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Abstract 
 
In this thesis, we present a fast approach to automated generation of textured 3D city 
models with both high details at ground level and complete coverage for bird’s-eye view. 
A ground-based facade model is acquired by driving a vehicle equipped with two 2D 
laser scanners and a digital camera under normal traffic conditions on public roads. One 
scanner is mounted horizontally and is used to determine the approximate component of 
relative motion along the movement of the acquisition vehicle via scan matching; the 
obtained relative motion estimates are concatenated to form an initial path. Assuming that 
features such as buildings are visible from both ground-based and airborne view, this 
initial path is globally corrected by Monte-Carlo Localization techniques using an aerial 
photograph or a Digital Surface Model as a global map. The second scanner is mounted 
vertically and is used to capture the 3D shape of the building facades. Applying a series 
of automated processing steps, a texture-mapped 3D facade model is reconstructed from 
the vertical laser scans and the camera images. In order to obtain an airborne model 
containing the roof and terrain shape complementary to the facade model, a Digital 
Surface Model is created from airborne laser scans, then triangulated, and finally texture-
mapped with aerial imagery. Finally, the facade model and the airborne model are fused 
to one single model usable for both walk- and fly-thrus. The developed algorithms are 
evaluated on a large data set acquired in downtown Berkeley, and the results are shown 
and discussed. 
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1 Introduction 
 
The problem of capturing and displaying real-world objects has been addressed in many 
ways. From the first paintings in stone-age time to modern digital cameras, two-
dimensional pictures have been the most important means to grasp and share a piece of 
experienced reality, and these forms of visualization have been greatly extended with the 
invention of movies as a series of images. However, pictures and movies cannot truly 
reproduce the impression of a real world experience, because they are passive, i.e. one 
can only re-view objects from a predefined pose or trajectory. This is in contrast to the 
human desire to examine objects by turning them around or to explore environments by 
moving in them without restrictions. In computer science, the field of virtual reality has 
emerged to satisfy this need, providing a graphical 3D interface between computer and 
user. Since the graphics capability of computer systems has increased by orders of 
magnitude during the last decade, the availability of affordable rendering power has 
opened the door for a variety of new graphics applications, and has at the same time 
created an enormous interest in three-dimensional models of objects or environments. 
 
In this context, the necessity for capturing three-dimensional (3D) models of urban 
environments has been growing steadily during recent years. While 3D models, in 
combination with a rendering system, enable the reconstruction of arbitrary views, their 
usability extends far beyond the mere interactive replication of an environment; rather, 
enhanced with all kinds of additional information, they are useful in a variety of 
applications. In architecture and urban planning, the appearance of buildings in an 
existing urban setting can be simulated before the actual construction, in order to verify 
compatibility not solely based on human imagination. In computer gaming, the 
immersive experience can be substantially increased if a game takes place in 
environments familiar to the user, e.g. in his hometown, rather than in an artificial setting. 
In the entertainment industry, movies are increasingly based on virtual 3D models, 
providing special effects that are difficult if not impossible to obtain with other 
technologies. The usage of 3D city models has for example enabled “Mission Impossible 
II” (1996), “The Matrix” (1999), and “The Matrix Reloaded” (to appear 2003) to set new 
milestones in the movie industry. And as an unfortunately recently emerging application, 
3D models are used for simulations of urban disaster or terrorism scenarios. According to 
Planet9, a San Francisco-based virtual reality company specializing in selling hand-made 
3D city models, the Washington, DC and New York City models have been their most 
heavily used ones in the aftermath of the September 11th terrorist attacks. 
 
This list can be continued with many other potential applications such as 3D displays for 
car navigation units, 3D city maps, and simulation of radio wave propagation for the cell 
phone industry, all of which need accurate 3D city models. The requirements with regard 
to the geometric level of detail and the photo-realistic appearance differ from application 
to application. For a far-view fly-thru, it is sufficient to have a coarse approximation of 
the building tops and the terrain, whereas for a close-up walk- or drive-thru, it is essential 
to have a high-resolution model of the building facades. And while even the geometry 
alone may already be sufficient for purposes such as the simulation of radio wave 

 



2  Chapter 1 - Introduction  

propagation, the photo-realism requirements demanded by visualization applications are 
generally enormously high: persons familiar with an environment are extremely sensitive 
to changes and do immediately notice any discrepancy between the virtual model and 
known reality. It is by no means adequate for this purpose to utilize an artificial model, 
simply composed of repetitive geometry and texture.  
 
Hence, the problem of acquiring a sufficiently detailed and photo-realistic model of a city 
has to be solved. Existing methods for model acquisition are complicated and time 
consuming, and the lack of photo-realistic models at affordable costs and acceptable 
acquisition time is prohibitive to the broad usage of virtual worlds. In the past, there have 
been various attempts to create large scale city models in an automated or semi-
automated way from airborne view, either using stereo vision approaches on aerial or 
satellite images, or, more recently airborne laser scans. Both approaches have the 
disadvantage that their resolution is low, and more importantly, only the roofs of the 
buildings are captured, but not the facades. This essential disadvantage prohibits their use 
in photo-realistic walk- or drive-thru applications, which require an enormous level of 
detail at ground level.  
 
Previous approaches to acquiring highly detailed models from ground-based view, 
however, are commonly still manual, e.g. based on entering coordinates from 
construction plans, or at best semi-automated, e.g. using photos and geometric primitives, 
which are combined to a model by manually selecting correspondences. None of the 
existing approaches scales for an entire city, since it would typically take months to 
create such a large model, due to the significant manual intervention. This process is not 
only prohibitively expensive, but is also unsuitable in applications where the goal is to 
monitor changes over time, for example detecting damage or possible danger zones after 
natural disasters such as earthquakes, land slides or hurricanes, or documenting 
construction progress for a building. In order to enable the broad use of urban virtual 
reality, photo-realistic model acquisition has to become a task as simple as taking a 
picture or recording a video, which can be done without sophisticated expert knowledge 
in acceptable time. 
 
In this dissertation, we will address the model acquisition problem by proposing an 
innovative approach to capturing ground-based facade models of urban environments. In 
this approach, the 3D geometry of a city is acquired using a combination of inexpensive 
2D laser scanners, mounted on a pickup truck at a 90-degree angle towards each other, 
and texture is acquired using a synchronized digital camera. This acquisition vehicle 
moves at normal speeds on public roads, and since data is acquired continuously rather 
than in a stop-and-go fashion, our method is extremely fast. The collected data is 
processed offline, and 3D models of the building facades are generated completely 
automatically. Additionally, we show that it is possible to merge these facade models 
with data from airborne view, in order to create a complete 3D model, containing facades 
as well as building tops and terrain shape.  
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In this thesis, we show that our approach complies with the following key objectives: 
 

• Automatism – no human intervention is necessary. 
• Photo-realism – rendering the created building models yields images that are 

visually pleasing and approach the quality of a photo. 
• Speed – both data acquisition and automated model generation are extremely fast.  
• Scalability – the complexity is linear and computation time increases only 

proportional to the covered area. 
 

 
1.1 Contributions of this Dissertation 
 
For the various aspects to be solved in the context of automated 3D modeling, we employ 
methods from different research areas such as mobile robotics, optical measurement 
techniques, computer vision, and computer graphics. The interdisciplinary nature of 
model acquisition and rendering requires the broad scope that this dissertation comprises.  
 
Specifically, the main contributions of this dissertation are: 
 

• Innovative data acquisition approach. We suggest a new approach capable of 
acquiring detailed facade models at unprecedented speed, since data is acquired 
continuously, rather than in a stop-and-go fashion.  

• Development of a mobile acquisition system. Mounted on top of a pickup truck, 
our acquisition system is equipped with 2D laser scanners and a digital camera. 
All devices are synchronized, and we have developed real time software to handle 
and time stamp the incoming data streams. 

• Adaptation of indoor robot localization algorithms to outdoor environments. 
In order to provide the level of localization precision necessary for the proposed 
acquisition approach, we have adapted methods previously only utilized for 
indoor mobile robots to our high-speed vehicle and the city environment. In 
particular, the adapted methods are map generation, scan matching, and Monte 
Carlo Localization.  

• 3D processing algorithms. The different nature of our data requires new 3D 
processing algorithms, since traditional methods of 3D scan processing are not 
applicable. We have developed a framework of scalable algorithms for the entire 
processing pipeline, addressing foreground removal, facade geometry 
reconstruction, texture mapping, and optimization for rendering 

• Registration and merging of ground-based and airborne models. We have 
developed methods to register and augment the facade models obtained from our 
innovative ground-based data acquisition with data from airborne view, in order 
to obtain building tops, terrain shape, and hence a complete model of an urban 
environment. 

 
The developed methods and their results have been covered in publications and 
presentations in international conferences: In [Früh et al., 2001], we have introduced our 
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acquisition approach for the first time. The tracking aspect of our precise localization 
approach is described in [Früh and Zakhor, 2001 a], whereas [Früh and Zakhor, 2001 b] 
focuses on the global correction and registration in respect to a global map. Finally, [Früh 
and Zakhor, 2002] details the 3D data processing and model generation. 
 
 
1.2 Organization of this Dissertation 
 
This thesis is organized as follows: 
Chapter 2 gives an overview of background and related work in three-dimensional 
model generation for architectural structures. Both automated and interactive methods are 
summarized, and advantages and shortcomings are discussed. In Chapter 3, we introduce 
our new model acquisition approach, and describe hardware and software that has been 
developed for the data acquisition process.  
 
A variety of new aspects and problems occur in conjunction with our new method. In 
particular, it turns out that one of the most essential problems is the accurate localization 
of the vehicle and its sensors, in other words the reconstruction of the pose during data 
acquisition and the assignment to individual laser scans and camera images. Chapters 4 
and 5 address this localization problem: Chapter 4 focuses on tracking the vehicle based 
on relative pose estimates. These relative poses are obtained from scan-to-scan matching 
of subsequent horizontal laser scans and concatenated to an initial acquisition path 
estimate. In Chapter 5 we propose innovative methods to globally correct pose using 
Monte-Carlo-Localization, a probabilistic localization approach recently developed in 
mobile robotics. The initial path is corrected in respect to a global edge map, which we 
derive either from aerial photos or from a digital surface model obtained from airborne 
laser scans. 
 
Chapter 6 is devoted to the completely automated offline processing of the vertical scans 
and the camera images, and the reconstruction of a 3D facade model. We describe 
methods of handling the large-size data efficiently, of identifying and removing 
foreground objects such as trees, and of reconstructing geometric triangular facade 
models. Furthermore, we devise algorithms to texture-map the architectural structures 
and to optimize these models for interactive rendering. In Chapter 7, we describe the 
usage of airborne laser scans and aerial images to create an airborne surface mesh 
containing the parts missing in the facade models, such as rooftops and terrain shape. We 
merge the complementary models to obtain a final complete model, suitable for both 
walk- and fly-thrus.  
 
In Chapter 8, we evaluate all proposed methods for a large data set of downtown 
Berkeley. The results are shown and discussed, and the computational performance and 
complexity is analyzed. Chapter 9 finally concludes this thesis with a summary and 
suggestions for future work. 
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2 Background and Related Work 
 
In this chapter, we describe the background and context of this thesis and introduce terms 
and concepts commonly used in the context of 3D model generation and rendering. We 
also summarize technologies and existing approaches for 3D model acquisition and 
analyze their advantages as well as their shortcomings.  
 
2.1 3D Model Representation and Rendering 
 
The problem of capturing and displaying real-world objects has captured human’s 
interest since ancient time, from paintings and sculptures to photographs and movies. 
Today, the advances in computer technology have started to overcome the restriction of 
only passively viewing pre-recorded 2D images and have made it possible to provide 
more realistic impressions by immersing into 3D dimensional worlds to be explored 
interactively. In computer science, the field of virtual reality has emerged to satisfy this 
need, providing a graphical 3D interface between computer and user. In order to enable 
the immersion of a person in an environment, an interactive display is necessary, which 
allows rendering, i.e. painting, of an object or environment from an arbitrary viewpoint 
upon demand.  
 
An object or environment can be defined by a geometrical model, which is, according to 
the definition in the Oxford English Dictionary, “a representation in three dimensions of 
some projected or existing structure, or of some material object artificial or natural, 
showing the proportions and arrangement of its component parts”. While this 
representation can be volumetric, such as polyhedral or voxel-based for applications such 
as medical imaging or FEM simulations, it is usually surface-based for rendering solid 
objects. In other words, for the purpose of visualization and rendering, a 3D model 
contains the geometry and the visual appearance of its visible surfaces. 
 
For the vast majority of models, surface geometry representation is based on triangles. 
Defined by three vertices only, a triangle is the most basic 2D primitive, and all other 
polygonal primitives, e.g. quadrilaterals, can be composed from them. To represent a 
surface in 3D space, triangles are concatenated to a mesh, in which adjacent triangles 
share vertices. While vertex coordinates and connectivity define the geometry, additional 
attributes specify the surface properties and thus, in conjunction with a lighting model of 
the environment, the visual appearance during rendering. The most important attributes 
are surface normals, vertex normals, and material properties such as shininess, 
reflectance, and color or texture. In the context of Computer Vision, texture means often 
a small sample of a larger stochastic pattern, sufficient to describe the stochastic 
properties. In the early days of Computer Graphics, when graphics memory was 
exiguous, small texture pieces were used in a repetitive manner; however, since available 
graphics memory and hence possible sample size have increased by orders of magnitude, 
entire non-repetitive images can be used as texture instead of small pattern samples. 
Therefore, in Computer Graphics, texture mapping is now commonly understood as 
attaching an arbitrary 2D image to geometrical primitives, without making restrictions 
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about its content; essentially, it is  “wrapping” an image around a geometric structure. In 
order to make 3D models look photo-realistic, i.e. to make them (ideally) 
indistinguishable from a camera snapshot, it has consequently become popular to use 
real-world imagery as texture. Essentially, the image formation process in the camera is 
inverted, and the picture’s color and texture information is back-projected onto the 
geometry.  
 

a)   b)  
Figure 2-1: 3D building facade model based on a triangular mesh; (a) mesh displayed as wireframe, 
(b) same mesh texture mapped with camera images 

 
In recent work, there have also been interesting attempts to introduce point-based instead 
of triangular model representations. An example is Q-splatting [Rusinkiewicz and Levoy, 
2000], in which the geometry and texture is represented by a set of 3D points, with 
associated color and normal vector for each point. This approach appears promising for 
cluttered structures that are difficult to approximate by smooth surfaces, and hence result 
in inadequately large triangular meshes. However, for most objects and in particular for 
buildings, smooth or planar surfaces are common, thus making triangle-based 
representations far more efficient than point-based representations. 
 
Using an explicit 3D model is not the only possibility of providing a 3D real-world 
impression to a human: in fact, the virtual replication of an environment for a walk-thru 
can be reduced to simply showing the correct image for a given position. Accordingly, a 
second popular visualization approach, which generally relies more on acquired images 
than on 3D geometry, has been developed. In this approach, called image-based 
rendering, it is assumed that correct texture distracts the eye from geometric 
imperfections if a viewpoint is sufficiently close to the one from which an image was 
taken. To render a view, appropriate images from nearby locations are retrieved from a 
large database and combined via warping and mosaicing. While this step typically 
utilizes 3D information, it is sufficient to possess only very approximate knowledge 
about the 3D geometry of a scene. In a full virtual reality setup, it is possible to create a 
true 3D impression for a human user even without any knowledge about its 3D content 
by showing each eye a slightly different view of the scene. Although humans perceive a 
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3D world, they observe in fact only a pair of two-dimensional images. It is the brain that 
combines the two images to a 3D impression by exploiting small disparities due to the 
different viewpoints in a process called stereo vision.  
 
Since they are capable of including each detail of a scene without a merely impossible 3D 
reconstruction, image-based rendering techniques are able to achieve an impressive level 
of photo-realism. The visual quality of image-based rendering outperforms model-based 
rendering, if both (a) acquired images close to the rendered view are available, and (b) 
the object geometry is too complex to be properly represented by a geometric model, e.g. 
in case of trees or panoramic views over a large urban area. The main reason is that for 
these situations, model-based techniques explode in their necessary number of polygons, 
while the average display size of a polygon on the screen can fall below few pixels. In 
contrast, image based rendering has inherently an appropriate ratio between source image 
size and rendered size, since it performs roughly a one-to-one copy to the screen. 
 
However, the various types of image-based techniques have similar severe drawbacks 
that prohibit their use for a wide range of applications. First, the data size is orders of 
magnitudes larger than for model-based techniques, as information is stored multi-
redundantly, limiting either the size or resolution of an object or environment drastically. 
Second, image query and retrieval in real-time is a non-trivial, not yet solved problem. 
Third, the rendering and warping techniques are slow, since there is currently no 
hardware support, so that rendering has to be performed offline rather than interactively. 
One of the few attempts to implement a truly image-based rendering engine was the 
creation the PixelFlow supercomputer [McAllister et al., 1999] in order to obtain 
interactive frame rates, but there is currently no system for normal consumer PCs. 
Additionally, for many applications such as urban planning, simulations and games, it is 
inevitable to possess explicit information about the actual geometry of objects or 
environment in order to perform computations or add artificial components correctly. 
Only a geometric 3D model is capable of fulfilling these needs. 
 
Furthermore, model based approaches have the advantage of being widely supported by 
various tools, hardware, and software standards. Starting from 1996, affordable hardware 
support for rendering textured triangular meshes on standard PCs has begun with the 
release of the first 3Dfx Voodoo chips set and 3D graphics card. Since then it has been 
advancing in increasingly shorter product cycles, mainly fueled by the gaming industry. 
While the first graphics cards had not more than 2 MB onboard memory, common 
gaming cards as of 2002 have 128 MB memory, massively parallel architectures, and 
various hardware-accelerated rendering features such as fog, realistic water surfaces, 
shading and many others, at rendering speeds of more than 100 million triangles per 
second. The operating principle for all 3D graphics cards is z-buffering, where for each 
pixel on the screen not only color but also an assigned depth z, i.e. distance from the 
viewing screen, is stored. If rendering of a new 3D triangle is requested, a pixel is only 
overwritten by the new triangle’s pixel, if its depth is lower. Thus, occlusion is directly 
handled by hardware. OpenGL, originally developed by SGI, and DirectX, developed by 
Microsoft, provide convenient APIs to the graphics hardware. With these APIs, it is 
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simple to use the extensive hardware capabilities without detailed knowledge about the 
complex low-level processes. For example, triangles can simply be described by their 
vertex coordinates, translations or rotations by matrices, view points and light sources by 
position, and material properties by a set of intuitive parameters.  
 
With the Virtual Reality Modeling Language (VRML), a powerful standard for 
describing and storing 3D models independently from the computer platform has been in 
existence since 1994. VRML offers not only the possibility of describing various 
geometry primitives and surface properties, but also scene graphs, handling of multiple 
levels of details, instantiation, diverse lighting sources, background scenery, and 4D 
animation. With the VRML97 standard, it also has an extensive interface to JAVA 
programs and functions for event handling. VRML models can be interactively viewed 
with web-based VRML-browsers such as Cosmo or Cortona Player, available at no costs 
as plug-ins for the standard web-browsers Netscape Navigator and Microsoft Internet 
Explorer. As a result, 3D models can easily be transferred to and viewed by a large 
audience. This is an increasingly important advantage for commercial applications such 
as Internet shopping, where customers prefer to inspect a product virtually before buying, 
and virtual walk-thrus, where a potential city visitor or hotel guest wants to explore the 
settings of the environment before booking. 
 
Although hardware limits have been more and more extended, it is still a non-trivial 
problem to handle extremely large models with millions of triangles and many texture 
images, since such models can exceed the graphics memory by orders of magnitude. 
Typically, most parts of a large model are not visible from a given view point, or they 
occupy only a small space on the screen. Therefore, sophisticated techniques have been 
developed to budget the available graphics memory and select which parts of the model 
have to be loaded at which resolution. Typically, a complex model is structured into 
submodels, and during rendering a selection process called culling is applied. Popular 
methods are frustum culling to eliminate submodels not in the field of view, distance 
culling to cut off remote parts, and visibility culling to eliminate certainly occluded 
submodels. The more culling methods are combined, the less operations are for the 
graphics card to be performed. An equally important step, which has to be done during 
model generation, is creating multiple resolutions for each submodel called levels-of-
details (LODs). As the name implies, lower LOD represent a given geometry by a 
smaller amounts of triangles, hence omitting more and more details while reducing mesh 
complexity. As an example, in its highest LOD, a house facade is represented by 
thousands of triangles and contains small features such as house entrances, windows and 
mailboxes, eventually even the brick structure. In its lowest LOD, however, a facade can 
be simply represented by a rectangle. The model structure and the hierarchy of submodel 
are defined in a scene graph, and the renderer uses this graph for both culling and 
determining which LOD to show under which conditions. Most commonly, the selection 
of the appropriate LOD depends on the distance of the object to the current viewpoint. 
These sophisticated techniques make systems like VGIS possible, [Ribarsky et al., 2002], 
which enables browsing Gigabytes of 3D terrain and urban data interactively.   
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2.2 Acquisition of 3D Models 
 
Coincident with soaring rendering possibilities, there has been a continuously increasing 
demand for acquiring 3D models of existing objects and environments. A tremendous 
amount of work has been focusing on capturing small-size objects such as figures, 
statues, heads, and work pieces for virtual reality or reverse-engineering purposes. Such 
objects are captured in controlled laboratory environments, from known sensor positions, 
and under stable acquisition conditions. All sides can easily be accessed and the small 
size of those objects makes handling the acquisition simple. Acquiring detailed 3D 
models of buildings in outdoor environments is generally harder, since objects are large 
and immobile, and hence it is the sensors that have to be moved. Additionally, the 
environment cannot be controlled, since it is shared with people, and lighting conditions 
change dependent on time and sensing direction, since the light source is the sun. 
Aggravating is also the presence of many “uncooperative” materials such as glass and 
shiny steel, whose reflecting characteristic is problematic for most sensor types. Hence, 
the suitability of model acquisition techniques is different for objects and for 
environments, and in the following overview over existing methods we focus on 
applications to create 3D models of architectural structures. 
  
The most basic and most time-consuming approach for obtaining a 3D model is to enter 
coordinates manually, e.g. from CAD drawings, construction plans, or survey 
measurements. This method is reliable and easy to apply without additional equipment, 
and large libraries of hand-made VRML models on the web witness its widespread use 
throughout the last years. Artificial objects or worlds are generally hand-made, for 
example for the large gaming market, and the demand for convenient editing and 
manipulation has lead to the development of an endless list of powerful 3D editor tools 
such as 3DstudioMax, AutoCAD, MultiGen Paradigm, Maya or Rhino. Using theses 
tools, modeling real-world scenery is the same process than creating an artificial model 
that resembles the real-world original. One of the early attempts to facilitate manual 
editing for large-scale architectural structures was suggested in [Bukowski and Séquin, 
1995], in the context of the Soda-Walkthru project [Séquin et al, 1993]. In this project, 
indoor and outdoor appearance of a building was simulated before construction. Based on 
entering floor coordinates from construction plans, a 3D model was constructed and its 
consistency verified. For urban simulations, [Chan et al., 1998] manually created a large 
model of downtown Los Angeles using the MultiGen editor, based on plans from the 
urban planning department and by marking and extruding building footprints in aerial 
photos. In order to make the model appear photo-realistic, they manually texture-mapped 
the building tops with the aerial photos and the facades with pictures taken from ground 
level with a digital camera. Similarly, [Heller et. al., 1996] developed a system that 
facilitates the input of multiple types of data such as ground plans, terrain elevation maps, 
and aerial images. However, construction plans are neither always available nor always 
identical with the actual building, and manual editing is potentially error prone and time 
consuming, especially if a high amount of details is desired. 
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To overcome these drawbacks, automatic or semi-automatic approaches have been 
developed, using sensor data for the reconstruction process in order to achieve a higher 
level of automation. Additionally, sensor data allows capturing true shape, since resulting 
3D models are based on real measurements of the actual geometry instead of idealistic 
plans. Cameras and laser scanners are by far the most common devices used for model 
reconstruction. While every method of obtaining photo-realistic models relies on camera 
images for texture acquisition, geometry can be obtained using either cameras or laser 
scanners, with the latter method becoming increasingly popular. In this case, there is an 
additional registration problem between laser-based geometry and camera-based texture, 
which does not occur if geometry is reconstructed from camera images alone.  
 
 
2.2.1 Cameras and Stereo Vision 
 
Geometry reconstruction using cameras is generally based on stereo vision. A camera 
performs a perspective projection of a 3D structure onto a 2D image, and each image 
pixel corresponds to a direction in 3D space, i.e. a ray originating in the camera’s center 
of projection. Since all points along this ray project to the same pixel, it is not possible to 
reconstruct 3D coordinates given solely this one pixel. The principle of stereo vision is to 
use (at least) two cameras observing the scene from different viewpoints, to identify 
corresponding pixels and thus rays from their center of projection, and to compute a 3D 
vertex as rays’ intersection, as shown in Figure 2-2. This principle is also known as 
triangulation, since the 3D vertex and the cameras’ centers of projections form a triangle. 
The distance between the cameras is called baseline. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2: Stereo Vision setup 
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Although the idea of stereo vision is simple, there are two major problems in the practical 
implementation. The first problem is to exactly determine the direction in 3D space 
corresponding to a pixel, generally known as the calibration problem. For a given pixel, 
the direction does not only depend on the extrinsic camera parameters position and 
orientation, but also on intrinsic camera parameters such as lens distortion, image center 
and CCD chip pixel size, which are due to the non-idealistic nature of technical cameras. 
The internal parameters depend on the underlying camera model; in photogrammetry, the 
most accurate form of stereo vision, the camera models are complex and utilize many 
parameters. Calibration has been a well-studied problem during the last decades. For 
computer vision applications, relaxed camera models are used, modeling in particular the 
lens distortion as simply radial. Popular calibration methods are Tsai’s camera calibration 
[Tsai, 1987], with five intrinsic parameters, and Zhang’s “easy camera” calibration 
[Zhang, 2000], with six intrinsic parameters. Both methods are semi-automatic and use 
calibration objects with known geometry in order to compute the parameters. The 
obtained calibration accuracy is satisfactory for the vast majority of applications; 
however, once the camera is calibrated, its settings must remain unchanged. Besides 
these approaches, a new class of auto-calibration methods has been developed, which 
estimate the camera parameters during camera motion. These approaches have the 
advantage that no pre-calibration has to be performed, and as such, even sequences 
recorded with completely unknown parameters can be interpreted. Furthermore, camera 
parameter settings, in particular the focal length, are allowed to change during a 
sequence. The calibration accuracy, however, is lower than for pre-calibrated cameras. 
 
The second, much harder problem is to identify which pixels correspond to each other in 
the two images, generally known as the correspondence problem. In semi-automated 
approaches, the pixel correspondences are usually defined by the user. For fully 
automated approaches, there are various algorithms as how to find correspondences. 
Typically, a first step is the usage of image processing algorithms to detect features such 
as corner points in both images. To find the correctly corresponding pairs, correlation can 
be applied to match the two images in a window around the feature points; this requires 
similar perspective and thus a small baseline, resulting in a high sensitivity to inaccurate 
feature location. There exist a variety of methods to reduce search space and hence 
accelerate the search process. For example, the correlation can be reduced to a 1D search, 
since the 3D location of a feature is along one line defined by the pixel in the first image, 
and hence all possible matching locations must also be along a line in the second image, 
called epipolar line. A rectification process can warp the images so that all epipolar lines 
are parallel to the horizontal image axis. Once the correct correspondences are found, the 
3D location of the feature can be determined by intersecting the pixel rays. 
 
The problem of finding correspondences is the most crucial part in stereo vision. If 
features are absent, for example on a white building wall, it is not possible to determine 
its shape with stereo vision methods. Hence, the spatial distribution of features depends 
highly on the scene and is typically non-uniform, resulting in large gaps with no 3D 
information. Problematic is also the opposite case, when too many features are present 
and it is not possible to identify and assign correspondences correctly, for example for a 
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wall with a repetitious brick pattern. In this case, stereo matching results are 
unpredictable, many obtained vertices are erroneous, and extracting geometric primitives 
is difficult. A significant improvement for such situations has been the usage of the 
RANSAC algorithm [Fischler and Bolles, 1981] to find geometric structures such as 
planes, yielding correct result even in presence of many outliers. Due to its robustness, it 
has become increasingly popular for computer vision applications during recent years.  
 
 
2.2.2 Laser Scanners 
 
The usage of laser light (Light Amplification by Stimulated Emission of Radiation) for 
distance measurement purposes has become extremely popular with the spread of the 
laser diode as an inexpensive source. With laser diodes, it is possible to create 
monochromatic light rays with extremely low beam divergence, switchable at Gigahertz 
speeds by electric signals. Dependent on the intended range, different properties of the 
laser light are exploited for distance measurement. Traditional interferometry achieves 
sub-nanometer resolution, and auto-focus methods achieve sub-micrometer resolution 
over millimeter range. For sub-meter and lower meter range, e.g. for scanning small 
objects such as figures or persons, triangulation is the most common measurement 
principle. Using the same idea as in stereo vision, a laser point or line sweeps over an 
object, while the scene and the backscattering light spot is captured with a calibrated 
camera, placed at a baseline distance apart from the laser. The object distance is 
determined in the triangle formed by the known baseline and the two base angles of 
camera and laser. 
 
For far-range applications, starting from few meters up to many kilometers, the time-of-
flight principle is used. Commonly, in reference to the well-known RADAR, this 
principle is also called LIDAR (Light Detection and Ranging), especially in the context 
of remote sensing. As illustrated in Figure 2-3, the time between sending a laser signal to 
an object and receiving its backscatter is measured, and the distance is computed over the 
known speed of light.  
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on the object, as shown in Figure 2-4. The laser beam sweeps over the surface and scans 
the object. As the motion of the mirror is controlled and known precisely, a distance 
value and its corresponding mirror angle can be combined to compute a scan point, i.e. a 
vertex in the scanner’s coordinate system. In a 2D scanner, the deflection unit contains 
only one rotating mirror; the laser beam sweeps along a line and all scan points are in a 
scanning plane orthogonal to the axis of rotation. In a 3D laser scanner, where the 
deflection unit contains either two rotating mirrors or one mirror with two degrees of 
freedom, the beam is deflected in two directions, and scan points are received in a row-
column fashion. While the resulting scans are generally referred to as 2D scans and 3D 
scans, they are in fact rather 1½ D and 2½ D representations, since the laser light does 
not penetrate surfaces and is not able to capture any occluded structure. 
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Figure 2-4: Time-of-flight measurement in a 2D laser scanner; both transmission and detection path 
are deflected by a rotating mirror. 

