of C. The computation of this fixed point T*(C) is purely "iterative”
and does not require any backtracking.

It is proved in [FL95] that the equivalence of arbitrary atomic representations can
be decided. Moreover there exists an algorithm which evaluates the truth values of
arbitrary clauses (of adequate signature) over atomic representations. This algorithm
itself is based on hyperresolution [FL95]. Therefore atomic representations meet all
the requirements stated in the beginning of this section. Note that this extends the

traditional range of model-based resolution, as it gives us a method to evaluate clauses
over infinite models.

Therefore not only (finite) multiplication tabels but also atomic representations of
infinite Herbrand models enjoy properties that make them suitable tools for various
applications. We have also shown that for the classes PVD, and OCCIN, we can
algorthimically construct such model representations. Still, it would be interesting to
know whether these classes are finitely controllable, i.e. whether there is a model with
finite domain for every satisfiable clause set in these classes. (See [DGT79] for a legacy
of model theoretic results on finite controllability of classes of first order formulas.)
Indeed all the classes mentioned above not only admit the construction of Herbrand
models but also of finite models.

However, from the computer science point of view, we are not only interested in finite
controllability itself but strive for feasible and simple algorithms for the construction
of finite models. In particular, we want to avoid exhaustive search up to some fixed
limit for the cardinality of the models (as, implictly, suggested by [DG79]) and also
do not want to introduce for this purpose equational reasoning methods on the object
level (as done e.g. in [CZ91] and [Tam91]). We directly rather want to use the data
generated by terminating hyperresolution procedures. To this aim backtracking free
algorithm is developed in [F1.95] that “extracts” from any finite set of linear atoms A
a finite model that is equivalent to INT(A) (w.r.t. any H containing H(A)). This
is essentially achieved by truth value preserving projections of the Herbrand base into
finite subsets of it.

In order to specify the domain of our finite models we need the orthogonal extensions
of sets of terms occurring in the atomic representation.

Definition 3.6 Let A be a linear atomic representation of an Herbrand model w.r.t.
the Herbrand universe H (containing H(A)). We introduce an additional constant d
not occurring in H. Let g be the substitution that assigns d to all occurring variables;
i.e. Yo € V(A) : v4(x) = d. Moreover, let T'(A) be an orthogonal extension of the set
T(A) of all non-variable terms that occur in some atom in A. Then

Da={dYU{ty |teT(A}

(d is intended to represent all ground terms that are not represented by any term in

T'(A).)

D serves as domain of a finite model that assigns the same truth values to atoms

and clauses as INTr(A).

Note that we can always compute an orthogonal extension of the set T'(A) of terms
occurring in a linear atomic representation A of the Herbrand model INTg(A). This
allows us to define the following function that assigns some element of Dy to each
term of the corresponding Herbrand universe.

Definition 3.7 Let A be a linear atomic representation of an Herbrand model of
a clause set C. Let H = H(C) and let T'(A) be an orthogonal extension of T(A)
w.r.t. H. Then for each t € HU D4 we define ®4(t) as follows:

(i) If t is an instance of some s € T'(A) then ®4(t) = syq (where yq is defined as
in Definition 3.6).

(ii) Otherwise, let ®4(t) = d.
The definition of ® 4 enables us to specify concisely the interpretation of the function

symbols in the finite model. We are now in the position to present the complete
specification of a finite model corresponding to an INT g (A).

Definition 3.8 Let A be a linear atomic representation of an Herbrand model of some
clause set C. Then the (finite) interpretation FM 4 = (D,) is defined as follows:

(i) D = Dy.
(ii) o(c) = ¢ for all constants € Dy. For all other constants occurring in C we
define o(c') = d.
(tii) o(f)(t1,... 1) = Pa(f(t1,...,t0)) for all n-ary function symbols f occurring
in C.

(tv) (t1,...,t.) € ©(P) iff P(t1,...,t,) is an instance of some A € A. for all n-ary
predicate symbols P occurring in C and all terms tq,...1, € Dy.

Of course, instead of using the set of terms D4 as domain of discourse, we could map
D 4 bijectively into any domain of the same cardinality and define ¢ accordingly. It is
shown in [FL95] that , given an orthogonal representation of a Herbrand model, the
above definition always yields a finite model.

We remark that if there is an H-model M for some clause set C, s.t. M = {4 |
vm(A) = true} is finite then we have a simple subcase of our approach: In that case
M itself may be conceived as a finite set of linear atoms. Moreover, the set T (M) of
terms occuring in M is an orthogonal representation of itself. Therefore FM xq is a
model of cardinality |T(M)+1| (the additional element d represents all ground terms
that are not in T(M)). Observe that, in general, this model is not minimal w.r.t. the
cardinality of the domain.

