
Automated 3D Model Generation
for Urban Environments

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für Elektrotechnik und Informationstechnik der

Universität Fridericiana Karlsruhe

genehmigte

DISSERTATION

von

Dipl.-Ing. Christian Früh

aus

Herbolzheim

Tag der mündlichen Prüfung: 29. Oktober 2002

Hauptreferent: Prof. Dr.-Ing. K.D. Müller-Glaser
 Universität Karlsruhe

1. Korreferent: Prof. Dr. A. Zakhor

University of California at Berkeley

2. Korreferent: Prof. Dr. W. Heering
 Universität Karlsruhe

Karlsruhe, den 20. September 2002

Abstract

In this thesis, we present a fast approach to automated generation of textured 3D city
models with both high details at ground level and complete coverage for bird’s-eye view.
A ground-based facade model is acquired by driving a vehicle equipped with two 2D
laser scanners and a digital camera under normal traffic conditions on public roads. One
scanner is mounted horizontally and is used to determine the approximate component of
relative motion along the movement of the acquisition vehicle via scan matching; the
obtained relative motion estimates are concatenated to form an initial path. Assuming that
features such as buildings are visible from both ground-based and airborne view, this
initial path is globally corrected by Monte-Carlo Localization techniques using an aerial
photograph or a Digital Surface Model as a global map. The second scanner is mounted
vertically and is used to capture the 3D shape of the building facades. Applying a series
of automated processing steps, a texture-mapped 3D facade model is reconstructed from
the vertical laser scans and the camera images. In order to obtain an airborne model
containing the roof and terrain shape complementary to the facade model, a Digital
Surface Model is created from airborne laser scans, then triangulated, and finally texture-
mapped with aerial imagery. Finally, the facade model and the airborne model are fused
to one single model usable for both walk- and fly-thrus. The developed algorithms are
evaluated on a large data set acquired in downtown Berkeley, and the results are shown
and discussed.

Erklärung

Ich versichere wahrheitsgemäß, die Dissertation bis auf die angegebenen Hilfen
selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und
alles kenntlich gemacht zu haben, was aus Arbeiten anderer und eigenen
Veröffentlichungen unverändert oder mit Änderungen entnommen wurde.

 Berkeley, USA, den 19. September 2002

Acknowledgements

This Ph.D. thesis has been developed during my stay at the Video and Image Processing
Lab of the University of California at Berkeley. Therefore, I am deeply grateful to my
adviser Prof. A. Zakhor, who provided me with the unique opportunity to do research at
one of the most prestigious universities of the United States. Her excellent advice and
active support has provided the foundation for this work, but most importantly, she
always gave me the freedom and encouragement to explore new ideas.

Furthermore, my adviser Prof. K.-D. Müller-Glaser of the University of Karlsruhe
deserves my special gratitude for his willingness to serve as my adviser, and his interest
in this work. Despite his tight schedule, he allocated the time to review my work without
delay, and provided me with many useful comments and suggestions through personal
meetings and via phone and email. Likewise, I would like to thank Prof. W. Heering for
following my work from the very beginning and serving on my thesis defense committee.

Furthermore, I would like to thank Prof. R. Dillmann and my former colleagues from the
Institute for Process Control, Robotics and Automation, where I gained useful experience
in robotics and laser scanning. I also owe my very special thanks to my fellow students at
U.C. Berkeley’s Video and Image Processing Lab, in particular to John Flynn, Samson
Cheung, Thinh Nguyen, and Vito Dai; surely my work would have proceeded at slower
pace without their help and friendly support. Finally, I would like to express my gratitude
to the American taxpayers, who have financed this work via the Army Research Office of
the U.S. Department of Defense.

But lastly, none of this would have been possible without my parents. Their love, care
and support have shaped my character and life, and their moral and financial support has
enabled my education.

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher
Mitarbeiter am Video and Image Processing Lab der University of California in
Berkeley, USA. Daher gilt mein besonderer Dank zunächst meiner Korreferentin Prof.
Dr. A. Zakhor, die mir das Forschen an einer der renommiertesten Universitäten der USA
ermöglicht hat. Ihre freundschaftlichen Ratschläge, Anregungen und Korrekturen haben
diese Arbeit maβgeblich geprägt.

Des Weiteren gilt mein besonderer Dank meinem Hauptreferenten Prof. Dr.-Ing. K.-D.
Müller-Glaser, der aus Interesse an dieser Arbeit die Betreuung seitens der Universität
Karlsruhe übernommen hat und sich trotz vieler Termine die Zeit nahm, mir mit Rat und
Tat zur Seite zu stehen und die Begutachtung ohne Verzögerung durchzuführen. Es gibt
sicher nur wenige Professoren, die sich in derart freundschaftlicher und herzlicher Art für
ihre Doktoranden einsetzen. Dies gilt ebenso für meinen zweiten Korreferenten Prof. Dr.
W. Heering, der die Arbeit von Anfang an verfolgt und mich stets gut beraten hat.

Ferner bedanke ich mich bei allen anderen, die zum Gelingen dieser Arbeit beigetragen
haben. Als da wären Prof. Dr. R. Dillmann und meine Kollegen vom Institut für
Prozessrechentechnik, Automation und Robotik, wo ich wertvolle Erfahrungen im
Bereich Robotik und Laserscannen sammeln konnte, die mir bei dieser Arbeit von
groβem Nutzen waren. Ferner natürlich bei meinen Kollegen und Studenten in Berkeley,
insbesondere John Flynn, Samson Cheung, Thinh Nguyen, and Vito Dai, ohne deren
freundschaftliche Ratschläge, Unterstützung und Know-how meine Arbeit sicherlich viel
langsamer vorangegangen wäre. Mein Dank gilt schlieβlich auch dem amerikanischen
Steuerzahler, der in Gestalt des Army Research Office des U.S. Department of Defense
diese Arbeit finanziell unterstützt hat.

Alles wäre jedoch nicht möglich gewesen ohne meine Eltern, deren Liebe und Erziehung
mich geprägt haben und deren moralische und finanzielle Unterstützung mein Studium
ermöglicht hat.

 I

Table of Contents

1 Introduction... 1

1.1 Contributions of this Dissertation ... 3
1.2 Organization of this Dissertation .. 4

2 Background and Related Work... 5
2.1 3D Model Representation and Rendering... 5
2.2 Acquisition of 3D Models... 9

2.2.1 Cameras and Stereo Vision... 10
2.2.2 Laser Scanners .. 12
2.2.3 Model Generation from Airborne View ... 14
2.2.4 Model Generation from Ground-Based View... 15

3 Ground Based Model Acquisition .. 21
3.1 Drive-by Scanning - A New Acquisition Approach ... 21
3.2 Data Acquisition System... 23

4 Tracking the Acquisition System.. 29
4.1 Relative Pose Estimates .. 30
4.2 Path Computation.. 41

5 Global Localization... 49
5.1 Background and Related Work... 50
5.2 Global Maps from Aerial Images or Airborne Laser Scans 54

5.2.1 Edge Map from Aerial Photo.. 55
5.2.2 Edge Map from DSM.. 57

5.3 Congruence Coefficient between Ground Based Laser Scans and Airborne
Edge Maps .. 60
5.4 Global Map Position by Maximizing Congruence ... 61

5.4.1 Adjustment Using Digital Roadmaps ... 62
5.4.2 Pose Refinement Based on Maximizing the Congruence Coefficient...... 66

5.5 Global Map Position Based on Monte Carlo Localization 67
5.5.1 Probabilistic Robotics – Background.. 68
5.5.2 Monte-Carlo-Localization... 74

6 Automated Facade Model Generation .. 81
6.1 Segmentation of the Driving Path Into Quasi-Linear Segments....................... 84
6.2 Converting Path Segments To Depth Images ... 87
6.3 Properties of City Laser Scans.. 89
6.4 Multi-Layer Representation .. 91
6.5 Background Layer Postprocessing and Mesh Generation 95
6.6 Automated Texture Mapping.. 100
6.7 Model Optimization for Interactive Rendering... 103

7 Airborne Model Generation and Model Fusion.. 107
7.1 Resampling and DSM Generation from Airborne Laser Scans...................... 107
7.2 Airborne Model from the DSM .. 109

7.2.1 Processing the DSM.. 109
7.2.2 Textured Mesh Generation ... 111

II

7.3 Merging Ground-Based Models and Airborne Surface Mesh 112
8 Results... 115

8.1 Ground-Based Data Acquisition ... 115
8.2 Tracking .. 115
8.3 Global Localization Based on Aerial Images ... 119

8.3.1 Edge Map Computation .. 119
8.3.2 Localization by Maximizing Congruence... 121
8.3.3 Monte Carlo Localization ... 122

8.4 MCL Based on Airborne Laser Scans .. 125
8.5 Facade Model Generation ... 130
8.6 Airborne Modeling.. 139
8.7 Model Merging ... 141
8.8 Performance and Complexity ... 144

9 Summary and Conclusion ... 147

 III

Table of Symbols

θ yaw angle

n scan index

Sn scan

υ scan direction angle

sn,υ scan point

Q quality of match

ψ∆ angular spacing of scan measurements

TV
r

 translatory speed

TΩ angular speed

c congruence coefficient

π pose state

bel belief probability density

at action data

ot observation data

wi normalized importance factor

dcrit critical distance

γ split depth

IV

 V

Table of Abbreviations

2D Two-dimensional

3D Three-dimensional

API Application Programming Interface

CAD Computer-Aided Design

CCD Charge Coupled Device

DSM Digital Surface Model

DTM Digital Terrain Model

GPS Global Positioning System

ICP Iterative Closest Point

INS Inertial Navigation System

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR Light Detection and Ranging

LOD Level of Detail

MCL Monte-Carlo Localization

mrad milliradians

RAID Redundant Array of Inexpensive Disks

RANSAC Random Sampling and Consensus

VRML Virtual Reality Modeling Language

VI

 VII

Table of Figures

Figure 2-1: 3D building facade model based on a triangular mesh; (a) mesh displayed as

wireframe, (b) same mesh texture mapped with camera images 6
Figure 2-2: Stereo Vision setup .. 10
Figure 2-3: Distance measurement by time-of-flight.. 12
Figure 2-4: Time-of-flight measurement in a 2D laser scanner; both transmission and

detection path is deflected by a rotating mirror. ... 13
Figure 3-1: System setup .. 22
Figure 3-2: Data acquisition system ... 24
Figure 3-3: Sensor unit.. 24
Figure 3-4: Processing unit ... 26
Figure 3-5: Schematics of data acquisition system... 27
Figure 4-1: Attitude described by yaw, pitch, and roll angle. (Source: NASA) 30
Figure 4-2: Two horizontal laser scans taken at different times t0 and t1. The vehicle has

moved between t0 and t1; accordingly, the objects visible in the scan have shifted in
the scanner’s coordinate system.. 34

Figure 4-3: Scan matching of two scans taken at different times t0 and t1: (a) second scan
overlaid on top of the first scan; (b) determining necessary relative rotation; (c) after
applying rotation, determing necessary translation; (d) after applying translation, the
two scans match and the relative transformation (∆u, ∆v, ∆φ) between the scans is
determined... 34