 
Since the speed of light is high, the time measurement has to be extremely precise, 
requiring high bandwidth for transmitting laser diode, receiving photo diode, and the 
entire system. Determining the time of flight is either done directly by transmitting a light 
pulse and counting a clock signal until the pulse’s reflection is received, or by amplitude-
modulating the laser light and exploiting the phase shift between transmitted and received 
signal. Commercial scanners utilize sophisticated distance measurement devices, which 
consider various hardware signal response times to achieve time measurement accuracy 
in the sub-nanosecond range, thus equaling a distance accuracy of a few centimeters. The 
amount of backscattered light obviously depends on the surface. For example, the 
reflectivity of a black surface is only about 5% of the reflectivity of a white wall. It also 
depends with 1/r2 on the distance r to the object, since the backscattering (ideally) returns 
the light in the entire half sphere. Hence, the detection limit of the optical receiver limits 
the range of the distance measurement, in contrast to passive light sensors such as 
cameras. Additionally, the laser beam divergency is finite, yielding a light spot size 
increasing proportionally to the distance. Beam divergency can be substantial and 
depends on both the desired laser safety class and the intended application. For security 
applications, it is desired that there are no gaps between subsequent scan points, so that 
the scanner detects every approaching object. For measurement applications, usually a 
small spot size is desired in order to avoid an averaging effect over a large surface area. 
The SICK LMS scanners that we use in our approach were originally mainly developed 
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for security applications; their relatively large beam divergency of about 15 milliradians 
results in a spot diameter of 1.2 meter at the maximum range distance of 80 meters. If 
there are multiple distances within the laser spot, e.g. if the spot hits two object at slightly 
different distances or a wall under an oblique angle, the shape of the backscattered pulse 
is a mixture. In this case, the resulting distance value is potentially inaccurate or 
erroneous.  
 
In the following sections, we will give an overview over existing 3D modeling 
approaches based on camera images and/or laser scanners. For this overview, it is 
reasonable to distinguish between ground-based and airborne data acquisition and 
modeling strategies, since the two scenarios differ substantially in image perspective, 
resolution, occlusion problems, and amount of acquired data. 
 
 
2.2.3 Model Generation from Airborne View 
 
The use of remote sensing data, i.e. aerial images or airborne laser scans, has been 
investigated in several 3D modeling approaches. Since aerial images are widely 
available, building reconstruction based on stereo matching has been of high interest in 
the last decade for both civilian and military purposes. Examples for automated and semi-
automated approaches for building reconstruction can be found in [Gruen et al., 1995] 
[Frere et al. 1998], [Huertas et al., 1999], [Baillard and Zisserman, 1999], [Förstner, 
1999], [Kim et al, 2001, [Brenner et al., 2001], and [Vestri and Devernay, 2001]. The 3D 
modeling process can be distinguished into building detection, structuring, and 
reconstruction steps.  
 
Most difficult are the first two steps: detecting a building and determining its outline and 
structure. Once the dimensions are known, the geometric reconstruction based on stereo 
matching is rather straightforward, e.g. it can be computed automatically by image 
correlation with a window according to the building shape. Completely automated 
approaches attempt to extract building shapes in a intensity-based segmentation process, 
and most commonly, a priori knowledge about building shape is assumed, e.g. by making 
strong restrictions about possible architectural structures. Despite these efforts, 
completely automated building extraction based on images has not yet led to acceptable 
models, and reported success rates generally refer to very specific conditions. It has been 
noted by various authors that fully automated approaches cannot be expected to deliver 
completely satisfying results in the near future, due to the enormous variety and 
complexity of architectural structures.  
 
Semi-automated approaches require manual steps by an expert user, e.g. the selection of 
feature points or building outlines. Typically a model resolution in the range of one foot 
to one meter in the horizontal directions can be achieved from airborne view, whereas the 
vertical precision depends on the baseline of the images and is generally lower. These 
numbers, however, do not tell the entire truth: only the objects selected in the labor-
intensive manual or error-prone automatic structuring process appear in the final model. 
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In semi-automated approaches, objects are typically simply omitted due to the limited 
labor time. In automated approaches, however, it can also occur that actually non-existing 
structures appear in the model, e.g. if the segmentation process is too “generous” in 
declaring image areas as buildings. Hence, the difference between real world and model 
can be quite substantial.  
 
An alternative is the usage of airborne laser scans, which has become increasingly 
popular in recent years, due to enormous advances in technology. A city is scanned from 
airborne view with a far-range 2D scanner mounted on a plane, and from the obtained 
scan points a Digital Surface Model, i.e. an array of regularly spaced altitude samples, is 
created. We give an overview over previous work in Chapter 7, where we also suggest 
the usage of airborne scans to complete ground-based models. 
 
 
2.2.4 Model Generation from Ground-Based View 
 
The data acquisition from airborne view can obviously neither capture detailed facade 
geometry nor facade texture, hence making models only suitable for virtual fly-thrus, not 
for walk- or drive-thrus. Consequently, there has been a variety of approaches that 
attempt to acquire models from the ground-based perspective familiar to humans. For 
indoor environments, ground-based modeling includes capturing room interior as well as 
walls and ceilings. For outdoor environments, ground-based modeling mainly equals 
modeling the facades of buildings, and thus ground-based models are almost completely 
complementary to airborne models. 
 
Capturing ground-based data of large areas requires the acquisition system to be moved 
within the environment, and the used sensor platform inherently affects speed and 
accessible area for the capturing process. It is also generally necessary to determine the 
position of the devices either directly during data acquisition or in a postprocessing step. 
The most flexibility is offered if devices are handheld and can be moved freely in all six 
degrees-of-freedom, but in this case pose tracking is difficult since no motion restrictions 
apply. Many sophisticated acquisition systems are too heavy to be carried by a human 
over longer distances, and therefore in most previous work, capturing devices have been 
mounted on wheel platforms such as trolleys, cars, and robots, inherently constraining 
motion mainly to the degrees of freedom given by the ground surface. The usage of 
mobile robots as acquisition platforms is quite common, since mapping and localization 
are key issues in robotics. One of the advantages of robots is that the exploration of 
dangerous environments, e.g. mine fields or hostile areas, can be done remotely without 
putting humans at risk. It has been envisioned that using autonomous rather than remote 
controlled mobile robots could automate not only the model reconstruction, but also the 
entire data acquisition process. However, while the general idea is striking, practical 
implementation has proven to be difficult. Particularly outdoor environments are 
extremely complex, and mobile robots are far from being reliable enough to explore an 
entire city autonomously. Additionally, mobile robots are slow in comparison to cars, 
which are capable of traversing even large cities entirely within few hours. 
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Similar to the airborne model construction, there have been popular semi-automated 
approaches to image-based modeling. The most prominent one is Debevec’s “Facade” 
approach [Debevec et al., 1996], which is the source of the commercial software 
packages Canoma and ImageModeler, and has been utilized to create the photo-realistic 
building models for the “Campanile Movie” and “The Matrix Reloaded”. Only a small 
set of images taken from different viewpoints is necessary to construct a model. For each 
object to model, the user first defines the underlying simple geometric shape such as a 
box or pyramid, and marks the corresponding edges in the images. Then, the algorithm 
determines the actual dimensions by minimizing the edge deviation in the images, 
resulting in a polygonal representation of the geometry. As an additional byproduct the 
camera positions are obtained, and during rendering the texture is taken from the image 
most similar to the viewing perspective. Due to this view dependent texture mapping, 
Debevec’s work is often referenced as an example for image-based rendering, although it 
is in fact rather a hybrid approach. As demonstrated in the “Campanile Movie”, it is 
possible to obtain surprisingly realistic looking results with this technique, though at the 
cost of substantial manual interaction. A variation of this idea towards more automatism 
can be found in [Cipolla et al., 1999], making more restrictive assumptions about 
architectural structures such as orthogonality and parallelism. Similarly, [Dick et al., 
2001] and [Werner and Zisserman, 2002] propose extensions using additional cues such 
as vanishing points and texture to find correspondences for wide-baseline stereo 
matching. Using robust RANSAC methods, planar patches are extracted from the 
unorganized and partially erroneous point cloud obtained from stereo matching. The 
given examples, however, refer to single buildings with rather simple structure and 
clearly visible vanishing lines, and neither occluding foreground objects nor extended 
glass windows were present in the scenes.  
 
Other more automatic approaches use video streams as dense series of images and 
structure-from-motion to recover geometry. [Faugeras et al., 1998] and [Zisserman et al., 
1999] were able to track features over multiple frames and managed to recover 3D points 
and lines based on this multi-view stereo vision. To construct a polygonal model from the 
sparse 3D vertices is by no means trivial, and Faugeras’ approach required some manual 
intervention to fit planes to the 3D vertices. Using RANSAC, Zisserman extracted planes 
automatically, though again for a scene of low complexity. As Faugeras states, neither 
theory nor technology are ready yet for fully automated modeling from image sequences.   
 
Besides the issues of detecting and correctly identifying features across multiple images, 
the resolution and the noise sensitivity for determining 2D features and hence 3D vertices 
pose a hard problem for image-based approaches. Especially for video data, recovered 
poses show a drift-like behavior over multiple frames due to the low resolution, and 
closing loops does not lead to consistent models, unless cross-image verification is 
performed. This comes usually at the cost of O(n2) computation complexity with the 
number n of frames, and imposes hence severe scaling limits for the length of and image 
sequence. An innovative approach to a more accurate image-based reconstructed has 
been developed in the MIT city scanning project [Teller, 1998], [Antone and Teller, 
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2000]. A cart, equipped with a high-resolution camera on a pan-tilt unit and various 
positioning devices is moved to several locations. At each, the camera tilts and pans, 
taking multiple images from the entire half sphere. In a mosaicing process, these images 
are combined to a spherical image, thus creating an artificial fish-eye view with an 
unprecedented resolution of tens of megapixels per image. Since this image has a 
maximal possible effective field of view at a high resolution, it is possible to estimate 
features and vanishing lines accurately, enabling to estimate pose in respect to other 
spherical images precisely and create a network of mutually referenced images. However, 
while camera pose estimation is comprehensive, this approach has not yet solved 
essential general drawbacks of image-based model reconstruction such as the irregular 
density of 3D samples and the problem of creating a model from those samples. Also, 
acquisition speed is limited since data has to be collected in a stop-and-go fashion, 
resulting in several days acquisition time for an entire city.   
 
[Kawasaki et al., 1999] suggest an interesting approach, which uses video only for 
texturing an already existing digital model, e.g. obtained from semi-automatic airborne 
stereo matching. While driving in a city with a car, a video stream is captured and 
processed offline, in order to track the vehicle and fit the video images as texture on the 
model facades. Building outlines are found as vertical cuts, and block matching is used to 
estimate velocity. A coarse depth map of objects in the video stream, which is at least 
sufficient to discriminate intersections, is obtained by exploiting parallax effects. With 
this information extracted, the video stream can be matched with the model. This 
approach is remarkable since it is car-based and as such potentially capable of covering 
an entire city area in acceptable time. However, a pre-existing geometric model is 
required, and the authors note that foreground objects cause errors in both the matching 
process and the texture usage. Additionally, it can be expected that the coarse geometry 
derived from airborne view differs substantially from the actually visible geometry at the 
ground level. 
 
An alternative is to acquire this ground-based geometry by laser scanners. Three-
dimensional vertices acquired by laser scanners are more reliable, accurate and dense 
than those from stereo vision, and in addition, measurements usually come in a regular 
grid shape. In previous work, 3D laser scanners have been used, providing directly a grid 
of 3D vertices from a single view. Typically, however, one single view is not sufficient 
for reconstruction, especially not for large-scale objects such as a building. If multiple 
views have to be combined to reconstruct an object, the regular grid structure inherent to 
the scanner is not preserved. Nevertheless, the density of 3D information is more uniform 
than for stereo vision and contains far less outliers, thus facilitating surface extraction 
significantly. While some scanners provide a reflectivity value for each scan point, they 
do not provide color or texture information, thus making the additional use of a camera 
for creating photo-realistic models inevitable. Hence, the additional problem of 
registering camera images and geometry has to be solved. In a nutshell, the typically 
addressed problems in laser-based model reconstruction are registration and merging of 
multiple views to one consistent representation, the subsequent reconstruction of a 
polygonal model, and finally the registration with camera images and texture mapping.  
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Merging the scans is straightforward if the pose of the scanner is known precisely for all 
views. However, in most scenarios is at best a coarse approximation of the actual pose 
available, and in this case a registration of the scans is necessary. Supposed the 
correspondences between the scan points of two 3D laser scans are known, it is fairly 
simple to compute the transformation parameters, for example by minimizing a square 
distance function. The problem, however, is to obtain the correct correspondences, 
preferably in an automated way. ICP (Iterative closest point, [Besl and McKay, 1992]) is 
probably the most prominent approach for automatically matching and registering two 
3D laser scans, under the preliminary that acquisition poses are a priori approximately 
known. The ICP algorithm can be applied directly on the scans, without the need of 
extracting features such as lines. Iteratively, a guess for preliminary scan point 
correspondences is made by using a transformation independent rule, and then, based on 
these intermediate correspondences, the relative transformation is computed and applied. 
Besl and McKay suggested the closest-point rule, i.e. each scan point gets assigned its 
closest point in the other scan. They could prove that the ICP algorithm always converges 
monotonically to a local minimum, although it converges slowly in its plain 
implementation. ICP and its variations or similar matching methods have been used in 
many approaches [Pulli et al., 1997], [Yang  and Allen, 1998], [Dorai et al., 1998], and a 
good overview is given in [Rusinkiewicz and Levoy, 2001].    
 
Complete systems that acquire both 3D range scans and camera images for indoor 
environments can be found in [Sequira et al., 1996], [El-Hakim et al., 1998], [McAllister 
et al., 1999], and [Yu et al., 2001]. In the first three approaches, a camera and a laser 
scanner are mounted close to each other, so that both perspective and field of view are 
almost identical. Sequeira et al. provide an early example for a robot-based system, in 
which the entire chain from automated acquisition planning to registration, processing 
and geometric model reconstruction is addressed, though obtained model quality is low. 
El-Hakim et al. use a triangulation-based laser scanner and a camera, both registered by 
selecting control points of an accurate large-scale calibration object. Multiple views are 
registered by using dead reckoning as initial estimate and bundle adjustment for 
refinement. McAllister et al. calibrate the camera by correlating the camera image with 
the simultaneously captured laser reflectivity image; the registration of different views is 
done manually. They have also proposed an image-based rendering scheme, so that the 
typical polygonalization step is not required. Yu et al. placed reflective markers on the 
walls of a large furnished room; laser scans and photos are taken independently from 
each other, and automatically registered by detecting the markers in both modalities. Due 
to the high scan point precision and image resolution, their approach offers stunning 
models and furthermore the possibility of automatically segmenting and extracting 
objects via a normalized-cut framework. However, acquisition time is exorbitant and 
placing reference markers is not applicable to large-scale outdoor environments. 
 
[Stamos and Allen, 2002] have equipped a mobile robot with a Cyrax 3D laser scanner 
and a camera in order to acquire building facades. They extract lines as intersection of 
segmented planar patches from the scans, and use these features to register range scans 
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with each other, and with vanishing lines from camera images. A set of solid volumes is 
created by sweeping multiple range views of a building, and the final geometric model is 
reconstructed as their volumetric intersection. Their approach is automatic and the 
resulting building model appears photo-realistic. However, due to the slow 3D scanner, 
acquisition time for a single building is already more than one hour, and hence their 
algorithm does not scale to more than a few buildings, so that it is not suitable for 
modeling an entire city. Furthermore, reliability issues apply for the complete 
autonomous data acquisition with a robot, which the authors have suggested as future 
work.  
 
The reason for the more common usage of 3D laser scanners versus 2D scanners is that 
they conveniently provide measurements over an entire frustum in a common coordinate 
system, rather than only along one line; thus, each scan by itself is already a 
comprehensive piece of information. Typically, 3D laser scanners are designed as high 
precision measurement devices, and the high accuracy and density of 3D scan points 
enable relatively precise automated feature extraction. Since the 3D scan matching 
algorithms described above make it possible to register multiple scans and to determine 
their relative 3D pose accurately, requirements for initial pose estimation accuracy are 
rather low. This comes at the cost of a long acquisition time for an entire 3D scan, and 
since the system has to stand still during this time, a slow stop-and-go fashion for the data 
acquisition is required. Fast 2D scanners do not have this disadvantage, since acquisition 
time for a 2D scan is orders of magnitude smaller. However, 3D matching is not 
applicable to a set of given 2D scans in 3D space, and hence the scans can only be 
correctly merged if the pose accuracy of the acquisition system is extremely high. Since 
most previous approaches failed to provide this accuracy, they were unable to use the 
time advantage that 2D scanners provide. To our knowledge, there are only two systems 
that can acquire geometry with vertically mounted 2D scanners during motion, and are 
thus similar to our approach. One is described in [Thrun et al., 2000] and [Hähnel et al., 
2001], where a Sick scanner is mounted on a mobile robot. It is aimed at creating and 
updating a geometrical 3D map of the robot’s indoor or outdoor environment in real time, 
using the robot’s own computational power. The real-time modeling capability is 
remarkable and important in the given context of robot map building. However, while the 
resulting models are suitable for robot localization and sufficient to provide an 
impression for the environment’s geometry, the quality of both geometry and texture is 
clearly not acceptable if photo-realism is required. And again, the usage of a mobile robot 
limits the possible scale of the models. The other approach [Zhao and Shibasaki, 1999] is 
car-based and hence capable of traversing large-scale city environment in acceptable 
time. Geometry is captured using vertical IBEO laser scanners, and texture using a 
vertical line camera. A localization unit containing GPS, INS and odometry sensors is 
used to determine the vehicle’s position during data acquisition. Recently, concurrently to 
us, Zhao and Shibasaki combined the vertical scanners with a horizontal 2D scanner 
[Zhao and Shibasaki, 2001], in order to meet the high position accuracy requirements for 
correctly merging vertical 2D scans. Assuming flat environments, they are able to track 
the vehicle based on scan matching. Since they do not have a global correction or 
accurate registration in respect to a global map, position discrepancies occur while 
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closing loops, and they do not consider a fusion with airborne models. The scope of their 
work is approximately Chapter 4 of this thesis, with comparable results. 
 
As a summary of the above approaches, we can note the following: 
 

• The vast majority of existing approaches is not applicable to the scale to an entire 
city, due to slow acquisition platforms, insufficient global registration, and 
exploding computation times for larger models. 

• Purely image-based modeling approaches are currently and in near future not 
capable of reconstructing the various geometric structures occurring in a city in a 
fully automated way. 

• Approaches using combinations of 3D laser scanners and cameras have been 
successfully applied for automated model generation, though requiring a slow 
stop-and-go data acquisition, and only for indoor environments or limited outdoor 
environments at the scale of one building.  

• For combinations of 2D laser scanners and cameras, accurate localization in a 
large-scale outdoor environment is a crucial problem and has so far prohibited the 
use of these devices. 
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3 Ground Based Model Acquisition  
 
In this chapter, we propose a new experimental setup that is capable of rapidly acquiring 
geometry and texture data of entire city areas at ground level. Data is acquired 
continuously, rather than in a stop-and-go fashion, and is subsequently processed offline. 
We further describe the implementation of an acquisition system that we have developed 
based on this approach, mounted on a truck moving at normal speeds on public roads. 
 
 
3.1 Drive-by Scanning - A New Acquisition Approach 
 
As summarized in the previous chapter, purely image-based approaches tend to fail in 
complex city areas, where occluding foreground objects, mirroring glass surfaces and 
changing lighting conditions are common. At the same time, the price of commercial 3D 
laser scanners, which are capable of providing true geometric measurements of the 
facades, is extremely high, thus rendering them unaffordable for many applications. 
Furthermore, a common disadvantage of existing ground-based city-modeling approaches 
is that the acquisition time for an entire city is unacceptably long, since data is collected 
in a stop-and-go fashion, and most acquisition platforms are not capable of querying large 
city districts rapidly.  
 
In order to overcome these limitations, we propose “Drive-by Scanning” as a different 
approach to acquire 3D geometry and texture data of entire streets at high speeds. The 
principal idea is to scan building facades continuously while passing by, using 2D laser 
scanners instead of slow 3D laser scanners. Our experimental setup consists of two fast 
2D laser scanners for geometry acquisition and a digital camera for texture acquisition, 
both mounted on a rack on top of an automobile. As shown in Figure 3-1, both 2D 
scanners are facing the same side of the street; one is mounted vertically with the 
scanning plane orthogonal to the driving direction, the other one is mounted horizontally 
with the scanning plane parallel to the ground.  
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Figure 3-1: System setup 

 
The devices are used as follows: 

a) During vehicle motion, the vertical 2D laser scanner sweeps over the complete 
building facades and captures their shape. This setup is similar to the handheld 
color scanners that were common to scan documents in the early days of home 
computing, before flatbed scanners became inexpensive and popular. One could 
even regard this setup as an imaginary 3D scanner, for which the motion of the 
vehicle performs the task of the tilt mirror. However, under normal traffic 
conditions the vehicle’s motion is by no means uniform, and hence the scanning 
planes are neither parallel nor equally spaced. 

b) The horizontal 2D laser scanner measures the shape of the environment in a 
plane parallel to the ground. Subsequent scans are therefore taken in the same 
plane and overlap significantly. This scanner is used for the position estimation 
discussed in the next chapter, and enables pose accuracy in the sub-centimeter 
range. 

c) The digital camera is used for capturing the texture of the facades. It is mounted 
with its viewing direction along the intersection of the two scanning planes, so 
that it faces directly the building facade. 

d) The automobile, for example a pickup truck or a van, carries the sensors during 
data acquisition and is the power supply for the entire system. The sensors are 
mounted on top of a rack, so that obstacles such as cars and pedestrians in the 
field of view can be overlooked and occlusion is reduced.   

 
This setup has several advantages over previous approaches: First, since the facades are 
captured while driving by, data is acquired in a fast continuous fashion rather than in a 
stop-and-go mode. Second, an automobile as an acquisition platform can be driven on 
public roads and under normal traffic conditions. With this mobile platform, it is possible 
to traverse an entire city in a few hours completely. Third, this setup is cheap; the 
enormous advantages of laser scanners for the geometry capture can be exploited without 
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an expensive 3D scanner. As of 2002, full 3D laser scanner usable for city environments, 
for example LMS from Riegl, Austria or Cyrix from Cyra, California cost 80,000$ and 
200,000$, respectively. Additionally, if a differential GPS is used for determining global 
position during acquisition, the costs increase by 10,000$ to 20,000$, although the 
accuracy in city environment can be poor due to multi-path reflections. In contrast, two 
2D laser scanners cost only around 15,000$ total, and are thus an orders of magnitude 
less expensive. 
 
The usage of a car enables high-speed data acquisition; however, it also results in some 
limitations: this particular vehicle has to use roads, so that areas only accessible via 
narrow passages, e.g. backyards or buildings along trails, cannot be captured. However, 
neither sensor setup and nor the processing algorithms described in the next chapters 
depend on a car as platform. If accessibility is crucial, different vehicles can be chosen; 
e.g. a wheel chair, a boat or a helicopter could in principle be used as well. If a pickup 
truck or one of the other mentioned platforms is used, the data acquisition is not 
completely autonomous, since there is one manual step, i.e. driving. However, non-
experts can perform this task, and we consider the duration of a few hours for an entire 
city not as prohibitive. The reliability and durability of cars is extremely high, whereas 
currently this is in complex city environment not the case for completely autonomous 
vehicles.  
 
This particular method for data acquisition yields to some particular problems: First, 
rather than the 3D scan registration problem commonly associated with 3D scanners, we 
face a position estimation problem: In order to construct an accurate 3D model, the pose, 
i.e. the position and orientation of the truck and its sensor unit, needs to be determined 
precisely, and we propose suitable methods using the horizontal laser scanner in Chapters 
4 and 5. Second, it is necessary to synchronize the two laser scanners and the camera 
accurately. Synchronization is not a critical issue for slow-moving robots, but a car can 
drive up to 25 mph in cities and hence an order of magnitude faster. Third, occlusion 
effects are significantly more problematic. An approach that registers and merges 3D 
laser scans typically results in a good scan point coverage for most surfaces, since 
individual 3D scans are taken from different viewpoints, and hence holes caused by 
occluding foreground objects in one scan are filled with scan points from another view. 
In our case, we scan the facades only once and from direct view, and since each 
foreground object blocks the laser beam, there is not information about the structure 
behind. This causes large holes in the facades, and we suggest algorithms to fill these 
holes by making a reasonable guess for the geometry in Chapter 5. Fourth, the size of the 
data stream during acquisition is enormous. Since an entire city can be captured within 
short time, the data throughput is substantial and data has to be stored rapidly. 
 
 
3.2 Data Acquisition System 
 
According to the ideas described in the previous section, we have developed a data 
acquisition system and have mounted this system on top of a pickup truck, as shown in 
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Figure 3-2. This system can be divided into two parts: a sensor unit and a processing unit. 
In order to avoid dynamic obstacles such as cars and pedestrians in the direct view, we 
mount the sensor unit on a rack, so that it is at a height of approximately 3.6 meters, the 
maximum the California traffic regulations allow. The processing unit consisting of a 
dual processor PC, large hard disk drives, and additional electronics for power supply and 
signal shaping is mounted in the truck bed. 
 
 

 
Figure 3-2: Data acquisition system 

 
As shown in Figure 3-3, the sensor unit consists of the two 2D laser scanners mounted 
with their scanning planes at exactly 90 degrees and a digital camera; these devices 
remain permanently fixed in respect to each other throughout the data acquisition.  
 
 
 

 
Figure 3-3: Sensor unit 
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We use the LMS 291 laser scanner manufactured by Sick AG, Germany; this scanner has 
a 1800 field of view with a resolution of 10, a range of 80 meters and an accuracy of ±3.5 
centimeters. The acquisition time for a 2D scan sweep is 6.7 milliseconds, and the scan 
frequency is 75 Hz. If configured as master device, the scanner generates a 75 Hz signal 
corresponding to its scanning operation; if configured as slave device, it synchronizes its 
scanning operation to an external 75 Hz clock, and we use this feature to synchronize the 
two scanners. The connection to the processing unit is established via a 500 kbit/sec 
serial interface.  
 
The camera for texture acquisition is also directed towards the side of the streets, with its 
line of sight parallel to the intersection between the orthogonal scanning planes, hence 
facing the facades. We use DWF-X 700 color camera from Sony corp., Japan, in 
combination with a 3.6 mm wide-angle lens. In this configuration, the camera has 
horizontally a 96-degree and vertically a 70-degree angle of view. The image resolution is 
1024 by 768 pixels, and since the camera provides an image in the YUV (4:2:2) color 
system, a single image has a size of 1024 x 768 x 2 bytes = 1.5 Mbytes. The camera has 
automatic white balancing and shutter time. Each single image acquisition can be 
triggered, up to a maximum frame rate of 15 Hz. The camera is linked with a fire wire 
connection and a trigger line to the processing unit. As a one-time task before the first 
data acquisition, we calibrate the intrinsic camera parameters using Zhang’s “easy 
camera” calibration [Zhang, 2000], which has the advantage that it models the substantial 
radial distortion of the used wide-angle lens with two intrinsic parameters. Furthermore, 
we determine the remaining extrinsic camera parameters: due to construction, the relative 
position of the camera in regard to the scanners is known precisely and the orientation 
angles are accurate to a few degrees; hence, the rotations are decoupled and it is simple to 
fine-tune orientation parameters manually. 
   
The processing unit shown in Figure 3-4 is mounted in the bed of the truck, on damping 
material in order to reduce mechanical shocks. Its core is a PC with two 850 MHz 
Pentium-III processors running Windows 2000, and it has a counter/timer board, a high 
speed serial interface card, an IEEE 1394 fire wire connection and a RAID hard disk 
drive array. Additionally, the unit contains electronics for power supply, signal shaping, 
and trigger signal generation. The key feature of our data acquisition system is that all 
devices are accurately synchronized; this enables us to automatically determine 
correspondences between the laser scanners themselves and the camera. The horizontal 
laser scanner is configured as master scanner; its 75 Hz signal is the time base of the data 
acquisition. The vertical scanner is configured as slave, and synchronizes itself to the 
master’s time base. The counter/timer board counts the master’s clock pulses in order to 
generate time stamps for the data, and it divides the clock to obtain a trigger signal for the 
camera.  
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Figure 3-4: Processing unit 

 
 
Since the laser scanners and the camera deliver data without waiting for acknowledge 
signals, this data has to be picked up immediately or is lost otherwise. This is especially 
critical for the scanners, which communicate via a 500 kBaud serial interface: in the 
scanner’s data protocol, the position of a distance value in the byte stream determines the 
angle under which the measurement was taken. If only one single byte is dropped, the 
correct angle cannot be determined any more. Even more severe, the synchronization of 
the data communication is lost entirely, since the control software expected a certain 
amount of bytes to be read in a package, and hence waits until finally the first bytes of the 
next scanning cycle have arrived. These bytes are then missing during the readout of the 
next cycle, and so on. Therefore, it has to be ensured that no byte of the laser data stream 
is dropped at any time. 
 
We have developed a data pipeline and extendable multithread software to capture and 
store the incoming data streams, as schematically shown in Figure 3-5. Although the 
operating system Windows 2000 is technically not a real time operating system, it can be 
brought to sufficient real time behavior for our application if system services such as 
networking are turned off, and the process priority of the acquisition threads is set higher 
than the priority of any operating system process. For each input device, we run an 
associated device reader thread that waits for incoming data and stores it in a common 
ring buffer memory. A writer thread with a lower priority than the readers continuously 
writes down the ring buffer to the RAID hard disk drive array and frees the 
corresponding ring buffer section subsequently. Both scanners together generate a 
1Mbit/sec data stream, whereas the data stream generated by the camera at full frame rate 
is with 15 Hz x 1.5 Mbytes = 180 Mbit/sec two orders of magnitude larger. Since 
currently the writing capacity is with an average of about 100 Mbit/sec the bottleneck of 
the data acquisition, the camera cannot be operated at its maximum frame rate. We 
choose to divide the master scanner’s clock by 15, so that a frame rate of 5 Hz results. 
Since the speed limit in cities is 25 mph, the spacing between subsequent laser scans is 
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then at worst 25 mph/75 Hz = 14.8 cm, and the spacing between subsequent camera 
images is not more than 25 mph/5 Hz = 2.22 m for this configuration. To assess the 
maximum rotation between subsequent scans, we can e.g. assume that while driving, the 
maximum angular velocity is never more than 45 degree/sec, i.e. the vehicle does not 
perform a full 90 degree turn faster than in two seconds. Then, the rotation between 
subsequent scans is maximal 45 degree/sec/75 Hz = 0.6 degree, and between images 45 
degree/sec/5 Hz = 9 degree. 
 

 
Figure 3-5: Schematics of data acquisition system 

 
During data acquisition, the system is entirely busy with capturing data and storing it on 
the hard disk drives; there are neither time nor resources for further processing. The raw 
data, a memory dump of the counter/timer board registers and other system parameters 
are directly written to one single continuous file, since creating new files or directory 
decreases writing throughput of the hard disk drives. After the acquisition is finished, 
data conversion is necessary as the first post-processing step: the memory dump of the 
hardware registers enables us to identify corresponding scans and camera images, and we 
separate the raw streaming file into its content components, and assign each scan and 
image a correct time stamp. Additionally, we use Microsoft’s EasyCamera software and 
the internal parameters from the pre-calibration step in order to remove the distortion 
from the camera images. After these steps, the data is in a form suitable for the actual 
postprocessing and model generation, which is described in the next chapters.  
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4 Tracking the Acquisition System 
 
In this Chapter, we describe our approach to determine in an offline computation the 
sensor unit’s pose in the city environment during data acquisition. Laser scans and 
camera images are given in the local sensor coordinate system, and an individual scan or 
image is of no use unless it is combined with subsequent data sets to a coherent model. 
Therefore, it is necessary to know the relative pose between the acquisition instants. If the 
model has to be globally correct, it is not sufficient to know the relative pose only; rather, 
the absolute global pose in respect to a world coordinate system has to be known 
accurately for each data set. All devices are fixed on the sensor unit and mounted onto the 
vehicle, and hence we use in the following generally the term localizing the vehicle when 
we strictly speaking mean determining the pose of its sensor unit. In this Chapter, we 
describe how to obtain relative 2D pose estimate and an initial path for the vehicle by 
matching subsequent horizontal laser scans. This initial path is the base of a global 
localization scheme to be detailed in the next Chapter.  
 
