
RECOGNITION OF SPELLED NAMES OVER THE TELEPHONE

Hermann Hild and Alex Waibel

hhild@ira.uka.de,ahw@cs.cmu.edu

Interactive Systems Laboratories

University of Karlsruhe | 76128 Karlsruhe, Germany

Carnegie Mellon University | Pittsburgh, USA

ABSTRACT

Recognition of spelled names over the telephone line is essen-

tial for applications such as telephone directory assistance,

or automatic mail ordering. We present recognition results

on the spelling section of the OGI Spelled and Spoken Word

Telephone Corpus, using a Multi-State Time Delay Neural

Network (MS-TDNN). Many applications allow for strong

language modeling constraints. In our experiments we ex-

amined the bene�cial e�ects of reducing the search space to

a list of last names, ranging from about 1000 to 14 million

entries. We compare tree search methods and show that

signi�cant improvements can be achieved by enriching the

search trees with probabilities.

International Conference on Speech and Language Processing (ICSLP '96),

Philadelphia, USA, October 3-6, 1996

1. INTRODUCTION

This paper presents recognition results on the OGI Spelled

and Spoken Word Telephone Corpus, using a Multi-State

Time Delay Neural Network (MS-TDNN). While it is de-

sirable to recognize spelled strings which are embedded in

spontaneous speech [1], (\Smith please, thats S-M-I-T-H"),

the task here is to recognize letters only. Spelled letters over

the telephone are easily confused. Current systems achieve

in the order of 90% letter accuracy, which results in string

(i.e. name) accuracies far below practical usefullness. For-

tunately, many applications, most prominently telephone di-

rectory assistance, allow for strong language modeling con-

straints. We show how very large, but conceptionally simple

tree structured �nite state grammars (FSG) can achieve very

good recognition results ranging from 89 to 98% name accu-

racy for lists of 1000 up to 14 million last names.

2. THE LETTER RECOGNIZER

A connectionist recognizer, the Multi-State Time Delay Neu-

ral Network (MS-TDNN) [3, 5] is used for connected spelled

letter recognition. The MS-TDNN integrates the time-shift

invariant architecture of a TDNN and a nonlinear time align-

ment procedure (DTW) into a word-level classi�er. The

front-end TDNN uses sliding windows with time-delayed

connections to compute a score for each phoneme-like state

in every frame. Each word to be recognized is modeled by

a sequence of phonemes; in a dynamic time warping proce-

dure, an optimal alignment path is found for each word. The

activations along these paths are then collected in the word

output units. The error derivatives are backpropagated from

the word units through the alignment path and the front-

end TDNN. For continuous recognition using no or n-gram

language models, the standard \one stage dynamic program-

ming search" is used. Algorithms for search in �nite state

grammars are described below. Training starts with a boot-

strapping phase, which involves only the �rst three layers of

the net and establishes a phoneme classi�cation. Then the

system is trained on \letter level", using the \classi�cation

�gure of merit" (CFM) [4] error function for discriminative

training.

3. LANGUAGE MODELS

Let S = fs1; : : : ; sNg be a set of names or strings. In the

following we examine techniques which con�ne the recogni-

tion to the names in S. The advantage is a high increase

in recognition accuracy. The drawback is that names not

in S can not be recognized. In [2], a score (interpreted as

probability) is computed for each letter. These scores are

used in a tree search to retrieve names from a set of 50,000

names. [1] compares several techniques, which use the con-

straints either within the search or in a postprocessing step

such as nearest neighbor search. In [6], a complex procedure

using a mixture of techniques and several recognition passes

is proposed. The approach presented below uses very large,

but conceptionally simple �nite state grammars (FSG) to

exactly represent the names in S.

3.1. Search in Finite State Graphs

Each word to be recognized is represented by one acoustic

model. Conventional search techniques handle sequences of

words by concatenating the models as shown to the left in

�gure 1. In a FSG, word (in our case letter) sequences can

be explicitly coded in a graph structure. Although the same

letters use the same acoustic modeling, it is necessary to keep

an individual copy for each node in the tree, since it repre-

sents a di�erent search history. Each node consumes memory

A

B

Z

B

O
B

Y
A

Y

B

O
B

Y
A

Figure 1: Conventional search (left) uses one instance of

each word model. Search in �nite state grammars needs mul-

tiple copies, as exampli�ed for a tree (middle) and minimal

graph (right).

and computing resources, therefore, the FSG should be kept

as small as possible, which can be achieved by constructing a

minimal graph. Although a tree can be several times as large

as a minimal graph, it features one major advantage: Since

each represented string si is uniquely determined by its �nal

node, no backpointers are needed to identify the best letter

sequence at the end of the search.