Figure 4-4: Scan and its line segment approximation... 37
Figure 4-5: Local and global coordinate system... 37
Figure 4-6: Block diagram of quality computation... 38
Figure 4-7: Matching scan points and line segment approximation; (a) before and (b)

after match. ... 41
Figure 4-8: Computed path and overlaid horizontal scan points; the steps of the path are

indicated as arrows (gray). From the each position at the arrow tip a horizontal scan
has been taken, and all scans are drawn from this position. The square zoom clip is
examined in the next figures. .. 45

Figure 4-9: Alignment of scan points after adding different levels of Gaussian white noise
with a standard deviation σ∆φ to the rotation angle estimates ∆φi; the point alignment
decreases visibly for a distortion with σ∆φ > 0.01˚. .. 46

Figure 4-10: Alignment of scan points after adding different levels of Gaussian white
noise with a standard deviation σ∆u to the ∆ui estimates; the point alignment in
vertical direction decreases visibly for a distortion with σ∆u > 0.3 cm..................... 46

Figure 4-11: Alignment of scan points after adding different levels of Gaussian white
noise with a standard deviation σ∆v to the ∆vi estimates; the point alignment in
vertical direction decreases visibly for a distortion with σ∆v > 0.3 cm..................... 47

Figure 5-1: Path obtained by adding relative steps overlaid on top of a digital road map.
During the first few hundred meters, the path follows the road map; the longer the
driving, the more the path separates from the map, and it is finally completely off
the real road... 49

VIII

Figure 5-2: Perspective shift for the 92-meter Berkeley campanile (Sather Tower) and
surrounding lower buildings ... 55

Figure 5-3: Edge map from aerial photo; (a) original aerial photo, and (b) edge map
obtained after Sobel filter.. 57

Figure 5-4: Digital Surface Model, displayed as a depth image....................................... 58
Figure 5-5: Edge map obtained from DSM with (a) Sobel filter, (b) proposed alternative

discontinuity filter... 59
Figure 5-6: (a) Original DSM, (b) estimated DTM, with some blank spots at building

locations .. 60
Figure 5-7: Edge image with (a) scan superimposed from pose (xa, ya, θa), with

c(xa, ya, θa) = 0.377; (b) at pose (xb, yb, θb), with c(xb, yb, θb) = 0.527, optimally
matching the airborne edge map ... 61

Figure 5-8: Path and its line segment approximation ... 63
Figure 5-9: Initial path, vector graph, and corrected path superimposed on the digital road

map (gray)... 65
Figure 5-10: Updating the believe for the x coordinate with motion data; (a) initial belief,

(b) action estimate with uncertainty, (c) new belief as the convolution if the two
probability densities .. 70

Figure 5-11: Updating the believe for the x coordinate with perception data; (a) initial
belief, (b) observation estimate with uncertainty, (c) new belief as the multiplication
of the two probability densities... 72

Figure 5-12: Set of particle representing the pose belief, superimposed on the aerial
image. In this visualization, the probability density is proportional to the intensity.77

Figure 5-13: Restricting parameter space to locations near roads. 78
Figure 6-1: Vertical scan points.. 81
Figure 6-2: Triangulated raw points; (a) front view; (b) side view. 82
Figure 6-3: Scanning setup and denotations ... 84
Figure 6-4: Scan geometry during a turn, (a) normal scan order for closer objects; (b)

reversed scan order for further objects.. 85
Figure 6-5: Scan points with reversed order at a turn... 86
Figure 6-6: Driven path; (a) before segmentation; (b) after segmentation into quasi-linear

segments.. 87
Figure 6-7: Scan grid representations; (a) 3D vertices; (b) depth image. 88
Figure 6-8: "Floating” vertices. .. 89
Figure 6-9: Laser measurement in case of a glass window .. 90
Figure 6-10: Main depth computation for a single scan n; (a) laser scan with rays

indicating the laser beams and dots at the end the corresponding scan points; (b)
computed depth histogram.. 92

Figure 6-11: Two-dimensional histogram for all scans of a path segment....................... 92
Figure 6-12: Separation into two scene layers; (a) foreground layer; (b) background layer.

... 93
Figure 6-13: Sorting additional points into the layers. ... 94
Figure 6-14: Background layer; (a) before and (b) after sorting in some additional points

from stereo vision and horizontal laser scans. .. 95

 IX

Figure 6-15: Processing steps for a depth image. The individual figures show: (a) initial
depth image; (b) background layer after removing invalid scan points; (c)
foreground layer segmented; (d) occlusion holes filled, and (e) final background
layer after filling remaining holes... 98

Figure 6-16: Generated meshes, (a) original mesh from triangulation of raw scan points;
(b) after applying the proposed foreground removal and hole filling procedure.... 100

Figure 6-17: Mesh triangles projected into camera images; (a) initial camera image; (b)
mesh triangles projected into the image, with some foreground and background
triangles projecting to the same image area (arrow); (c) foreground objects marked
white.. 102

Figure 6-18: Automatic texture atlas generation. Texture triangles from various pictures
are assembled to one single artificial image. One image has been prohibited for
texture mapping due to over-saturation of the camera; for the others, the arrows
illustrate the process of copying triangles... 104

Figure 6-19: Subdividing the mesh of a path segment into sub-meshes and generation of a
scene graph.. 105

Figure 7-1: (a) Raw scan points and (b) resampled DSM as gray image 108
Figure 7-2: Processing steps for DSM; (a) DSM obtained from scan point resampling; (b)

DSM after flattening roofs; (c) segments with RANSAC lines in white................ 110
Figure 7-3: Texture-mapped airborne model. ... 112
Figure 7-4: Removing triangles from the airborne surface mesh where ground-based

facades are available; (a) foreground (white) and facades (black) marked in the
DSM; (b) resulting mesh with corresponding facades triangles removed (white
arrows). ... 113

Figure 7-5: Steps to create blend triangles. Shown is a vertical cut through a facade mesh;
(a) initial airborne model; (b) triangles of airborne model removed and ground-based
model placed in the resulting gap; (c) blending both meshes with extruded triangles.
... 114

Figure 7-6: Creation of a blend mesh; (a) initial facade model; (b) facades extruded; (c)
"loose ends" adjusted to airborne mesh surface; (d) blend triangles texture mapped
... 114

Figure 8-1: Path computed with fixed subsampling factor of 10.................................... 117
Figure 8-2: Path computed using adaptive subsampling .. 117
Figure 8-3: Path computed by concatenating relative pose estimates obtained in the scan-

to-scan matching process, superimposed on top of the DSM................................. 118
Figure 8-4: Aerial image superimposed with digital roadmap (white)........................... 120
Figure 8-5: Edge map derived from aerial photo.. 120
Figure 8-6: Global pose by maximizing congruence. The figures show path and laser

scans superimposed on edge images for (a) original path; (b) path corrected by
maximizing congruence; (c) corrected path superimposed over original aerial image
... 121

Figure 8-7: Sets of particles (black) overlaid over aerial edge map (gray) (a) Initial
uniform distribution S0; (b) set S30 after 30 iterations of motion and perception; (c)
set S100 after 100 iterations of motion and perception. ... 122

X

Figure 8-8: Restricting particles to locations near roads; belief computed with (a)
N=200,000 particles without restrictions, (b) N=10,000 particles restricted within a
25 meter wide strip around the roadmap (black) .. 123

Figure 8-9: Scan points drawn for MCL-corrected path... 124
Figure 8-10: Digital Surface Model of Berkeley, encoded as gray image; the white

rectangle marks the downtown area shown in the next figure................................ 125
Figure 8-11: Edge map from DSM for downtown Berkeley area 126
Figure 8-12: Set of particles (yellow/red) overlaid over DSM (gray) 127
Figure 8-13: Global correction along the traveled path; (a) yaw angle difference between

initial path and global estimates before and after correction; (b) differences of x and
y coordinates before and after correction. In both diagrams, the differences after
corrections are small (curves close to the horizontal axis). 127

Figure 8-14: Entire traveled path superimposed on top of the DSM; (a) initial path from
scan-to-scan matching; (b) path corrected with MCL. ... 128

Figure 8-15: Horizontal scan points for corrected path superimposed on top of the DSM.
... 129

Figure 8-16: Assigned z coordinates and pitch angle ... 130
Figure 8-17: Entire path after split in quasi-linear segments. ... 131
Figure 8-18: Generated facade meshes, left side original, right side after the proposed

foreground removal and hole filling procedure. The classification for the visual
impression is “significantly better” for the first four image pairs, “better” for pair e
and “worse” for pair f. .. 132

Figure 8-19: Textured facade mesh without (top) and with (bottom) processing. 134
Figure 8-20: Hole filling (a) original mesh with holes behind occluding trees; (b) filled by

sorting in additional 3D points using stereo vision; (c) filled by using the
interpolation techniques of section 6.5 ... 135

Figure 8-21: Non-textured facade models for the entire path, overlaid on top of an aerial
photo. .. 136

Figure 8-22: Bird's eye view on the texture mapped facade models for the downtown
blocks .. 137

Figure 8-23: Close-up view on the ground-based facade models, seen from the backside
of an Addison Street facade. ... 137

Figure 8-24: Close-up view on the ground-based facade models, seen from Center Street.
... 138

Figure 8-25: Viewing the texture mapped model with a standard web-based VRML
browser, in this case Computer Associates’ Cosmo Player.................................... 139

Figure 8-26: Airborne model for downtown Berkeley; (a) original DSM directly
triangulated, (b) triangulated after DSM postprocessing.. 140

Figure 8-27: Airborne model for downtown Berkeley after texture-mapping with 12
aerial images. .. 141

Figure 8-28: Ground-based models and airborne surface mesh overlaid on top of each
other, without applying model merging steps. While the two meshes are registered
with each other, the coarse airborne triangles cover the high-resolution facade
models in numerous locations, e.g. where indicated by the white arrows.............. 142

 XI

Figure 8-29: Comparison of walk-thru view on facades from ground based versus
airborne acquisition; while the facade on the right street side originates from the
airborne surface mesh, it is on the left side replaced by the highly detailed ground-
based facade model. .. 142

Figure 8-30: Walk-thru view of the merged model .. 143
Figure 8-31: Virtual view from a building top of the merged model. 143
Figure 8-32: Bird’s eye view of the merged model. ... 144

 1

1 Introduction

The problem of capturing and displaying real-world objects has been addressed in many
ways. From the first paintings in stone-age time to modern digital cameras, two-
dimensional pictures have been the most important means to grasp and share a piece of
experienced reality, and these forms of visualization have been greatly extended with the
invention of movies as a series of images. However, pictures and movies cannot truly
reproduce the impression of a real world experience, because they are passive, i.e. one
can only re-view objects from a predefined pose or trajectory. This is in contrast to the
human desire to examine objects by turning them around or to explore environments by
moving in them without restrictions. In computer science, the field of virtual reality has
emerged to satisfy this need, providing a graphical 3D interface between computer and
user. Since the graphics capability of computer systems has increased by orders of
magnitude during the last decade, the availability of affordable rendering power has
opened the door for a variety of new graphics applications, and has at the same time
created an enormous interest in three-dimensional models of objects or environments.