Determining one’s position and orientation is one of the oldest problems of mankind, and 
was already a critical issue in ancient times. While first sailors used magnetic stones or 
stars as guides for the orientation, today’s modern equipment includes advanced tools 
such as optical gyroscopes and Global Positioning System (GPS). One can make a 
distinction between devices that deliver pose estimates absolute, i.e. directly in respect to 
one global coordinate system, or relative, i.e. the pose change between two events is 
obtained in respect to their local coordinate system. While it is convenient that first ones 
provide the global pose directly, the resulting error for computing the relative pose, i.e. 
the difference between two subsequent global poses, can be as large as twice the 
maximum system error; this can be a multiple of the actual motion. For the second type 
of devices the obtained relative estimates between subsequent positions are often highly 
accurate, while the absolute pose can only be computed by concatenating the relative 
estimates, or steps, to a continuous trajectory in the global coordinate system. According 
to robotics, we refer to this relative positioning as tracking. Since errors in the relative 
estimates are inevitable, there is an error in global position increasing over time, and once 
a severe error is introduced, it persists throughout the entire following trajectory, if there 
is no global correction available.  
 
To illustrate the difference between relative and absolute pose estimates, one can 
compare two methods of ship navigation: When Columbus traversed the Atlantic to 
discover America, he obtained an estimate for the orientation from a magnetic compass, 
and an estimate for his current speed by throwing a piece of flotsam over the side of the 
ship and counting the time it needed to pass two marks. Then he used dead reckoning to 
determine his position: Starting from a know global position, he iteratively calculated the 
traveled distance as time multiplied by speed, and added this distance according to the 
ship’s orientation to the last position in order to obtain the next one. In contrast, a modern 
GPS system provides global position estimates e.g. at 10 meter accuracy. Since the dead 
reckoning approach can result in global position errors of hundreds of miles after long 
travels, GPS is more accurate in global position terms. However, if an estimate for a 
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small relative changes is requested, e.g. between two close positions few centimeters 
apart from each other, subtracting the corresponding GPS readouts would result in a large 
error due to noise, and in this case dead reckoning provides a more accurate estimate. In 
the case of a ship, it is possible to overcome the noise problem by assuming inertia and 
smoothing GPS readouts accordingly. However, this assumption cannot always be made: 
one imagine for example a rabbit running in a field: the exact details of its zickzack 
trajectory cannot be determined with a GPS, and localizing a vehicle moving in a city, 
where traffic situations require sudden changes in direction, is a similar case. In this and 
the following chapter, we will present a more adequate localization approach for this 
situation.  
 
To avoid confusion, we use the term pose throughout this thesis for the combination of 
position and orientation in a given Cartesian coordinate system. Position is the location in 
space described by three coordinates, e.g. x, y, and z in a 3D Cartesian coordinate system. 
Orientation is the attitude of an object in respect to the coordinate system, described by 
three angles yaw, pitch, and roll as common in avionics and shown in Figure 4-1. 
Therefore, pose has six degrees of freedom (DOF) and is also referred to as 3D pose. If 
we refer to a 2D pose, we mean the pose for an object constrained to motion within a 
plane, which can hence be entirely described by the two position parameters x and y and 
the orientation angle yaw. Global pose is the pose in respect to a geographic coordinate 
system. For the dimensions of a city, we can neglect the effect of earth curvature and 
define a global Cartesian coordinate system with x- and y-axis horizontal, and the z-axis 
pointing to the sky. For example, according to the UTM NAD83 and NAVD88 standards, 
x could be easting, y northing, and z the altitude of a position.  
 
 

   
Figure 4-1: Attitude described by yaw, pitch, and roll angle. (Source: NASA) 

 
 
4.1 Relative Pose Estimates  
 
Relative pose estimates for a vehicle can be obtained by a variety of techniques. One of 
the oldest approaches for obtaining an estimate for a vehicle’s motion between two times 
is dead reckoning based on odometry, in which the rotations of the individual wheels are 
counted, eventually in combination with the steering angle, and converted to a relative 
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pose by using a kinematical model of the vehicle. The kinematical model is an idealistic 
abstraction of the vehicle, and effects such as low tire pressure or slippage on the ground 
are not considered. Also, uneven terrain or bumps cause discrepancy between idealistic 
and actual motion, hence generally reducing accuracy. Other kinematical approaches 
determine relative displacement by integrating speed or double integrating acceleration, 
respectively: Speed can be measured with sensors such as a radar velocimeters, in which 
the Doppler effect is used to create a mixed frequency proportional to the speed, and 
inertial sensors, highly integrated with MEMS technology and used e.g. in airbags, 
provide an estimate for the acceleration. However, due to the necessary integration, even 
small offsets in speed or acceleration result easily in large drift errors in position, and 
therefore theses sensors are for only usable in combination with slower, more accurate 
devices. To determine orientation changes, optical gyroscopes can be used; these are 
expensive high-end devices, based on interferometry and exploiting the quantum-
mechanical Sagnac effect to determine rotation speed. While these devices display an 
impressive precision and are e.g. used in avionics, they come at exorbitant costs.  
 
To reduce shortcomings and errors of each individual localization approach or device, 
they are often combined in a data fusion process. Multiple, potentially conflicting sensor 
readings are combined to a single state estimate, for example by using a Kalman filter 
[Kalman, 1960], which takes into account both an uncertainty measure for the current 
state variables and the time-dependent credibility of the individual sensors.  
 
Due to the enormous advances in computational power, computer vision methods have 
become popular to solve the localization problem. Subsequent camera images taken 
during motion are used to determine the transformation between them, and many 
experiments in various configurations have been made. As an example, [Neumann and 
You, 1999] detect image features and track theses features over multiple images. While 
the camera sweeps over a scene, features get out of sight at one image boundary, and new 
ones appear at the opposite boundary, so that the feature list is dynamically changed. In 
principle, all 6 DOF pose can be determined up to a scaling factor with a camera. The use 
of cameras for localization became popular in robotics due to their low price, small size, 
wide availability, and similarity to the human perception. It is difficult, however, to 
reliably reconstruct 3D information from 2D images, and the need for calibration and the 
sensitivity of vision-based approaches to erroneous feature detection are only examples 
for the issues involved. Algorithms to estimate a 6 DOF out of the 2D camera images are 
complex and difficult, resulting in large computation time and requiring energy 
consuming high-end PCs on the battery-powered vehicles. Although cameras are still 
used in various systems, their importance for localization in mobile robotics has been 
fading since the mid 1990’s due to the introduction of 2D laser scanners. 
 
Today, the vast majority of autonomous vehicles use horizontally mounted 2D laser 
scanners to detect and avoid obstacles, and to localize themselves. These scanners have 
the advantage that they provide directly the 2D coordinates of obstacles in the scanner’s 
coordinate system without complex processing, thus reducing computation time and 
enabling high update rates. They are more reliable for detecting objects, have a large field 
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of view, and high accuracy. Distance is measured by a laser beam, which is for a 
horizontally mounted 2D scanner subsequently deflected to multiple directions parallel to 
the ground by a rotating mirror. Since the angle of the mirror and hence direction of the 
laser beam is known, it is trivial to compute the 2D location of the point where the laser 
beam has hit an object; this point is called a scan point. The obtained scan points lie on 
the outline of the objects, however, naturally only surfaces directly visible from the 
scanner’s location and within its sensing range can result in scan points. All other 
surfaces do not appear in the scan. 
 
If scans are taken from different positions, they may capture different surfaces or sides of 
an object; eventually the scans do not even resemble each other, but are rather 
complementary. However, if the scans are taken from nearby positions, it is likely that a 
surface visible in one scan is also visible in the other one; in this case, the two scans 
highly resemble each other. This is typically the case for the horizontal laser scans that 
we record during our data acquisition. As previously calculated, the translation between 
subsequent scans is less then 15 cm and the rotation is less than one degree. Since this is 
small compared to the typical dimensions and distance of buildings in the scans, the 
perspective remains similar even over multiple scans. Figure 4-2 shows two horizontal 
laser scans taken at different times t0 and t1. The laser rays are drawn as line segments, 
originating in the scanner’s center and ending at the scan point where they hit an obstacle, 
e.g. a wall. The vehicle has moved between t0 and t1, and accordingly, the objects visible 
in the scan have shifted in the scanner’s coordinate system. Even though the two scan in 
this example are several scanning cycles apart from each other, it can be seen that the 
formation of the scan points, i.e. the ends of the laser rays, is similar in both scans. 
Supposed we know the exact pose for one scan, this similarity can be exploited to 
estimate the pose from which the other scan was taken: the scan from the unknown 
position is rotated and translated in such a way that maximum congruence with the scan 
from the known pose emerges. This process is called scan matching, and where necessary 
for clarity, we refer to the particular case where one scan is matched to a second scan 
more specifically as scan-to-scan matching; this is to distinguish it from methods 
discussed later, where a scan is matched to edges of an aerial photo or a DSM. 
 
In Figure 4-3, the idea of scan matching is illustrated. In Figure 4-3(a), the two scans 
from Figure 4-2 are drawn in the same coordinate system, with the first one as the 
reference scan, and the second one as the scan to be matched. After applying an 
appropriate rotation with angle ∆φ determined in Figure 4-3(b), and an appropriate 
translation with (∆u,∆v) determined in Figure 4-3(c), the two scans have maximum 
congruence, as shown in Figure 4-3(d). Several properties of matched scan pair in Figure 
4-3(d) can be noted: First, the two scans are similar, but not exactly congruent: some 
object surface parts were only visible in either of the scans, but not in the both, due to the 
slightly different perspective. Second, the locations of the scan points on the surfaces 
differ, hence correct matching does not imply scan points to be located perfectly on top of 
each other. Some of the matching algorithms summarized in the following require point-
to-point correspondences, and in sparse scans, perfect one-to-one correspondences are not 
given. Third, each individual scan has an inherent order of points, defined by the 
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scanning angle, and therefore neighbor relationships are well defined for each scan point. 
This advantageous property is lost if the point sets are united, thus making operations 
such as line or feature extraction more complex. 
 
Several approaches have been developed for automatically registering two scans with 
each other. In [Cox, 1991], Cox suggested to match scan points from a laser scanner with 
the lines of a manually created a-priori-map of an indoor environment. He obtained an 
initial estimate for a robot’s pose from odometry readings, and used scan-to-line 
matching to correct for small position errors. Since the initial position estimate is close to 
the actual position, scan points are close to their corresponding map lines and can be 
assigned to it. A scan match quality measure is computed as the sum of each scan point’s 
square distance to the corresponding line; the optimum is found with the least square 
method. Problematic for this method is that few incorrect point-to-line correspondences, 
for which the distance is large, can adulterate the least square computation and result in 
an erroneous position estimate. Furthermore, in its proposed form, this approach is 
dependent on an a-priori map and limited to polygonal environments. Nevertheless, we 
will come back to this idea for the global localization in Chapter 5. 
 
However, with a small and intuitive modification, this algorithm can also be extended to 
compute the match between two scans: lines can be extracted from the first scan, and 
instead of a CAD drawing of the floor, these lines are used as the a-priori reference map 
for matching a second scan. Gutmann and Schlegel proposed the use of a line filter for 
both reference and second scan, so that only collinear points are used for the matching 
process [Gutmann and Schlegel, 1996], based on the assumption that collinear points are 
likely to be stationary wall points, whereas single isolated points are likely to originate 
from various other objects, e.g. moving people. They furthermore proposed another 
heuristic rule to filter out scan point pairs with incorrect correspondences: points for 
which the distance exceeds a threshold and the most distant twenty percent of the points 
are not considered. Both modifications to the original approach intend to avoid incorrect 
correspondences, however, their extension heavily relies on polygonal environments. 
 
Lu and Milios proposed a different matching scheme, the IDC algorithm (iterative dual 
correspondence, [Lu and Milios, 1994]), similar to the ICP algorithm (iterative closest 
point, [Besl and McKay, 1992]). Accordingly, their algorithm is able to match two scans 
directly without the need of features such as lines, but the preliminary is that the relative 
transformation between the two scans is initially approximately known. In an iteration 
cycle, a rule independent from the actual rotation and translation provides a guess for the 
scan point correspondences, and based on these correspondences, the relative 
transformation is computed and applied. Instead of Besl and McKay’s closest-point rule, 
Lu and Milios suggested the matching-range-point rule, which additionally considers 
rotation effects and increases the convergence speed of the algorithm drastically. They 
also suggested a way to estimate the covariance matrix of the pose estimates, which is 
necessary for an effective fusion with data from other sensors, e.g. by means of the 
Kalman filter. 
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(a)   (b)  

t0 t1 

Figure 4-2: Two horizontal laser scans taken at different times t0 and t1. The vehicle has moved 
between t0 and t1; accordingly, the objects visible in the scan have shifted in the scanner’s coordinate 
system. 

 

(a)    (b)  
 

(c)    (d)  

u

v 

(∆u,∆v) 
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Figure 4-3: Scan matching of two scans taken at different times t0 and t1: (a) second scan overlaid on 
top of the first scan; (b) determining necessary relative rotation; (c) after applying rotation, 
determing necessary translation; (d) after applying translation, the two scans match and the relative 
transformation (∆u, ∆v, ∆φ) between the scans is determined.  
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A statistical approach was introduced in [Weiss et al., 1994]. Both scans are transformed 
into a stochastic histogram representation; the basic idea is that the statistical distribution 
of relative single scan point positions towards each other is preserved during rotation and 
translation, and therefore the shape of the histograms is invariant. For example, if one 
creates a histogram with bin size of ∆x for the x-coordinates of a set of scan points, and 
compares it with a histogram of the same points shifted by a translation n·∆x along the x 
axis, it is apparent that the pattern of peaks is absolutely identical, except that the latter 
histogram is shifted by n bins. Similarly, the shape of a histogram of the orientation 
angles between subsequent points of a scan is invariant to rotations. If two scans overlap 
for the most part, this property can be used to determine the transformation parameters 
between them. The displacement between the histograms of the two scans, and hence the 
corresponding transformation parameter, is computed by cross correlation. The shape of 
the angle distribution is invariant to both rotations and translations, whereas the 
coordinate distribution is not independent from the rotation. Hence, it is necessary that 
the angle histogram is computed first, and the relative rotation angle is determined and 
corrected, before the coordinate histograms for the x- and y-direction of each scan are 
computed and correlated.  
 
This approach works well if the environment is polygonal or contains at least contiguous 
surfaces. It has the advantage, that the complexity for the histogram generation is only 
O(n) for n scan points, and the cross correlation is even independent of the number of 
points, in contrast to the previous approaches, which need an O(n2) computation time in 
their original form and are hence less advantageous for real-time applications. However, 
some of its drawbacks prohibit this method for our application: For noisy, cluttered scans 
such as resulting from a tree, the orientation angles become rather random, and 
determining rotation becomes difficult. Even more severe, the accuracy of the parameter 
estimate is limited to the bin size of the histogram. This bin size cannot be chosen 
arbitrary small, since then the histogram becomes too sparse. For our application, real-
time computation is not necessary, but accuracy is crucial. However, in the next Chapter, 
we use the idea of an orientation angle histogram for the estimation of the vehicle’s 
rolling angle from vertical scans. 
 
We suggest a scan matching approach related to the one of Cox and Gutmann, but with 
three major modifications: First, we use both lines and single points of the reference scan 
for matching, second, we do not treat the problem of erroneous correspondences 
separately, rather we consider it directly in the computation of a match quality function 
by using robust least squares, and third, we compensate for effects of finite scanning time 
on the scan points, which is a problem specific to our high-speed acquisition. 
  
Since scan points of the reference scan do not necessarily correspond directly to points in 
the second scan, but often lie in intermediate positions, it is advantageous to match points 
not directly to points, but rather to extract lines in one scan, e.g. the reference scan, and 
match the points of the second scan to the lines. However, in contrast to many indoor 
navigation situations, where there is always a sufficient number of lines visible in each 
scan, the scenery in urban environments is more complex because of many non-planar 
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objects such as trees, masts, cables, and partially reflecting windows. These objects 
provide additional if not at times the only information about the relative pose of 
successive scans, and as such it is desirable to use them for pose estimation.  
 
Hence, we apply the following algorithm for obtaining line segment approximations to 
the reference scan: We connect successive scan points to form a line strip, if the 
difference between their depth values does not exceed a depth dependent threshold. More 
specifically, our algorithm can be summarized as follows in pseudo-code: 
 
 
Create set of lines:  
 
   for angle: = 0 to 180  
      { 
         point1: = (cos(angle), sin(angle))*distance(angle); 
          
         if  abs( distance(angle) - distance(angle+1)) < maximum_discontinuity)  
 { 
    point2: = (cos(angle+1), sin(angle+1))*distance(angle+1);   
  
               AddLineSegment from point1 to point2; 

} 
         else 
            AddLineSegment from point1 to point1; 
      } 
 
 
Accordingly, a single isolated scan point is approximated by a “degenerated” line 
segment, i.e. a point and considered during the subsequent computations. While a 
disadvantage of this method is that straight lines are not computed by a least squares fit 
over multiple points, the advantage is that curved objects, such as trees, and small 
objects, such as masts, cables, are also used for matching. Figure 4-4 shows rays of a 
laser scan in gray and the line segment approximation in black, and as seen, more 
features than only long straight lines are extracted. 
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Figure 4-4: Scan and its line segment approximation 

 
The line strip approximation of the reference scan is used as a map to register the second 
scan. Therefore, we introduce a local coordinate system [u,v] implied by the reference 
scan, with the sensor module at its center. The u-axis is aligned with the truck’s principal 
axis, while the v-axis is orthogonal to it, with the positive v-axis pointing towards the left 
side of the truck, as shown in Figure 5. The scanner provides angle and distance for each 
scan point, enabling us to compute its Cartesian coordinates by using simple 
trigonometric functions.  
 

 
Figure 4-5: Local and global coordinate system 

 
 
To match two scans, we maximize a function that computes the quality of alignment 
Q = f(∆u, ∆v, ∆ϕ) for a given displacement ∆u, ∆v and a rotation ∆ϕ of the scans against 
each other. Therefore, we perform the following steps: First we compute a set of lines li 
from the reference scan points as described before. Given a translation vector 

),(  vut ∆∆=  and a 2x2 rotation matrix R(∆ϕ) with rotation angle ∆ϕ, we transform the 
points pj of the second scan to the points p’j according to 

         )(),,(' tpRvup jj +⋅∆=∆∆∆ ϕϕ .   (4-1) 
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Then we compute for each point jp'  the Euclidean distance ),'( ij lpd  to each line segment 
li and set dmin to: 

        { }),'(min)),,('(min ijij lpdvupd =∆∆∆ ϕ . (4-2) 

Intuitively, dmin is the distance between p’j and the closest point on any of the lines in the 
reference scan. Distance measurement errors of the scanners can be modeled as Gaussian; 
however, in order to suppress erroneous point-to-line correspondences, we do not use the 
simple sum of distance squares, rather, we use a formula known as robust least squares 
[Triggs et al., 2000] and compute Q as follows:  
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where σs
2 is the variance of the laser distance measurement, specified by the 

manufacturer. This formula takes into account the distribution of the distance 
measurement values, while suppressing deviations beyond this distribution as outliers. It 
has least squares-like behavior in the near range but does not take into account points that 
are far away from any line. The block diagram of this quality computation is shown in 
Figure 4-6. 
 

 
Figure 4-6: Block diagram of quality computation 

 
The parameters (∆u, ∆v, ∆ϕ) for the best match between a scan pair are found by 
optimizing Q. Steepest decent search methods have the advantage of finding the 
minimum fast, but due to noise and erroneous point-to-line assignments, they can become 
trapped in local minima if not started from a “good” initial point. Therefore, we use a 
combined method of sampling the parameter space and discrete steepest decent, where 
we first sample the parameter space in coarse steps and then refine the search around the 
minimum with steepest decent. As outlined in the following pseudo code, this function 
delivers an estimate (best_d.u, best_d.v, best_d.ϕ) for the necessary transformation to 
align the two scans best: 
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Find optimal scan match: 
 
/* parameter vectors {u,v,ϕ} for our setup */ 
searchrange:= {150 cm, 20 cm, 10 degree};    
sampledensity:= {10 cm, 10 cm, 2 degree };    
stepsize: = {0.2 cm, 0.2 cm, 0.01 degree};    
  
/* First step: Sampling parameter space */ 
best_d := {0,0,0}; 
 
for d.u = -searchrange.u  to  searchrange.u  step  sampledensity.u 
   for d.v = -searchrange.v  to  searchrange.v  step  sampledensity.v 
      for d.ϕ = -searchrange.ϕ  to  searchrange.ϕ  step  sampledensity.ϕ 
 if Q(d) < Q(best_d) then 
     best_d := d; 

 
 

/* Second step: steepest decent */ 
 
direction := {0,0,0}; 
 
do { 

if Q(best_d) < Q(best_d + {stepsize.u,0,0})  then  direction.u := stepsize.u; 
if Q(best_d) < Q(best_d – {stepsize.u,0,0})  then  direction.u := –stepsize.u; 
 
if Q(best_d) < Q(best_d + {0,stepsize.v,0})  then  direction.v := stepsize.v; 
if Q(best_d) < Q(best_d – {0,stepsize.v,0})  then  direction.v := –stepsize.v; 
 
if Q(best_d) < Q(best_d + {0,0,stepsize.ϕ})  then  direction.ϕ := stepsize.ϕ; 
if Q(best_d) < Q(best_d – {0,0,stepsize.ϕ})  then  direction.ϕ := –stepsize.ϕ; 
 
best_d := best_d + direction; 
 

} while direction != {0,0,0}; 
 

return best_d; 
 

Acquisition time for one single scan is quite small, and since the previous approaches 
were developed for slow moving robots, none of them has considered motion during a 
scan. However, our sensor unit is mounted on a fast moving truck, and hence intra-scan 
motion can reach noticeable levels, and we can increase accuracy by compensating for it. 
The acquisition time for one 180-degree-scan is 6.667 ms; for a maximum angular speed 
of 45 degree/sec and a maximum velocity of 25 mph, this results in a maximum rotation 
of 0.3 degrees and a maximum displacement of 7.4 cm between the first scan point at 0 
degree and the last scan point at 180 degree. Dependent on the scanner’s rotation 
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direction in regard to the motion, the entire scan is linearly stretched or stitched along an 
axis in case of a translation, and along the fan in case of a rotation, respectively. The 
effect can come into the range of the accuracy we intend to achieve, and while not crucial 
for one single scan, these errors can accumulate to a substantial amount for a long drive.  
 
In the stationary case, the Cartesian coordinates (u,v)i of the ith point of the scan is  
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where  is the measured distance and id ψ∆ is the angle increment between adjacent 
measurements in a scan. Supposed we know the current angular speed  and the speed TΩ

TV
r

 of the truck, and assume it as constant during the short time the scan is taken, we 
introduce a correction term for the dynamic case, so that the Cartesian coordinates are 
computed according to  
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where ψ∆  is again the angle increment and t∆  the time elapsed between adjacent 
measurements in a scan. For our scanner, the values are ψ∆  = 1 degree and 

 = (1/75Hz)/360 = 37 µs.  t∆
 
The question is now how to obtain an estimate for TΩ  and VT

r
. Instead of reading these 

variables from additional external sensors, we compute the estimates conveniently as a 
byproduct during the scan matching process: The time ∆T elapsed between the two scans 
of a pair to match is given by the difference of their ordering number. Then, the speed VT

r
 

can simply be computed by dividing the translation by ∆T, and the rotational speed TΩ  
by dividing the rotation by ∆T, respectively. One possibility is therefore to iteratively 
first compute the optimal scan match without correction, then use the computed 
transformation to correct the scan points, and then compute the scan match again and so 
on. Since the correction is small compared to the transformation, it is sufficient to iterate 
only once. However, even one single iteration would double the computation time, and it 
is desirable to avoid this increase. In the next Section, we will reconstruct the driven path 
by matching series of subsequent scans; since the car’s motion does not change 
substantially between the single scan pairs, it is feasible to use the TΩ  and V

r
 estimates 

from the previous pair as a valid estimate for the current scan match. 
T
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(a)   (b)  
Figure 4-7:  Matching scan points and line segment approximation; (a) before and (b) after match. 

 
Figure 4-7 shows the result of a scan match performed with the described algorithm, by 
comparing a scan pair before and after matching. The line segment approximation of the 
reference scan is drawn in gray, and the points of the second scan are drawn in black, 
respectively. While the shown example is a scan in a downtown area containing some 
smooth surfaces, it is obvious that the accuracy of the matching process can depend 
significantly on the particular environment. In areas with buildings and therefore many 
straight lines in the scans, the matching is likely to work best; in areas where the scanner 
hits mainly the leaves of trees, scan points are more random. Hence, the quality of the 
scan match is lower and the maximum is eventually not very sharp. We have found that 
in this case the accuracy may be lower, but due to utilization of non-collinear features 
still in an acceptable range for determining the motion reliably, in contrast to most of the 
existing algorithms previously summarized. Note that in the worst case, if there is an 
entirely featureless view such as the one on an empty parking lot or on a freeway ramp, it 
is not possible to estimate the relative motion at all. Fortunately however, usual 
downtown environments are dense and full of features, so that using scan matching to 
track pose is quite reliable. In particular, as it is our goal to reconstruct building 
structures, pose estimation by scan matching is almost an ideal solution, since it provides 
the most accuracy for the areas that are the most interesting for us. Further discussion 
about the accuracy of the matching process and the pose reconstruction follows in the 
next section. 
 
 
4.2 Path Computation 
 
The scan matching algorithm introduced in the previous section determines directly the 
translation (∆u, ∆v) and the rotation ∆ϕ between two given scans. In the following, we 
refer to the relative pose between a scan pair as a relative step; thus each step Si consists 
of a ∆ui, ∆vi, and ∆ϕi estimate in the local coordinate system. We can obtain an initial 
estimate for the path, i.e. the trajectory traversed during data acquisition, by defining a 
starting pose and successively concatenating relative steps between subsequent scans. 
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Since the scan matching provides only a 2D estimate, the resulting path is in a plane; this 
represents pose entirely if our environment is flat without significant hills.  
 
In this case, we can describe the global 2D pose of the sensor module by the parameter 
tuple (x, y, θ), where x and y are the Cartesian world coordinates, and θ is the yaw angle, 
i.e. the orientation of the truck, as shown in Figure 4-5. If speed V(t) and orientation θ(t) 
of the truck is known, the motion of the rear axis of the truck can be described as:   
 

( ) ( ) ( ))(cos)( tttVtxttx θ⋅∆⋅+=∆+         (4-6) 

( ) ( ) ( ))(sin)( tttVtytty θ⋅∆⋅+=∆+  
 
The sensor module is not mounted above the rear axis, but in the middle of the truck, so 
that during motion along a curve, it experiences a motion component not only along, but 
also orthogonal to the truck’s principal axis. As an estimate for the relative position 
change (∆ui, ∆vi, ∆ϕ) of the sensor module in its local coordinate system [u,v] is obtained 
for each step Si, we can compute the global positions (xi, yi, θi). To compute the 2D path, 
we start with an initial position (x0, y0, θ0), perform for each step Si a scan match to 
obtain (∆ui, ∆vi, ∆ϕ), and apply the coordinate transformation, so that the new position 
(xi+1, yi+1,θi+1) can be computed in world coordinates as: 
 

( ) ( )iiiiiiii vuxx ϕθϕθ ∆+⋅∆−∆+⋅∆+=+ sincos1  
( ) ( )iiiiiiii vuyy ϕθϕθ ∆+⋅∆+∆+⋅∆+=+ cossin1  (4-7) 

iii ϕθθ ∆+=+1  
 
For non-level areas, the incline results in an apparent source of error in length: The scan-
to-scan matching estimates for the 3-DOF relative motion, i.e. 2D translation and 
rotation, are given in the scanner’s local scanning plane. If the vehicle is on a slope, this 
local coordinate system is tilted at an angle towards the global (x,y) plane, and hence the 
translation should strictly speaking be corrected with the cosine of the pitch angle. 
Fortunately this stretching effect is small; the relative length error is 
 

     22 )1(1)cos(1 pitchpitchpitch
l
lerr =−−≈−=

∆ ,   (4-8) 

 
and while for example 0.5 % for a substantial 10% slope, it is only 0.06% for a moderate 
2% slope. Thus, it turns out that this error is easily within the correction capabilities of 
our global localization to be introduced in the next Chapter. While this effect may 
decrease accuracy in extremely steep area such as Russian Hill in San Francisco, we can 
usually safely neglect it. Hence, we utilize the relative estimates from the scan-to-scan 
matching in the following as if they were given in the global coordinate system. In any 
case the resulting 2D path is a good initial approximation even for hillside areas, since 
the principal motion of a vehicle is horizontal. In the next Chapter, we will describe an 
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extension that uses an airborne digital surface model and complements the 2D pose to a 
full 3D pose. 
 
Since errors in the estimation accumulate with each iteration step of equation 4-7, it is 
important to recover the path with as few steps as possible by subsampling the scans by a 
large factor; this is especially necessary when the truck is stationary due to traffic 
conditions. On the other hand, it is desirable to use scans that are taken from nearby 
positions, so that perspective change is small and overlap between scans is sufficient for 
accurate matching; this requires the subsampling factor to be small. Therefore, we need 
to find a compromise between these conflicting requirements.  
 
The scanner takes horizontal scans at a frequency of 75 Hz, and with the maximum city 
driving speed of 25 miles per hour, the maximum relative displacement for successive 
scans is 
 

∆umax  = 25 mph/75 Hz  = 14.8 cm.          (4-9) 
 

For typical distances in our measurement scenario, we have found that perspective and 
insufficient scan overlap can become critical issues for position changes of more than 2 
meters. To strike a balance between large and small subsampling factors, one could 
define a fixed standard subsampling factor, which is determined based on the assumed 
maximum driving speed, e.g. it could be 10 if a maximum displacement of 150 
centimeter is allowed, since 10 x 14.8 cm is less than 150 cm. While this defines the 
upper bound of the displacement, it does not constitute a lower bound, e.g. the 
displacement is zero if the vehicle stands temporarily still. This can be solved by using 
not a fixed subsampling factor, but rather to adapt it to the driving speed, so that 
estimated displacements between successive matched scans is e.g. between 80 and 150 
cm. This not only increases the accuracy of the path, but also improves the computational 
efficiency. We define a minimum displacement for a step, e.g. 80 cm. To compute a new 
step, we first match the scans that are the standard subsampling number apart from each 
other; if the resulting displacement is greater than the minimum displacement, we accept 
the match as the next step, else, we increase the subsampling factor for this pair. We 
choose the next scan candidate based on extrapolating the scan number according to the 
ratio of current displacement and minimum displacement, and perform the scan matching 
with this new pair. The result is a path with the size of all steps in the desired range. 
 