The largest tree we are employing uses almost 2 million nodes

to represent about 800,000 names, which makes a beam

search strategy indispensable. A simple scheme is used in the

time synchronous search: If s� has been the highest observed

score, all nodes with scores s < s
� � beam are deactivated.

Depending on the beam size and the position in the tree,

about 50 - 1000 nodes are active at each frame in time. The

fact that no backpointers are needed keeps the search tree

very simple. Essentially, in each node only one cell for each

state of the corresponding acoustic model is needed to store

the accumulated search score. Scores are forwarded within

a node and to successor nodes, as illustrated in �gure 2.

B

A

O
B

Figure 2: Tree search: Acoustic scores are forwarded within

nodes and across nodes.

3.2. Search Tree and Probabilities

Con�ning the search to a given set S is a strong constraint,

but there is one other source of information yet unconsid-

ered. Common names such as \Smith" are very frequent,

others rare. By counting their relative frequency, a prob-

ability p(si) can be assigned to each name si 2 S. P (si)

is most naturally incorporated into the tree by associating

each �nal node representing si with p(si). Theoretically, it

should not matter where the probability mass is distributed

in the tree, as long as the probability along a path to string

si accumulates to p(si). However, as the language model

(LM) knowledge becomes only available at the very end of

the search, the beam search may cut o� eventually good can-

didates too early. An example for a probability assignment

of this and two other methods described below is illustrated

in �gure 3.

3.3. Local Probabilities

Let the string si 2 S consist of ni letters

si = li1 li2 : : : lini

A partial path li1 li2 : : : lik uniquely de�nes a node in the tree.

We denote the unique transition into this node as ti;k, i.e.

ti;k � li1 li2 : : : lik�1

ti;k
�! lik

Instead of assigning p(si) to a �nal node, we can involve

the LM earlier in the search process by de�ning a \local"

probability �local(t) for each transition t:

�local(ti;k) := p(lik jli1 li2 : : : lik�1)

�local(ti;k) can be computed as the relative frequency by

which a path is extended from its parent node into ti;k as

opposed to its sibling transitions. We note that the probabil-

ities along the path to the �nal node representing si correctly

accumulate to p(si):

iniY
k=1

�local(ti;k) = p(li1) � p(li2 jli1) � � � � p(lini jli1 ::lini�1)

= p(li1 li2 : : : lini) = p(si)

3.4. Early Probabilities

The most likely string (i.e. �nal node) that can be reached

from a partial path can serve as a measure for the potential

\importance" of the path. We de�ne �(t) as the highest

probability p(si) which can be reached from a transition t.

�(:) can be computed by propagating the maxima from the

leaves to the root of the tree:

�(ti;k) :=

�
p(si) k = ni (\�nal node")

maxt2suc(ti;k)f�(t)g else

Now starting from the root, the transition probabilities are

de�ned as the \missing probability" towards p(si):

�early(ti;k) :=

�
�(ti;1) k = 1
�(ti;k)

�(ti;k�1)
k > 1

Again we note that the �nal probabilities are correct:

iniY
k=1

�early(ti;k) = �(ti;1) �
�(ti;2)

�(ti;1)
� � � � �

�(ti;ni)

�(ti;ni�1)

= �(ti;ni) = p(si)

Figure 3 shows an example for each of the three methods,

which in the experiments to be described will be refered to

as \�nal", \local" and \early". So far we have ignored that

a string si can be a pre�x of another string sj , which invali-

dates some of the above formulas. The problem can be �xed

by using an explicit \end-of-string" marker lini+1 for each

string si.

B

O

B

Y
Y

1/2

1/4

1/4

B

O
B

Y
Y

3/4

2/3

1/3

1/4

B

O

B

Y
Y

1/2

1

1/2

1/4

Figure 3: Final (left), local (middle) and early (right) as-

signment of probabilities for a tree representing the names

(Bob, Boy, By) with the probabilities (1
2
;
1
4
;
1
4
).