In this context, the necessity for capturing three-dimensional (3D) models of urban
environments has been growing steadily during recent years. While 3D models, in
combination with a rendering system, enable the reconstruction of arbitrary views, their
usability extends far beyond the mere interactive replication of an environment; rather,
enhanced with all kinds of additional information, they are useful in a variety of
applications. In architecture and urban planning, the appearance of buildings in an
existing urban setting can be simulated before the actual construction, in order to verify
compatibility not solely based on human imagination. In computer gaming, the
immersive experience can be substantially increased if a game takes place in
environments familiar to the user, e.g. in his hometown, rather than in an artificial setting.
In the entertainment industry, movies are increasingly based on virtual 3D models,
providing special effects that are difficult if not impossible to obtain with other
technologies. The usage of 3D city models has for example enabled “Mission Impossible
II” (1996), “The Matrix” (1999), and “The Matrix Reloaded” (to appear 2003) to set new
milestones in the movie industry. And as an unfortunately recently emerging application,
3D models are used for simulations of urban disaster or terrorism scenarios. According to
Planet9, a San Francisco-based virtual reality company specializing in selling hand-made
3D city models, the Washington, DC and New York City models have been their most
heavily used ones in the aftermath of the September 11th terrorist attacks.

This list can be continued with many other potential applications such as 3D displays for
car navigation units, 3D city maps, and simulation of radio wave propagation for the cell
phone industry, all of which need accurate 3D city models. The requirements with regard
to the geometric level of detail and the photo-realistic appearance differ from application
to application. For a far-view fly-thru, it is sufficient to have a coarse approximation of
the building tops and the terrain, whereas for a close-up walk- or drive-thru, it is essential
to have a high-resolution model of the building facades. And while even the geometry
alone may already be sufficient for purposes such as the simulation of radio wave

2 Chapter 1 - Introduction

propagation, the photo-realism requirements demanded by visualization applications are
generally enormously high: persons familiar with an environment are extremely sensitive
to changes and do immediately notice any discrepancy between the virtual model and
known reality. It is by no means adequate for this purpose to utilize an artificial model,
simply composed of repetitive geometry and texture.

Hence, the problem of acquiring a sufficiently detailed and photo-realistic model of a city
has to be solved. Existing methods for model acquisition are complicated and time
consuming, and the lack of photo-realistic models at affordable costs and acceptable
acquisition time is prohibitive to the broad usage of virtual worlds. In the past, there have
been various attempts to create large scale city models in an automated or semi-
automated way from airborne view, either using stereo vision approaches on aerial or
satellite images, or, more recently airborne laser scans. Both approaches have the
disadvantage that their resolution is low, and more importantly, only the roofs of the
buildings are captured, but not the facades. This essential disadvantage prohibits their use
in photo-realistic walk- or drive-thru applications, which require an enormous level of
detail at ground level.

Previous approaches to acquiring highly detailed models from ground-based view,
however, are commonly still manual, e.g. based on entering coordinates from
construction plans, or at best semi-automated, e.g. using photos and geometric primitives,
which are combined to a model by manually selecting correspondences. None of the
existing approaches scales for an entire city, since it would typically take months to
create such a large model, due to the significant manual intervention. This process is not
only prohibitively expensive, but is also unsuitable in applications where the goal is to
monitor changes over time, for example detecting damage or possible danger zones after
natural disasters such as earthquakes, land slides or hurricanes, or documenting
construction progress for a building. In order to enable the broad use of urban virtual
reality, photo-realistic model acquisition has to become a task as simple as taking a
picture or recording a video, which can be done without sophisticated expert knowledge
in acceptable time.

In this dissertation, we will address the model acquisition problem by proposing an
innovative approach to capturing ground-based facade models of urban environments. In
this approach, the 3D geometry of a city is acquired using a combination of inexpensive
2D laser scanners, mounted on a pickup truck at a 90-degree angle towards each other,
and texture is acquired using a synchronized digital camera. This acquisition vehicle
moves at normal speeds on public roads, and since data is acquired continuously rather
than in a stop-and-go fashion, our method is extremely fast. The collected data is
processed offline, and 3D models of the building facades are generated completely
automatically. Additionally, we show that it is possible to merge these facade models
with data from airborne view, in order to create a complete 3D model, containing facades
as well as building tops and terrain shape.

Chapter 1 - Introduction 3

In this thesis, we show that our approach complies with the following key objectives:

• Automatism – no human intervention is necessary.
• Photo-realism – rendering the created building models yields images that are

visually pleasing and approach the quality of a photo.
• Speed – both data acquisition and automated model generation are extremely fast.
• Scalability – the complexity is linear and computation time increases only

proportional to the covered area.

1.1 Contributions of this Dissertation

For the various aspects to be solved in the context of automated 3D modeling, we employ
methods from different research areas such as mobile robotics, optical measurement
techniques, computer vision, and computer graphics. The interdisciplinary nature of
model acquisition and rendering requires the broad scope that this dissertation comprises.

Specifically, the main contributions of this dissertation are:

• Innovative data acquisition approach. We suggest a new approach capable of
acquiring detailed facade models at unprecedented speed, since data is acquired
continuously, rather than in a stop-and-go fashion.

• Development of a mobile acquisition system. Mounted on top of a pickup truck,
our acquisition system is equipped with 2D laser scanners and a digital camera.
All devices are synchronized, and we have developed real time software to handle
and time stamp the incoming data streams.

• Adaptation of indoor robot localization algorithms to outdoor environments.
In order to provide the level of localization precision necessary for the proposed
acquisition approach, we have adapted methods previously only utilized for
indoor mobile robots to our high-speed vehicle and the city environment. In
particular, the adapted methods are map generation, scan matching, and Monte
Carlo Localization.

• 3D processing algorithms. The different nature of our data requires new 3D
processing algorithms, since traditional methods of 3D scan processing are not
applicable. We have developed a framework of scalable algorithms for the entire
processing pipeline, addressing foreground removal, facade geometry
reconstruction, texture mapping, and optimization for rendering

• Registration and merging of ground-based and airborne models. We have
developed methods to register and augment the facade models obtained from our
innovative ground-based data acquisition with data from airborne view, in order
to obtain building tops, terrain shape, and hence a complete model of an urban
environment.

The developed methods and their results have been covered in publications and
presentations in international conferences: In [Früh et al., 2001], we have introduced our

4 Chapter 1 - Introduction

acquisition approach for the first time. The tracking aspect of our precise localization
approach is described in [Früh and Zakhor, 2001 a], whereas [Früh and Zakhor, 2001 b]
focuses on the global correction and registration in respect to a global map. Finally, [Früh
and Zakhor, 2002] details the 3D data processing and model generation.

1.2 Organization of this Dissertation

This thesis is organized as follows:
Chapter 2 gives an overview of background and related work in three-dimensional
model generation for architectural structures. Both automated and interactive methods are
summarized, and advantages and shortcomings are discussed. In Chapter 3, we introduce
our new model acquisition approach, and describe hardware and software that has been
developed for the data acquisition process.

A variety of new aspects and problems occur in conjunction with our new method. In
particular, it turns out that one of the most essential problems is the accurate localization
of the vehicle and its sensors, in other words the reconstruction of the pose during data
acquisition and the assignment to individual laser scans and camera images. Chapters 4
and 5 address this localization problem: Chapter 4 focuses on tracking the vehicle based
on relative pose estimates. These relative poses are obtained from scan-to-scan matching
of subsequent horizontal laser scans and concatenated to an initial acquisition path
estimate. In Chapter 5 we propose innovative methods to globally correct pose using
Monte-Carlo-Localization, a probabilistic localization approach recently developed in
mobile robotics. The initial path is corrected in respect to a global edge map, which we
derive either from aerial photos or from a digital surface model obtained from airborne
laser scans.

Chapter 6 is devoted to the completely automated offline processing of the vertical scans
and the camera images, and the reconstruction of a 3D facade model. We describe
methods of handling the large-size data efficiently, of identifying and removing
foreground objects such as trees, and of reconstructing geometric triangular facade
models. Furthermore, we devise algorithms to texture-map the architectural structures
and to optimize these models for interactive rendering. In Chapter 7, we describe the
usage of airborne laser scans and aerial images to create an airborne surface mesh
containing the parts missing in the facade models, such as rooftops and terrain shape. We
merge the complementary models to obtain a final complete model, suitable for both
walk- and fly-thrus.

In Chapter 8, we evaluate all proposed methods for a large data set of downtown
Berkeley. The results are shown and discussed, and the computational performance and
complexity is analyzed. Chapter 9 finally concludes this thesis with a summary and
suggestions for future work.

 5

2 Background and Related Work

In this chapter, we describe the background and context of this thesis and introduce terms
and concepts commonly used in the context of 3D model generation and rendering. We
also summarize technologies and existing approaches for 3D model acquisition and
analyze their advantages as well as their shortcomings.

2.1 3D Model Representation and Rendering

The problem of capturing and displaying real-world objects has captured human’s
interest since ancient time, from paintings and sculptures to photographs and movies.
Today, the advances in computer technology have started to overcome the restriction of
only passively viewing pre-recorded 2D images and have made it possible to provide
more realistic impressions by immersing into 3D dimensional worlds to be explored
interactively. In computer science, the field of virtual reality has emerged to satisfy this
need, providing a graphical 3D interface between computer and user. In order to enable
the immersion of a person in an environment, an interactive display is necessary, which
allows rendering, i.e. painting, of an object or environment from an arbitrary viewpoint
upon demand.

An object or environment can be defined by a geometrical model, which is, according to
the definition in the Oxford English Dictionary, “a representation in three dimensions of
some projected or existing structure, or of some material object artificial or natural,
showing the proportions and arrangement of its component parts”. While this
representation can be volumetric, such as polyhedral or voxel-based for applications such
as medical imaging or FEM simulations, it is usually surface-based for rendering solid
objects. In other words, for the purpose of visualization and rendering, a 3D model
contains the geometry and the visual appearance of its visible surfaces.