Since we do not have the ground truth, it is difficult to determine the actual correctness 
for the driven path and the accuracy of the relative step estimates. However, we can make 
experiments that give us at least hints in which range the error can be expected: we can 
use the alignment of the horizontal scan points as a measure for the quality of the scan 
matching result. Assuming that the surface of the wall is ideally smooth, all scan points 
of a building wall should lay perfectly on a line, even if scanned from different poses. 
The two major effect that cause the scan points to be off the ideal line are first, the 
inherent measurement noise of the distance measurement, and second, the imperfection 
of the pose computation, i.e. the scan matching. We model the pose estimates 
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(∆u, ∆v, ∆φ)i computed in the scan matching process as the sum of the true pose values 
( )ivu ϕ∆∆∆ ,, and an additional (unknown) error (e∆u, e∆v, e∆φ)i with a Gaussian 
distribution, so that we can write  
 

( ) ( ) ( )
ivuii eeevuvu ϕϕϕ ∆∆∆+∆∆∆=∆∆∆ ,,,,,,   (4-10) 

 
If we add to each of the parameters ∆ui, ∆vi, and ∆φi artificial Gaussian noise 
(n∆u, n∆v, n∆φ) with a standard deviation (σn,∆u, σn,∆v, σn,∆φ), we obtain distorted estimates 
 

( ) ( ) ( )
ivuiii nnnvuvu ϕϕϕ ∆∆∆+∆∆∆=∆∆∆ ,,,,,, ***  .  (4-11) 

 
Then, we re-compute path and scan points with the distorted estimates, and inspect 
visually the effect on the alignment. If the added noise (n∆u, n∆v, n∆φ) is well below the 
inherent estimation error (e∆u, e∆v, e∆φ), there is no apparent effect on the path; however, 
if the distortion comes into the same order of magnitude or exceeds the matching noise, 
the alignment of the horizontal scan points degrades noticeably. Therefore, our method to 
determine the inherent error is to add different levels of noise and to observe from which 
level on the lines start blurring. At this level, the added distortion and the inherent errors 
are approximately equal. Figure 4-8 shows a piece of the computed path, which the 
vehicle traversed while scanning the half plane to the right, indicated as a series of steps 
(gray arrows). From each position at the end of an arrow, a horizontal scan has been 
taken, and the horizontal scan points corresponding to these positions have been 
superimposed (black). The shown area is a typical city environment where both buildings 
and trees are present, visible as collinear points and point clusters, respectively. In order 
to investigate the effect of adding the Gaussian distortion on the alignment, we closer 
examine the points in the marked square in the next figures.  
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Figure 4-8: Computed path and overlaid horizontal scan points; the steps of the path are indicated as 
arrows (gray). From the each position at the arrow tip a horizontal scan has been taken, and all scans 
are drawn from this position. The square zoom clip is examined in the next figures.  

 
 
Figure 4-9 shows the effect of adding distortion to the ∆φi estimates, Figure 4-10 to the 
∆ui estimates, and Figure 4-11 to the ∆vi estimates, respectively; in each case the 
distortion is only added to the specified parameter and not to the others. As seen in Figure 
4-9, the point alignment starts to degrade visibly for an angle distortion between σ∆φ = 
0.01˚ and σ∆φ = 0.03˚. For the translation parameters ∆u and ∆v, this degradation starts 
between σ = 0.3 cm and σ = 1.0 cm. Note that for the translation parameters, the 
alignment only degrades along the direction the distortion is added. For the shown 
example, the vehicle trajectory is approximately vertical in the figure; since the scanner’s 
u-axis points along the driving direction and the v-axis is perpendicular to it, the 
degradation is approximately vertical for ∆ui distortion and horizontal for ∆vi distortion. 
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1m 

(a) no noise added (b) σ∆φ = 0.003˚ (c) σ∆φ = 0.01˚    

     
(d) σ∆φ = 0.03˚ (e) σ∆φ = 0.1˚ (f) σ∆φ = 0.3˚    

Figure 4-9: Alignment of scan points after adding different levels of Gaussian white noise with a 
standard deviation σ∆φ to the rotation angle estimates ∆φi; the point alignment decreases visibly for a 
distortion with σ∆φ > 0.01˚.  

      
(a) no noise added (b) σ∆u = 0.03 cm (c) σ∆u = 0.1cm  

     
(d) σ∆u = 0.3 cm (e) σ∆u = 1 cm (f) σ∆u = 3 cm  
Figure 4-10: Alignment of scan points after adding different levels of Gaussian white noise with a 
standard deviation σ∆u to the ∆ui estimates; the point alignment in vertical direction decreases visibly 
for a distortion with σ∆u > 0.3 cm. 
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(a) no noise added (b) σ∆v = 0.03 cm (c) σ∆v = 0.1cm  

     
(d) σ∆v = 0.3 cm (e) σ∆v = 1 cm (f) σ∆v = 3 cm 
Figure 4-11: Alignment of scan points after adding different levels of Gaussian white noise with a 
standard deviation σ∆v to the ∆vi estimates; the point alignment in vertical direction decreases visibly 
for a distortion with σ∆v > 0.3 cm. 

 

From these experiments, we conclude that for typical city areas, which contain a 
sufficient amount of buildings, the accuracy of the scan matching process is better than 
0.03 degrees for the rotation and better than 1 cm for the translation parameters. In other 
words, within a local environment of a few relative steps, e.g. the length of a building, the 
estimated pose is extremely accurate. As a result, points of subsequent scan columns can 
be registered correctly in respect to each other, and this local pose accuracy allows the 
reconstruction of an accurate 3D model for a building. However, it can be noted that 
there are remaining finite errors in the estimates, and mismatches may decrease accuracy 
further in areas such as empty parking lots or public parks, which do not contain 
appropriate surfaces. We will discuss the effect of these errors for longer drives and 
suggest a possible solution in the following section.  
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5 Global Localization  
 
Even small errors in the single relative estimates accumulate to significant global position 
errors, when many subsequent relative steps are added over a longer period. Especially 
inaccuracies in the relative angle estimates contribute to increasingly catastrophic global 
position errors. From a signal theory viewpoint, it appears that the “high frequency” 
components of the reconstructed initial path, e.g. overtaking maneuvers or turns, are 
correctly recovered, but there are errors in the “low frequency” components, so that 
resulting absolute position has a drift-like behavior. In Figure 5-1, a downtown Berkeley 
path reconstructed from the relative position estimates as described in the previous 
section is shown superimposed on a digital roadmap. This path starts at a known position, 
but follows the road only for the first few hundred meters acceptably; while driving 
continues, it is more and more off. In particular, there are relatively large error at some 
locations, e.g. in the first turn where the scanner has faced Sproul Plaza, an area with 
many trees and almost no buildings in the field of view of the scanner. As seen, this error 
is propagated through the entire path segment following the turn.  
 
 
 

 
Figure 5-1: Path obtained by adding relative steps overlaid on top of a digital road map. During the 
first few hundred meters, the path follows the road map; the longer the driving, the more the path 
separates from the map, and it is finally completely off the real road. 

 
 
This example illustrates the necessity of correcting pose globally, and we will describe 
two approaches to obtaining an estimate for the absolute pose in the following. Since we 
want to keep the high local precision of the scan matching, which enables us to assemble 
subsequent scans consistently, we combine the advantages of both, i.e. we use the scan-
to-scan matching locally, while correcting the position with absolute estimates globally. 
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5.1 Background and Related Work 
 
One of the oldest localization approaches is the navigation based on landmarks, and 
where natural landmarks were not available or visible, artificial ones such as beacons 
have been placed at known positions. During the centuries, beacons have changed from 
fires in ancient marine navigation to radio signal transmitting stations. For indoor 
applications, various types have been utilized, including sonic or laser beacons, corner 
cubes, reflectors, bar-codes, spot marks, and many others. A sensor on the vehicle detects 
the angle and eventually the distance at which a beacon signals is received. Sensors can 
be ultrasonic receivers for ultra sound beacons, photo diodes for laser beacons or 
reflectors, and vision recognition systems. Then, the position is determined using simple 
geometry. For example, [Leonard and Durrant-Whyte, 1991] extract beacons consisting 
of planes, cylinders, and corners from sonar scans and match them with landmarks in a 
geometric map of the environment. However, this approach is not suitable for an urban 
environment. First, buildings block the direct view to beacons, so that they are not visible 
in most locations, and second, setting up an environment is a tremendous effort in both 
timely and financial regard; practically, it is not realizable to install enough beacons to 
completely cover the area of an entire city. 
 
For navigation in outdoor environments, the Global Positioning System (GPS) has 
become the standard source for position estimation. Originally developed by the U.S. 
Department of Defense as a military system, GPS has become a global utility since the 
mid 1980s. It provides global 3D position in form of latitude, longitude, and altitude, and 
benefits users around the world in many different applications, including air, road, and 
marine navigation. Twenty-four satellites are positioned around the globe, and each 
satellite transmits an individual Pseudo-Random-Noise signal. From this signal, a user 
can determine the distance to each satellite via time-of-flight and find his position by 
triangulation. In this sense, one can regard GPS as an extremely sophisticated 
extraterrestrial beacon system. The number of satellites visible from an earth location 
depends on both location and time of day; at least four satellites are necessary to compute 
the position. The possible accuracy depends on number and constellation of the satellites, 
and atmospheric distortion effects. Until May 2000, the Department of Defense also 
added an intentional distortion called Selective Availability to the signal, in order to limit 
the absolute position accuracy for civil users to about 100 meters. Accuracy can be 
significantly increased with differential GPS, or DGPS. In this setup, a second GPS 
receiver is placed at a know position, for example on a USGS (United States Geological 
Survey) landmark. The various sources of error result in a total time-dependent offset 
between the known reference position and its GPS estimate; this offset is then used to 
correct the GPS estimates for the unknown position of the user. 
 
However, even DGPS cannot provide continuously reliable localization at centimeter-
accuracy in urban environments. In presence of high building and in “urban canyons”, the 
direct line-of-sight to most satellites is blocked. Due to this occlusion, there are at many 
locations not enough satellites to determine the position, and therefore no position 
estimates. Furthermore, there can be multi-path reflections of the satellite signals, e.g. 
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from building walls, so that the calculated time-of-flight to the satellite and hence the 
computed global pose is erroneous. Commercial GPS car navigation systems overcome 
these problems by using motion estimates from odometry, i.e. counting the rotations of 
the wheels and determining the steering angle. While a typical low-cost car GPS receiver 
can have a standard deviation of as high as 100 meters and many signal dropouts, the 
odometry provides continuously relative position estimates at higher precision, but with 
drift-like behavior. Where available, the absolute GPS estimates are therefore used to 
correct the relative motion estimates such that the mean difference between position and 
GPS is zero. This technique can achieve accuracy in the low meter range, which is 
sufficient for tracking a vehicle in a graph-like digital roadmap. In our localization 
approach, we will exploit the same idea, i.e. utilizing accurate, but drift-prone local 
estimates, and correcting them with coarser, but globally correct absolute position 
estimates.  
 
Some interesting techniques come from the field of autonomous mobile robotics. Since 
position determination is one of the core problems in this field, multiple map-based 
localization approaches have been developed, especially for indoor navigation. A map 
can either be metric, i.e. it contains the geometry of objects in exact coordinates and 
dimensions, or topological, i.e. it contains the connectivity of objects or places in a graph 
at a more abstract level. As an example, the answer for the question “Where is room 
307?” could be “10 meter west and 20 meter north from here” if a metric map is used, or 
“It’s the third room on the left side” if a topological map is used. If not explicitly noted 
otherwise, in this thesis the term “map” will implicitly mean metric map, in accordance to 
the common usage of this term in geography. Popular representations for metric maps in 
robotics are occupancy grids, where the 2D map space is divided into fine-grained grid 
cells, and each cell is either marked as occupied or empty, and polygonal maps, where 
outlines of objects are stored as polygons. Early examples of the first type of 
representation are given in [Elfes, 1987] and [Moravec, 1988], and for the latter one in 
[Chatila and Laumond, 1985]. 
 
Most work has focused on localizing a robot in respect to a preexisting, a-priori map of 
the environment, in which characteristic features are noted. Features can be explicit 
landmarks, often entered manually into the map, e.g. lines from existing CAD drawings 
of a building. Features can also be rather implicit, for example if previous raw 
measurements are marked in a map without further processing, and e.g. denote the 
location of a wall. The robot uses its perception, i.e. sensor readouts, to detect and 
identify surrounding landmarks, and the most popular sensors are cameras, ultrasonic 
sensors, and laser scanners. The process of explicitly computing and identifying a 
landmark in the sensor data is not always necessary; some approaches can match raw data 
directly with the map. This is advantageous if feature extraction is difficult or not 
reliable. However, even these approaches rely implicitly on features contained in both 
model and perception. More recent work has addressed the problem of exploring an 
unknown environment in which both, localization and map building has to be done 
simultaneously. The transitions between these two scenarios are often fuzzy, for example 
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if a robot starts with an incomplete map and updates it by adding missing objects or 
detecting dynamic changes.  
 
There are various strategies to process the perceived input and to determine and represent 
a robot’s pose. Computational expensive feature detection usually requires a search space 
reduction, which typically uses an approximate pose estimate from a tracking process, i.e. 
the information about previous positions and cues from other sensors such as odometry 
readings. Hence, pose and perception mutually affect each other, and it is important how 
pose and its uncertainty are represented. While in the early days of mobile robotics 
system state was described by a single parameter set, a representation of its uncertainty 
has been introduced with the Kalman filter [Kalman, 1960]. In recent years, an entire 
field called probabilistic robotics has emerged, in which the believed robot pose can be 
represented by arbitrary probability distribution; we will give a more detailed overview 
over this field in Section 5.5.  
 
Depending on the believed pose range, the location for which map landmarks and 
perceived features match the best is determined in a data fusion process. [Schiele and 
Crowley, 1994] compare several approaches using occupancy grid maps. Ultrasonic 
sensors are used to localize the vehicle based on the grid map, and the grid is updated if 
measurements coherently indicate a status change for a cell. As already mentioned, [Cox, 
1991] suggested to match scan points from a laser scanner with the lines of a manually 
created a-priori floor plan. In this case, line segments are the features of a map, and the 
raw scan points are used to perform a point-to-line match as described in the previous 
section. [Weiss et al., 1994] go even further in a localization approach also based on laser 
scans: Neither map nor perception depends on explicit landmarks; rather, scans from 
several known positions and orientations are taken, or simulated using a line map, and 
their histogram statistics are stored along with the location in a scan database. Then, 
during the robot’s motion, the histogram of an incoming scan is computed and compared 
to the histograms in the database, essentially performing a scan-to-scan match as 
described in Chapter 4. Then, the relative pose to the scan with the most similar 
histogram in the database is computed, and the absolute pose can be determined with the 
known pose of the database scan.  
 
If a map of the environment is not available, both map building and navigation must be 
performed iteratively. The preliminary map is used for estimation of the current position, 
e.g. by using the techniques described above, and subsequently updated by registration of 
new features. This straightforward, iterative map building process has pitfalls. Since there 
are errors in the vector estimates of the relative movement as well as in the map-based 
localization, new features may be registered at inaccurate or incorrect locations. This 
yields an inaccurate map, and hence an even more inaccurate pose estimation in the next 
localization phase, resulting in an inevitable accumulation of error over time. [Lu and 
Milios, 1997a,b] addressed this problem by requesting consistency over the entire set of 
scans, and referred to it as consistent pose estimation. They assume that for typical 
mobile robotics application, there is usually a high degree of overlap among arbitrary 
scan pairs, since the range of a laser scanner is large compared to the robot’s 
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environment, and the robot traverses areas over and over again. Hence the map-building 
problem can be formalized as an optimization problem, i.e. maximizing the congruence 
of set of scans with the individually associated poses as the parameters. It is, however, 
difficult to find this global maximum. For example, if the optimal match for N=1000 
scans has to be found, the corresponding search space is 3N = 3000-dimensional. Lu and 
Milios use hill-climbing to find this optimum, but since hill-climbing can easily be 
trapped in a local minimum, it is only suitable for small corrections of good initial 
position estimates. If a robot moves in large cyclic environment, and traverses a long 
distance without overlap to previous scans, there can be a substantial difference between 
its estimated and actual pose when the robot returns to its starting location. This 
difference can be so large that the robot does not even notice that it closed the loop and 
reached an already familiar area, and continues the map building process by adding more 
and more “new” features.  
 
[Gutmann and Konolige, 1999] extend Lu and Milios’ work to continuously correlate 
entire map patches in a background process, in order to detect overlaps and close 
potentially undiscovered loops. Their approach is incremental and therefore suitable for 
real-time map generation. [Thrun et al., 1998b] require some manual intervention during 
the map building process: A button has to be pressed each time the robot passes a 
“critical” area such as a crossing or a door, thus creating an implicit topological model 
and limiting the search space for closing the loop. Then, they use the Expectation-
Maximization (EM) algorithm, originally proposed by [Dempster et al., 1977], to find the 
pose parameter configuration for the optimal alignment of the scans. They show that with 
this method, it is possible to offline correct erroneous tracking to a great extend, and to 
create a reasonable map even in presence of large odometry errors. However, if the size 
of the covered area exceeds the range of the laser scanner substantially, arbitrary scan 
pairs do in general not overlap, and the absolute accuracy of the resulting map is poor for 
all of the above approaches. Hence, if a global a-priori map is available, it is 
advantageous to use this map rather than to determine global pose based on cross-
consistency.  
 
While applicable for an indoor environment in absence of an initial map, consistent pose 
estimation would not achieve satisfactory results for a city environment. First, a city is an 
extremely circular environment, and hence generally difficult for a fully automated 
consistent pose approach as pointed out above. Second, in contrast to typical indoor 
robotics applications, scan range is small compared to traveled distances before closing a 
loop, and arbitrary scan pairs do not generally overlap. Loops can be extremely large, i.e. 
there are for long driving periods no cross connections to other parts of the map, resulting 
in extensive position uncertainty for these sections. Third, a city is orders of magnitude 
larger than an indoor environment. The above algorithms are not capable of handling the 
simultaneous processing of tens or hundreds of thousands scans. For Lu and Milios’ 
approach, the amount of computations grows O(n3) with the number n of scans; Gutmann 
and Konolige as well as Thrun et al. have to subsample the amount of used scans to a few 
hundreds in order to apply their algorithms, even though the dimensions of their area are 
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less than a few tens of meters. For these reasons, we cannot rely on scan consistency to 
globally correct the relative path estimates; we need a global map of the city. 
 
In [Frueh and Zakhor, 2001], we propose the usage of an aerial photo as a global map and 
to determine the acquisition vehicle’s pose in respect to this map. In this thesis we extend 
the idea to alternatively using a Digital Surface Model (DSM) as a global reference. The 
basic idea behind our pose correction is that objects visible during ground-based data 
acquisition must in principle also appear in the airborne view. Making the assumption 
that the position of building facades and building footprints are identical or at least in 
most cases sufficiently similar, one can expect that the shape of the horizontal laser scans 
match edges in an airborne image or a DSM. In the following, we will create an airborne 
edge map and describe two methods to match the ground based laser scans directly with 
the map, in order to arrive at global position estimates and hence globally consistent 3D 
models. The first method is non-probabilistic and needs additionally a digital road map of 
the city district; the second method is probabilistic, robust, and requires only an aerial 
photo or an airborne DSM. 
 
  
5.2 Global Maps from Aerial Images or Airborne Laser Scans 
 
As already stated, even the accuracy of DGPS devices can be as low as meter range in 
“urban canyons”, with frequent signal dropouts. This comes at a price that would more 
than double the total costs of our entire acquisition system. However, for most urban 
areas, there are perspective corrected aerial photos and digital roadmaps available, often 
at no costs. Their resolution is up to sub-meter range, and they provide a geometrically 
correct view over the entire city area. As an alternative, Digital Surface Models (DSM), 
which are mainly created from airborne laser scans and provide also a metric view over 
an entire area, have become increasingly available during the last years. As such, it is 
conceivable to use either one as a map in order to arrive at global position without use of 
GPS devices. One more advantage of using aerial photos or a DSM over GPS is that the 
same airborne data can potentially also be used to derive an airborne 3D model of a city, 
which can finally be merged with 3D facade models obtained from ground level laser 
scans. Indeed, in Chapter 7, we describe an approach to merging an airborne surface 
mesh obtained from a DSM with facade models obtained from ground-based laser 
scanning. Using the localization methods described in this chapter, the global pose can be 
determined in respect to the airborne data, thus providing an elegant solution to the 
registration problem occurring in any model fusion process. 
 
In this section, we create a global edge map representing the footprints of the buildings 
from aerial photos or from a DSM obtained from airborne laser scans. This map does not 
contain explicitly defined line segments; rather, we differentiate the image and obtain an 
edge image, in which the intensity value of a pixel is proportional to the local strength of 
an edge. Since the map area is quantized into discreet pixels, it resembles an occupancy 
grid representation for discontinuities.  
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5.2.1 Edge Map from Aerial Photo 
 
In general, photos are created by a perspective projection and as such not metric maps. 
Only for the special case that the photo is taken from infinity and exactly perpendicular to 
the ground, the projection becomes parallel and the photo is a metric map of the area; in 
this case the photo is called ortho-photo. In reality, aerial photos are not taken from 
infinity, however, if they are taken sufficiently perpendicular to the ground, it is at least 
approximately metric within any plane parallel to the ground; in particular, the ground is 
mapped metrically if the terrain is completely flat. All objects outside a flat ground plane 
have a different metric and the perspective shifts their location in the photo. 
Unfortunately, the desired footprints of buildings are rarely visible from airborne view; 
instead, the rooftops are visible. These rooftops are outside the ground plane and show 
therefore a perspective shift, with a direction depending on their location in respect to the 
camera’s axis of view, and a length proportional to the height of the building. This is 
shown as an example for the 92–meter Sather Tower on the Berkeley campus in Figure 
5-2. Note that for the surrounding lower buildings the perspective shift is far less 
noticeable. 
 
 

 
Figure 5-2: Perspective shift for the 92-meter Berkeley campanile (Sather Tower) and surrounding 
lower buildings 

 
The farther the distance between camera and ground, the less the perspective shift. In 
case of infinite distance, the perspective camera projection turns into a parallel 
projection; there is not perspective shift at all and the photo is perfectly orthographic. 
Perspective shift can be a crucial problem for areas with many high-rising skyscrapers; 
however, for the region we are processing, the percentage of tall buildings is sufficiently 
small. In addition, the algorithms introduced in the next sections are designed to be rather 
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insensitive to small errors in perspective displacement, and we will show that it is 
possible to obtain a consistent model. However, for some cities this assumption can 
eventually not be made. One possibility is then to use high-resolution satellite image 
instead of aerial photos, since they are taken from a much higher distance to the ground. 
A second possibility is to determine the height of buildings by stereo vision algorithms, 
and to use the obtained disparity map to correct for perspective shifts and create an 
artificially orthographic image.  
 
Besides the shift of rooftops, there are other sources of errors: Edges in the image are not 
only originate from buildings, but also from false, non-3D objects such as road stripes, 
crosswalk borders, and curbs. Especially problematic are shadows, because they typically 
result in strong edges in the image, as seen in Figure 5-2 for the campanile. For these 
edges, there is no corresponding 3D object visible in the ground-based scans, hence 
reducing the similarity of scans and edge map. Additionally, aerial photos and ground-
based scans may not have been taken at the same time, so that their content is potentially 
different. For our data, we have noticed that some places have been entirely changed 
between the two acquisitions, for example a former parking lot has been replaced by a 
building. Also, dynamic objects such as cars or buses can cause discrepancies.  
 
Despite these potential problems, we assume that for our data set perspective is negligible 
and that on average the actual, correct 3D edges are dominating. Assuming that there are 
intensity boundaries between different objects such as buildings and ground, we can 
detect object boundaries as edges in the image. We do not want explicitly extract 
contiguous edges or compute a polygonal representation; rather, we intend to incorporate 
all information contained in the photo equally in the edge image. For our purpose, a 
simple Sobel edge detector is therefore more appropriate than e.g. a sophisticated Canny 
edge detector, which tries to track intensity discontinuities. For example in tree areas, the 
Canny detector would focus on the sharp boundaries of the shadow, while omitting the 
weaker actual tree boundaries. For the same reason, we do not apply common image 
processing steps such as thresholding after the differentiation. Applying a Sobel edge 
detector to an aerial image, we obtain an edge image, where the intensity of a pixel is 
proportional to the strength of its 3D discontinuity. Figure 5-3(b) shows an aerial image 
from downtown Berkeley and the corresponding edge image. 
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(a)  (b)  

Figure 5-3: Edge map from aerial photo; (a) original aerial photo, and (b) edge map obtained after 
Sobel filter 

 
5.2.2 Edge Map from DSM 
 
An alternative source of a global edge map is a Digital Surface Model (DSM), which is 
an array of altitude points uniformly sampled over a 2D area, and can as such be regarded 
as an airborne height map or depth image. A DSM can be obtained by manual or 
automated matching of stereo images, by Synthetic Aperture RADAR (SAR), or from 
airborne laser scans. While we do not make any restrictions about the source of the DSM, 
we will in Chapter 7 specifically go into details as how to create a DSM from airborne 
laser scans. Figure 5-4 shows an example for a DSM visualized as a depth image. Each 
pixel represents a 0.5 by 0.5 meter area on the ground, and its gray value is proportional 
to the altitude at this location. Since each DSM implicitly defines a depth image, we will 
in the following use the term DSM also to describe the associated image. 
 
A DSM is a better source for a global edge map than aerial images, for the following 
reasons: First, it contains two different types of information usable for localization of the 
data acquisition vehicle, (a) the location of building facades as height discontinuities, and 
(b) the terrain shape and hence the altitude z of the streets the vehicle is driven at. 
Second, all intensity differences in the DSM are actual 3D discontinuities, whereas for 
aerial photos, high intensity differences for shadows of buildings or trees result in false 
edges. Third, there is no perspective shift of building tops; the DSM is virtually a perfect 
ortho-image. The scan points forming the basis of the map are given in their true world 
coordinates, and as described in Chapter 7, the map is in fact constructed by a parallel 
projection perpendicular to the ground. Therefore, in contrast to the perspective 
projection of the aerial photo, all image edges are independent of the building height at 
the correct x,y location in the ground plane. However, one problem remains for both 
images: there can be a difference between the roof of a building and its footprint, i.e. its 
shape in the horizontal plane in which the ground-based scans are taken, if for example 
the building has an overhanging roof. 

 



58  Chapter 5 – Global Localization 

 
Figure 5-4: Digital Surface Model, displayed as a depth image 

 
To detect edges in the DSM, we could in principle apply again a Sobel edge detector 
directly to the gray level representation of the DSM. However, the Sobel edge detector 
treats the darker and the brighter sides of an image discontinuity equally and marks the 
boundary pixels at both sides. Since the width of an edge is two pixels even at a sharp 
discontinuity, it tends to produce thick edges. For a DSM, we have more information at 
discontinuities: while in an aerial photo one cannot make reliable assumptions about 
which side of a discontinuity is the building top and which is the ground, this information 
is explicitly given in a DSM. Instead of the Sobel edge detector, we define a discontinuity 
detection filter, which marks a pixel if at least one of its neighboring pixels is more than a 
threshold ∆zedge below it, i.e 
 
Discontinuity edge filter: 
 
for x:=0 to dsm_dimensionX  { 
 for y:=0 to dsm_dimensionY  {  

is_edge(x,y) := false; 
 
for all neighbors of (x,y) { 
 if z(neighbor) <  z(x,y)- ∆zedge then { 
    is_edge(x,y) :=  true; 

   }; 
  }; 
 }; 
}; 
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Hence, only the outermost pixels of taller objects such as building tops are marked, but 
not the adjacent ground, and the resulting edge map is sharper than the edge map 
obtained from a Sobel filter. It is in fact a global occupancy grid for building walls. 
Figure 5-5(a) shows an example of an edge map resulting from a Sobel filter, Figure 
5-5(b) shows the results of the proposed discontinuity filter for comparison, applied to the 
DSM of Figure 5-4. 
 
 
 

(a)   (b)  
Figure 5-5: Edge map obtained from DSM with (a) Sobel filter, (b) proposed alternative discontinuity 
filter 

   
The second type of information in the DSM is the terrain shape. Since our vehicle always 
drives on the road, an estimate for its z coordinate can be obtained from the terrain 
altitude. It is not possible to directly use the z value at a DSM location, since the airborne 
laser captures cars on the road and overhanging trees during our airborne data acquisition, 
resulting in z values up to several meters above street level at these locations. For a 
particular location, we estimate the altitude of the street level by averaging over the z 
coordinates of available ground pixels within a surrounding window, weighing them with 
an exponential function decreasing with distance. The result is a smooth, dense Digital 
Terrain Model (DTM), containing ground level estimates for the terrain shape for roads 
as shown in Figure 5-6(b). The terrain altitude at building locations is rather hypothetical 
and not of any interest for our application, since the vehicle has certainly not been at 
these locations. 
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(a)   (b)  
Figure 5-6: (a) Original DSM, (b) estimated DTM, with some blank spots at building locations 

 
 
5.3 Congruence Coefficient between Ground Based Laser Scans and 

Airborne Edge Maps 
 
In this section, we compute a measure as how well the ground-based laser scan points 
match to the airborne edge map. Given a 2D pose (x,y,θ) of the truck in the world 
coordinate system and the corresponding horizontal laser scan, we can transform the local 
coordinates (uj,vj) of the jth scan point into edge map coordinates (x’j,y’j) according to  
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where R(θ) is the 2 x 2 rotation matrix with angle θ. Summing up the intensity values of 
the corresponding pixels, we define a coefficient c(x,y,θ) for the congruence between 
edge image and scan as 
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where I(x,y) denotes the intensity of the edge image at the world coordinates (x,y) and 
Imax its maximum possible value.  The division by the maximum value normalizes c(x,y,θ) 
to the range [0, 1], with c(x,y,θ) = 1 if all scan points are at an edge of maximum strength, 
i.e. perfect match, and c(x,y,θ) = 0 if no scan point falls on an edge, i.e. no match at all. 
One can regard the ensemble of laser scan points in the local coordinate system as a 
second edge image; in this view, equation 2 essentially computes the image correlation 
between the two edge images as a function of translation and rotation. Therefore, we can 
refer to c(x,y,θ) also as a cross correlation coefficient. For the same scan, different global 
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position parameters (x,y,θ) yield different coefficients c(x,y,θ); the highest coefficient is 
obtained for the parameter set for which the scan and the edge map match best. 
 