By the methods described above we obtain finite models for all decision classes of
hyperresolution mentioned in section 2. This might suggest that termination of hy-
perresolution without deriving contradiction implies the finite model property — a
conjecture formulated in [F1.93]. However this conjecture is easily falsified by the
following set of clauses (communicated by M. Baaz):

¢ = {P(a,a), =P(f(2). f(y)) V P(z.y), —~Ple. f(a))}.

Hyperresolution terminates on C giving the atomic model representation A =
{P(z,z)}. But C does not have finite models (note that A is not linear!). This
example shows that our methods of model construction and evaluation surpass the
range of finitely controllable classes.

References

[C791]

[C793]

[DGT9]

[Fer90]

[Fer91]

[FL93]

[FL95]

R. CAFERRA AND N. ZABEL, Extending Resolution for Model Construc-
tion. In: Logics in AT (JELIA ’90). Springer Verlag, LNCS 478 (1991), pp.
153-169.

R. CAFERRA AND N. ZABEL, A method for simultaneous Search for Refu-
tations and Models by Equational Constraint Solving. J. Symbolic Compu-

tation 13 (1992) , pp. 613-641.

B. DREBEN AND W.D. GOLDFARB, The Decision Problem. Addison-
Wesley, Massachusetts 1979.

C.G. FERMULLER, Deciding some Horn Clause Sets by Resolution. In: Year-
book of the Kurt-Godel-Society 1989, Vienna 1990, pp. 60-73.

C.G. FERMULLER, Deciding Classes of Clause Sets by Resolution. Ph.D.
Thesis, Technical University Vienna, 1991.

C.G. FERMULLER AND A. LEITSCH, Model Building by Resolution. In:
Computer Science Logic, 6t* Workshop, CSL’92. San Miniato, Italy, Septem-
ber/October 1992. Springer Verlag, LNCS 702 (1993), pp. 134-148.

C.G. FERMULLER AND A. LEITSCH, Hyperresolution and Automated
Model Building. To appear in the Journal of Logic and Computation.

[FLTZ93] C.G. FERMULLER, A. LEITSCH, T. TAMMET, AND N. ZAMOV, Resolu-

[Joy76]

[Lei90]

[Lei93]

[Lov78|

[MBSg]

[McC90]

[Nol80]

tion Methods for the Decision Problem. Springer Verlag, LNAT 679 (1993).

W.H. JOYNER, Resolution Strategies as Decision Procedures. J. ACM 23,1
(July 1976), pp. 398-417.

A. LrrtscH, Deciding Horn Classes by Hyperresolution. In: CSL’89.
Springer Verlag, LNCS 440 (1990), pp. 225-241.

A. LEITSCH, Deciding Clause Classes by Semantic Clash Resolution. Fun-
damenta Informaticae 18 (1993), pp. 163-182.

D. LovELAND, Automated Theorem Proving — A Logical Basis. North
Holland Publ. Comp. 1978.

R. MANTHEY AND F. BRYy, SATCHMO: A theorem prover implemented in
Prolog. In: 9** Conference on Automated Deduction. Springer Verlag, LNCS
310 (1988), pp. 415-434.

W. McCuNE, Otter 2.0 Users Guide. Argonne National Laboratory, Ar-
gonne (111.), 1990.

H. NoLL, A Note on Resolution: How to Get Rid of Factoring Without Loos-
ing Completeness. In: 5t* Conference on Automated Deduction. Springer
Verlag, LNCS 87 (1980), pp. 250-263.

[Tam91]

[Tam92]

[S1a92]

[S1a93]

[Win82]

T. TAMMET, Using Resolution for Deciding Solvable Classes and Building
Finite Models. In: Baltic Computer Science. Springer Verlag, LNCS 502
(1991), pp. 33-64.

T. TAMMET, Resolution Methods for Decision Problems and Finite Model
Building. Dissertation, Department of Computer Science, Chalmers Univer-

sity of Technology. Chalmers/Go6tebOrg, 1992.

J. SLANEY, FINDER (Finite Domain Enumerator): Notes and Guide. Tech-
nical report TR-ARP-1/92, Australian National University Automated Rea-
soning Project, Canberra, 1992.

J. SLANEY, SCOTT: A Model-Guided Theorem Prover. In: Proceedings of
the ITJCAT 93 (13th international joint conference on artificial intelligence).
Ed. Ruzena Bajcsy, Morgan Kaufmann Publishers, Vol. 1, pp. 109-114.

S. WINKER, Generation and Verification of Finite Models and Counterexam-
ples Using an Automated Theorem Prover Answering Two Open Questions.

J. of the ACM, Vol. 29/2, April 1982, pp. 273-284.