For the vast majority of models, surface geometry representation is based on triangles.
Defined by three vertices only, a triangle is the most basic 2D primitive, and all other
polygonal primitives, e.g. quadrilaterals, can be composed from them. To represent a
surface in 3D space, triangles are concatenated to a mesh, in which adjacent triangles
share vertices. While vertex coordinates and connectivity define the geometry, additional
attributes specify the surface properties and thus, in conjunction with a lighting model of
the environment, the visual appearance during rendering. The most important attributes
are surface normals, vertex normals, and material properties such as shininess,
reflectance, and color or texture. In the context of Computer Vision, texture means often
a small sample of a larger stochastic pattern, sufficient to describe the stochastic
properties. In the early days of Computer Graphics, when graphics memory was
exiguous, small texture pieces were used in a repetitive manner; however, since available
graphics memory and hence possible sample size have increased by orders of magnitude,
entire non-repetitive images can be used as texture instead of small pattern samples.
Therefore, in Computer Graphics, texture mapping is now commonly understood as
attaching an arbitrary 2D image to geometrical primitives, without making restrictions

6 Chapter 2 – Background and Related Work

about its content; essentially, it is “wrapping” an image around a geometric structure. In
order to make 3D models look photo-realistic, i.e. to make them (ideally)
indistinguishable from a camera snapshot, it has consequently become popular to use
real-world imagery as texture. Essentially, the image formation process in the camera is
inverted, and the picture’s color and texture information is back-projected onto the
geometry.

a) b)
Figure 2-1: 3D building facade model based on a triangular mesh; (a) mesh displayed as wireframe,
(b) same mesh texture mapped with camera images

In recent work, there have also been interesting attempts to introduce point-based instead
of triangular model representations. An example is Q-splatting [Rusinkiewicz and Levoy,
2000], in which the geometry and texture is represented by a set of 3D points, with
associated color and normal vector for each point. This approach appears promising for
cluttered structures that are difficult to approximate by smooth surfaces, and hence result
in inadequately large triangular meshes. However, for most objects and in particular for
buildings, smooth or planar surfaces are common, thus making triangle-based
representations far more efficient than point-based representations.

Using an explicit 3D model is not the only possibility of providing a 3D real-world
impression to a human: in fact, the virtual replication of an environment for a walk-thru
can be reduced to simply showing the correct image for a given position. Accordingly, a
second popular visualization approach, which generally relies more on acquired images
than on 3D geometry, has been developed. In this approach, called image-based
rendering, it is assumed that correct texture distracts the eye from geometric
imperfections if a viewpoint is sufficiently close to the one from which an image was
taken. To render a view, appropriate images from nearby locations are retrieved from a
large database and combined via warping and mosaicing. While this step typically
utilizes 3D information, it is sufficient to possess only very approximate knowledge
about the 3D geometry of a scene. In a full virtual reality setup, it is possible to create a
true 3D impression for a human user even without any knowledge about its 3D content
by showing each eye a slightly different view of the scene. Although humans perceive a

Chapter 2 – Background and Related Work 7

3D world, they observe in fact only a pair of two-dimensional images. It is the brain that
combines the two images to a 3D impression by exploiting small disparities due to the
different viewpoints in a process called stereo vision.

Since they are capable of including each detail of a scene without a merely impossible 3D
reconstruction, image-based rendering techniques are able to achieve an impressive level
of photo-realism. The visual quality of image-based rendering outperforms model-based
rendering, if both (a) acquired images close to the rendered view are available, and (b)
the object geometry is too complex to be properly represented by a geometric model, e.g.
in case of trees or panoramic views over a large urban area. The main reason is that for
these situations, model-based techniques explode in their necessary number of polygons,
while the average display size of a polygon on the screen can fall below few pixels. In
contrast, image based rendering has inherently an appropriate ratio between source image
size and rendered size, since it performs roughly a one-to-one copy to the screen.

However, the various types of image-based techniques have similar severe drawbacks
that prohibit their use for a wide range of applications. First, the data size is orders of
magnitudes larger than for model-based techniques, as information is stored multi-
redundantly, limiting either the size or resolution of an object or environment drastically.
Second, image query and retrieval in real-time is a non-trivial, not yet solved problem.
Third, the rendering and warping techniques are slow, since there is currently no
hardware support, so that rendering has to be performed offline rather than interactively.
One of the few attempts to implement a truly image-based rendering engine was the
creation the PixelFlow supercomputer [McAllister et al., 1999] in order to obtain
interactive frame rates, but there is currently no system for normal consumer PCs.
Additionally, for many applications such as urban planning, simulations and games, it is
inevitable to possess explicit information about the actual geometry of objects or
environment in order to perform computations or add artificial components correctly.
Only a geometric 3D model is capable of fulfilling these needs.

Furthermore, model based approaches have the advantage of being widely supported by
various tools, hardware, and software standards. Starting from 1996, affordable hardware
support for rendering textured triangular meshes on standard PCs has begun with the
release of the first 3Dfx Voodoo chips set and 3D graphics card. Since then it has been
advancing in increasingly shorter product cycles, mainly fueled by the gaming industry.
While the first graphics cards had not more than 2 MB onboard memory, common
gaming cards as of 2002 have 128 MB memory, massively parallel architectures, and
various hardware-accelerated rendering features such as fog, realistic water surfaces,
shading and many others, at rendering speeds of more than 100 million triangles per
second. The operating principle for all 3D graphics cards is z-buffering, where for each
pixel on the screen not only color but also an assigned depth z, i.e. distance from the
viewing screen, is stored. If rendering of a new 3D triangle is requested, a pixel is only
overwritten by the new triangle’s pixel, if its depth is lower. Thus, occlusion is directly
handled by hardware. OpenGL, originally developed by SGI, and DirectX, developed by
Microsoft, provide convenient APIs to the graphics hardware. With these APIs, it is

8 Chapter 2 – Background and Related Work

simple to use the extensive hardware capabilities without detailed knowledge about the
complex low-level processes. For example, triangles can simply be described by their
vertex coordinates, translations or rotations by matrices, view points and light sources by
position, and material properties by a set of intuitive parameters.

With the Virtual Reality Modeling Language (VRML), a powerful standard for
describing and storing 3D models independently from the computer platform has been in
existence since 1994. VRML offers not only the possibility of describing various
geometry primitives and surface properties, but also scene graphs, handling of multiple
levels of details, instantiation, diverse lighting sources, background scenery, and 4D
animation. With the VRML97 standard, it also has an extensive interface to JAVA
programs and functions for event handling. VRML models can be interactively viewed
with web-based VRML-browsers such as Cosmo or Cortona Player, available at no costs
as plug-ins for the standard web-browsers Netscape Navigator and Microsoft Internet
Explorer. As a result, 3D models can easily be transferred to and viewed by a large
audience. This is an increasingly important advantage for commercial applications such
as Internet shopping, where customers prefer to inspect a product virtually before buying,
and virtual walk-thrus, where a potential city visitor or hotel guest wants to explore the
settings of the environment before booking.

Although hardware limits have been more and more extended, it is still a non-trivial
problem to handle extremely large models with millions of triangles and many texture
images, since such models can exceed the graphics memory by orders of magnitude.
Typically, most parts of a large model are not visible from a given view point, or they
occupy only a small space on the screen. Therefore, sophisticated techniques have been
developed to budget the available graphics memory and select which parts of the model
have to be loaded at which resolution. Typically, a complex model is structured into
submodels, and during rendering a selection process called culling is applied. Popular
methods are frustum culling to eliminate submodels not in the field of view, distance
culling to cut off remote parts, and visibility culling to eliminate certainly occluded
submodels. The more culling methods are combined, the less operations are for the
graphics card to be performed. An equally important step, which has to be done during
model generation, is creating multiple resolutions for each submodel called levels-of-
details (LODs). As the name implies, lower LOD represent a given geometry by a
smaller amounts of triangles, hence omitting more and more details while reducing mesh
complexity. As an example, in its highest LOD, a house facade is represented by
thousands of triangles and contains small features such as house entrances, windows and
mailboxes, eventually even the brick structure. In its lowest LOD, however, a facade can
be simply represented by a rectangle. The model structure and the hierarchy of submodel
are defined in a scene graph, and the renderer uses this graph for both culling and
determining which LOD to show under which conditions. Most commonly, the selection
of the appropriate LOD depends on the distance of the object to the current viewpoint.
These sophisticated techniques make systems like VGIS possible, [Ribarsky et al., 2002],
which enables browsing Gigabytes of 3D terrain and urban data interactively.

Chapter 2 – Background and Related Work 9

2.2 Acquisition of 3D Models

Coincident with soaring rendering possibilities, there has been a continuously increasing
demand for acquiring 3D models of existing objects and environments. A tremendous
amount of work has been focusing on capturing small-size objects such as figures,
statues, heads, and work pieces for virtual reality or reverse-engineering purposes. Such
objects are captured in controlled laboratory environments, from known sensor positions,
and under stable acquisition conditions. All sides can easily be accessed and the small
size of those objects makes handling the acquisition simple. Acquiring detailed 3D
models of buildings in outdoor environments is generally harder, since objects are large
and immobile, and hence it is the sensors that have to be moved. Additionally, the
environment cannot be controlled, since it is shared with people, and lighting conditions
change dependent on time and sensing direction, since the light source is the sun.
Aggravating is also the presence of many “uncooperative” materials such as glass and
shiny steel, whose reflecting characteristic is problematic for most sensor types. Hence,
the suitability of model acquisition techniques is different for objects and for
environments, and in the following overview over existing methods we focus on
applications to create 3D models of architectural structures.

The most basic and most time-consuming approach for obtaining a 3D model is to enter
coordinates manually, e.g. from CAD drawings, construction plans, or survey
measurements. This method is reliable and easy to apply without additional equipment,
and large libraries of hand-made VRML models on the web witness its widespread use
throughout the last years. Artificial objects or worlds are generally hand-made, for
example for the large gaming market, and the demand for convenient editing and
manipulation has lead to the development of an endless list of powerful 3D editor tools
such as 3DstudioMax, AutoCAD, MultiGen Paradigm, Maya or Rhino. Using theses
tools, modeling real-world scenery is the same process than creating an artificial model
that resembles the real-world original. One of the early attempts to facilitate manual
editing for large-scale architectural structures was suggested in [Bukowski and Séquin,
1995], in the context of the Soda-Walkthru project [Séquin et al, 1993]. In this project,
indoor and outdoor appearance of a building was simulated before construction. Based on
entering floor coordinates from construction plans, a 3D model was constructed and its
consistency verified. For urban simulations, [Chan et al., 1998] manually created a large
model of downtown Los Angeles using the MultiGen editor, based on plans from the
urban planning department and by marking and extruding building footprints in aerial
photos. In order to make the model appear photo-realistic, they manually texture-mapped
the building tops with the aerial photos and the facades with pictures taken from ground
level with a digital camera. Similarly, [Heller et. al., 1996] developed a system that
facilitates the input of multiple types of data such as ground plans, terrain elevation maps,
and aerial images. However, construction plans are neither always available nor always
identical with the actual building, and manual editing is potentially error prone and time
consuming, especially if a high amount of details is desired.

10 Chapter 2 – Background and Related Work

To overcome these drawbacks, automatic or semi-automatic approaches have been
developed, using sensor data for the reconstruction process in order to achieve a higher
level of automation. Additionally, sensor data allows capturing true shape, since resulting
3D models are based on real measurements of the actual geometry instead of idealistic
plans. Cameras and laser scanners are by far the most common devices used for model
reconstruction. While every method of obtaining photo-realistic models relies on camera
images for texture acquisition, geometry can be obtained using either cameras or laser
scanners, with the latter method becoming increasingly popular. In this case, there is an
additional registration problem between laser-based geometry and camera-based texture,
which does not occur if geometry is reconstructed from camera images alone.