Figure 5-7 shows two examples for the congruence coefficient; for each figure, the laser 
scan points (black) are superimposed on the edge image (gray), and the hypothesized 
position (x,y) is marked as an encircled cross. The scan corresponding to (xa, ya, θa) 
shown in Figure 5-7a has a coefficient of only c(xa, ya, θa) = 0.377, whereas the maximum 
congruence, 0.527, occurs at (xb, yb, θb). In this example, the difference between the two 
pose parameter sets is  
 
 (∆xa, ∆ya, ∆θa) = (xa, ya, θa) - (xb, yb, θb) = (4.0 m, 4.5m, -2º),  
 
denoted by the arrow shown in Figure 5-7b. While at a first glance, the difference 
between the two coefficient values does not seem to be striking, the difference is actually 
significant and the maximum sharp. As seen, in accordance to the coefficient, the scan 
points for pose (xa, ya, θa) fit the edges significantly more closely than the ones for pose 
(xb, yb, θb). 
 

a)   b)  
Figure 5-7: Edge image with (a) scan superimposed from pose (xa, ya, θa), with c(xa, ya, θa) = 0.377; (b) 

at pose (xb, yb, θb), with c(xb, yb, θb)  = 0.527, optimally matching the airborne edge map  

 

 
5.4 Global Map Position by Maximizing Congruence  
 
An intuitive method for correcting small errors in the vehicle’s global pose is to optimize 
the congruence coefficient introduced in the previous subsection. Initial pose estimates 
are obtained by the scan matching and path computation process. Then, the congruence 
coefficient is computed for a certain parameter range around the initial pose estimate, for 
example the marked rectangular area {±∆xmax, ±∆ymax} in Figure 5-7 and various angles. 
The parameters of the largest coefficient are considered as the true pose, and the path is 
corrected accordingly.  
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Unfortunately, as seen in Figure 5-1, the initial path has extreme deviations from the true 
positions, and at some points substantial corrections are required. While the correct 
position can be found for most parts without problems, there are some map regions, such 
as residential areas or parking lots, without clear edge features; even worse, the accuracy 
of the scan matching and hence of the initial path is especially low for these regions, as 
explained in Section 4.2. Once the deviation from the true pose exceeds the search 
window around the initial pose estimate, the true pose cannot be found any more and the 
track of the path is entirely lost. Therefore, it is not possible to recover the entire driven 
path with this procedure alone. 
 
We suggest two different solutions for this problem:  
(a) Applying a coarse adjustment to the initial path by using digital roadmaps in order to 
bound the deviations, and “fine-tuning” the resulting adjusted path by maximizing 
congruence; or (b), using more sophisticated, robust probabilistic localization methods to 
consider the increasing uncertainty in difficult regions. 
 
 
5.4.1 Adjustment Using Digital Roadmaps 
 
Digital roadmaps are available for all major cities worldwide; in particular, for the Bay 
Area in California, roadmaps registered with aerial images can be downloaded from the 
United States Geographic Survey (USGS)'s web sites. A roadmap can be interpreted as a 
graph, where every intersection or turn is a node, and the road segment in between is an 
edge. The important information the digital roadmap can provide is the topology and 
geometry of the city, and hence the possible driving paths. In this sense, our approach is 
similar to the one in [Thrun et al., 1998b], which also employs a topological map to 
reduce search space, but in our approach there is no manual step involved. If for example 
during a vehicle turn operation an overall estimation error of several degrees occurs, 
roadmaps can be used to correct the angle. The accuracy of this method is limited to the 
width of the road, which we assume to be unknown. It is especially important that we 
recover the “high-frequency” components of the vehicle’s path, e.g. lane changes, 
because for these cases the resulting 3D model would have incorrect shapes if the driving 
path is assumed to be a straight line.  
 
In order to find and assign road segments to the traveled path, we make the following 
assumptions: 
 

1. The starting position is on a road node. 
2. The truck can only move along the roads in the map and never off road. 
3. Significant changes in driving direction (turns) necessarily occur on road nodes 

and nowhere else.  
 
Note that in a digital roadmap, a curvy road without cross intersections is represented as a 
sequence of nodes with only one possible connection at an angle.   
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Given the path {(xk, yk, θk)} computed from the relative position changes, a line segment 
approximation of our traveled path as shown in Figure 5-8 can be obtained by detecting 
all turns as major changes in driving directions, and fitting a straight line segment 
between two turns. Each line li has a corresponding driving vector di; the intersection of 
neighboring lines results in nodes. Since intermediate nodes may be passed without 
changing driving direction significantly, we apply a tree search to the digital roadmap to 
find the node where direction and traveled distance fits best to the approximation. 
 

nodes 

di 

di+1

di-1

 

 

Figure 5-8: Path and its line segment approximation  

 
 
Our proposed algorithm to track position on the roadmap can be summarized this way: 

1) Select manually the staring point S of the traveled path on the map. 
2) Choose the first driving vector d1 in the line segment approximation and add it to 

S in order to determine the goal point G on the map: 
3) Start a tree search in the roadmap that finds all possible road paths that have 

approximately the same direction as d1 and no major direction changes between 
successive road edges.   

4) Compute the Euclidean distance of each road node Nk passed in 3) to the goal 
point G and find the one with the shortest distance Nopt. This is the most probable 
end node and as such a correction angle ∆θ and a length correction factor η can 
be computed. 

5) Stretch the direction vector d1 by η.  
6) Rotate all dj with j≥1 by the correction angle ∆θ.  
7) Take G as new starting point S. 
8) Repeat steps 1 through 7 for all line segments li. 

 
Using this algorithm we obtain a vector graph on the road map and therefore a correction 
for the length and the angle of each line segment. These adjustments are applied to the 
initial position estimates {(xk, yk, θk)}, while taking into account the quality value Qk 
computed for each step k during the scan-to-scan match described in section 4.1. We 
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assume that length errors occur mainly during long straight paths, whereas orientation 
errors are mainly made during turns, and hence we distribute corrections accordingly, 
weighing them inversely proportional to Qk. The result is an adjusted path estimate 
{(xk’, yk’, θk’)} that fits approximately to the roadmap, while it is still ambiguous to 
within the width of the road, i.e. several meters. Also, the path is only bound to the road 
map at intersections, but not between them, and can therefore deviate more than the width 
of the road only. This becomes particularly noticeable when the acquisition vehicle 
travels a long distance in between scanning of the two sides of a given road. However, 
the remaining deviation is now small enough so that the next step, maximizing the 
congruence coefficient in order to refine the correction, can be applied.  
 
The adjustment procedure and its result are shown in Figure 5-9. In Figure 5-9(a), the 
initial path estimate obtained from scan-to-scan matching is drawn, overlaid on top of the 
digital roadmap. While the basic shape of the driven path is clearly visible, the absolute 
position is increasingly incorrect after a few hundred meters, mainly due to angle errors 
in turns. Applying the tree search in the road map, we find the traveled roads as a vector 
graph, containing the recovered sequence of traversed nodes, i.e. road intersections, as 
marked in the roadmap shown in Figure 5-9(b). Finally, Figure 5-9(c) shows the resulting 
adjusted path after distributing the corrections among the relative estimates. The shape of 
this path matches the actual roads significantly better, especially at node points. 
However, between nodes it is sometimes more inaccurate than road width alone could 
explain, mainly because our adjustment distributes orientation errors only in turns and 
length errors only on straight stretches, which is not necessarily where the errors actually 
occur.  
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(a) Initial path estimate from scan-to-scan matching 

 
(b) Vector graph 

 
(c) Path after correction 

Figure 5-9: Initial path, vector graph, and corrected path superimposed on the digital road map 
(gray). 
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5.4.2 Pose Refinement Based on Maximizing the Congruence Coefficient 
 
To obtain estimates for the absolute map poses ( , , ) with the maximum cross 
correlation between edge map and scan, we assume that the adjusted relative estimates 
{(∆u

kx̂ kŷ kθ̂

k’, ∆vk’, ∆ϕk’)} computed in the previous section are close enough to the actual 
values, and therefore, we iteratively apply a relative step and search the parameter space 
within a search window (±∆xmax, ±∆ymax, ±∆θmax) around {(xk’, yk’, θk’)}. The window 
dimensions 2∆xmax and 2∆ymax are chosen based on the assumed maximum deviation; 
they depend not only on road width, but include additional heuristics about occurring 
offsets. As both scan points and edge map are highly discontinuous, the scan-to-map 
congruence can have completely different values for offsets as small as one or two pixels. 
Therefore, there are numerous local maximums within the search window, and it is not 
possible to apply hill-climbing methods to find the global maximum. Fortunately, the 
parameter space is only three-dimensional and the search window is relatively small, and 
hence it is feasible to search for the global maximum by sampling the parameter space 
and apply a hill-climbing search only around the best parameter sample: 
 
 
Find poses ( , , ) with maximum correlation kx̂ kŷ kθ̂

{ 
 (x0’, y0’, θ0’) = selected starting pose in edge map; 
 
 for each relative step k do { 
  pose = (xk-1’, yk-1’, θk-1’) + (Rot(θk-1’)·(∆uk’, ∆vk’), ∆ϕk’);  
 
  max_congruence_pose = pose; 
 
       /* coarse search – sampling parameter space */ 
  for dx:= -∆xmax to ∆xmax step ∆xcoarse 
   for dy:= - ∆ymax to ∆ymax step ∆ycoarse 
     for dθ:= - ∆θmax to ∆θmax step ∆θcoarse 
     if c(pose + (dx, dy, dθ)) > c(max_congruence_pose) 
     max_congruence_pose = pose + (dx, dy, dθ);  
 
       /* now refine fine search with steepest decent */ 
 
  pose = max_congruence_pose; 
 
       do { 
   last_pose = pose; 
 
   if c(pose + (∆xfine,0, 0) ) > c(pose)   pose = pose + (∆xfine,0, 0); 

 if c(pose - (∆xfine,0, 0) ) > c(pose)   pose = pose - (∆xfine,0, 0); 
 

if c(pose + (0, ∆yfine,0, 0) ) > c(pose)   pose = pose + (0, ∆yfine,0, 0);  
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   if c(pose - (0, ∆yfine,0, 0) ) > c(pose)   pose = pose - (0, ∆yfine,0, 0); 
 

  if c(pose + (0, 0, ∆θfine,) ) > c(pose)   pose = pose + (0, 0, ∆θfine,);  
 if c(pose - (0, 0, ∆θfine,) ) > c(pose)   pose = pose - (0, 0, ∆θfine,); 

 
  } while (pose != last_pose); 
 
  ( kx , , ) = pose;  ˆ kŷ kθ̂

 } next k 
} 
 
Applying this method, a series of intermediate global poses ( , , ) is obtained, for 
witch the congruence is maximal. These poses have a resolution of map pixel size, and 
among them outliers can occur, since there may be mismatches due to shadows, false 
edges, and perspective shifts. We define an intermediate correction vector as difference 
between roadmap-adjusted pose and intermediate global pose. Intermediate poses with 
low congruence coefficient are not considered, since the matching results are likely not to 
be reliable, and outliers are found and eliminated by median filtering. Averaging over 
several neighboring correction vectors, we obtain smoothed vectors and can correct the 
road-map-adjusted path accordingly. In areas with few reliable global poses, the original 
roadmap-adjusted path is virtually left unchanged. 

kx̂ kŷ kθ̂

 
While it is possible to correct the path reliably in areas with clear building edges, this 
method has an apparent disadvantage: once the track of the vehicle in the photo is lost 
and the believed pose is significantly far from the actual path, the algorithm may not 
recover if the correct match is outside the search window. This potentially occurs in areas 
such as suburban houses hidden among trees, in which no distinctive line features, but 
numerous false edges e.g. from tree shadows, are present. In these areas, the accumulated 
errors can exceed the correlation search range during longer drives. Unfortunately, 
extending the search window size is not an acceptable solution, since it does not only 
increase computation time, but also the possibility of finding remote, erroneous scan-to-
photo matches in ambiguous situations. Therefore, the selection of heuristic parameters 
such as search window size and correction vector weight is crucial for the success of the 
method. Furthermore, this method represents the pose only as one discreet set of 
parameters; no measure for its uncertainty is incorporated. 
 
 
5.5 Global Map Position Based on Monte Carlo Localization   
 
In this section, we investigate the use of Monte-Carlo-Localization (MCL) as a more 
robust way to improve our pose estimation from laser scans. MCL is an approach in 
probabilistic robotics and a subclass of Markov Localization. In the following section, we 
give a short overview over the field of probabilistic robotics, and describe our adaptation 
of the localization techniques to the specific problem of localizing the acquisition vehicle 
in the city. 
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5.5.1 Probabilistic Robotics – Background 
 
In probabilistic robotics, the pose estimate πt for a time t is not only represented by one 
single set of parameters, but instead by a probability distribution over the parameter 
space, hence representing uncertainty of the estimation process. Most approaches make 
the restrictive assumption, that the environment of the robot is static, although practically 
they often work also in partially dynamic environments. In a static environment, sensor 
readings depend only on the state, i.e. the pose of the robot, and not on past or future 
events or measurements. In other words, the robots pose is the only state in the 
environment, and it is all one needs to know in order predict the sensor measurements. 
This assumption is generally known as Markov assumption, and the class of localization 
approaches making this assumption is called Markov Localization [Russell and Norvig, 
1995], [Simmons and Koenig, 1995]. In contrast to mobile robotic applications such as an 
interactive museum guide, the static environment assumption is easily fulfilled in our 
case. Since the horizontal scanning plane is well above dynamic obstacles such as cars 
and pedestrians, laser sensor readouts are not affected and depend only on static objects 
such as trees and buildings.  
 
An excellent overview over the major concepts as well as an extension for dynamic 
environments is given in [Fox et al., 1999a]. The key idea of Markov localization is to 
interpret the state, i.e. pose πt, at the time t as a random variable, and to estimate its 
probability density, typically called the belief, conditioned on a series of input data. 
Formally, the believe can be denoted as  
 
 )..|()( 0ddpBel ttt ππ =  (5-3) 
 
where d0..dt is the input data from time 0 to time t. Input data can be distinguished into 
motion data, denoted as a for action and perception data, denoted as o for observation. 
For example, motion data is typically odometry information, and perception data is 
information captured by sensors. In this notation, the data inputs dt are discretized: an 
action at summarizes all effects from the time interval [t-1; t], and an observation ot is a 
perception snapshot at time t. )( tBel π  is the updated belief after consideration of dt; 
consequentially, the belief remains unchanged until the next data set arrives. As such, 
only motion changes the actual state of the system while the perception does not; 
however, both affect our belief about the state. Starting from an initial belief )( 0πBel , for 
example a Dirac function if the starting pose is exactly known, or a uniform distribution 
if unknown, the belief is recursively updated as new data comes in. 
 
It has to be a distinguished whether the incoming data is perception data or motion data: 
 
b) Motion data 
In this case, dt is at and Equation 5-3 
 
 )..,|()..|()( 010 ddapddpBel tttttt −== πππ . (5-4) 
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Using the theorem of Total Probability, this can be written as 
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Again, Markov assumption suggests for the first term on the right-hand side 
 
 )',|()',..,|( 1101 −−− = ttttttt apddap ππππ , (5-6) 
 
and since πt-1 does not depend on at, the second term can be written as 
 
 )'()..|'()..,|'( 1011011 −−−−− == tttttt Belddpddap πππ ,  (5-7) 
 
hence yielding the final recursive update equation 
 
 . (5-8) ')'()',|()( 111 −−− ⋅⋅= ∫ tttttt dBelapBel πππππ

 
The term )',|( 1−ttt ap ππ  denotes the probability of a state πt given an action at and an 
previous pose πt-1’; to compute this probability, a motion model is necessary. In the 
motion step, two probability distributions are convoluted; intuitively, the motion flattens 
the probability distribution, because additional uncertainty is introduced, as shown in 
Figure 5-10 for a one-dimensional state space: The initial belief has its peek at xp, then, 
an uncertain motion in the x-direction with expected value ∆x occurs, shifting and 
flattening the resulting belief. 
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Figure 5-10: Updating the believe for the x coordinate with motion data; (a) initial belief, (b) action 
estimate with uncertainty, (c) new belief as the convolution if the two probability densities 

 
 
a) Perception data 
In this case, dt can be written as ot and the belief can be expressed as  
 
 )..,|()..|()( 010 ddopddpBel tttttt −== πππ . (5-9) 
 
 
Using Bayes’ rule, this can be transformed to 
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Due to the Markov assumption, ot depends only on the state πt and not on d0..dt-1, so that  
 
 )|()..,|( 01 ttttt opddop ππ =− . (5-11) 
 
 
Since the denominator is a constant in regard of πt, it can be put in a normalization factor  
 

 
)..|(

1

01 ddop tt −

=η ,   (5-12) 

 
hence simplifying Equation 5-10 to  
 
 )..|()|()( 01 ddpopBel ttttt −⋅⋅= ππηπ . (5-13) 
 
Furthermore, we can write )..|()..|( 01101 ddpddp tttt −−− = ππ , since the belief does not 
change if no additional data arrives, so that Equation 5-13 can finally be written as 
 
 )()|()( 1−⋅⋅= tttt BelopBel ππηπ , (5-14) 
 
providing a recursive formula to update the belief for incoming sensor data. The 
normalization factor η can easily be computed with the theorem of Total Probability, i.e.  
 
   (5-15) 1 )( =∫

∞
tt dBel ππ

 
The term )|( ttop π  denotes the probability of the observation ot given the pose πt; to 
compute this probability, a perception model is necessary. In the perception step, two 
probability distributions are multiplied. Generally, the perception sharpens the position 
estimate, because additional information is used to modify the distribution, as shown in 
Figure 5-11 for a one-dimensional state space: The initial belief has its peek at xp. Then, 
an uncertain observation suggests that the actual position is slightly to the left, and since 
the resulting belief is computed by multiplying the two density functions; its maximum is 
in the “common” area. Hence, the resulting belief is sharper. 
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Figure 5-11: Updating the believe for the x coordinate with perception data; (a) initial belief, (b) 
observation estimate with uncertainty, (c) new belief as the multiplication of the two probability 
densities 

 

Markov localization provides the recursive update equations for both, motion and 
perception data; however, it is neither specified how the probability densities can be 
represented, nor how the probabilities )|( ttop π  and )',|( 1−ttt ap ππ  can be obtained. 
The computation of )',|( 1−ttt ap ππ  is usually easier, since the motion model for a robot is 
rather precise; the exact computation of )|( ttop π  is more difficult. Fortunately, it is 
sufficient to possess only very approximate knowledge of the exact perception and 
motion probabilities )|( ttop π  and )',| 1−ttt a(p ππ . Practically, the results do not differ 
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substantially, as long as the behavior of modeled and actual probabilities is sufficiently 
similar.  
 
As this method carries on multiple hypotheses, it is robust enough to recover from 
position errors and mismatches, and capable of finding the correct pose, even if the initial 
pose is not given precisely or at all. However, the crucial point in Markov localization is 
the implementation, because a reasonable representation for the probability distribution 
needs to be found. Common approximations of the belief in the current literature are: 
 
a) Gaussian approximation 

Based on the Kalman filter [Kalman, 1960], the restrictive assumption is made that 
belief, action and observation are Gaussians, and can hence be represented by only 
two parameters: mean value and variance. Since this assumption renders computation 
simple and efficient, it has been very popular for tracking a robot real-time. In this 
context, it has been applied successfully in many applications, and has proven to be 
robust, if the uncertainty remains small. However, in its plain form, it has the severe 
drawback that it cannot handle multiple hypotheses in case of ambiguity. This 
problem has been addressed by proposing multi-hypotheses Kalman filters, which 
represent the belief as mixtures of Gaussians [Jensfelt and Kristensen, 1999], 
[Roumeliotis and Bekey, 2000]. However, even multi-hypotheses Kalman filters are 
not capable of recovering from catastrophic localization failures, such as in the 
kidnapped robot problem or in the initial global localization problem. Furthermore, 
the perception probability )|( ttop π  has also to be assumed as Gaussian, and this is 
not correct in our case.  

 
b) Grid based representation  

A second popular approach is grid-based Markov localization, where the parameter 
space is sampled as a probability grid, e.g. in [Fox et al., 1999a], [Thrun, 2000]. The 
parameter space is partitioned into grid cells, each representing the probability in a 
parameter “cube” by a floating point value. However, for a downtown area, this 
would lead to more than 108 states and hence large computational complexity, even 
for a resolution as low as 1 meter x 1 meter x 2 degrees. 

 
c) Particle Filtering  

In particle filtering [Gordon et al., 1993], also known as condensation algorithm in 
computer vision and as Monte-Carlo-Localization (MCL) in the context of robot 
localization [Fox et al., 2000], a large number of random samples (or particles) is 
utilized to represent probability distributions. These particles are propagated over 
time using a combination of sequential importance sampling and resampling steps, 
shortly referred to as sampling-importance-resampling. The resampling step 
statistically multiplies or discards particles at each step according to their importance, 
concentrating particles in regions of high posterior probability. Hence, the particle 
density is statistically equivalent to the probability density. Although powerful and 
robust, particle filters are intuitive and relatively simple to implement. 
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5.5.2 Monte-Carlo-Localization 
 
Due to the large extend of a city environment, the necessity to represent multiple distinct 
hypothesis, and the requirement to recover from localization failures, the usage of particle 
filters appears most favorable to us. In our particular MCL problem, π is a three-
dimensional state variable with the parameters (x, y, θ), the motion estimates are obtained 
form the scan-to-scan matching results (∆uk,∆vk,∆ϕk) for each step k, as described in 
Chapter 4, and the perception is given by the congruence coefficient c(x, y, θ) between 
laser scans and aerial edge map. Applying above ideas, we suggest the following 
procedure: 
 
We represent the probability distribution of π by a set S of particles Pi, each with an 
importance factor wi. In an iterative process, the set Sk of N particles is transformed into 
another set Sk+1 of N particles by applying the following three phases: (a) motion; (b) 
perception, and (c) importance resampling. Each particle Pi is associated with a specific 
parameter set (x(i), y(i), θ(i)), and the number of particles within a “cube” in the state space 
around (x, y, θ) is proportional to the probability density at (x, y, θ). Therefore, the 
histogram over (x(i), y(i), θ(i)) of all particles approximates the probability distribution of 
(x, y, θ). As such, it is this distribution function of the random variable π =(x,y,θ) that is 
being propagated from iteration k to k+1 based on the scan-to-scan match in the motion 
phase, and the scan-to-edge map match in the perception phase.  
 
We assume as a motion model )',|( 1−ttt ap ππ  that the distribution of the relative position 
estimates (∆uk,∆vk,∆ϕk) obtained from scan-to-scan matching in Chapter 4 is Gaussian 
with variances σu

2, σv
2, σϕ

2. Note that this refers only to the motion model; it does not 
imply any Gaussian distribution for the belief. Specifically, in the motion phase, we start 
with the relative position estimate  (∆uk,∆vk,∆ϕk), and add to it a white Gaussian random 
vector to obtain a new random vector, i.e. 
   
 ))(),(),((),,()~,~,~( ϕσσσϕϕ nnnvuvu vukkkkkk +∆∆∆=∆∆∆  (5-16) 

 
where n(σ) denotes Gaussian white noise with variance σ2, and σu

2, σv
2, σφ2 represent 

scan-to-scan measurement noise variance. Intuitively, one can imagine that for some of 
the particles, the added noise compensates by chance for the actual measurement error. 
From the scan point alignment experiments in Chapter 4, we have obtained approximate 
knowledge about σu, σv, and σφ; however, added noise level should be set higher than the 
true measurement uncertainty. The reason is that otherwise, in case of an extreme 
matching error, eventually the correct noise addition is not given to any particle, since it 
is unlikely to draw a value from the far outskirts of the distribution. Thrun et al. note that 
MCL can fail if assumed noise level is too small, and have recently suggested Mixture-
MCL as an extension that might overcome this problem [Thrun et al., 2001].  
 
According to initial path computation, the parameter set of the ith particle Pi, is 
transformed to 
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Intuitively, this means that the amount of movement of each individual particle is drawn 
from a probability distribution function of the random variable (∆uk,∆vk,∆ϕk). As a result 
of this phase, particles that share originally the same parameter set are “diffused” after 
the transformation in Equation 5-17. 
 
For the perception model, we utilize the correlation coefficient c(x(i)’, y(i)’, θ(i)’) between 
horizontal laser scans and aerial edge map as a measure for the probability )|( ttop π . 
During the perception phase, for each particle with a new pose (x(i)’, y(i)’, θ(i)’), we set a 
preliminary importance factor wi* to the correlation coefficient c(x(i)’, y(i)’, θ(i)’) between 
laser scans and aerial photos, according to Equation 5-2. We subsequently normalize wi* 
to obtain the true importance factor wi as follows: 
 

 
∑

=

particles
j

i
i w

ww *

*

,     (5-18) 

 
Since c(x(i)’, y(i)’, θ(i)’) is a measure of how well the current scan matches to a particular 
vehicle pose (x(i)’, y(i)’, θ(i)’), intuitively, the importance factor wi determines the 
likelihood that a particular particle Pi is a good estimate for the actual truck position.  As 
such, the importance factor of each particle is used in the selection phase to compute the 
set Sk+1 from set Sk in the following way: a given particle in set Sk is passed along to set 
Sk+1 with a probability proportional to its importance factor. We refer to the “surviving” 
particle in set Sk+1 as a child, and its corresponding original particle in set Sk as its parent. 
In this manner, particles with high importance factors are likely to be copied into Sk many 
times, whereas particles with low importance factors are likely not to be copied at all. 
Thus, “important” particles become parents of many children. This selection process 
allows removal of “bad” particles and boosting of “good” particles, resembling a sort of 
evolution process. This selection phase is also referred to as importance sampling.  
 
Starting with an uniformly distributed set S0 on the starting position in the aerial image, 
we apply the above three phases at each step k, in order to arrive at a series of sets Sk. 
More specifically, our algorithm can be summarized as follows: 
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Monte Carlo Localization: 
 
1. Distribute randomly an initial set S0 of N particles around the approximate starting 
position in the edge map 
 
2. For each relative step k  
{ 
 // Motion and Perception 
 For particles i:=0 to N  of Sk 

a) Generate and add random noise to motion estimate according to Equ. 5-16 
b) Move particle Pi according to Equ. 5-17 by distorted motion estimate 

)~,~,~( kkk vu ϕ∆∆∆  
c) Set importance factor wi

* of Pi to congruence coefficient c(new particle pose) 
 

 // Importance resampling 
 1. Normalize importance factors wi according to Equ. 5-18 
 
 2. Pick particles for the next generation with a probability proportional to their 

importance factor: 
 
  for i:=0 to N  {  
   r = random number(0, 1) 
   for j:=0 to N {   
    r: = r - wi; 
    if r<0 then  exit  j-loop;   // if wj is large, it is more likely that  
              // the loop is exited at this j 
  } 
  copy Pj into next generation Sk+1 
} 
 
 
Figure 5-12 shows one of resulting Sk as an example, superimposed on the aerial image. 
This set of particles appears like a blob, with the density the highest at the dark spot in 
the blob.  
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Figure 5-12:  Set of particle representing the pose belief, superimposed on the aerial image. In this 

visualization, the probability density is expressed by different colors.  

 
It is quite simple to incorporate additional information such as the digital roadmap or 
eventual GPS readouts during the belief computation, in order constrain parameter space. 
For example, since we have the digital roadmap registered with the aerial photo available, 
we can restrict positions of the particles to within a few-meter-wide strip around roads. 
This can be done efficiently by marking allowed locations in the edge map as shown in 
Figure 5-13, where the parameter space is restricted to within the darker 25 meters wide 
strip around roads. Assigning a zero importance to each “off-road” particle, we can 
prohibit its selection during the resampling process. Though this is not necessary for 
obtaining the correct path, it can greatly decrease computation time, because incorrect 
particles can be removed immediately, and therefore much fewer particles are needed, 
while the probability distribution near the roads is still represented appropriately. 
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Figure 5-13: Restricting parameter space to locations near roads. 

 
The remaining question is how to obtain the actual global pose at step k from each set Sk, 
and this is a non-trivial problem. While the belief provides a good measure for the range 
of possible poses, it is not clear which pose in this range is the actual one. Even if we 
knew most of the previous and following poses perfectly, we were not able to resolve 
intermediate uncertainty and determine all locations exactly.  
 
One possibility to obtain a concrete global estimate is to compute the center of mass of 
the Sk. However, the belief represents only past data, and this would include many 
particles to be revealed as inappropriate in later steps. For example, if the belief at step k 
consists of two distinct peeks, one of them to be revealed as erroneous by future data, 
simply estimating the pose as the center of mass incorrectly results a position in the 
middle of the two possibilities. Since we know the evolution of the particle sets over 
time, we can disregard the particles revealed as erroneous in the future. Specifically, we 
keep track of the “ancestry” of particles and consider only those particles in Sk, whose 
descendents have survived after M steps later, and hence are in the set Sk+M. We then 
compute the center of mass for these particles in set Sk, and use it as the global 2D map 
pose estimate for step k. While these estimates are suitable as global references, their 
absolute position accuracy is not in the centimeter range necessary for an accurate 3D 
reconstruction. In this sense, they are comparable with GPS readouts, and to obtain the 
final poses we have to combine the local accuracy of the initial path with the globally 
correct map positions from MCL. 
 
It would be desirable to adjust the initial path to the global 2D map poses in the same 
simple and intuitive manner that we used for the congruence maximization, i.e. averaging 
the correction vectors. However, since MCL does not require an adjustment with a digital 
roadmap as an intermediate step, we only have the initial path with its strong distortions, 
and hence extremely large global correction vectors. The essential problem is for the path 
computation, rotations and translations are coupled, since even small changes in a relative 
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angle at the beginning of the path can change subsequent positions substantially. One 
alternative solution is minimizing some distance function between initial path and global 
points, but since such a function is affected by each parameter of the relative estimates, 
the resulting optimization problem has some thousand dimensions, and the strong 
influence of angles for all subsequent positions can cause numerical instability and make 
the search for the global optimum hard. Fortunately, we can exploit that global yaw 
angles in the path depend only on previous relative angle estimates, but not on position 
estimates. Thus, we can decouple the yaw angle correction from the position correction: 
we first correct the yaw angles separately by subtracting averaged angle differences 
between initial and global poses, recompute the path with the new angles, and apply 
averaged correction vectors to the x and y coordinates. Since this independence is not 
mutual, it is important that the angle correction is performed before the position 
correction. The result of this correction is a final 2D path, with both local accuracy and 
correct global pose in all three DOF. 
 
We have assumed perfectly flat environment for global registration in respect to an 
airborne photo, and hence the 3 DOF (x,y,yaw) describe global pose completely. For the 
registration in respect to an airborne DSM, we can abandon the restriction to flat 
environments and create correct models even for hill areas. Utilizing the additional 
altitude information the airborne laser provides, two more DOF can be estimated in a 
simple manner: We can fairly assume that the vehicle never leaves the ground while 
driving in the city. An estimate for the ground level as a smooth 2D manifold has been 
computed in Section 5.2, and thus we set the final zk coordinate to the altitude of the 
ground level at (xk,yk) location. 
 
Furthermore, the slope is the gradient of the ground level in driving direction; hence, the 
slope or equivalently the pitch angle, can be computed as  
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by using the altitude difference and the traveled distance between successive positions. 
Since the resolution of the airborne scans is only about one meter and the ground level 
was obtained in a smoothing process, the estimated pitch does not contain highly 
dynamic pitch changes e.g. caused by pavement holes and bumps. Nevertheless, due to 
its size and length, the truck is relatively stable lengthwise and as such, the obtained pitch 
is an acceptable estimate.  
 