4. EXPERIMENTAL RESULTS

4.1. Data Base

The \Oregon Graduate Institute (OGI) Spelled and Spoken

Word Telephone Corpus" provides recordings from about

4000 calls over the public telephone line. Among other

prompts (\What city are you calling from?", \what is your

last name" etc.), callers were asked to spell their last names

with and without short pauses between letters (SLP/SLN),

their �rst names with pauses (SFP), and the alphabet (ALP).

About 8% of the spellings contain out-of-alphabet words, e.g.

"c h e [sorry] c h a v [as in victor] e z". As our letter rec-

ognizer can not yet handle such cases, they were excluded1

from the experiments. With the partition into training, de-

velopment and test set provided with the data base, the data

used for our experiments amounted to the numbers listed in

table 1.

Set Strings Letters

Training (SLN, SLP, SFP, ALP) 4132 39687

Dev. Test (SLN, SLP, SFP, ALP) 2063 15612

Test 1 (SLN) 685 4419

Test 2 (SLP) 305 1935

Table 1: Sizes of Training, Crossvalidation and Test Sets

4.2. The Name Lists

A set of lists ranging from 1000 to 14 million names was

used to evaluate the tree search procedure. To ensure that

all names in the test set are represented2, we created the

lists by �lling up the SLN/SLP sets with randomly (without

replacement) selected entries from a list of 14 million entries,

1together with some very infrequent cut-o�s. Utterances con-
taminated with any of the 6 transcribed noise classes are used in
the training and test sets.

2Over 40% of the 800,000 unique names in the 14 million list
occur only once, 49 Names of the SLN test set are not in the list!

which was obtained from directory listings from the north-

east of the United States. Of course the lists contain many

double names. The sizes of all lists, the number of unique

entries and the perplexity of the SLN test set given a tree

with and without probabilties is shown in table 2.

Total unique PP PP(probs)

685 596 3.28 2.65

1,000 870 3.52 2.79

2,500 1,990 4.17 3.13

5,000 4,078 4.50 3.39

10,000 7,445 5.20 3.66

25,000 15,571 6.11 3.97

50,000 26,787 6.89 4.20

100,000 44,714 7.71 4.40

250,000 85,258 8.93 4.61

500,000 135,550 9.93 4.75

1,000,000 209,301 10.94 4.87

2,000,000 313,320 11.97 4.97

4,000,000 452,903 12.93 5.06

8,000,000 630,718 13.83 5.13

14,000,000 807,013 14.53 5.17

Table 2: Sizes of the names lists, and perplexity on the SLN

test set using plain trees and trees with probabilities.

4.3. Baseline Results

16 Melscale FFT coe�cients are computed every 10 msec.

The MS-TDNN uses a hidden layer with 100 units, which cor-

responds to a total of only about 34000 parameters (weights).

Minimum phoneme duration constraints are computed from

statistics on the training data and encoded in the acoustic

letter models. The baseline recognition results using no LM,

bi- and trigrams are shown in table 3.

4.4. Tree Search

A recognition test with a tree constructed from a list of 1

million (209,301 unique) names was performed to compare

the three di�erent methods of assigning probabilities (�nal,

local, early). Figure 4 demonstrates that for small beam

sizes, assigning \local" probabilities achieves the best results.

As expected, with increasing beam size all three methods

perform equally well, but the recognition becomes more time

expensive. Figure 5 shows the recognition results on the

SLN and SLP sets for lists of various sizes. The usage of

probabilities in the tree comes with an astonishing perplexity

reduction (see table 2), which is also re
ected in signi�cantly

better recognition results.

Language Model LA SA

SLP, No LM 90.6 60.0

SLN, No LM 88.2 53.7

SLN, Bigrams 91.0 62.8

SLN, Trigrams 92.5 70.2

Table 3: Baseline results using no LM, bi- and trigrams.

70.0

75.0

80.0

85.0

90.0

95.0

1 3 5 7 9 11 13 15 17 19 21 23 25
Beam size

0
1
2
3
4
5
6

7
8
9

sec

6

local probs s

s

s

s s
s s s s s s s

early probs c

c

c

c
c c c c c c c c

�nal probs 44

4
4 4 4 4 4 4 4 4

time per name ?