2.2.1 Cameras and Stereo Vision

Geometry reconstruction using cameras is generally based on stereo vision. A camera
performs a perspective projection of a 3D structure onto a 2D image, and each image
pixel corresponds to a direction in 3D space, i.e. a ray originating in the camera’s center
of projection. Since all points along this ray project to the same pixel, it is not possible to
reconstruct 3D coordinates given solely this one pixel. The principle of stereo vision is to
use (at least) two cameras observing the scene from different viewpoints, to identify
corresponding pixels and thus rays from their center of projection, and to compute a 3D
vertex as rays’ intersection, as shown in Figure 2-2. This principle is also known as
triangulation, since the 3D vertex and the cameras’ centers of projections form a triangle.
The distance between the cameras is called baseline.

Figure 2-2: Stereo Vision setup

2

1

2

If the scene is static, it is possible to use only one single camera an
from different positions subsequently. In the plain stereo vision appro
for both has to be known precisely; however, there are algorithms suc
motion which can estimate both geometry and acquisition poses for a

Camera
Camera
3D vertex

Image 1
 Image 2
Pixel 1
 Pixel
d take two images
ach, capturing pose
h as structure-from-
series of images.

Chapter 2 – Background and Related Work 11

Although the idea of stereo vision is simple, there are two major problems in the practical
implementation. The first problem is to exactly determine the direction in 3D space
corresponding to a pixel, generally known as the calibration problem. For a given pixel,
the direction does not only depend on the extrinsic camera parameters position and
orientation, but also on intrinsic camera parameters such as lens distortion, image center
and CCD chip pixel size, which are due to the non-idealistic nature of technical cameras.
The internal parameters depend on the underlying camera model; in photogrammetry, the
most accurate form of stereo vision, the camera models are complex and utilize many
parameters. Calibration has been a well-studied problem during the last decades. For
computer vision applications, relaxed camera models are used, modeling in particular the
lens distortion as simply radial. Popular calibration methods are Tsai’s camera calibration
[Tsai, 1987], with five intrinsic parameters, and Zhang’s “easy camera” calibration
[Zhang, 2000], with six intrinsic parameters. Both methods are semi-automatic and use
calibration objects with known geometry in order to compute the parameters. The
obtained calibration accuracy is satisfactory for the vast majority of applications;
however, once the camera is calibrated, its settings must remain unchanged. Besides
these approaches, a new class of auto-calibration methods has been developed, which
estimate the camera parameters during camera motion. These approaches have the
advantage that no pre-calibration has to be performed, and as such, even sequences
recorded with completely unknown parameters can be interpreted. Furthermore, camera
parameter settings, in particular the focal length, are allowed to change during a
sequence. The calibration accuracy, however, is lower than for pre-calibrated cameras.

The second, much harder problem is to identify which pixels correspond to each other in
the two images, generally known as the correspondence problem. In semi-automated
approaches, the pixel correspondences are usually defined by the user. For fully
automated approaches, there are various algorithms as how to find correspondences.
Typically, a first step is the usage of image processing algorithms to detect features such
as corner points in both images. To find the correctly corresponding pairs, correlation can
be applied to match the two images in a window around the feature points; this requires
similar perspective and thus a small baseline, resulting in a high sensitivity to inaccurate
feature location. There exist a variety of methods to reduce search space and hence
accelerate the search process. For example, the correlation can be reduced to a 1D search,
since the 3D location of a feature is along one line defined by the pixel in the first image,
and hence all possible matching locations must also be along a line in the second image,
called epipolar line. A rectification process can warp the images so that all epipolar lines
are parallel to the horizontal image axis. Once the correct correspondences are found, the
3D location of the feature can be determined by intersecting the pixel rays.

The problem of finding correspondences is the most crucial part in stereo vision. If
features are absent, for example on a white building wall, it is not possible to determine
its shape with stereo vision methods. Hence, the spatial distribution of features depends
highly on the scene and is typically non-uniform, resulting in large gaps with no 3D
information. Problematic is also the opposite case, when too many features are present
and it is not possible to identify and assign correspondences correctly, for example for a

12 Chapter 2 – Background and Related Work

wall with a repetitious brick pattern. In this case, stereo matching results are
unpredictable, many obtained vertices are erroneous, and extracting geometric primitives
is difficult. A significant improvement for such situations has been the usage of the
RANSAC algorithm [Fischler and Bolles, 1981] to find geometric structures such as
planes, yielding correct result even in presence of many outliers. Due to its robustness, it
has become increasingly popular for computer vision applications during recent years.

2.2.2 Laser Scanners

The usage of laser light (Light Amplification by Stimulated Emission of Radiation) for
distance measurement purposes has become extremely popular with the spread of the
laser diode as an inexpensive source. With laser diodes, it is possible to create
monochromatic light rays with extremely low beam divergence, switchable at Gigahertz
speeds by electric signals. Dependent on the intended range, different properties of the
laser light are exploited for distance measurement. Traditional interferometry achieves
sub-nanometer resolution, and auto-focus methods achieve sub-micrometer resolution
over millimeter range. For sub-meter and lower meter range, e.g. for scanning small
objects such as figures or persons, triangulation is the most common measurement
principle. Using the same idea as in stereo vision, a laser point or line sweeps over an
object, while the scene and the backscattering light spot is captured with a calibrated
camera, placed at a baseline distance apart from the laser. The object distance is
determined in the triangle formed by the known baseline and the two base angles of
camera and laser.

For far-range applications, starting from few meters up to many kilometers, the time-of-
flight principle is used. Commonly, in reference to the well-known RADAR, this
principle is also called LIDAR (Light Detection and Ranging), especially in the context
of remote sensing. As illustrated in Figure 2-3, the time between sending a laser signal to
an object and receiving its backscatter is measured, and the distance is computed over the
known speed of light.

Backscattered
light

Photodiode

Pulse laser

Object

A laser scanne
which the light
Time difference ∆t
Figure 2-3: Distance measurement by time-of-flight

r combines such a distance measurement unit with a deflection unit, in
 paths are deflected by a rotating mirror and directed to various locations

Chapter 2 – Background and Related Work 13

on the object, as shown in Figure 2-4. The laser beam sweeps over the surface and scans
the object. As the motion of the mirror is controlled and known precisely, a distance
value and its corresponding mirror angle can be combined to compute a scan point, i.e. a
vertex in the scanner’s coordinate system. In a 2D scanner, the deflection unit contains
only one rotating mirror; the laser beam sweeps along a line and all scan points are in a
scanning plane orthogonal to the axis of rotation. In a 3D laser scanner, where the
deflection unit contains either two rotating mirrors or one mirror with two degrees of
freedom, the beam is deflected in two directions, and scan points are received in a row-
column fashion. While the resulting scans are generally referred to as 2D scans and 3D
scans, they are in fact rather 1½ D and 2½ D representations, since the laser light does
not penetrate surfaces and is not able to capture any occluded structure.

 Rotating

mirror

Backscattered
light PhotodiodePulse laser

Object

Figure 2-4: Time-of-flight measurement in a 2D laser scanner; both transmission and detection path
are deflected by a rotating mirror.

Since the speed of light is high, the time measurement has to be extremely precise,
requiring high bandwidth for transmitting laser diode, receiving photo diode, and the
entire system. Determining the time of flight is either done directly by transmitting a light
pulse and counting a clock signal until the pulse’s reflection is received, or by amplitude-
modulating the laser light and exploiting the phase shift between transmitted and received
signal. Commercial scanners utilize sophisticated distance measurement devices, which
consider various hardware signal response times to achieve time measurement accuracy
in the sub-nanosecond range, thus equaling a distance accuracy of a few centimeters. The
amount of backscattered light obviously depends on the surface. For example, the
reflectivity of a black surface is only about 5% of the reflectivity of a white wall. It also
depends with 1/r2 on the distance r to the object, since the backscattering (ideally) returns
the light in the entire half sphere. Hence, the detection limit of the optical receiver limits
the range of the distance measurement, in contrast to passive light sensors such as
cameras. Additionally, the laser beam divergency is finite, yielding a light spot size
increasing proportionally to the distance. Beam divergency can be substantial and
depends on both the desired laser safety class and the intended application. For security
applications, it is desired that there are no gaps between subsequent scan points, so that
the scanner detects every approaching object. For measurement applications, usually a
small spot size is desired in order to avoid an averaging effect over a large surface area.
The SICK LMS scanners that we use in our approach were originally mainly developed

14 Chapter 2 – Background and Related Work

for security applications; their relatively large beam divergency of about 15 milliradians
results in a spot diameter of 1.2 meter at the maximum range distance of 80 meters. If
there are multiple distances within the laser spot, e.g. if the spot hits two object at slightly
different distances or a wall under an oblique angle, the shape of the backscattered pulse
is a mixture. In this case, the resulting distance value is potentially inaccurate or
erroneous.

In the following sections, we will give an overview over existing 3D modeling
approaches based on camera images and/or laser scanners. For this overview, it is
reasonable to distinguish between ground-based and airborne data acquisition and
modeling strategies, since the two scenarios differ substantially in image perspective,
resolution, occlusion problems, and amount of acquired data.

2.2.3 Model Generation from Airborne View

The use of remote sensing data, i.e. aerial images or airborne laser scans, has been
investigated in several 3D modeling approaches. Since aerial images are widely
available, building reconstruction based on stereo matching has been of high interest in
the last decade for both civilian and military purposes. Examples for automated and semi-
automated approaches for building reconstruction can be found in [Gruen et al., 1995]
[Frere et al. 1998], [Huertas et al., 1999], [Baillard and Zisserman, 1999], [Förstner,
1999], [Kim et al, 2001, [Brenner et al., 2001], and [Vestri and Devernay, 2001]. The 3D
modeling process can be distinguished into building detection, structuring, and
reconstruction steps.

Most difficult are the first two steps: detecting a building and determining its outline and
structure. Once the dimensions are known, the geometric reconstruction based on stereo
matching is rather straightforward, e.g. it can be computed automatically by image
correlation with a window according to the building shape. Completely automated
approaches attempt to extract building shapes in a intensity-based segmentation process,
and most commonly, a priori knowledge about building shape is assumed, e.g. by making
strong restrictions about possible architectural structures. Despite these efforts,
completely automated building extraction based on images has not yet led to acceptable
models, and reported success rates generally refer to very specific conditions. It has been
noted by various authors that fully automated approaches cannot be expected to deliver
completely satisfying results in the near future, due to the enormous variety and
complexity of architectural structures.

Semi-automated approaches require manual steps by an expert user, e.g. the selection of
feature points or building outlines. Typically a model resolution in the range of one foot
to one meter in the horizontal directions can be achieved from airborne view, whereas the
vertical precision depends on the baseline of the images and is generally lower. These
numbers, however, do not tell the entire truth: only the objects selected in the labor-
intensive manual or error-prone automatic structuring process appear in the final model.

Chapter 2 – Background and Related Work 15

In semi-automated approaches, objects are typically simply omitted due to the limited
labor time. In automated approaches, however, it can also occur that actually non-existing
structures appear in the model, e.g. if the segmentation process is too “generous” in
declaring image areas as buildings. Hence, the difference between real world and model
can be quite substantial.