The last missing DOF, the roll angle, could similarly be estimated using airborne data, 
but in this case we have two superior alternatives: The first alternative is to assume 
buildings are generally built vertically, and apply a histogram analysis on the angles 
between successive vertical scan points. If in average the distribution peak is not centered 
at 90 degree, the difference between 90 degree and the actual peak angle can be used as 
roll estimate. The second alternative is to use the ground-based image data to detect the 
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ups and downs during driving; in contrast to the vertical laser scans, images overlap 
substantially, thus allowing to determine the relative rolling angles for the camera poses 
[Flynn, 2002]. Finally, intermediate pose between these dense, accurate global poses are 
computed by linear interpolation. The result is a 6-DOF path, completely registered with 
the airborne laser data.  
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6 Automated Facade Model Generation 
 
In the previous chapters, we managed to solve the problem of accurately determining the 
vehicle’s pose during the data acquisition. In this Chapter, we address the problem of 
automatically creating a detailed, textured 3D facade mesh from ground-based vertical 
scans and image data, representing the building walls at the highest level of detail. We 
propose an ensemble of data processing techniques to create visually appealing facade 
meshes by removing cluttered foreground objects and filling holes in the building 
facades. Our objectives are robustness and efficiency with regard to processing time, in 
order to ensure the scalability to the enormous amount of data for an entire city.   
 
 

 
Figure 6-1: Vertical scan points 

 
Knowing the pose of the acquisition sensor accurately, it is straightforward to compute 
the 3D coordinates of the vertical laser scan points, resulting in a structured point cloud 
as shown in Figure 6-1. This point cloud contains vertices for any object in the scanner’s 
field of view; many objects in the scene are not desired in a facade model, such as 
pedestrians, cars and trees. Additionally, there are many erroneous vertices, e.g. due to 
glass surfaces, and facade areas without any scan point, due to occluding foreground 
objects. Hence, a simple triangulation of the raw scan points, for example by connecting 
neighboring points if their distance is below a threshold value, does not result in an 
acceptable reconstruction of the street scenery, as shown in Figure 6-2(a) and (b). Even 
though the 3D structure can be easily recognized when viewed from a viewpoint near the 
original acquisition position as in Figure 6-2(a), the mesh appears cluttered due to several 
reasons: first, there are holes and erroneous vertices due to reflections off the glass on 
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windows; second, there are many pieces of geometry “floating in the air”, corresponding 
to partially captured objects and measurement errors; and third, occluding foreground 
objects such as cars and trees cause large holes in the geometry behind. The mesh appears 
even worse when viewed from other viewpoints such as the one shown in Figure 6-2(b). 
Then, the large holes in the building facades caused by occlusion become visible, and 
furthermore foreground objects become almost unrecognizable when viewed sideways, 
since the laser scanner has only captured their frontal view. Since we are mainly 
interested in the building facades, it is our goal to identify foreground and facades in the 
scans, and to remove foreground objects and fill holes in the facades.  
 
 

a)  

b)  
Figure 6-2: Triangulated raw points; (a) front view; (b) side view. 

 

Previous work for scan point processing and model generation has mostly focused on 3D 
scanners, and thus the general approach to fill gaps caused by occlusions is to combine 
multiple scans taken from different viewpoints, for example in [Curless and Levoy, 
1996], [Stamos and Allen, 2002], [Davis et al., 2002]. In our case scans from other 
viewpoints are not available, as we drive by a street only once. If we want to fill the holes 
prohibiting a correct appearance, we rather have to reconstruct occluded areas by only 
using cues from neighboring scan points, and as such, there has been little work to solve 
this problem. One approach [Stulp et al., 2001] suggested planar segmentation to 3D laser 



Chapter 6 – Automated Facade Model Generation  83 

scans from an indoor environment, in order to identify foreground objects such as chairs 
and occluded planar areas behind, e.g. walls. What makes the problem hard in our case of 
a city environment is the common presence of “uncooperative” materials such as glass 
and shiny steel, resulting in erroneous scan points, also around the holes. However, in 
contrast to merged sets of 3D laser scans, our data has the advantage that it comes in a 
strict row-column fashion, and this regular topology enables the application of fast image 
processing algorithms. In this Chapter, we describe first our strategy to handle the large 
amounts of data by a path subsplitting and depth image generation scheme. We will then 
introduce our algorithms to transform the raw scans into a visually appealing facade 
mesh, to automatically texture map this mesh, and to create a hierarchy of levels of 
details to enable interactive rendering. 
 
During data acquisition, we capture simultaneously a long series of vertical and 
horizontal scans. Using the localization methods in Chapters 4 and 5, the entire “capture” 
path of the acquisition truck can be reconstructed in a global Cartesian coordinate system 
[x,y,z], and thus, we can associate an accurate pose estimate with each of the 
simultaneously captured vertical scans. To partially compensate for the unpredictable, 
non-uniform motion of the truck, the vertical scan series is subsampled such that the 
spacing between successive scans is roughly equidistant, e.g. about 10 or 15 centimeters, 
hence greatly reducing the amount of scans during slow motion or standstill times. This is 
especially reasonable if one considers the scanner’s quite large beam divergency of 15 
milliradians, resulting in a spot size and thus a resolution of 15 centimeters in a 10-meter 
distance, so that denser scans would be completely redundant anyways. The resulting 
subsampled series of vertical scans Sn is used for the 3D reconstruction. In the following 
sections, we index the vertical scan by their number n and denote a scan point by its 
(integer) azimuth angle υ. Furthermore, let sn,υ be the distance measurement on a point in 
scan Sn with azimuth angle υ. Then, dn,υ=cos(υ)· sn,υ is  the depth value of this point with 
respect to the scanner, i.e. its orthogonal projection into the ground plane. The scanning 
setup and its denotations are shown in Figure 6-3. 
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Figure 6-3: Scanning setup and denotations 

 
 
6.1 Segmentation of the Driving Path Into Quasi-Linear Segments 
 
The data captured during a few-minutes drive consists of tens of thousands of scan 
columns. Since successive scans in time correspond to spatially close points, e.g. a 
building or a side of a street block, it is computationally advantageous not to process the 
entire data as one block, rather to split it into smaller segments to be processed 
separately. We impose the constraints that (a) path segments have low curvature, and (b) 
scan columns have a regular grid structure. The latter constrain allows us to readily 
identify the neighbors to right, left, above and below for each point, and, as seen later, is 
essential for the generation of a depth image and segmentation operations. 
 
Scan points for each truck position are obtained as we drive by the streets. During straight 
segments, the spatial order of the 2D scan rows is identical to the temporal order of the 
scans, forming a regular topology. Unfortunately, this order of scan points can be 
reversed during turns towards the scanner’s side of the car. Figure 6-4(a) and (b) show 
the scanning setup during such a turn, with scan planes indicated by the two dotted rays. 
During the two vertical scans, the truck performs not only a translation but also a 
rotation, making the scanner look slightly backwards during the second scan. If the 
targeted object is close enough, as shown in Figure 6-4(a), the spatial order of scan points 
1 and 2 is still the same as the temporal order of the scans; however, if the object is 
further away than a critical distance dcrit, the spatial order of the two scan points is 
reversed, as shown in Figure 6-4(b). 
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(a)  

(b)  

Figure 6-4: Scan geometry during a turn, (a) normal scan order for closer objects; (b) reversed scan 
order for further objects. 

 
For a given truck translation of ∆s and a rotation ∆θ between successive scans, the 
critical distance can be computed as 

 
)sin( θ∆

∆
=

sdcrit . (6-1) 

 
Thus, dcrit is the distance at which the second scanning plane intersects with the first 
scanning plane. For a particular scan point, the order with its predecessors is distorted if 
its depth dn,υ exceeds dcrit; this means that its geometric location is somewhere in between 
points of previous vertical scans. The effect of such order reversal can be seen in the 
marked area in Figure 6-5, for an acquisition path indicated by the dotted line. At the 
corner, the ground and the building walls are scanned twice, first from a direct view and 
then from an oblique angle, and therefore out of order and with lower accuracy. These 
oblique points destroy the regular topology between neighboring scan points. 
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Figure 6-5: Scan points with reversed order at a turn. 

 
 
Since the “out of order” scans obtained in these scenarios correspond to points that have 
already been captured by “in order” scans and are therefore redundant, our approach is to 
discard them and use only the “in order” scans. For typical values of displacement, 
turning angle, and distance of buildings from our driving path, this occurs only in scans 
of turns with significant angular changes. By removing these “turn” scans and splitting 
the path at the “turning points”, we obtain path segments with low curvature that can be 
considered as locally quasi-linear, and can therefore be conveniently processed as depth 
images, as described in the following section. In addition, to ensure that these segments 
are not too large for further processing, we subdivide them if they are larger than a 
certain size. Specifically, in segments that are longer than 100 meters, we identify vertical 
scans that have the fewest scan points above street level, corresponding to empty regions 
in space, and divide at these locations. Furthermore, we detect redundant path segments 
for areas captured multiple times due to multiple drive bys, and use only one of them for 
reconstruction purposes. Figure 6-6(a) and Figure 6-6(b) show an example of an original 
path and the resulting path segments, respectively, both overlaid on a roadmap. The small 
lines perpendicular to the driving path indicate the scanning plane of the vertical scanner 
for each position.  
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(a)  (b)  
Figure 6-6: Driven path; (a) before segmentation; (b) after segmentation into quasi-linear segments. 

 
 
 
6.2 Converting Path Segments To Depth Images  
 
In the previous section, we create path segments that are guaranteed not to contain scan 
pairs with permuted horizontal order. As the vertical order is inherent to the scan itself, 
all scan points of a path segment form a 3D scan grid with regular, quadrilateral 
topology. This 3D scan grid can be transformed into a 2.5D representation, i.e. a depth 
image in which each pixel represents a scan point, and the gray value for each pixel is 
proportional to the depth of the scan point. The advantage of a depth image is its 
intuitively easy interpretation, and the increased processing speed the 2D domain 
provides. However, most operations that are performed on the depth image can be done 
as well on the 3D point grid directly, just not as conveniently. 
 
A depth image is typically used for representing the data from 3D scanners. While image 
size and resolution are dependent on the specific scanner, the depth value assigned to 
each pixel is usually the distance between scan point and scanner origin, or its cosine 
with respect to the ground plane. As we expect mainly vertical structures, we choose the 
latter option and use the depth dn,υ = cos(υ)· sn,υ rather than the distance sn,υ, so that the 
depth image is basically a tilted height field. The advantage is that in this case points that 
lie on a vertical line, e.g. a building wall, have the same depth value, and are hence easy 
to detect and group. Note that our depth image differs from one that would be obtained 
from a normal 3D scanner, as it does not have one single center from which the scan 
points are measured. Instead, there are different centers for each individual vertical 
column along the path segment. The obtained depth image is neither a polar nor a parallel 
projection; it most resembles to a cylindrical projection. Due to non-uniform driving 
speed and non-linear driving direction, these centers are in general not on a line, but on 
an arbitrary shaped, though low-curvature curve, and the spacing between them is not 
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exactly uniform. Because of this, the grid position specifies in the strict sense only the 
topological order of the depth pixels, and not the exact 3D point coordinates. However, 
topology and depth value are a good approximation for the exact 3D coordinates, 
especially within a small neighborhood. While the depth image facilitates the use of 
standard image processing techniques such as region growing, the actual 3D vertex 
coordinates are still kept and used for some 3D operations such as plane fitting. Figure 
6-7(a) shows an example of the 3D vertices of a scan grid, and Figure 6-7(b) shows its 
corresponding depth image, with a gray scale proportional to dn,υ. 
 
 

(a)           
 

(b)  
Figure 6-7: Scan grid representations; (a) 3D vertices;   (b) depth image. 

  

 



Chapter 6 – Automated Facade Model Generation  89 

6.3 Properties of City Laser Scans  
 
In this section, we briefly describe special properties of scans taken in a city environment, 
resulting from the physics of a laser scanner as an active device measuring time-of-flight 
of light rays. It is essential to understand these properties and the resulting imperfections 
in distance measurement, since at times they lead to scan points that appear to be in 
contradiction with human eye perception or a camera. As the goal of our modeling 
approach is to generate a photo-realistic model, we are interested in reconstructing what 
the human eye or a camera would observe while moving around in the city. As such, we 
discuss the discrepancies between these two different sensing modalities in this section.  
 
a) Discrepancies due to different resolution 
 
The beam divergence of the laser scanner is about 15 milliradians (mrad) and the spacing, 
hence the angular resolution, is about 17 mrad. As such, this is much lower than the 
resolution of the camera image with about 2.1 mrad in the center and 1.4 mrad at the 
image borders. Therefore, small or thin objects, such as cables, fences, street signs, light 
posts and tree branches, are clearly visible in the camera image, but only partially 
captured in the scan. Hence they appear as “floating” vertices, as seen in the depth image 
in Figure 6-8.  
 
 

 
Figure 6-8: "Floating” vertices. 

 
 
b) Discrepancies due to the measurement physics 
 
Camera and eye are passive sensors, capturing light from an external source, in contrast 
to a laser scanner, which is an active sensor and uses light that it emits itself. This results 
in substantial differences in measurements on reflecting and semitransparent surfaces, 
which are in form of windows and glass fronts frequently present in urban environments. 
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Typically, there is at least 4% of the light reflected at a single glass/air transition, hence 
totaling to at least 8 % per window. If the window has a reflective coating, this 
percentage is even larger. The camera typically sees a reflection of the sky or a nearby 
building on the window, often distorted or merged with objects behind the glass. 
Although most image processing algorithms would fail in this situation, the human brain 
is quite capable of identifying windows. In contrast, depending on the window 
reflectance, the laser beam is either entirely reflected, most times in a different direction 
from the laser itself and hence not resulting in any distance value, or is transmitted 
through the glass. If it hits in the latter case a lambertian surface behind the window, the 
backscattered light travels again through the glass, as shown in Figure 6-9. The resulting 
surface reflections on the glass only weaken the laser beam intensity, eventually below 
the detection limit, but do not otherwise necessarily affect the distance measurement. 
Thus, the window is quasi non-existent to the laser, and the measurement point is 
generally not on the window surface, unless the surface is by chance orthogonal to the 
beam. In case of multi-reflections, the situation becomes even worse as the measured 
distance is almost random.  
 
 

 
Figure 6-9: Laser measurement in case of a glass window 

 
 
c) Discrepancies due to different scan and viewpoints 
 
Laser and camera are both limited in that they can only detect the first 
visible/backscattering object along a measurement direction and can as such not deal with 
occlusions. If there is an object in the foreground, such as a tree in front of a building, the 
laser cannot capture what is behind it; hence, generating a mesh from the obtained scan 
points results in a hole in the building. We refer to this type of mesh hole as occlusion 
hole. As the laser scan points resemble a cylindrical projection, but rendering is parallel 
or perspective, it is in presence of occlusions virtually impossible to reconstruct the 
original view without any hole, even for the viewpoints from which data was acquired. 
An interesting fact is that the wide-angle camera images captured simultaneously with the 
scans often contain parts of the background invisible to the laser. These images could 
potentially be used to either fill in geometry based on stereo techniques, or to at least 
verify the validity of geometry filled in by the interpolation techniques described in the 
next sections. 
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In order to make our facade models photo-realistic, we need to devise techniques for 
detecting discrepancies between the two sensing modalities, removing invalid scan 
points, and filling in holes resulting from both occlusions and mirroring surfaces; we will 
describe our approach to these problems in the following sections.  
 
6.4  Multi-Layer Representation 
 
To achieve that the facade model looks reasonable from every viewpoint, it is necessary 
to complete the geometry for the building facades. As our facades are not only manifolds, 
but also resemble a height field, it is possible to introduce a representation based of 
multiple depth layers for the street scenery, similar to the one proposed in [Chang and 
Zakhor, 1999]. Each depth layer is a scan grid, and the scan points of the original grid are 
assigned to exactly one of the layers. If there is a point at a certain grid location in a 
foreground layer, this location is empty in all scene layers behind it and needs to be filled 
in. 
 
Even though the concept can be applied to an arbitrary number of layers, it is for our 
problem sufficient to generate only two layers, a foreground and a background. To assign 
a scan point to either one of the two layers we make the following assumptions about our 
environment:  Main structures, i.e. buildings, are usually (a) vertical, and (b) extend over 
several feet in horizontal dimension. For each vertical scan Sn corresponding to a column 
in the depth image, we define the main depth as the depth value that occurs most 
frequently, as shown in Figure 6-10. The scan vertices corresponding to the main depth 
lie on a vertical line, and the first assumption suggests that this is a either a main 
structure, such as a building, or perhaps other vertical objects, such as a street light or a 
tree trunk. With the second assumption, we filter out the latter class of vertical objects. 
More specifically, our processing steps can be described as follows: 
 
We sort all depth values sn,υ for each column n of the depth image into a histogram as 
shown in Figure 6-10(a) and (b), and detect the peak value and its corresponding depth. 
Applying this to all scans results in a 2D histogram as shown in Figure 6-11, and an 
individual main depth value estimate for each scan. According to the second assumption, 
isolated outliers are removed by applying a median filter on these main depth values 
across the scans, and a final depth value is assigned to each column n. We define a “split” 
depth γn for each column n, and set it to the first local minimum of the histogram 
occurring immediately before main depth, i.e. with a depth value smaller than the main 
depth. Taking the first minimum in the distribution instead of the main value itself has the 
advantage that points clearly belonging to foreground layers are splits off, whereas 
overhanging parts of buildings, for which the depth is slightly smaller than the main 
depth, are kept in the background layer where they logically belong to, as shown in 
Figure 6-10. 
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(a)  

  (b)         
Figure 6-10: Main depth computation for a single scan n; (a) laser scan with rays indicating the laser 
beams and dots at the end the corresponding scan points; (b) computed depth histogram 

 

 
Figure 6-11: Two-dimensional histogram for all scans of a path segment. 
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A point can be identified as a ground point if its z coordinate has a small value and the 
direction to its neighbors is approximately horizontal. We prefer to include the ground in 
our models and hence assign ground points also to the background layer. Therefore, we 
perform the layer split by assigning a scan point Pn,υ to the background layer, if sn,υ > γn or 
Pn,υ is a ground point, and otherwise to the foreground layer. Figure 6-12 shows an 
example for the resulting foreground and background layers.  
 
 

(a)  

(b)  

Figure 6-12: Separation into two scene layers; (a) foreground layer; (b) background layer. 

 
Since the steps described in this section assume the presence of vertical buildings, they 
cannot be expected to work for segments that are dominated by trees; this also applies to 
the processing steps we introduce in the following sections. As our goal is to reconstruct 
buildings, path segments can be either omitted or left unprocessed and included “as is” in 
the city model, if they do not contain any structure. Typical for a tree area is its cluttered 
geometry, resulting in a large variance among adjacent depth values, or even more 
characteristically, many significant vector direction changes for the edges between 
connected mesh vertices. We define a coefficient for the fractal nature of a segment by 
counting vertices with direction changes greater than a specific angle, e.g. twenty 
degrees, and dividing them by the total number of vertices. If this coefficient is large, the 
segment is most likely a tree area and should not be made subject to the processing steps 
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described in this section. This is for example the case for the segment shown in Figure 
6-8. 
 
After layer splitting, all grid locations occupied in the foreground layer are empty in the 
background layer. The vertical laser does not capture any occluded geometry, and in the 
next section we will describe an approach for filling these empty grid locations based on 
neighboring pixels. However, sometimes there is some more data available from other 
sources, e.g. in our case 3D vertices can be derived from stereo vision and from the 
horizontal scanner used for navigation. Thus, it is conceivable to use this additional 
information to fill some holes in the depth layers. Our approach to doing so is as follows: 
 
Given a set of 3D vertices Vi obtained from a different modality, determine the closest 
scan direction for each vertex and hence the grid location (n,υ) it should be assigned to. 
As shown in Figure 6-13, each Vi is assigned to the vertical scanning plane Sn with the 
smallest Euclidean distance, corresponding to column n in the depth image. Using simple 
trigonometry, the scanning angle under which this vertex appears in the scanning plane 
and hence the depth image row υ can be computed, as well as the depth dn,υ of the pixel. 
 
 

 
Figure 6-13: Sorting additional points into the layers. 

 
We can now use these additional vertices to fill in the holes. To begin with, all vertices 
that do not fall onto a background hole location are ignored. If there is exactly one vertex 
falling onto a grid location, its depth is directly assigned to that grid location; for 
situations with multiple vertices, the median depth value for this location is chosen. 
Figure 6-14 compares the background layer before and after sorting in 3D vertices from 
stereo vision and horizontal laser scans. As seen, some smaller holes can be entirely 
filled, and the size of others becomes smaller, e.g. the holes in the tall building on the left 
side caused by the trees. Note that this intermediate step is optional and depends as a 
matter of course on the availability of additional 3D data. 
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(a)  
 

(b)  
Figure 6-14: Background layer; (a) before and (b) after sorting in some additional points from stereo 
vision and horizontal laser scans. 

 

 
6.5 Background Layer Postprocessing and Mesh Generation 
 
In this section, we will describe a strategy to remove erroneous scan points and to fill in 
holes in the background layer. As stated in the beginning of this chapter, there exists a 
variety of successful hole filling approaches based on fusing multiple scans taken from 
different positions. In particular, most previous work on hole filling has been focusing on 
reverse engineering applications, in which a 3D model of an object is obtained from 
multiple laser scans taken from different locations and orientations, e.g. with a turn table. 
Since these existing hole-filling techniques are not applicable to our experimental setup, 
our approach is to estimate the actual geometry solely based on the surrounding 
environment and reasonable heuristics. One cannot expect this geometry to be perfect in 
all possible cases, rather to lead to an acceptable result in most cases and thus reducing 
the amount of eventual further manual interventions and postprocessing drastically. 
Additionally, the estimated geometry could be made subject to further verification steps, 
such as consistency checks by applying stereo vision techniques to the intensity images 
captured by the camera. 
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Our data typically exhibits the following characteristics:  
 

• Occlusion holes, such as those caused by a tree, are large and can extend over 
substantial parts of a building. 

• A significant number of scan points surrounding a hole may be erroneous due to 
glass surfaces. 

• In general, a spline surface filling is unsuitable, as building structures are usually 
piecewise planar with sharp discontinuities. 

• The size of a data set resulting from a city scan is huge, and therefore the 
processing time per hole should be kept to a minimum. 

 
Based on the above observations, we propose the following steps for data completion: 
 
1. Detecting and removing erroneous scan points in the background layer 
 
We assume that erroneous scan points are due to glass surfaces, i.e. the laser measured 
either an internal wall/object, or a completely random distance due to multi-reflections. 
Either way, the depth of the scan points measured through the glass is substantially 
greater than the depth of the building wall, and hence these points are candidates for 
removal. Since glass windows are usually framed by the wall, we remove the candidate 
points only if they are embedded among a number of scan points at main depth. An 
example of the effect of this step can be seen by comparing the windows of the original 
image in Figure 6-15(a) with the processed background layer in Figure 6-15(b). 
 
2. Segmenting the occluding foreground layer into objects 
 
In order to determine holes in the background layer caused by occlusion, we segment the 
occluding foreground layer into objects and project segmentation onto the background 
layer. This way, holes can be filled in one “object” at a time, rather than all at the same 
time; we have discovered that more localized hole filling algorithms are more likely to 
result in visually pleasing models than global ones. We segment the foreground layer by 
taking a random seed point that does not yet belong to a region and applying a region 
growing algorithm that iteratively adds neighboring pixels if their depth discontinuity or 
their local curvature is small enough. This is repeated until all pixels are assigned to a 
region, and the result is a region map as shown in Figure 6-15(c). For each foreground 
region, we determine boundary points on the background layer; these are all the valid 
pixels in the background layer that are close to hole pixels caused by the occluding 
object.  
 
3. Filling occlusion holes in the background layer for each region  
 
As the foreground objects are located in front of main structures and in most cases stand 
on the ground, they occlude not only parts of a building, but also parts of the ground. 
Specifically, a low object such as a car with a large distance to the main structure behind 
causes an occlusion hole typically in the ground and not in the main structure; this is 
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because the laser scanner is mounted on top of a rack, and as such has a top down view of 
the car. As a plane is a good approximation for the ground, we fill in the ground section 
of an occlusion hole by the ground plane. Therefore, for each depth image column, i.e. 
each scan, we compute the intersection point between a line through the main depth scan 
points and a line through ground scan points. The angle υ’n at which this point appears in 
the scan marks the virtual boundary between ground part and structure part of the scan; 
we fill in structure points above and ground points below this boundary in a different 
way: 
 
Applying a RANSAC algorithm, we find the plane with the maximum consensus, i.e. 
maximum number of ground boundary points on it, as the optimal ground plane for that 
local neighborhood. Each hole pixel in column n with υ < υ’n is then filled in with a depth 
value according to this plane. It is possible to apply the same technique to the structure 
hole pixels, i.e. the pixels with υ > υ’n, by finding the optimal plane through the structure 
boundary points and filling in the hole pixels accordingly. However, we have found that 
in contrast to the ground, surrounding building pixels do often not lie on a plane. Instead, 
there are discontinuities due to occluded boundaries and building features such as 
marquees or lintels, in most cases extending horizontally across the building. Therefore, 
rather than filling holes with a plane, we fill in structure holes line by line horizontally, in 
such a way that the depth value at each pixel is the linear interpolation between the 
closest right and left structure boundary point, if they both exist; otherwise no value is 
filled in. In a second phase, a similar interpolation is done vertically, using the already 
filled in points as valid boundary points. This method is not only simple and therefore 
computationally efficient, it also takes into account the surrounding horizontal features of 
the building in the interpolation. The resulting background layer is shown in Figure 
6-15(d). 
 
 
 4. Postprocessing the background layer 
 
The resulting depth image and the corresponding 3D vertices finally be cleaned up by 
removing scan points that remain isolated, and by filling small holes surrounded by 
geometry using linear interpolation between neighboring depth pixels. The final 
background layer after applying all processing steps is shown in Figure 6-15(e). 
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(a)  

(b)  

 (c)  

(d)  

(e)  

Figure 6-15: Processing steps for a depth image. The individual figures show: (a) initial depth image; 
(b) background layer after removing invalid scan points; (c) foreground layer segmented; (d) 
occlusion holes filled, and (e) final background layer after filling remaining holes. 
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In order to create a mesh, each depth pixel can be transformed back into a 3D vertex, and 
each vertex Pn,υ is connected to a depth image neighbor Pn+∆n,υ+∆υ if  
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Intuitively, neighbors are connected if their depth difference does not exceed a threshold 
smax or the local angle between neighboring points is smaller than a threshold angle ϕmax. 
The second criteria is intended to connect neighboring points that are on a line, even if 
their depth difference exceeds smax. The resulting quadrilateral mesh is split into triangles, 
and mesh simplification tools such as Qslim [Garland and Heckbert, 1997] or VTK 
decimation [Schroeder et al., 1992] can be applied to reduce the number of triangles. 
Figure 6-16(a) shows an example for a facade mesh obtained directly from triangulating 
the raw scan points, and Figure 6-16(b) the triangular mesh created after applying the 
proposed automatic hole filling and foreground removal procedure. It can be seen that the 
difference between the two meshes is quite substantial, and although the processed mesh 
may not be as perfect as if edited manually, it appears as an acceptable facade model. 
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(a)        

(b)  

Figure 6-16: Generated meshes, (a) original mesh from triangulation of raw scan points; (b) after 
applying the proposed foreground removal and hole filling procedure 

 
 
6.6 Automated Texture Mapping 
 
Photo-realism cannot be achieved by using geometry alone; rather, we use images of the 
actual scene to texture map the geometry and make the facade models appear realistic. As 
described in Chapter 3, our data acquisition system includes a digital color camera with a 
wide-angle lens, and its intrinsic parameters and extrinsic parameters in respect to the 
laser scanners’ coordinate system have been calibrated prior to the data acquisition. Since 
it is synchronized with both scanners and hence taking snapshots at exactly defined times, 
we can utilize the pose of the horizontal laser scanner and assign a camera pose to each 
image. This the key for successful photo-realistic model generation in our approach, and 
a substantial advantage compared to other texture mapping techniques, which attempt to 
fit laser scans and camera images e.g. by a complicated and error-prone vanishing line 
detection. After removing the lens distortion in the images, a 3D vertex can be mapped to 
its corresponding intensity image pixel by a simple projective transformation. Since the 
3D mesh triangles are small compared to their distance to the camera, perspective 
distortions within a triangle can be fairly neglected, and each mesh triangle can be texture 
mapped with the corresponding picture triangle by applying the projective transformation 
only to the three corner points. We refer to the corresponding triangle in the picture as 
texture triangle and to the pixel coordinates of its corner points as texture coordinates, in 
compliance with the common terminology in computer graphics.  
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As described in Section 6.3, camera and vertical laser scanner have different viewpoints 
during data acquisition, and in most camera pictures at least some mesh triangles of the 
background layer are occluded by foreground objects; this is particularly true for triangles 
that consist of filled-in points, since for them the direct view is certainly occluded. An 
example of this is given below: Figure 6-17(a) shows an image of a street scenery, and 
Figure 6-17(b) the triangular mesh back-projected into the image, and as seen, triangles 
of both the tree and the building project to the same image location, which is only 
possible since they have been filled in or acquired from different viewpoints than the 
image. Although the pixel location of the projected background triangles is correct, the 
corresponding texture is incorrect since it merely corresponds to the occluding 
foreground objects.  
 