? ? ? ? ? ? ? ?
?

?

?

?

?

Figure 4: String accuracy for a tree search in a list of

1 million (200,000 unique) names. Three di�erent methods

for assigning probabilities in the tree are compared for dif-

ferent beam sizes. The lower curve is the recognition time in

seconds for one string.

76.0

78.0

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

Total 1000 10k 100k 1 Mio 10 100
Unique 4078 45k 209k 807k

SLP e

ee e e
e e e e

e
e
e e

e e

e

SLN u

uu u u
u

u u
u

u
u
u u

u u u

SLP no Probs c

c
c

c c

c

c

c

c
c
c

c c c

c

c
SLN no Probs s

s s

s
s
s

s

s

s

s
s

s s
s
s
s

Figure 5: String Accuracy using trees with and without

probabilities on the SLN and SLP test sets.

5. SUMMARY

We have tested the MS-TDNN letter recognizer on the

spelled names provided in the OGI Spelled and Spoken Word

Telephone Corpus. Without using any language modeling,

the baseline result on SLP test set is 90.6% LA. As expected

the SLN set is more di�cult, 88.2% LA was achieved. These

results are only about 2 - 3% worse than our results on high

quality speech spellings [5, 1] probably because people tend

to spell more careful under adverse telephone condition. Bi-

and trigrams achieve only moderate improvements. If the

search is constrained to a given set of names, high letter

and string accuracies can be achieved. Enriching the search

tree with probabilities proved to be astonishingly helpful.

In lists in the order of 1000 names well above 95% string

accuracy can be reached. Even in our largest list with 14

million (800,000 unique) names, almost 90% string accuracy

is achieved. The results are summarized in table 4.

Language Model SLN

LA SA

No LM 88.2 53.7

Bigrams 91.0 62.8

Trigrams 92.5 70.2

Tree 1,000 98.1 97.7

Tree 100,000 97.5 94.4

Tree 1,000,000 97.1 91.5

Tree 14,000,000 96.5 89.3

" 14,000,000, no prob. 91.4 75.2

Table 4: Letter and string accuracies for the SLN and SLP

test set, given no language model, bi- and trigrams and trees

enriched with probabilities.

Acknowledgements

The authors would like to thank the members of the Inter-

active System Laboratories, especially Klaus Ries and Bern-

hard Suhm for their assistance with the bi- and trigram lan-

guage models, and Michael Finke for contributing the idea

of the \early" tree probabilities.

6. REFERENCES

1. Martin Betz and Hermann Hild. Language Models for a

Spelled Letter Recognizer. In Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing,

pages 856{859. IEEE, May 9-12 1995.

2. Roland A. Cole, Mark Fanty, Gopalakrishnan, and

Rik D.T. Janssen. Speaker-Independent Name Retrival

from Spellings using a Database of 50,000 Names. In Pro-

ceedings of the International Conference on Acoustics,

Speech and Signal Processing, Toronto, Ontario, Canada,

May 1991. IEEE.

3. P. Ha�ner, M. Franzini, and A. Waibel. Integrating Time

Alignment and Neural Networks for High Performance

Continuous Speech Recognition. In Proc. International

Conference on Acoustics, Speech, and Signal Processing.

IEEE, May 1991.

4. J. Hampshire and A. Waibel. A Novel Objective Function

for Improved Phoneme Recognition Using Time-Delay

Neural Networks. In Proceedings of the 1989 International

Joint Conference on Neural Networks, June 1989.

5. Hermann Hild and Alex Waibel. Speaker-Independent

Connected Letter Recognition With a Multi-State

Time Delay Neural Network. In 3rd European Confer-

ence on Speech, Communication and Technology (EU-

ROSPEECH) 93, pages 1481 { 1484, September 1993.

6. Jean-Claude Junqua, Stephane Valente, Dominique Fohr,

and Jean-Francois Mari. An N-Best Strategy, Dynamic

Grammars and Selectively Trained Neural Networks for

Real-Time Recognition of Continuously Spelled Names

over the Telephone. In Proc. IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, pages

852{855. IEEE, May 9-12 1995.