An alternative is the usage of airborne laser scans, which has become increasingly
popular in recent years, due to enormous advances in technology. A city is scanned from
airborne view with a far-range 2D scanner mounted on a plane, and from the obtained
scan points a Digital Surface Model, i.e. an array of regularly spaced altitude samples, is
created. We give an overview over previous work in Chapter 7, where we also suggest
the usage of airborne scans to complete ground-based models.

2.2.4 Model Generation from Ground-Based View

The data acquisition from airborne view can obviously neither capture detailed facade
geometry nor facade texture, hence making models only suitable for virtual fly-thrus, not
for walk- or drive-thrus. Consequently, there has been a variety of approaches that
attempt to acquire models from the ground-based perspective familiar to humans. For
indoor environments, ground-based modeling includes capturing room interior as well as
walls and ceilings. For outdoor environments, ground-based modeling mainly equals
modeling the facades of buildings, and thus ground-based models are almost completely
complementary to airborne models.

Capturing ground-based data of large areas requires the acquisition system to be moved
within the environment, and the used sensor platform inherently affects speed and
accessible area for the capturing process. It is also generally necessary to determine the
position of the devices either directly during data acquisition or in a postprocessing step.
The most flexibility is offered if devices are handheld and can be moved freely in all six
degrees-of-freedom, but in this case pose tracking is difficult since no motion restrictions
apply. Many sophisticated acquisition systems are too heavy to be carried by a human
over longer distances, and therefore in most previous work, capturing devices have been
mounted on wheel platforms such as trolleys, cars, and robots, inherently constraining
motion mainly to the degrees of freedom given by the ground surface. The usage of
mobile robots as acquisition platforms is quite common, since mapping and localization
are key issues in robotics. One of the advantages of robots is that the exploration of
dangerous environments, e.g. mine fields or hostile areas, can be done remotely without
putting humans at risk. It has been envisioned that using autonomous rather than remote
controlled mobile robots could automate not only the model reconstruction, but also the
entire data acquisition process. However, while the general idea is striking, practical
implementation has proven to be difficult. Particularly outdoor environments are
extremely complex, and mobile robots are far from being reliable enough to explore an
entire city autonomously. Additionally, mobile robots are slow in comparison to cars,
which are capable of traversing even large cities entirely within few hours.

16 Chapter 2 – Background and Related Work

Similar to the airborne model construction, there have been popular semi-automated
approaches to image-based modeling. The most prominent one is Debevec’s “Facade”
approach [Debevec et al., 1996], which is the source of the commercial software
packages Canoma and ImageModeler, and has been utilized to create the photo-realistic
building models for the “Campanile Movie” and “The Matrix Reloaded”. Only a small
set of images taken from different viewpoints is necessary to construct a model. For each
object to model, the user first defines the underlying simple geometric shape such as a
box or pyramid, and marks the corresponding edges in the images. Then, the algorithm
determines the actual dimensions by minimizing the edge deviation in the images,
resulting in a polygonal representation of the geometry. As an additional byproduct the
camera positions are obtained, and during rendering the texture is taken from the image
most similar to the viewing perspective. Due to this view dependent texture mapping,
Debevec’s work is often referenced as an example for image-based rendering, although it
is in fact rather a hybrid approach. As demonstrated in the “Campanile Movie”, it is
possible to obtain surprisingly realistic looking results with this technique, though at the
cost of substantial manual interaction. A variation of this idea towards more automatism
can be found in [Cipolla et al., 1999], making more restrictive assumptions about
architectural structures such as orthogonality and parallelism. Similarly, [Dick et al.,
2001] and [Werner and Zisserman, 2002] propose extensions using additional cues such
as vanishing points and texture to find correspondences for wide-baseline stereo
matching. Using robust RANSAC methods, planar patches are extracted from the
unorganized and partially erroneous point cloud obtained from stereo matching. The
given examples, however, refer to single buildings with rather simple structure and
clearly visible vanishing lines, and neither occluding foreground objects nor extended
glass windows were present in the scenes.

Other more automatic approaches use video streams as dense series of images and
structure-from-motion to recover geometry. [Faugeras et al., 1998] and [Zisserman et al.,
1999] were able to track features over multiple frames and managed to recover 3D points
and lines based on this multi-view stereo vision. To construct a polygonal model from the
sparse 3D vertices is by no means trivial, and Faugeras’ approach required some manual
intervention to fit planes to the 3D vertices. Using RANSAC, Zisserman extracted planes
automatically, though again for a scene of low complexity. As Faugeras states, neither
theory nor technology are ready yet for fully automated modeling from image sequences.

Besides the issues of detecting and correctly identifying features across multiple images,
the resolution and the noise sensitivity for determining 2D features and hence 3D vertices
pose a hard problem for image-based approaches. Especially for video data, recovered
poses show a drift-like behavior over multiple frames due to the low resolution, and
closing loops does not lead to consistent models, unless cross-image verification is
performed. This comes usually at the cost of O(n2) computation complexity with the
number n of frames, and imposes hence severe scaling limits for the length of and image
sequence. An innovative approach to a more accurate image-based reconstructed has
been developed in the MIT city scanning project [Teller, 1998], [Antone and Teller,

Chapter 2 – Background and Related Work 17

2000]. A cart, equipped with a high-resolution camera on a pan-tilt unit and various
positioning devices is moved to several locations. At each, the camera tilts and pans,
taking multiple images from the entire half sphere. In a mosaicing process, these images
are combined to a spherical image, thus creating an artificial fish-eye view with an
unprecedented resolution of tens of megapixels per image. Since this image has a
maximal possible effective field of view at a high resolution, it is possible to estimate
features and vanishing lines accurately, enabling to estimate pose in respect to other
spherical images precisely and create a network of mutually referenced images. However,
while camera pose estimation is comprehensive, this approach has not yet solved
essential general drawbacks of image-based model reconstruction such as the irregular
density of 3D samples and the problem of creating a model from those samples. Also,
acquisition speed is limited since data has to be collected in a stop-and-go fashion,
resulting in several days acquisition time for an entire city.

[Kawasaki et al., 1999] suggest an interesting approach, which uses video only for
texturing an already existing digital model, e.g. obtained from semi-automatic airborne
stereo matching. While driving in a city with a car, a video stream is captured and
processed offline, in order to track the vehicle and fit the video images as texture on the
model facades. Building outlines are found as vertical cuts, and block matching is used to
estimate velocity. A coarse depth map of objects in the video stream, which is at least
sufficient to discriminate intersections, is obtained by exploiting parallax effects. With
this information extracted, the video stream can be matched with the model. This
approach is remarkable since it is car-based and as such potentially capable of covering
an entire city area in acceptable time. However, a pre-existing geometric model is
required, and the authors note that foreground objects cause errors in both the matching
process and the texture usage. Additionally, it can be expected that the coarse geometry
derived from airborne view differs substantially from the actually visible geometry at the
ground level.

An alternative is to acquire this ground-based geometry by laser scanners. Three-
dimensional vertices acquired by laser scanners are more reliable, accurate and dense
than those from stereo vision, and in addition, measurements usually come in a regular
grid shape. In previous work, 3D laser scanners have been used, providing directly a grid
of 3D vertices from a single view. Typically, however, one single view is not sufficient
for reconstruction, especially not for large-scale objects such as a building. If multiple
views have to be combined to reconstruct an object, the regular grid structure inherent to
the scanner is not preserved. Nevertheless, the density of 3D information is more uniform
than for stereo vision and contains far less outliers, thus facilitating surface extraction
significantly. While some scanners provide a reflectivity value for each scan point, they
do not provide color or texture information, thus making the additional use of a camera
for creating photo-realistic models inevitable. Hence, the additional problem of
registering camera images and geometry has to be solved. In a nutshell, the typically
addressed problems in laser-based model reconstruction are registration and merging of
multiple views to one consistent representation, the subsequent reconstruction of a
polygonal model, and finally the registration with camera images and texture mapping.

18 Chapter 2 – Background and Related Work

Merging the scans is straightforward if the pose of the scanner is known precisely for all
views. However, in most scenarios is at best a coarse approximation of the actual pose
available, and in this case a registration of the scans is necessary. Supposed the
correspondences between the scan points of two 3D laser scans are known, it is fairly
simple to compute the transformation parameters, for example by minimizing a square
distance function. The problem, however, is to obtain the correct correspondences,
preferably in an automated way. ICP (Iterative closest point, [Besl and McKay, 1992]) is
probably the most prominent approach for automatically matching and registering two
3D laser scans, under the preliminary that acquisition poses are a priori approximately
known. The ICP algorithm can be applied directly on the scans, without the need of
extracting features such as lines. Iteratively, a guess for preliminary scan point
correspondences is made by using a transformation independent rule, and then, based on
these intermediate correspondences, the relative transformation is computed and applied.
Besl and McKay suggested the closest-point rule, i.e. each scan point gets assigned its
closest point in the other scan. They could prove that the ICP algorithm always converges
monotonically to a local minimum, although it converges slowly in its plain
implementation. ICP and its variations or similar matching methods have been used in
many approaches [Pulli et al., 1997], [Yang and Allen, 1998], [Dorai et al., 1998], and a
good overview is given in [Rusinkiewicz and Levoy, 2001].

Complete systems that acquire both 3D range scans and camera images for indoor
environments can be found in [Sequira et al., 1996], [El-Hakim et al., 1998], [McAllister
et al., 1999], and [Yu et al., 2001]. In the first three approaches, a camera and a laser
scanner are mounted close to each other, so that both perspective and field of view are
almost identical. Sequeira et al. provide an early example for a robot-based system, in
which the entire chain from automated acquisition planning to registration, processing
and geometric model reconstruction is addressed, though obtained model quality is low.
El-Hakim et al. use a triangulation-based laser scanner and a camera, both registered by
selecting control points of an accurate large-scale calibration object. Multiple views are
registered by using dead reckoning as initial estimate and bundle adjustment for
refinement. McAllister et al. calibrate the camera by correlating the camera image with
the simultaneously captured laser reflectivity image; the registration of different views is
done manually. They have also proposed an image-based rendering scheme, so that the
typical polygonalization step is not required. Yu et al. placed reflective markers on the
walls of a large furnished room; laser scans and photos are taken independently from
each other, and automatically registered by detecting the markers in both modalities. Due
to the high scan point precision and image resolution, their approach offers stunning
models and furthermore the possibility of automatically segmenting and extracting
objects via a normalized-cut framework. However, acquisition time is exorbitant and
placing reference markers is not applicable to large-scale outdoor environments.

[Stamos and Allen, 2002] have equipped a mobile robot with a Cyrax 3D laser scanner
and a camera in order to acquire building facades. They extract lines as intersection of
segmented planar patches from the scans, and use these features to register range scans

Chapter 2 – Background and Related Work 19

with each other, and with vanishing lines from camera images. A set of solid volumes is
created by sweeping multiple range views of a building, and the final geometric model is
reconstructed as their volumetric intersection. Their approach is automatic and the
resulting building model appears photo-realistic. However, due to the slow 3D scanner,
acquisition time for a single building is already more than one hour, and hence their
algorithm does not scale to more than a few buildings, so that it is not suitable for
modeling an entire city. Furthermore, reliability issues apply for the complete
autonomous data acquisition with a robot, which the authors have suggested as future
work.