However, after splitting the scan points to the two layers, the foreground geometry is 
readily identified, and both foreground scan points and triangles can be marked in each 
camera picture, as shown in Figure 6-17(c) with white color. In order to select specific 
camera images to texture map a specific mesh triangle in the background layer, we 
determine whether any of the triangle’s corner points projects to a white marked pixel for 
each picture containing the triangle in its field of view; if this is not the case, the picture 
is utilizable for texturing the triangle. For the particular wide-angle lens we use, typical 
building topologies, and typical driving speeds, a background layer point is usually in the 
field of view of about 10 to 20 pictures. If the data acquisition has taken place on a sunny 
day, the lighting conditions can for some pictures exceed the dynamic range of the 
camera, resulting in over-saturated and unusable pictures when facing the sun. Exploiting 
that in this case there are anomaly few dark pixels, we can identify those images via a 
color histogram analysis, and prohibit their use for texture mapping, if better images are 
available. In most situations, we still have a choice among multiple images, and then we 
choose the most direct view to texture map the triangle. However, if a foreground object 
and a building facade are too close, some facade triangles may not be visible in any 
picture and hence cannot be texture mapped at all. For those triangles, no real image data 
is available and either they are left untextured of an appropriate texture is merely 
invented. One possible solution is the use of a texture synthesis algorithm as suggested in 
[Efros and Freeman, 2001], or to create artificial texture for example in a copy-and-paste 
like fashion. 
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(a)  

(b)  

(c)  

Figure 6-17: Mesh triangles projected into camera images; (a) initial camera image; (b) mesh 
triangles projected into the image, with some foreground and background triangles projecting to the 
same image area (arrow); (c) foreground objects marked white. 
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6.7 Model Optimization for Interactive Rendering 
 
While the actual model generation is finished with the creation of the geometric mesh and 
the establishment of the corresponding picture area as the texture, the model is in this 
form virtually unusable for interactive rendering: Displaying an entire city data set would 
require a graphics card to load and render millions of triangles and thousands of pictures 
at a time, by far exceeding the capabilities even of modern graphics cards. To overcome 
this problem, we optimize the original mesh in two additional processing steps: First, we 
create a texture atlas to reduce the amount of image data necessary for texturing, and 
second, we create multiple level-of-details and a hierarchical scene graph to manage the 
amount of triangles and texture.  
 
a) Texture atlas generation  
Observing that most parts of a camera image are not utilized since they show foreground 
objects or are visible in other images at a more direct view, we can reduce the amount of 
necessary texture imagery drastically by extracting only the parts actually used. The 
inherent row-column structure of the triangular mesh permits to assemble a new artificial 
image with a corresponding row-column structure and reserved spaces for each texture 
triangle. This so-called texture atlas is created by copying and warping each individual 
texture triangle to fit into the corresponding reserved space. Then, the texture coordinates 
of the mesh triangles are adjusted accordingly, and instead of the numerous original 
images, the atlas is used to represent the texture. Since in this manner the mesh topology 
of the triangles is preserved and adjacent triangles align automatically due to the warping 
process, the resulting texture atlas resembles a mosaic. While the atlas is in fact not 
precisely metric due to slightly non-uniform spacing between vertical scans, these 
distortions are small and irrelevant in the context of texture mapping, since they are 
completely reverted by the graphics card hardware during the rendering process. Figure 
6-18 illustrates the atlas generation: From the acquired stream of images, over-saturated 
frames have been removed. During texture mapping, a corresponding texture triangle in 
one of the images is assigned to each mesh triangle and then copied into the texture atlas 
as symbolized by the arrows. In this illustration, only five original images are shown; 
actually, in this example 58 images of 1024 by 768 pixels size are combined to create a 
texture atlas of 2559 by 476 pixels. Thus, the texture size is reduced from 45.6 million 
pixels to 1.2 million pixels, while the resolution remains the same. 
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Figure 6-18: Automatic texture atlas generation. Texture triangles from various pictures are 
assembled to one single artificial image. One image has been prohibited for texture mapping due to 
over-saturation of the camera; for the others, the arrows illustrate the process of copying triangles.  

 
b) Level-of-detail and scene graph generation 
An entire city consists of tens of millions triangles and even after atlas generation, the 
texture for an entire city district can easily total to some hundred megabytes, thus 
exceeding the rendering capabilities of any existing graphics card. But since for any 
given viewpoint only a small subset of the entire model has to be shown at the highest 
resolution, an elegant solution is to store multiple level-of-details (LOD) for each facade 
mesh and select the appropriate LOD during rendering. To obtain a lower LOD, we resize 
the atlas to a fraction of its original dimensions via bicubic interpolation and scale the 
texture coordinates accordingly. For the geometry, the amount of triangles is reduced 
with the Qslim mesh simplification algorithm [Garland and Heckbert, 1997], which 
removes and regroups triangles of a given mesh based on edge collapsing. The atlas 
texture coordinates of the remaining mesh vertices can thereby simply be reused; since 
the atlas is approximately metric, the new, larger triangles are textured with the 
composed texture from several original texture triangles. Small distortions due to the 
warping process in the atlas composition are not noticeable from the far-away view for 
which the lower LODs are used. 
 
Already one single path segment can result in a quite large facade mesh, and its 
megabytes of texture can reach dimensions that are not supported by OpenGL anymore. 
Additionally, the entire segment has to be rendered in the highest LOD, even if the 
viewer is close to only a small part of it, e.g. requiring several complete facade meshes at 
highest LOD while the viewer is at a street intersection. Therefore, it is not efficient to 
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use such a large facade mesh as the smallest LOD unit, rather, we subdivide the facade 
mesh together with the texture atlas along vertical planes and generate different LODs for 
each sub-mesh, thus enabling enhanced flexibility for switching LODs. Dividing all LOD 
meshes along the same vertical planes has the advantage that seams between different 
LODs are far less noticeable. As illustrated in Figure 6-19, all sub-meshes are then 
combined in a hierarchical scene graph, controlling the switching of the LODs dependent 
on the viewer’s position and establishing compliance with the limitations of graphics 
hardware. This enables us to render the enormous amount of both geometry and texture 
even with a standard web based VRML renderer such as Cosmo player. 
 
 

 
Figure 6-19: Subdividing the mesh of a path segment into sub-meshes and generation of a scene 
graph 
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7 Airborne Model Generation and Model Fusion 
 
While the facade models generated in the previous chapter offer a virtual view as seen 
from street level, they do not contain any information about roofs, terrain, or building 
structures behind the facades. Essentially, these models are the virtual equivalent to a 
Hollywood city, and it is apparent that solely facades are not sufficient for virtual fly-
thrus. Therefore, we outline in this Chapter methods of enhancing the facades with roofs 
and terrain shape from airborne laser scans. From these scans, we create a DSM, convert 
it to a surface mesh, and texture map it with aerial color images. Then, we merge the 
airborne surface mesh and the facade models, in order to obtain a complete model 
suitable for both walk- and fly-thru. It turns out that one of the greatest advantages of our 
particular localization method is its inherent registration of the facade models with a 
global model, hence substantially facilitating subsequent model merging. 
 
 
7.1 Resampling and DSM Generation from Airborne Laser Scans 
 
Due to advances in technology, airborne laser scans have become a data source for 3D 
modeling in recent years. To scan a city from an airborne view, a far-range 2D scanner is 
mounted on board a plane, so that it scans along a line perpendicular to the flight 
direction. Due to the plane’s forward motion, the scan line sweeps over the ground. The 
unpredictable roll and tilt motion of the plane generally destroys the inherent row-column 
order of the scans. Therefore, GPS and INS readouts are captured simultaneously along 
with the scanning process, and 3D vertices are directly obtained from the position and 
orientation of the scanner and the measured distance. Thus, the scans may be interpreted 
as an unstructured set of 3D vertices in space, with the x,y coordinates specifying the 
geographical location and the z coordinate the altitude. Both flight and data conversion is 
usually done by a professional company, and as a customer one simply buys the resulting 
set of 3D scan points. 
 
Typically, the accuracy of one single scan point is in the range of one foot, whereas the 
non-uniform density of scan points is a function of the flight altitude and can be specified 
in points per square meter. In order to further process the scan efficiently, it is 
advantageous to resample the scan points to a DSM, which is a regular row-column array 
over the geographical area, with a z value assigned to each grid cell. Unfortunately, this 
step generally reduces the lateral resolution to the grid spacing, and since scan sweeps 
overlap and single measurements are taken under different oblique angles, there are 
potentially different z values for identical (x,y)-locations, e.g. multiple scan points on a 
vertical wall or on the roof above. Furthermore, near discontinuities, it is random where 
exactly the laser hits the surface; thus, without further assumptions, the location of an 
edge cannot be determined more accurately than the sample density. This causes edges to 
be jittery in a DSM obtained from laser scans, and the accuracy for determining 
orientation of edges is not as high as with aerial photos. However, the enormous 
advantage of airborne laser scans is that they provide directly correct 3D coordinates for 
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the geometry, and no error-prone camera parameter estimation, line or feature detection 
and matching has to be performed.  
 
To transfer the scans to a DSM, we define a row-column grid in the ground plane and sort 
scan points into the grid cells. The density of scan points varies and hence there are cells 
with no scan point and others with multiple scan points. Since both the percentage of 
empty cells and the resolution of the DSM depend on the grid spacing, a compromise 
must be found, leaving few cells without a sample while maintaining the resolution at an 
acceptable level. In our case, we have chosen to select a square cell size of 0.5 by 0.5 
meter, which fills about half of the cells. We create the DSM by assigning each cell the 
highest z value occurring among its member points, so that overhanging rooftops of 
buildings are preserved while lower points on sidewalls are suppressed. The empty cells 
are filled by nearest-neighbor-interpolation, in order to preserve sharp edges. Each grid 
cell can be interpreted as a vertex with x- and y- coordinates the location of the cell 
center and the z coordinate the altitude value, or as a pixel at (x,y) with a gray intensity 
proportional to z. Figure 7-1 shows an example of a point cloud and the resulting DSM 
encoded as a gray image.  
 
 

(a)  (b)  
Figure 7-1: (a) Raw scan points and (b) resampled DSM as gray image 

 
Note that a DSM is one of the most basic representations for a model. In fact, any 
polygonal model in which buildings are represented in a “shoe-box” fashion can easily be 
transformed into a DSM; similarly, a DSM can be obtained from stereo vision or SAR. 
Hence, the mesh generation and model fusion steps described in the following sections 
are by no means limited to the case of airborne laser scans; rather, they comprise a very 
general approach to complement facade models with data from airborne view. 
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7.2 Airborne Model from the DSM 
 
Previous work has focused on the extraction of polygonal building models from DSMs, 
often supported by additional data. Similar to airborne stereo vision, most approaches 
attempt to match certain primitive polygonal building types to the DSM, either from a set 
of predefined types, or more sophisticated, derived from planar surfaces in the DSM itself 
and eventually additional data. Example for model reconstruction from laser scans only 
can be found in [Weidner and Förstner, 1995], [Vosselman, 1999] and  [Maas, 2001]. 
Other approaches avoid the problem of jittery edges in a DSM by utilizing multiple 
additional data sources such as digital ground plans ([Haala and Brenner, 1997], [Brenner 
et al., 2001], [Vosselman and Dijkman, 2001]). It has also been popular to extract edge 
locations and directions from aerial photos ([Förstner, 1999], [Ameri and Fritsch, 2000]) 
or hyperspectral images ([Haala and Brenner, 1999]) at higher resolution, and to combine 
this accurate edge information with the accurate altitude information from the DSM. 
While the advantage of these model-based approaches is their robust reconstruction of 
geometry, even in the presence of erroneous scan points and low sample density, they are 
often highly dependent on the shape assumptions that are made. In particular, the results 
are poor if many non-conventional buildings are present or if buildings are surrounded by 
trees, conditions that are particularly true of the Berkeley campus. Although the resulting 
model may appear “clean” and precise, the geometry and location of the reconstructed 
buildings is not necessarily correct if the underlying shape assumptions are invalid.  
 
From the ground-based acquisition described in the previous section an accurate model of 
the building facades is readily available, and as such, we are primarily interested in 
adding the complementary roof and terrain geometry. Hence, we can apply a different 
strategy to create a model from airborne view, namely transforming the cleaned-up DSM 
directly into a triangular mesh and reducing the number of triangles by simplification. 
The advantage of this method is that the mesh generation process can be controlled on a 
per-pixel level; we exploit this property in the model fusion procedure described in 
Section 7.3. Additionally, this method has a low processing complexity and is robust: 
Since no pre-defined models are required, it can be applied to buildings with unknown 
shapes, even in presence of trees. Admittedly, this comes at the expense of a larger 
number of polygons. 
 
 
7.2.1 Processing the DSM 
 
The DSM contains not only the plain rooftops and terrain shape, but also many other 
objects such as cars, trees, etc. Roofs, in particular, look “bumpy” due to a large number 
of smaller objects such as ventilation ducts, antennas, and railings, which are impossible 
to reconstruct properly at the DSM’s resolution. Furthermore, scan points below 
overhanging roofs cause ambiguous altitude values, resulting in jittery edges. In order to 
obtain a more visually pleasing reconstruction of the roofs, we apply several processing 
steps: 
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(a)  

(b)   

(c)   
Figure 7-2: Processing steps for DSM; (a) DSM obtained from scan point resampling; (b) DSM after 
flattening roofs; (c) segments with RANSAC lines in white.  

 
The first step is aimed at flattening “bumpy” rooftops. To do this, we first apply to all 
non-ground pixels a region-growing segmentation algorithm based on depth discontinuity 
between adjacent pixels. Small, isolated regions are replaced with ground level altitude, 
in order to remove objects such as cars or trees in the DSM. Larger regions are further 
subdivided into planar sub-regions by means of planar segmentation. Then, small regions 
and sub-regions are united with larger neighbors by setting their z values to the larger 
region’s corresponding plane. This procedure is able to remove undesired small objects 
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from the roofs and prevents rooftops from being separated into too many cluttered 
regions. The resulting processed DSM for Figure 7-2(a) is shown in Figure 7-2(b). 
 
The second processing step is intended to straighten jittery edges. We re-segment the 
DSM into regions, detect the boundary points of each region, and use RANSAC [5] to 
find line segments that approximate the regions. For the consensus computation, we also 
consider boundary points of surrounding regions, in order to detect even short linear sides 
of regions, and to align them consistently with surrounding buildings; furthermore, we 
reward additional bonus consensus if a detected line is parallel or perpendicular to the 
most dominant line of a region. For each region, we obtain a set of boundary line 
segments representing the most important edges, which are then smoothed out. For all 
other boundary parts, where a proper line approximation has not been found, the original 
DSM is left unchanged. Figure 7-2(c) shows the regions resulting from processing Figure 
7-2(b), superimposed with the corresponding RANSAC lines drawn in white. Compared 
with Figure 7-2(b), most edges are straightened out. 
 
 
7.2.2 Textured Mesh Generation 
 
Since the DSM has a regular topology, it can be directly transformed into a structured 
mesh by connecting each vertex with its neighboring ones. The DSM for a city is large, 
and the resulting mesh has two triangles per cell, yielding 8 million triangles per square 
kilometer for the 0.5 m × 0.5 m grid size we have chosen. Since many vertices are 
coplanar or have low curvature, the number of triangles can be drastically reduced 
without significant loss of quality. We use the Qslim mesh simplification algorithm 
[Garland and Heckbert, 1997] to reduce the number of triangles. Empirically, we have 
found that it is possible to reduce the initial surface mesh to about 100,000 triangles per 
square kilometer at highest level-of-detail without noticeable loss in quality.  
 
Using aerial images taken with an uncalibrated camera from unknown poses, we texture-
map the reduced mesh in a semi-automatic way: A few correspondence points are 
manually selected in both the aerial photo and the DSM, taking a few minutes per image. 
Then, both internal and external camera parameters are automatically computed and the 
mesh is texture-mapped. Specifically, a location in the DSM corresponds to a 3D vertex 
in space, and can be projected into an aerial image if the camera parameters are known. 
We utilize an adaptation [Araujo et al., 1998] of Lowe’s algorithm [Lowe, 1991] to 
compute the optimal camera pose by minimizing the difference between selected 
correspondence points and computed projection. After the camera parameters are 
determined, for each geometry triangle, we identify the corresponding texture triangle in 
an image by projecting the corner vertices. Then, for each mesh triangle the best image 
for texture-mapping is automatically selected by taking into account resolution, normal 
vector orientation, and occlusions. Figure 7-3 shows the resulting texture-mapped 
airborne model. 
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Figure 7-3: Texture-mapped airborne model.  

 
 
7.3 Merging Ground-Based Models and Airborne Surface Mesh 
 
In the previous sections, we have described the creation of a DSM and a textured surface 
mesh, and in this section we describe an approach to merge the ground-based facade 
models with this surface mesh. Since the global localization methods of Chapter 5 correct 
the initial path according to the edges in the DSM, one of the core problems of model 
merging, namely the model registration, is already automatically solved. Hence, the 
remaining difficulty is to combine facades and surface mesh to a single, consistent model. 
 
Common approaches for fusing meshes, such as sweeping and intersecting contained 
volume [Stamos and Allen, 2002], or mesh zippering [Turk and Levoy, 1994], require a 
substantial overlap between the two meshes. This is not the case in our application, since 
both views are almost perfectly complementary. Additionally, the two meshes have 
entirely different resolutions: with about 10 to 15 cm, the resolution for the facade 
models is almost an entire order of magnitude higher than for the airborne surface mesh. 
Furthermore, it has to be guaranteed that parts of the model fit together even if they are 
displayed at different level-of-details, which is inevitable to enable interactive rendering. 
Rather than creating a perfectly consistent CAD model, our goal is a photo-realistic 
virtual exploration of the city, and hence satisfying visual appearance is more important 
than CAD model properties such as watertightness. Both meshes are generated 
automatically, and given the complexity of a city environment, it is inevitable that some 
parts are only partially captured or erroneous, potentially resulting in substantial 
discrepancies between the two meshes.  
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Due to the higher resolution, it is reasonable to give preference to the ground-based 
facades wherever available, and use only roof and terrain shape from the airborne mesh. 
Instead of searching through the airborne mesh and removing triangles for which ground-
based geometry is available, it is more efficient to consider this redundancy already in the 
mesh generation step. For all vertices of the ground-based facade models, we mark the 
corresponding cells in the DSM; furthermore, we identify and mark all areas classified as 
foreground by our automated facade processing. These marks control the subsequent 
airborne mesh generation, specifically, during the generation of the airborne mesh, 
vertices at facade positions are not connected, and the z values for the foreground areas 
are replaced by the ground level estimate. The latter step is necessary to enforce 
consistency, since it removes foreground objects, which have been deleted during the 
facade model generation, also in the airborne mesh. Figure 7-4(a) shows the DSM with 
facade areas marked in black and foreground areas marked in white, and Figure 7-4(b) 
shows the resulting airborne surface mesh with the corresponding facades removed and 
the foreground areas leveled to DTM altitude.  
 
 

(a)  (b)  

Figure 7-4: Removing triangles from the airborne surface mesh where ground-based facades are 
available; (a) foreground (white) and facades (black) marked in the DSM; (b) resulting mesh with 
corresponding facades triangles removed (white arrows). 

 
 
Now the facade models can be put in place, but facades and airborne mesh do not match 
perfectly due to their capturing viewpoint and different resolution: Any ground-based 
vertex set back from the facades, e.g. in a house entrance, causes the corresponding cell 
to be omitted during meshing. As a result, the removed geometry is slightly larger than 
the actual ground–based facade to be placed in the corresponding location. To solve this 
discrepancy and make the mesh transitions less noticeable, we fill the gap with additional 
triangles joining the two meshes, and we refer to this step as “blending”. Our approach to 
creating such a blend mesh is to first create a mesh overlap artificially by extruding the 
buildings along an axis perpendicular to the facades, and then shift the location of the 
“loose end” vertices to the closest airborne mesh surface. The outline of this procedure is 
illustrated in Figure 7-5; it is similar to the way plumb is used to close gaps between 
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windows and roof tiles. These blend triangles, and the non-textured triangles that were 
out of the camera’s field of view, are finally texture mapped with the aerial imagery, and 
as such they attach at one end to the ground-based model, while fitting at the other end to 
the airborne model. Figure 7-6 shows the blending steps for a concrete example. 
 
 

     
Figure 7-5: Steps to create blend triangles. Shown is a vertical cut through a facade mesh; (a) initial 
airborne model; (b) triangles of airborne model removed and ground-based model placed in the 
resulting gap; (c) blending both meshes with extruded triangles. 

   
 

(a)  (b)  

(c)  (d)  

Figure 7-6: Creation of a blend mesh; (a) initial facade model; (b) facades extruded; (c) "loose ends" 
adjusted to airborne mesh surface; (d) blend triangles texture mapped 
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8 Results 
 
In the preceding chapters, we have proposed a new approach to acquire data from 
ground-based view and to create photo-realistic building facade models in a fast and 
automated way. This chapter is devoted to applying the described algorithms to real-
world data and to analyzing both the efficiency of our algorithms and the quality of the 
obtained results.  
 
 
8.1 Ground-Based Data Acquisition 
 
The ground-based data was acquired during a 37-minute-drive in Berkeley, California, 
for which the speed was only limited by the normal traffic conditions during business 
hours. Starting from Warring Street in the Berkeley Hills, we descended through 
residential areas, passed through Telegraph Avenue, then further down along Bancroft 
Way and around the U.C. Berkeley campus. Finally, we went in clockwise loops around 
the blocks between Shattuck Avenue and Milvia Street, while always driving two blocks 
southwards on Shattuck and only one block northwards on Milvia. As our devices are 
mounted only on the right side of the truck, driving in loops is the only way to acquire 
data for both sides of the streets, and hence obtain the facades completely for an entire 
area. The driven path had a total length of 10.2 kilometers, and while driving, we 
captured 148,665 vertical and horizontal scans, consisting of 39.74 million 3D scan 
points along with a total of 7,200 images. 
  
Roughly the first third of the driven path, before we reach Telegraph Avenue, is on a 
hillside and contains steep slopes. It leads through residential and campus areas for which 
often only trees are in the field of view of our sensors, and it also passes a huge empty 
parking lot and a plaza. This part of the path was intended to test the robustness of the 
MCL localization on edge maps from the DSM, while a 3D facade reconstruction is not 
possible, due to occlusion or complete absence of building structures. To analyze our 
geometry reconstruction techniques, we use the 6769 meters long path segment where 
urban structures are present, starting from Telegraph Avenue to the end of the path. 
During this 24-minute part of the path, we captured 107,082 vertical scans, consisting of 
a total of 28.63 million scan points. For the last 11 minutes or 3043 meters of our path, 
we drove in loops around the downtown blocks between Shattuck Avenue and Milvia 
Street, and we captured both laser scans and camera images. Thus, for this area, we have 
all measurement modalities completely available, and hence we can both create texture 
mapped facade models and merge these with the airborne surface mesh from the DSM. 
 
 
8.2 Tracking  
 
We apply the scan-to-scan matching and the path computation described in Chapter 4 to 
the acquired horizontal laser scans and obtain a series of relative 3-DOF pose estimates. 
We have analyzed the accuracy of the scan matching process already in Chapter 4.2 and 
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determined the approximate accuracy of the matching result to be better than 
0.03 degrees for the rotation and better than 1 cm for the translation parameters for areas 
providing a “normal” amount of features.  
 
To evaluate the effectiveness of the adaptive subsampling of horizontal scans for the path 
computation, we compare the resulting path for a downtown Berkeley city block, 
acquired in 118 seconds driving time. Figure 8-1 shows path and scan points obtained 
with a fixed subsampling factor of 10, and Figure 8-2 using the adaptive subsampling 
method, respectively. In both figures, the computed path is represented by the black line 
going around the block; orthogonal to it, the scanning direction of the vertical laser 
scanner for each computed position is shown. Also shown are the points of the horizontal 
laser scan for each position, superimposing to a footprint of the building facades. The 
alignment of these scan points is a measure of the computed path accuracy; if the path is 
correct, the points of a building wall measured from different positions should ideally lay 
on a sharp line, otherwise they will form rather a blurred strip.  
 
For the fixed subsampling factor used in Figure 8-1, the areas where the truck moved 
slowly or stopped completely can be clearly identified by looking at the drawn vertical 
scanner directions: positions are computed at fixed time intervals, and therefore the 
density of estimates is higher during slow motion. For these parts of the path, the scan 
point alignment is visibly worse than for the rest, as shown in the detailed view, because 
the accumulation of the estimation noise leads to position inaccuracy. Figure 8-2 shows 
the same path calculated with adaptive subsampling, given a desired minimum of 80 
centimeters and a maximum of 150 centimeters per step. As seen in the detailed view, the 
scan alignment is significantly better, regardless of speed or stopping times during data 
acquisition. This also results in correct angles between the roads. Note that the upper and 
lower part of the traveled path are not parallel, because we changed lanes during driving; 
this lane change occurs in the path as evidenced by the decrease in distance between 
computed path and building facades from left to right in the upper trajectory of Figure 
8-2. Furthermore, the angle between the two roads and Shattuck Av. on the right side of 
the Figure 8-2 is actually not 900, also computed correctly by our algorithm.  
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Figure 8-1: Path computed with fixed subsampling factor of 10 

 
 
 
 

 
Figure 8-2: Path computed using adaptive subsampling 
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We have applied the scan matching and initial path computation to the entire driven path. 
With a minimal displacement of 80 cm and a maximum displacement of 150 cm for a 
single step, the adaptive subsampling yields 10109 relative estimates for the entire 10.2 
km path. For obtaining this 10109 relative steps, 6753 additional intermediate scan 
matches were computed in the adaptive subsampling and not regarded as a full step, since 
the distance to the end position of the previous step was too small, so that we had in fact 
to perform a total of 16862 scan matches.  
 
 

 
Figure 8-3: Path computed by concatenating relative pose estimates obtained in the scan-to-scan 
matching process, superimposed on top of the DSM 

 
Figure 8-3 shows the path computed by concatenating these relative steps, superimposed 
on top of the DSM. The sequence of turns and straight drives is clearly recognizable, and 
the error between relative poses in the path is small within a certain neighborhood. 
However, it is apparent that the global position becomes increasingly incorrect for longer 
driving, and for area traversed multiple times the individual facades would not match 
consistently.  
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8.3 Global Localization Based on Aerial Images 
 
In order to correct the apparent errors in global pose with the methods described in 
Chapter 5, we first compute an edge map from an aerial photo. As a manual step, we 
either mark the approximate starting point of our data acquisition in the aerial photo, or 
enter the name of the corresponding road intersection. If desired, this step could easily be 
automated as well if a low-cost, low-accuracy GPS is used to obtain the starting position. 
However, due to the small effort that it takes, we do not consider this step worth to be 
automated, especially since it has to be done only once per data acquisition, 
independently from the length of the subsequent driving. 
 
 
8.3.1 Edge Map Computation 
 
While perspective-corrected black and white photos with a 1-meter resolution, registered 
to digital roadmaps, are readily available from the United States Geological Survey 
(USGS), we choose to use a higher contrast aerial photograph obtained from Vexcel 
Corporation, CO, USA, witch has a resolution of one foot per pixel and covers the entire 
area of our data acquisition. This aerial photo is not a perfect ortho-photo, however, it has 
been taken approximately perpendicular to the ground. As shown in Figure 8-4, we have 
analyzed the metric properties of the aerial image by superimposing a metrically correct 
digital roadmap available from the USGS web site. Although the area marked by the 
dashed rectangle is not completely flat, we could verify that for this area the effect of 
perspective distortion within the ground plane is negligible; it includes the entire urban 
path segment starting from Telegraph Avenue. Hence, the photo can be used as a metric 
global reference for this area, and applying a Sobel filter, we compute the edge map 
shown in Figure 8-5, with a detailed view on Shattuck Avenue. However, the 
superposition also revealed the photo’s metric to be erroneous for the hillside area 
traversed in the first part of the path, due to significant perspective shifts of the roads 
caused by the elevation in the Berkeley Hills. Thus, it cannot be used for this area. 
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Figure 8-4: Aerial image superimposed with digital roadmap (white) 

 

 
Figure 8-5: Edge map derived from aerial photo 
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8.3.2 Localization by Maximizing Congruence 
  
We have applied the global pose correction based on maximizing congruence to the 
entire path segment starting from Telegraph Avenue, for which the aerial image can be 
regarded as metric. As already described in Section 5.4.1, we have used the digital 
roadmap to coarsely adjust the initial path obtained from scan-to-scan matching. Then, as 
shown in Figure 8-6, we have applied the congruence maximization technique from 
Section 5.4.2 to further refine the global pose. Figure 8-6(a) shows the roadmap-adjusted 
path, and Figure 8-6(b) and (c) the corrected path superimposed on the edge map and the 
aerial photo, respectively. Notice that the roadmap-adjusted path shown in Figure 8-6(a) 
is situated outside the edge boundaries of the actual road, and is visibly incorrect. 
Furthermore, the corresponding laser scans do not match the building edges, confirming 
global pose inaccuracy in Figure 8-6(a). As seen, these problems are clearly absent in 
Figure 8-6(b). Due to the averaging over multiple correction vectors and relying on 
features such as trees, the correct location in respect to the ground can be found even in 
presence of a perspective rooftop shift of the two taller buildings in the middle of the 
image. Notice that we also correctly recover the lane change from the right to the left lane 
after the crossing in the middle (the shown Telegraph Avenue is a two-lane one-way 
street). 
 
 

(a)  (b)  (c)  

Figure 8-6: Global pose by maximizing congruence. The figures show path and laser scans 
superimposed on edge images for (a) original path; (b) path corrected by maximizing congruence; (c) 
corrected path superimposed over original aerial image 
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While we have found that the correction works well in downtown areas as shown above, 
it is unfortunately less reliable in suburban areas with houses hidden among trees. In 
particular for residential areas, the selection of heuristic parameters such as search 
window and correction vector weight turns out to be crucial for the success of the 
method. While we have been able to recover the entire path for one specific parameter 
set, we have always lost track of the vehicle for others, similar sets while looping in a 
particular residential area. Hence, we believe that this method cannot be reliably applied 
to recover trajectories through arbitrary residential areas. This method is also incapable of 
pursuing multiple distinct pose hypotheses in ambiguous situations, and no measure for 
the pose uncertainty is incorporated, since pose is represented only as one discreet set of 
parameters. 
 
 
8.3.3 Monte Carlo Localization 
 
In order to track the vehicle in the aerial image more reliably, we used the robust Monte-
Carlo-Localization described in Section 5.5. We initialized a set S0 of N particles by 
distributing them uniformly within an interval [±∆x,±∆y,±∆θ] = [±10m,±∆10m,±∆100]  
around the selected starting position in the aerial image. Then, we apply the three phases 
motion, perception, and resampling iteratively for each step k, in order to arrive at a 
series of sets Sk, as shown in Figure 8-7. Superimposed on the edge map, Figure 8-7(a),  
Figure 8-7(b), and Figure 8-7(c) show the particle set Sk at iterations 0, 30, and 100 
respectively. As seen, the blob of particles moves correctly along the path traversed 
during data acquisition.  
 
 

(a)  (b)  (c)  

Figure 8-7: Sets of particles (black) overlaid over aerial edge map (gray)  (a) Initial uniform 
distribution S0; (b) set S30 after 30 iterations of motion and perception;  (c)  set S100 after 100 
iterations of motion and perception. 
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In residential areas with many trees, both false edges in the aerial image and increased 
inaccuracy in the scan-to-scan matching process contribute to a large position 
uncertainty. Therefore, the number N of used particles has to be quite large in order to 
represent the extended belief densely enough. In our experiments, we found out that to 
recover the entire path reliably, a number of N>120,000 particles is needed; this is about 
two orders of magnitude more than the “optimal” particles set size of 1000 to 5000, 
which Fox reported in [Fox et al., 2000] for a much smaller indoor environment and a 
hand-made edge map. However, if we opt to use the additional information a digital 
roadmap can provide, and constrain possible positions of particles to locations nearby 
roads, we can significantly reduce the necessary amount of particles.  
 
Using the modified edge map shown in Figure 5-13, where a 25 meters wide strip around 
roads has been marked, we prohibit the selection of all “off-road” particles by assigning a 
zero importance during the resampling process. Hence, particles are not “wasted” on 
obviously incorrect locations and therefore much fewer particles are needed, while the 
probability distribution of the belief near the roads is still represented appropriately. In 
Figure 8-8, we compare the belief computed with N=200,000 particles without 
restrictions versus the belief computed with N=10,000 particles only, but restricted within 
the 25 meter wide strip around the roadmap we have marked in the edge map. As seen, 
the spread of the particles is significantly reduced in Figure 8-8(b). We have found that 
with the road-area restricted edge map, the amount of necessary particles to recover the 
path reliably drops to less than 10,000, thus decreasing computational time greatly.  
 