The reason for the more common usage of 3D laser scanners versus 2D scanners is that
they conveniently provide measurements over an entire frustum in a common coordinate
system, rather than only along one line; thus, each scan by itself is already a
comprehensive piece of information. Typically, 3D laser scanners are designed as high
precision measurement devices, and the high accuracy and density of 3D scan points
enable relatively precise automated feature extraction. Since the 3D scan matching
algorithms described above make it possible to register multiple scans and to determine
their relative 3D pose accurately, requirements for initial pose estimation accuracy are
rather low. This comes at the cost of a long acquisition time for an entire 3D scan, and
since the system has to stand still during this time, a slow stop-and-go fashion for the data
acquisition is required. Fast 2D scanners do not have this disadvantage, since acquisition
time for a 2D scan is orders of magnitude smaller. However, 3D matching is not
applicable to a set of given 2D scans in 3D space, and hence the scans can only be
correctly merged if the pose accuracy of the acquisition system is extremely high. Since
most previous approaches failed to provide this accuracy, they were unable to use the
time advantage that 2D scanners provide. To our knowledge, there are only two systems
that can acquire geometry with vertically mounted 2D scanners during motion, and are
thus similar to our approach. One is described in [Thrun et al., 2000] and [Hähnel et al.,
2001], where a Sick scanner is mounted on a mobile robot. It is aimed at creating and
updating a geometrical 3D map of the robot’s indoor or outdoor environment in real time,
using the robot’s own computational power. The real-time modeling capability is
remarkable and important in the given context of robot map building. However, while the
resulting models are suitable for robot localization and sufficient to provide an
impression for the environment’s geometry, the quality of both geometry and texture is
clearly not acceptable if photo-realism is required. And again, the usage of a mobile robot
limits the possible scale of the models. The other approach [Zhao and Shibasaki, 1999] is
car-based and hence capable of traversing large-scale city environment in acceptable
time. Geometry is captured using vertical IBEO laser scanners, and texture using a
vertical line camera. A localization unit containing GPS, INS and odometry sensors is
used to determine the vehicle’s position during data acquisition. Recently, concurrently to
us, Zhao and Shibasaki combined the vertical scanners with a horizontal 2D scanner
[Zhao and Shibasaki, 2001], in order to meet the high position accuracy requirements for
correctly merging vertical 2D scans. Assuming flat environments, they are able to track
the vehicle based on scan matching. Since they do not have a global correction or
accurate registration in respect to a global map, position discrepancies occur while

20 Chapter 2 – Background and Related Work

closing loops, and they do not consider a fusion with airborne models. The scope of their
work is approximately Chapter 4 of this thesis, with comparable results.

As a summary of the above approaches, we can note the following:

• The vast majority of existing approaches is not applicable to the scale to an entire
city, due to slow acquisition platforms, insufficient global registration, and
exploding computation times for larger models.

• Purely image-based modeling approaches are currently and in near future not
capable of reconstructing the various geometric structures occurring in a city in a
fully automated way.

• Approaches using combinations of 3D laser scanners and cameras have been
successfully applied for automated model generation, though requiring a slow
stop-and-go data acquisition, and only for indoor environments or limited outdoor
environments at the scale of one building.

• For combinations of 2D laser scanners and cameras, accurate localization in a
large-scale outdoor environment is a crucial problem and has so far prohibited the
use of these devices.

 21

3 Ground Based Model Acquisition

In this chapter, we propose a new experimental setup that is capable of rapidly acquiring
geometry and texture data of entire city areas at ground level. Data is acquired
continuously, rather than in a stop-and-go fashion, and is subsequently processed offline.
We further describe the implementation of an acquisition system that we have developed
based on this approach, mounted on a truck moving at normal speeds on public roads.

3.1 Drive-by Scanning - A New Acquisition Approach

As summarized in the previous chapter, purely image-based approaches tend to fail in
complex city areas, where occluding foreground objects, mirroring glass surfaces and
changing lighting conditions are common. At the same time, the price of commercial 3D
laser scanners, which are capable of providing true geometric measurements of the
facades, is extremely high, thus rendering them unaffordable for many applications.
Furthermore, a common disadvantage of existing ground-based city-modeling approaches
is that the acquisition time for an entire city is unacceptably long, since data is collected
in a stop-and-go fashion, and most acquisition platforms are not capable of querying large
city districts rapidly.

In order to overcome these limitations, we propose “Drive-by Scanning” as a different
approach to acquire 3D geometry and texture data of entire streets at high speeds. The
principal idea is to scan building facades continuously while passing by, using 2D laser
scanners instead of slow 3D laser scanners. Our experimental setup consists of two fast
2D laser scanners for geometry acquisition and a digital camera for texture acquisition,
both mounted on a rack on top of an automobile. As shown in Figure 3-1, both 2D
scanners are facing the same side of the street; one is mounted vertically with the
scanning plane orthogonal to the driving direction, the other one is mounted horizontally
with the scanning plane parallel to the ground.

22 Chapter 3 – Ground Based Model Acquisition

Figure 3-1: System setup

The devices are used as follows:

a) During vehicle motion, the vertical 2D laser scanner sweeps over the complete
building facades and captures their shape. This setup is similar to the handheld
color scanners that were common to scan documents in the early days of home
computing, before flatbed scanners became inexpensive and popular. One could
even regard this setup as an imaginary 3D scanner, for which the motion of the
vehicle performs the task of the tilt mirror. However, under normal traffic
conditions the vehicle’s motion is by no means uniform, and hence the scanning
planes are neither parallel nor equally spaced.

b) The horizontal 2D laser scanner measures the shape of the environment in a
plane parallel to the ground. Subsequent scans are therefore taken in the same
plane and overlap significantly. This scanner is used for the position estimation
discussed in the next chapter, and enables pose accuracy in the sub-centimeter
range.

c) The digital camera is used for capturing the texture of the facades. It is mounted
with its viewing direction along the intersection of the two scanning planes, so
that it faces directly the building facade.

d) The automobile, for example a pickup truck or a van, carries the sensors during
data acquisition and is the power supply for the entire system. The sensors are
mounted on top of a rack, so that obstacles such as cars and pedestrians in the
field of view can be overlooked and occlusion is reduced.

This setup has several advantages over previous approaches: First, since the facades are
captured while driving by, data is acquired in a fast continuous fashion rather than in a
stop-and-go mode. Second, an automobile as an acquisition platform can be driven on
public roads and under normal traffic conditions. With this mobile platform, it is possible
to traverse an entire city in a few hours completely. Third, this setup is cheap; the
enormous advantages of laser scanners for the geometry capture can be exploited without

Chapter 3 – Ground Based Model Acquisition 23

an expensive 3D scanner. As of 2002, full 3D laser scanner usable for city environments,
for example LMS from Riegl, Austria or Cyrix from Cyra, California cost 80,000$ and
200,000$, respectively. Additionally, if a differential GPS is used for determining global
position during acquisition, the costs increase by 10,000$ to 20,000$, although the
accuracy in city environment can be poor due to multi-path reflections. In contrast, two
2D laser scanners cost only around 15,000$ total, and are thus an orders of magnitude
less expensive.

The usage of a car enables high-speed data acquisition; however, it also results in some
limitations: this particular vehicle has to use roads, so that areas only accessible via
narrow passages, e.g. backyards or buildings along trails, cannot be captured. However,
neither sensor setup and nor the processing algorithms described in the next chapters
depend on a car as platform. If accessibility is crucial, different vehicles can be chosen;
e.g. a wheel chair, a boat or a helicopter could in principle be used as well. If a pickup
truck or one of the other mentioned platforms is used, the data acquisition is not
completely autonomous, since there is one manual step, i.e. driving. However, non-
experts can perform this task, and we consider the duration of a few hours for an entire
city not as prohibitive. The reliability and durability of cars is extremely high, whereas
currently this is in complex city environment not the case for completely autonomous
vehicles.

This particular method for data acquisition yields to some particular problems: First,
rather than the 3D scan registration problem commonly associated with 3D scanners, we
face a position estimation problem: In order to construct an accurate 3D model, the pose,
i.e. the position and orientation of the truck and its sensor unit, needs to be determined
precisely, and we propose suitable methods using the horizontal laser scanner in Chapters
4 and 5. Second, it is necessary to synchronize the two laser scanners and the camera
accurately. Synchronization is not a critical issue for slow-moving robots, but a car can
drive up to 25 mph in cities and hence an order of magnitude faster. Third, occlusion
effects are significantly more problematic. An approach that registers and merges 3D
laser scans typically results in a good scan point coverage for most surfaces, since
individual 3D scans are taken from different viewpoints, and hence holes caused by
occluding foreground objects in one scan are filled with scan points from another view.
In our case, we scan the facades only once and from direct view, and since each
foreground object blocks the laser beam, there is not information about the structure
behind. This causes large holes in the facades, and we suggest algorithms to fill these
holes by making a reasonable guess for the geometry in Chapter 5. Fourth, the size of the
data stream during acquisition is enormous. Since an entire city can be captured within
short time, the data throughput is substantial and data has to be stored rapidly.

3.2 Data Acquisition System

According to the ideas described in the previous section, we have developed a data
acquisition system and have mounted this system on top of a pickup truck, as shown in

24 Chapter 3 – Ground Based Model Acquisition

Figure 3-2. This system can be divided into two parts: a sensor unit and a processing unit.
In order to avoid dynamic obstacles such as cars and pedestrians in the direct view, we
mount the sensor unit on a rack, so that it is at a height of approximately 3.6 meters, the
maximum the California traffic regulations allow. The processing unit consisting of a
dual processor PC, large hard disk drives, and additional electronics for power supply and
signal shaping is mounted in the truck bed.

Figure 3-2: Data acquisition system

As shown in Figure 3-3, the sensor unit consists of the two 2D laser scanners mounted
with their scanning planes at exactly 90 degrees and a digital camera; these devices
remain permanently fixed in respect to each other throughout the data acquisition.

Figure 3-3: Sensor unit

Chapter 3 – Ground Based Model Acquisition 25

We use the LMS 291 laser scanner manufactured by Sick AG, Germany; this scanner has
a 1800 field of view with a resolution of 10, a range of 80 meters and an accuracy of ±3.5
centimeters. The acquisition time for a 2D scan sweep is 6.7 milliseconds, and the scan
frequency is 75 Hz. If configured as master device, the scanner generates a 75 Hz signal
corresponding to its scanning operation; if configured as slave device, it synchronizes its
scanning operation to an external 75 Hz clock, and we use this feature to synchronize the
two scanners. The connection to the processing unit is established via a 500 kbit/sec
serial interface.