(a)  (b)  

Figure 8-8: Restricting particles to locations near roads; belief computed with (a) N=200,000 
particles without restrictions, (b) N=10,000 particles restricted within a 25 meter wide strip around 
the roadmap (black) 

 
With the methods developed in section 5.5.2, we compute from each set Sk an 
intermediate global pose estimate ( , , ) by considering only particles which have 
descendants 50 resampling generations later, and we distribute global corrections among 
the relative steps. Concatenating these corrected steps, we obtain a final path registered 
with the aerial photo. Figure 8-9 shows the laser scan points drawn for each intermediate 

kx̂ kŷ kθ̂
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position in black, superimposed with the edge image. It can be seen that these scan points 
match with edges of the aerial image in most cases, as shown in the two detail views in 
the lower left and upper right. The area with the most position uncertainty and thus the 
least match is a suburban area shown in the upper left detail view, where the algorithm 
faces many false edges corresponding to shadows of trees, and hence the ground based 
scans and aerial edge map are simply different. Despite this temporary loss of accuracy in 
position estimation, the algorithm recovers as soon as distinct features become available 
again. We have found that MCL is a very robust approach for recovering the driven path. 
 
 

 
 

Figure 8-9: Scan points drawn for MCL-corrected path 

 
Using an aerial photo, however, has two potential disadvantages: for the first, strong 
edges in the aerial photo might not be at their correct 2D location, since they may result 
from perspective-shifted building tops, or simply from intensity discontinuities only. 
Hence, even if the scan points match the global edge map, the position could be 
erroneous in regard to the true geographical location. For the second, no altitude 
information can be recovered, and hence the approach is restricted to flat urban areas. In 
the next section, we explore the use of an edge map from airborne laser scans instead of 
an aerial image in order to overcome both problems. 
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8.4 MCL Based on Airborne Laser Scans 
 
Airborne laser scans of Berkeley were acquired in conjunction with Airborne 1 Inc., Los 
Angeles, CA, in about one hour acquisition time. The entire data set consists of 48 
million scan points, which have an accuracy of 30 centimeters in horizontal and vertical 
direction and a raw spot spacing of 0.5 meter or less, and both the first and the last pulse 
of the returning laser light is measured. Choosing a grid spacing of 0.5 by 0.5 meter and 
applying the resampling technique described in Section 7.1, we obtain a Digital Surface 
Model as shown in Figure 8-10. Again, we need an edge map in order to apply the global 
correction procedure from Chapter 5. Therefore, we compute this edge map from the 
DSM by using the discontinuity filter proposed in Section 5.2.2, as shown for downtown 
Berkeley in Figure 8-11. We also compute a corresponding DTM containing the terrain 
altitude with the method we have described in Section 5.2.2. 
 
 

 
Figure 8-10: Digital Surface Model of Berkeley, encoded as gray image; the white rectangle marks 
the downtown area shown in the next figure 
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Figure 8-11: Edge map from DSM for downtown Berkeley area 

 
Both the DSM and the corresponding edge map are in fact orthogonal projections onto 
the ground and are hence metric even for hillside areas, in contrast to the edge map from 
the aerial photo in the previous section. Therefore, we can use it to correct the global pose 
of the entire 10.2-kilometer path, including the first part in the hills. We have applied the 
same procedure as for the edge map from aerial images, i.e. selecting the starting position 
in the edge map, applying iteratively Monte Carlo Localization for each relative step k to 
obtain a particle set Sk, and computing a corrected global pose from each Sk. 
 
We have found that despite its lower resolution, the edge map from the DSM is far 
superior to the edge map from the aerial images, due to the absence of false edges and 
perspective shifts. For the 1-foot aerial images, the uncertainty was enormous at some 
locations, and without digital roadmap, it was necessary to utilize 120,000 particles to 
approximate the spread-out probability distribution appropriately and track the vehicle 
reliably. In contrast, for the edge map derived from airborne laser scans, the spread of the 
particle set was extremely low throughout the entire computation, and we have found that 
the vehicle could easily be tracked with as little as 1000 particles. It is recommendable 
though to use more particles in order to minimize noise in the global pose estimates. 
Figure 8-12 shows an example particle sets Sk, computed during Monte-Carlo-
Localization with 5000 particles. It can be seen that the spread of the particles and hence 
the uncertainty of the global pose estimation is small even in residential and hillside 
areas. 
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Figure 8-12: Set of particles (yellow/red) overlaid over DSM (gray) 

 
After computing intermediate global pose estimates from the particle sets, we have 
applied the global correction according to Section 5.5.2 in the following manner: First, 
we calculated the yaw angle difference between initial path, as shown in Figure 8-13(a), 
and we correct the yaw angles according to the smoothed difference. Then, we have 
recomputed the path, and calculated the x and y differences to the intermediate global 
poses, as shown in Figure 8-13(b). Similarly, we corrected the x and y coordinates 
according to the smoothed x and y differences, and obtained the final path. In both 
figures, the curves around the horizontal axes are the differences after correction, and as 
seen, only the high-frequency components are kept. We found that errors in the yaw 
angles are by far more significant for the global position than errors in the x,y estimates: 
while the initial path is off by several hundred meters, the difference between the yaw-
angle corrected path and the intermediate global positions is only a few meters, as seen 
Figure 8-13(b).  
 

    
Figure 8-13: Global correction along the traveled path; (a) yaw angle difference between initial path 
and global estimates before and after correction; (b) differences of x and y coordinates before and 
after correction. In both diagrams, the differences after corrections are small (curves close to the 
horizontal axis). 
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(a)  

(b)  

Figure 8-14: Entire traveled path superimposed on top of the DSM; (a) initial path from scan-to-scan 
matching; (b) path corrected with MCL. 
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In Figure 8-14, the entire 10.2 km path including the hillside segment is drawn in white 
and superimposed on top of the DSM. Figure 8-14(a) shows the initial path obtained from 
scan-to-scan matching, and Figure 8-14(b) the path corrected with MCL, using the edge 
map from the DSM. As seen, the initial path does not match the DSM, whereas the MCL 
corrected path fits well to it. Accordingly, for the corrected path, the ground-based 
horizontal scan points match the depth discontinuities in the DSM, as shown in the close-
up view on the downtown area in Figure 8-15. Thus, the ground-based data is registered 
with the airborne scans. 

 
 

 
Figure 8-15: Horizontal scan points for corrected path superimposed on top of the DSM. 

 
Using the DTM computed from the DSM, we assign each 3-DOF pose the altitude as the 
z-coordinate and the slope as the z-derivative in driving direction, or equivalently, the 
more commonly used pitch angle as the inverse tangent of the slope. Figure 8-13(a) 
shows the z-coordinate and Figure 8-13(b) the pitch angle and hence the incline during 
the drive; clearly visible is the incline from our higher starting position near the Berkeley 
Hills down towards the San Francisco Bay, as well as the ups and downs on this incline 
while looping around the downtown blocks. While the pitch angle reaches 6 degrees and 
more in some parts of the hillside drive, it is at most about 2 degrees for the more level 
downtown blocks.  
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Figure 8-16: Assigned z coordinates and pitch angle 

 
 
8.5 Facade Model Generation 
 
After determining the vehicle’s pose accurately for each scan as described in the previous 
section, it is straightforward to transform the vertical 2D scans into 3D scan points. We 
now apply the framework of data processing techniques introduced in Chapter 6 in order 
to create visually appealing facades completely automatically. In the following, we apply 
our geometry reconstruction techniques to the entire 6769 meters long path segment 
starting from Telegraph Avenue to the end. For our geometry processing, we utilize the 
6-DOF path corrected with MCL using the edge map from the DSM, since it contains 
also altitude and incline information. We can subsequently apply automated texture 
mapping to the downtown blocks, for which we captured all facades accessible from the 
roads and for which we have recorded color images. 
 
Applying the path splitting techniques described in 6.1 results in 73 quasi-linear path 
segments, as shown in Figure 8-17 overlaid with the digital roadmap. There is no need 
for further manual cutting, even at Shattuck Avenue, where the “Manhattan geometry” of 
Berkeley is not preserved.  
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Figure 8-17: Entire path after split in quasi-linear segments. 

 
 
We have applied the postprocessing methods to all 73 segments, and performed an 
evaluation of the obtained results. As we do not have the ground truth to compare with, 
and as our main concern is the visual quality of the generated model, we have generated 
two facade meshes for each of the 73 segments for comparison: the first mesh is obtained 
by directly triangulating the raw scans, and the second one from the depth image to which 
we have applied the postprocessing steps described in Chapter 1. Manually inspecting the 
results, we have subjectively classified the degree to which the proposed postprocessing 
procedures have improved the visual appearance. The classification categories are 
“significantly better”, “better”, “same”, “worse” and “significantly worse”. In Figure 
8-18, we show a comparison of some examples for meshes generated directly from the 
raw scan points (right) and meshes generated after the postprocessing steps (left), 
together with the corresponding classifications we assigned. As seen, except for pair “f”, 
the proposed postprocessing steps result in visually more pleasing models.  
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(a)

 

   

(b)   

(c)   

(d)    

(e)             

(f)   

Figure 8-18: Generated facade meshes, left side original, right side after the proposed foreground 
removal and hole filling procedure. The classification for the visual impression is “significantly 
better” for the first four image pairs, “better” for pair e and “worse” for pair f. 
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The evaluation results for all 73 segments with and without the postprocessing techniques 
described in Chapter 6 are shown in Table 1. Even though 8 % of all processed segments 
appear visually inferior to the original, the overall quality of the facade models is 
significantly improved.  
 
 

Significantly better   35  48 % 
Better   17  23 % 
Same   15  21 % 
Worse     5    7 % 
Significantly worse     1    1 % 
Total   73 100% 

Table 1: Subjective comparison of the processed mesh vs. the original mesh for all 73 segments. 

 
We have found our processing methods to work well in the downtown areas, where there 
are clear building structures and few trees. The important downtown segments are in 
most cases ready to use and do not require any further manual intervention. However, in 
residential areas, where the buildings are often almost completely hidden behind trees, it 
is difficult to accurately estimate the geometry. Hence, the few problematic segments all 
occur in residential areas, consisting mainly of trees. The tree detection algorithm in 
section 6.4 classifies 10 segments as “critical” in that too many trees are present. Pair f in 
Figure 8-18 is one of these segments, and hence should be omitted or left “as is” rather 
than processed. All 6 problematic segments corresponding to “worse” and “significantly 
worse” rows in Table 1 are among them, yet none of the improved segments in rows 1 
and 2 are detected as critical. This is significant because it shows that (a) all problematic 
segments correspond indeed to regions with a large number of trees, and (b) they can be 
successfully detected and hence not be subjected to the proposed steps. Table 2 shows the 
evaluation results if only non-critical segments are processed. As seen, the postprocessing 
steps described in Chapter 6 together with the tree detection algorithm improve over 80% 
of the segments, and never result in degradations for any of the segments. 
 
 

Significantly better   35  56 % 
Better   17  27 % 
Same   11  17 % 
Worse     0    0 % 
Significantly worse     0    0 % 
Total   63 100% 

Table 2: Subjective comparison of the processed mesh vs. the original mesh for the segments 
automatically classified as non-tree-areas. 

 
Note that the evaluation of our technique is based on comparing the non-textured 
geometry. In a comparison in which both models are texture mapped, the processed mesh 
is even more likely to be visually superior to the original, since texture distracts the 
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human eye from geometry imperfections such as those potentially introduced by hole 
filling algorithms. With the automated foreground marking procedure described in 
Section 6.6, the facade meshes can be texture mapped. In Figure 8-19, we compare the 
two facade meshes for downtown city block side shown in Figure 8-18(d) after texture 
mapping. The upper mesh is generated without and the lower mesh with the 
postprocessing procedure, respectively. As seen, the visual difference between the two 
meshes is striking, for the reasons described above. Note the facade area occluded by the 
two trees on the left side of the original mesh has been completely filled with geometry 
and texture mapped from oblique camera views as much as possible. Nevertheless, a few 
triangles are not visible in any camera image and therefore left untextured, possibly to be 
subjected to a texture synthesis algorithm in future work. 
 
 
 

 
 

 
Figure 8-19: Textured facade mesh without (top) and with (bottom) processing. 

 
 
For 12 out of the 73 segments, additional 3D vertices derived from stereo vision 
techniques are available. Sorting in these 3D points into the layers according to section 
6.4 does fill some of the holes. For these specific holes, we have filled the holes prior to 
our processing based on stereo vision vertices and compared the results with those solely 
based interpolation as in Table 1 and Table 2. We have found no substantial differences, 
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suggesting that our processing and interpolation scheme alone yields already reasonable 
results. Often, the interpolated mesh vertices even appear to be slightly more accurate 
than the stereo vision based vertices as they are less noisy, and hence we found no reason 
of additional exploiting stereo vision data for our model generation. Figure 8-20(a) shows 
an example before processing, and Figure 8-20(b) shows the tree holes completely filled 
in by stereo vision vertices. As seen, the outline of the original holes can still be 
recognized in Figure 8-20(b), whereas the points generated by interpolation alone are 
almost indistinguishable from the surrounding geometry, as seen in Figure 8-20(c).  
 
 

(a)  

(b)  

(c)   

Figure 8-20: Hole filling (a) original mesh with holes behind occluding trees; (b) filled by sorting in 
additional 3D points using stereo vision; (c) filled by using the interpolation techniques of section 6.5 
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Combining all individually processed segments in the common global coordinate system, 
we obtain facade meshes for the entire traveled path starting from Telegraph Avenue, as 
shown in Figure 8-21. For better visualization, these facades are superimposed over an 
aerial image. 
 
 

 
Figure 8-21: Non-textured facade models for the entire path, overlaid on top of an aerial photo. 

 

For the looped downtown blocks, we have camera images available and can hence apply 
the automated texture mapping procedure described in section 6.6, which is capable of 
handling occlusions and determining the image areas with a direct view on the facades 
behind. We texture map the facade meshes completely except the upper parts of tall 
buildings, which were out of the limited field of view of the camera during data 
acquisition. A bird’s eye view over the texture mapped downtown facade models is 
shown in Figure 8-22, and close-up views are shown in Figure 8-23 and Figure 8-24. 
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Figure 8-22: Bird's eye view on the texture mapped facade models for the downtown blocks 

 
 

 
Figure 8-23: Close-up view on the ground-based facade models, seen from the backside of an 
Addison Street facade.  
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Figure 8-24: Close-up view on the ground-based facade models, seen from Center Street. 

 
According to section 6.7, we optimize the facade meshes for rendering by creating 
multiple levels of details; specifically, we generate for each an atlas as an efficient texture 
representation and reduce the number of triangles using the Qslim mesh simplification 
tool. Then, we further subdivide the meshes along vertical cutting planes and combine all 
sub-meshes in a hierarchical, 3-LOD scene graph. This enables us to render the texture 
mapped facades interactively for the entire downtown path with a standard VRML 
viewer, as seen in the screenshot in Figure 8-25.  
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Figure 8-25: Viewing the texture mapped model with a standard web-based VRML browser, in this 
case Computer Associates’ Cosmo Player. 

 
 
8.6 Airborne Modeling  
 
According to section 7.2, we have computed an airborne surface mesh for the downtown 
Berkeley area by (a) resampling aerial laser scan points to a DSM, (b) processing the 
DSM by flatten planar surfaces and straightening edges, (c) connecting vertices in the 
DSM, and (d) reducing the mesh to about 100,000 triangles per square kilometer by using 
qslim mesh simplification. Figure 8-26(b) shows the resulting surface mesh. For 
comparison purpose, Figure 8-26(a) shows the surface mesh as obtained without the 
DSM processing steps; as seen, the processing improves the visual appearance of the 
mesh significantly. In addition, during a helicopter flight, we have acquired 12 aerial 
color images of the Berkeley area at oblique angles. In about an hour of manual work, we 
have registered these images by selecting correspondence points between the images and 
the DSM, and automatically solving for the camera pose. Knowing the camera pose, the 
corresponding image location for each surface mesh vertex has been computed, the 
optimal image for each triangle has been selected by taking into account resolution, 
normal vector orientation, and occlusions, and the mesh has been texture mapped 
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accordingly. Figure 8-27(c) shows the airborne model from Figure 8-26(b) after texture 
mapping with 12 aerial images.  
 
It is difficult to evaluate the accuracy of this airborne model, as no ground truth with 
sufficient accuracy is readily available, even at the city’s planning department. It can be 
noted though that by removing small features on building tops, we have admittedly 
sacrificed geometric accuracy for the sake of visual appearance. However, while some 
details are actually missing in the geometry, they visually appear to be present due to the 
texture-mapped aerial imagery. Thus, by creating a false impression of geometric detail, 
our approach combines elements of model-based and image-based rendering. While this 
is undesirable in some applications, we believe it is appropriate for the purpose of 
interactive visualization.  
 
 

(a)  

(b)  
Figure 8-26: Airborne model for downtown Berkeley; (a) original DSM directly triangulated, (b) 
triangulated after DSM postprocessing. 
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Figure 8-27: Airborne model for downtown Berkeley after texture-mapping with 12 aerial images. 

 
 
8.7 Model Merging 
 
Monte-Carlo-Localization and pose correction have globally adjusted the path to fit the 
edges of the DSM. Thus, as a great advantage of our specific localization approach, the 
ground-based models and the airborne surface mesh derived from the DSM are 
automatically registered with each other. However, if no model merging is performed and 
the models are simply overlaid in the same coordinate system, it is random which mesh is 
on top and thus visible, and as seen in Figure 8-28 and indicated by arrows, the low-
resolution, coarse airborne mesh covers at numerous locations the high-quality facade 
models.  
 
We perform the model merging methods described in Section 7.3, i.e. we mark DSM 
cells corresponding to ground-based facade vertices and foreground objects, regenerate 
the surface mesh, and create a blend mesh to fill gaps and smooth the transition between 
the two meshes. Figure 8-29 illustrates the visual superiority of the highly detailed 
ground-based facade models for walk-thrus: while the facades on the right street side 
originate from the airborne surface mesh, they are on the left side replaced by the highly 
detailed ground-based facade model. As seen, the inserted ground-based facades appear 
significantly more suitable for a walk-thru. Figure 8-30 shows the resulting combined 
model for the looped downtown Berkeley blocks viewed while walking or driving, Figure 
8-31 shows the same model as seen from a building top, and Figure 8-32 shows the 
model as it occurs in a Bird’s eye view. 
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Figure 8-28: Ground-based models and airborne surface mesh overlaid on top of each other, without 
applying model merging steps. While the two meshes are registered with each other, the coarse 
airborne triangles cover the high-resolution facade models in numerous locations, e.g. where 
indicated by the white arrows. 

 
 
 

 
Figure 8-29: Comparison of walk-thru view on facades from ground based versus airborne 
acquisition; while the facade on the right street side originates from the airborne surface mesh, it is 
on the left side replaced by the highly detailed ground-based facade model. 
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Figure 8-30: Walk-thru view of the merged model    

 
Figure 8-31: Virtual view from a building top of the merged model. 
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Figure 8-32: Bird’s eye view of the merged model. 

 
 
8.8 Performance and Complexity 
 
Besides automatism and photo-realism, the scalability to large environments is one of our 
key objectives. We have applied our methods to a substantial urban area, and this section 
is dedicated to analyzing computational performance and scalability for the processed 
data and beyond it. Ultimately, our methods should be applicable to extremely large 
urban environments with up to tens of square miles, e.g. the metropolitan Los Angeles or 
the San Francisco Bay Area. 
 
The proposed acquisition and processing scheme utilizes a large number of various 
individual algorithms, taking different input and output data and thus having different 
individual complexity measures. However, scalability to large environments means the 
computational complexity as a function of the covered area size. Since we can fairly 
assume that area size, number of contained facades, and path length are approximately 
proportional, the crucial question is how the complexity increases with the length of the 
driven path, and we analyze this complexity in the following: 
 
First, the data acquisition time is linear in path length, and so is the amount of acquired 
data. While practically the maximum path length is limited by the size of the storage 
media, it is trivial to overcome this potential bottleneck simply by adding additional hard 
disk drives. Second, scan-to-scan matching, initial path computation, and MCL correction 
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are linear in path length, and similarly edge map generation from both aerial photo and 
DSM is linear in area size. Here, the usage of a global edge map for the localization turns 
out to be enormously advantageous, since we do not have to perform the O(n2) data cross 
consistency matching necessary in some previous approaches. Third, the ground based 
data processing is linear in path length: while some of the functions such as marking 
foreground in the images for texture mapping show O(n2) complexity with the size of the 
path segment in our implementation, this does not have an effect on the overall 
scalability, since the segment size is confined to a maximum length by the path 
segmentation techniques. Fourth, due to the O(n) behavior of the qslim mesh 
simplification, the airborne surface mesh generation is also linear in area size, and 
similarly the DSM marking and blending is linear in path length. Hence, the proposed 
automated model generation procedure is completely linear in area size and path length, 
and thus easily scalable to large environments. In fact, the average time per area for the 
diminutive manual interaction practically even decreases with larger areas, since the two 
necessary manual steps besides driving, i.e. entering the starting position for the MCL 
localization and selecting correspondence points for the airborne texture mapping, are 
one-time tasks independent on the covered area size. 
 
Table 3 shows the processing time for the vehicle localization, i.e. the path computation 
and global correction based on the edge map from the DSM, for the entire 10,2 km/37 
minutes drive on a 2 GHz Pentium 4 PC. The computationally most expensive part is the 
accurate scan matching process, with about two thirds of the total computation time of 
roughly 4 hours. Since the computation time is proportional to the path length, one can 
figuratively consider our “localization speed” to be about 43 meters path per minute. 
 
 

Processing times to localize the vehicle for the entire 10,2-km/ 37-
minutes drive 
Data conversion 32 min 
Scan matching and initial path computation 148 min 
Monte Carlo Localization (with DSM and 5,000 
particles) and global correction 

55 min 

Total localization time 235 min 
Table 3: Computation times for the vehicle localization, i.e. the complete path computation and 
global correction, for the entire 10.2 km path traversed in 37 minutes driving time. 

 
For the 3043 meters/11 minutes downtown part of our drive, where we loop around the 
block between Shattuck Avenue and Milvia Street, we have performed the entire model 
generation procedure, including texture mapping and merging with the DSM, and have 
measured the computation times again on a 2 GHz Pentium 4 PC, as shown in Table 4. 
Although this data set consists of millions of scan points and a few thousand camera 
images, the processing time for the entire model generation is only about 2 ½ hours. 
Since again this computation time scales with path length and area size, respectively, one 
can figuratively consider our “total model generation speed” to be about 20 meter facades 
per minute. 
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Processing times for the 3043-meter/ 11-minutes downtown drive 
Data conversion 14 min 
Scan matching and initial path computation 52 min 
Monte Carlo Localization (with DSM and 5,000 
particles) and global correction 

18 min 

Path segmentation 1 min 
Geometry reconstruction 6 min 
Texture mapping  27 min 
Model optimization for rendering 19 min 
DSM computation and projecting facade locations  6 min 
Generating textured airborne mesh and blending 19 min 
Total model generation time 162 min 

Table 4: Processing times for the entire model generation of the downtown Berkeley blocks, acquired 
in a 3043-meter/ 11-minutes drive 

 
Note that there is additionally the manual step of selecting correspondences for the 
registration of DSM and aerial image, necessary for texture mapping the airborne surface 
mesh. The selection of 8 to 10 correspondence points for each image took about an hour 
for a large area of Berkeley; since the area covered by these images is about 4 times 
larger than the downtown blocks, the manual selection time prorated to the downtown 
area is only about 15 minutes. All other steps of the airborne model generation and the 
entire ground-based model generation are completely automated and do not need manual 
intervention at any point. 
 
As a summary for this section, it can be noted that our approach results in a highly 
detailed, photo-realistic 3D city model suitable for both virtual walk- and fly-thrus. In 
contrast to most other methods, the generation of this photo-realistic model is automated, 
and furthermore, our approach is extremely fast: the acquisition time for five downtown 
Berkeley blocks has been only 11 minutes, and the total processing time only 2 ½ hours, 
hence to the best of our knowledge outperforming all existing methods. Since the 
complexity of the developed approach is linear in area size, it is scalable and applicable 
to large environments. 
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9 Summary and Conclusion 
 
This dissertation addresses the problem of acquiring photo-realistic models of urban 
environments for various virtual reality purposes, in particular for virtual walk-, drive- or 
fly-thrus. In photo-realistic walk- or drive-thru applications, an enormous level of detail 
at ground level is required. Existing semi-automated methods fall short of providing this 
level of detail in reasonable time and at affordable costs, since they are complicated and 
require substantial manual intervention. In this thesis, we propose an innovative approach 
to overcome these limitations by capturing highly detailed facade models from a ground-
based view. The broad scope of the model acquisition problem requires an 
interdisciplinary solution, and accordingly, we employ methods from mobile robotics, 
optical measurement techniques, computer vision, and computer graphics. Our key 
design objectives are automatism, speed, scalability, and photo-realism: firstly, our 
approach is completely automated, i.e. no manual intervention is needed at any time. 
Secondly, both data acquisition and processing are extremely fast, potentially enabling 
the generation of a large-scale city model within hours. Thirdly, the complexity of the 
devised algorithms is linear, and computation time increases only proportionally to the 
covered area; thus, the algorithms are in principle extendable to arbitrary large areas. 
Fourthly, the created building models are visually as realistic as a photograph.  
 
In our approach, we capture facade models from a ground-based view, while moving at 
normal speeds on public roads, with an acquisition vehicle equipped with laser scanners 
and a digital camera. Data is acquired continuously while driving by the buildings, rather 
than in a slow stop-and-go fashion, thus allowing the traversal of an entire city within a 
few hours. The collected data is processed offline, and 3D models of the building facades 
are generated completely automatically. Additionally, we show that it is possible to 
merge these facade models with data from an airborne view, in order to create a complete 
3D model, containing facades as well as building tops and terrain shape.  
 
More specifically, we have developed a sensor system and have mounted this system on a 
rack on top of a pickup truck. The 3D geometry of a city is acquired using a combination 
of two inexpensive 2D laser scanners mounted perpendicularly to one another, one 
horizontally and one vertically. The corresponding texture is acquired using a digital 
color camera. All devises are controlled by real-time software and synchronized by 
hardware signals; hence, it is possible to determine corresponding individual scans and 
images. In contrast to the 3D scan registration problem commonly occurring in 
approaches based on 3D scanners, we face a localization problem: in order to combine 
the individual scans and images to a model, the pose of the sensors during the acquisition 
has to be determined extremely precisely. We propose to solve this problem in an offline 
computation by first matching subsequent horizontal scans in order to obtain their relative 
pose and then by concatenating these relative poses to an initial path estimate. Because 
during longer periods of driving, small errors in the relative poses accumulate to form 
substantial errors in global pose, we devise, in addition, a global correction based on an 
edge map of the city area, which we derive either from aerial images or from airborne 
laser scans. Using probabilistic Monte-Carlo Localization, we are able to match 
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horizontal laser scans to the edge map and correct the path globally. Hence, we can 
assign a globally correct pose to each acquired laser scan and camera image.  
 
We have developed an entire framework of completely automated algorithms in order to 
fuse the raw data to globally consistent facade models. First, we handle the large amounts 
of data by sub-splitting the driven path and processing the scan points for each segment 
separately as a depth image. In the depth domain, we identify foreground objects, such as 
trees and building facades in the background, by histogram analysis. Subsequently, we 
remove erroneous scan points and foreground objects, and we fill holes by adaptive 
interpolation. By triangulation, the processed points are transformed into a geometric 
facade mesh. Since the camera is calibrated and the image acquisition is synchronized 
with the laser scanners, we directly project the triangular mesh onto the images, identify 
for each triangle the corresponding image location, and texture-map the mesh while 
handling occlusions from foreground objects. Then the facade mesh is optimized for 
interactive rendering: we create an atlas as an efficient texture representation, generate 
multiple level-of-details by using mesh simplification algorithms, subdivide the facades 
models, and combine all submodels in a hierarchical scene graph. This enables us to 
explore large facade models even with standard VRML viewers. 
 
Finally, we use airborne laser scans to complete the facade models with rooftops and 
terrain shape. We create a DSM from the scans, convert it to a triangular surface mesh, 
and texture-map this mesh with aerial images. Due to our specific global localization 
method, the facade models are automatically registered with the DSM; thus, the only 
remaining problem to solve is merging surface mesh and facade models in a consistent 
way. To do so, we mark the location of facades and foreground objects in the map and 
remove surface mesh triangles corresponding to marked locations. Then we put the 
facade models in place and create a blend mesh to connect both meshes seamlessly. The 
result is a texture-mapped 3D model suitable for walk-, drive-, and fly-thrus. 
 
We have applied the developed methods on a large data set of downtown Berkeley and 
have analyzed both the quality of the results and the processing speed of the algorithms. 
We have found that our approach is capable of generating a highly detailed, photo-
realistic 3D model of the architectural structures. Furthermore, both data acquisition and 
automated model generation are extremely fast: for five downtown Berkeley blocks, the 
acquisition time has been only eleven minutes and the total processing time only two-
and-a-half hours, thereby greatly outperforming, to the best of our knowledge, all existing 
methods. Since the complexity of our approach is linear in area size, it is scalable and 
applicable to large environments. 
 
There are several ways in which this work could be extended in the future. However, the 
following avenues appear particularly important or promising to us: 
 
Modeling foreground objects 
In our current approach, foreground objects, such as trees, cars, traffic signs, light posts 
and telephone masts, are simply removed, as they are not part of the architectural 
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structure. However, these objects could substantially contribute in making the street 
scenery lively and real. Given the complexity and clutter of the foreground scenery, the 
proper reconstructing of the individual objects appears to us a challenging problem, 
especially since only one side of the objects is captured, and the scan resolution is not 
adequate for fine objects, such as a cable mast. A potentially suitable solution could be to 
identify certain object types, such as trees or cars, and to replace them by generics of 
comparable size and appearance. Both laser scans and images could be used for this 
classification, requiring complex computer vision and image understanding techniques.  
 
Airborne model generation 
We have shown that it is possible to merge the ground-based facades directly with a 
surface mesh from an airborne view, with the advantage of not having to make any 
assumptions about building shapes and at the cost of, at times, jittery edges for areas with 
no available ground-based facade. The airborne model generation could be greatly 
extended by using more sophisticated approaches already known in the literature: for 
example, by combining edge information from both the DSM and the aerial image. 
Fusion of the thus obtained polygonal model with the ground-based facade models may 
open up new problems and vistas. Additionally, the planar facades even of extremely tall 
buildings or backsides in this airborne model could be texture-mapped by using far-away 
views occasionally visible in the ground-based images. Both could possibly result in 
higher model quality for the non-ground-based model parts. 
 
Texture reduction and synthesis 
Since architectural structures are highly repetitious, it is often possible to find identical 
texture in many different locations on a facade. This could be exploited for two purposes: 
first, the amount of necessary texture memory could be further reduced by determining 
and re-using redundant texture patches. This is particularly important since texture 
consumes the most memory on the graphics card. Second, if there are extremely large 
foreground objects, it can occur that some facade triangles are not visible in any camera 
image and can therefore not be texture-mapped at all during the model generation 
process. The redundancy in architectural structure could be used to fill these texture holes 
in a copy-and-paste-like fashion, and we have already obtained encouraging results in 
preliminary attempts to do so.  
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