The camera for texture acquisition is also directed towards the side of the streets, with its
line of sight parallel to the intersection between the orthogonal scanning planes, hence
facing the facades. We use DWF-X 700 color camera from Sony corp., Japan, in
combination with a 3.6 mm wide-angle lens. In this configuration, the camera has
horizontally a 96-degree and vertically a 70-degree angle of view. The image resolution is
1024 by 768 pixels, and since the camera provides an image in the YUV (4:2:2) color
system, a single image has a size of 1024 x 768 x 2 bytes = 1.5 Mbytes. The camera has
automatic white balancing and shutter time. Each single image acquisition can be
triggered, up to a maximum frame rate of 15 Hz. The camera is linked with a fire wire
connection and a trigger line to the processing unit. As a one-time task before the first
data acquisition, we calibrate the intrinsic camera parameters using Zhang’s “easy
camera” calibration [Zhang, 2000], which has the advantage that it models the substantial
radial distortion of the used wide-angle lens with two intrinsic parameters. Furthermore,
we determine the remaining extrinsic camera parameters: due to construction, the relative
position of the camera in regard to the scanners is known precisely and the orientation
angles are accurate to a few degrees; hence, the rotations are decoupled and it is simple to
fine-tune orientation parameters manually.

The processing unit shown in Figure 3-4 is mounted in the bed of the truck, on damping
material in order to reduce mechanical shocks. Its core is a PC with two 850 MHz
Pentium-III processors running Windows 2000, and it has a counter/timer board, a high
speed serial interface card, an IEEE 1394 fire wire connection and a RAID hard disk
drive array. Additionally, the unit contains electronics for power supply, signal shaping,
and trigger signal generation. The key feature of our data acquisition system is that all
devices are accurately synchronized; this enables us to automatically determine
correspondences between the laser scanners themselves and the camera. The horizontal
laser scanner is configured as master scanner; its 75 Hz signal is the time base of the data
acquisition. The vertical scanner is configured as slave, and synchronizes itself to the
master’s time base. The counter/timer board counts the master’s clock pulses in order to
generate time stamps for the data, and it divides the clock to obtain a trigger signal for the
camera.

26 Chapter 3 – Ground Based Model Acquisition

Figure 3-4: Processing unit

Since the laser scanners and the camera deliver data without waiting for acknowledge
signals, this data has to be picked up immediately or is lost otherwise. This is especially
critical for the scanners, which communicate via a 500 kBaud serial interface: in the
scanner’s data protocol, the position of a distance value in the byte stream determines the
angle under which the measurement was taken. If only one single byte is dropped, the
correct angle cannot be determined any more. Even more severe, the synchronization of
the data communication is lost entirely, since the control software expected a certain
amount of bytes to be read in a package, and hence waits until finally the first bytes of the
next scanning cycle have arrived. These bytes are then missing during the readout of the
next cycle, and so on. Therefore, it has to be ensured that no byte of the laser data stream
is dropped at any time.

We have developed a data pipeline and extendable multithread software to capture and
store the incoming data streams, as schematically shown in Figure 3-5. Although the
operating system Windows 2000 is technically not a real time operating system, it can be
brought to sufficient real time behavior for our application if system services such as
networking are turned off, and the process priority of the acquisition threads is set higher
than the priority of any operating system process. For each input device, we run an
associated device reader thread that waits for incoming data and stores it in a common
ring buffer memory. A writer thread with a lower priority than the readers continuously
writes down the ring buffer to the RAID hard disk drive array and frees the
corresponding ring buffer section subsequently. Both scanners together generate a
1Mbit/sec data stream, whereas the data stream generated by the camera at full frame rate
is with 15 Hz x 1.5 Mbytes = 180 Mbit/sec two orders of magnitude larger. Since
currently the writing capacity is with an average of about 100 Mbit/sec the bottleneck of
the data acquisition, the camera cannot be operated at its maximum frame rate. We
choose to divide the master scanner’s clock by 15, so that a frame rate of 5 Hz results.
Since the speed limit in cities is 25 mph, the spacing between subsequent laser scans is

Chapter 3 – Ground Based Model Acquisition 27

then at worst 25 mph/75 Hz = 14.8 cm, and the spacing between subsequent camera
images is not more than 25 mph/5 Hz = 2.22 m for this configuration. To assess the
maximum rotation between subsequent scans, we can e.g. assume that while driving, the
maximum angular velocity is never more than 45 degree/sec, i.e. the vehicle does not
perform a full 90 degree turn faster than in two seconds. Then, the rotation between
subsequent scans is maximal 45 degree/sec/75 Hz = 0.6 degree, and between images 45
degree/sec/5 Hz = 9 degree.

Figure 3-5: Schematics of data acquisition system

During data acquisition, the system is entirely busy with capturing data and storing it on
the hard disk drives; there are neither time nor resources for further processing. The raw
data, a memory dump of the counter/timer board registers and other system parameters
are directly written to one single continuous file, since creating new files or directory
decreases writing throughput of the hard disk drives. After the acquisition is finished,
data conversion is necessary as the first post-processing step: the memory dump of the
hardware registers enables us to identify corresponding scans and camera images, and we
separate the raw streaming file into its content components, and assign each scan and
image a correct time stamp. Additionally, we use Microsoft’s EasyCamera software and
the internal parameters from the pre-calibration step in order to remove the distortion
from the camera images. After these steps, the data is in a form suitable for the actual
postprocessing and model generation, which is described in the next chapters.

28 Chapter 3 – Ground Based Model Acquisition

 29

4 Tracking the Acquisition System

In this Chapter, we describe our approach to determine in an offline computation the
sensor unit’s pose in the city environment during data acquisition. Laser scans and
camera images are given in the local sensor coordinate system, and an individual scan or
image is of no use unless it is combined with subsequent data sets to a coherent model.
Therefore, it is necessary to know the relative pose between the acquisition instants. If the
model has to be globally correct, it is not sufficient to know the relative pose only; rather,
the absolute global pose in respect to a world coordinate system has to be known
accurately for each data set. All devices are fixed on the sensor unit and mounted onto the
vehicle, and hence we use in the following generally the term localizing the vehicle when
we strictly speaking mean determining the pose of its sensor unit. In this Chapter, we
describe how to obtain relative 2D pose estimate and an initial path for the vehicle by
matching subsequent horizontal laser scans. This initial path is the base of a global
localization scheme to be detailed in the next Chapter.

Determining one’s position and orientation is one of the oldest problems of mankind, and
was already a critical issue in ancient times. While first sailors used magnetic stones or
stars as guides for the orientation, today’s modern equipment includes advanced tools
such as optical gyroscopes and Global Positioning System (GPS). One can make a
distinction between devices that deliver pose estimates absolute, i.e. directly in respect to
one global coordinate system, or relative, i.e. the pose change between two events is
obtained in respect to their local coordinate system. While it is convenient that first ones
provide the global pose directly, the resulting error for computing the relative pose, i.e.
the difference between two subsequent global poses, can be as large as twice the
maximum system error; this can be a multiple of the actual motion. For the second type
of devices the obtained relative estimates between subsequent positions are often highly
accurate, while the absolute pose can only be computed by concatenating the relative
estimates, or steps, to a continuous trajectory in the global coordinate system. According
to robotics, we refer to this relative positioning as tracking. Since errors in the relative
estimates are inevitable, there is an error in global position increasing over time, and once
a severe error is introduced, it persists throughout the entire following trajectory, if there
is no global correction available.

To illustrate the difference between relative and absolute pose estimates, one can
compare two methods of ship navigation: When Columbus traversed the Atlantic to
discover America, he obtained an estimate for the orientation from a magnetic compass,
and an estimate for his current speed by throwing a piece of flotsam over the side of the
ship and counting the time it needed to pass two marks. Then he used dead reckoning to
determine his position: Starting from a know global position, he iteratively calculated the
traveled distance as time multiplied by speed, and added this distance according to the
ship’s orientation to the last position in order to obtain the next one. In contrast, a modern
GPS system provides global position estimates e.g. at 10 meter accuracy. Since the dead
reckoning approach can result in global position errors of hundreds of miles after long
travels, GPS is more accurate in global position terms. However, if an estimate for a

30 Chapter 4 – Tracking the Acquisition System

small relative changes is requested, e.g. between two close positions few centimeters
apart from each other, subtracting the corresponding GPS readouts would result in a large
error due to noise, and in this case dead reckoning provides a more accurate estimate. In
the case of a ship, it is possible to overcome the noise problem by assuming inertia and
smoothing GPS readouts accordingly. However, this assumption cannot always be made:
one imagine for example a rabbit running in a field: the exact details of its zickzack
trajectory cannot be determined with a GPS, and localizing a vehicle moving in a city,
where traffic situations require sudden changes in direction, is a similar case. In this and
the following chapter, we will present a more adequate localization approach for this
situation.

To avoid confusion, we use the term pose throughout this thesis for the combination of
position and orientation in a given Cartesian coordinate system. Position is the location in
space described by three coordinates, e.g. x, y, and z in a 3D Cartesian coordinate system.
Orientation is the attitude of an object in respect to the coordinate system, described by
three angles yaw, pitch, and roll as common in avionics and shown in Figure 4-1.
Therefore, pose has six degrees of freedom (DOF) and is also referred to as 3D pose. If
we refer to a 2D pose, we mean the pose for an object constrained to motion within a
plane, which can hence be entirely described by the two position parameters x and y and
the orientation angle yaw. Global pose is the pose in respect to a geographic coordinate
system. For the dimensions of a city, we can neglect the effect of earth curvature and
define a global Cartesian coordinate system with x- and y-axis horizontal, and the z-axis
pointing to the sky. For example, according to the UTM NAD83 and NAVD88 standards,
x could be easting, y northing, and z the altitude of a position.

Figure 4-1: Attitude described by yaw, pitch, and roll angle. (Source: NASA)

4.1 Relative Pose Estimates

Relative pose estimates for a vehicle can be obtained by a variety of techniques. One of
the oldest approaches for obtaining an estimate for a vehicle’s motion between two times
is dead reckoning based on odometry, in which the rotations of the individual wheels are
counted, eventually in combination with the steering angle, and converted to a relative

Chapter 4 – Tracking the Acquisition System 31

pose by using a kinematical model of the vehicle. The kinematical model is an idealistic
abstraction of the vehicle, and effects such as low tire pressure or slippage on the ground
are not considered. Also, uneven terrain or bumps cause discrepancy between idealistic
and actual motion, hence generally reducing accuracy. Other kinematical approaches
determine relative displacement by integrating speed or double integrating acceleration,
respectively: Speed can be measured with sensors such as a radar velocimeters, in which
the Doppler effect is used to create a mixed frequency proportional to the speed, and
inertial sensors, highly integrated with MEMS technology and used e.g. in airbags,
provide an estimate for the acceleration. However, due to the necessary integration, even
small offsets in speed or acceleration result easily in large drift errors in position, and
therefore theses sensors are for only usable in combination with slower, more accurate
devices. To determine orientation changes, optical gyroscopes can be used; these are
expensive high-end devices, based on interferometry and exploiting the quantum-
mechanical Sagnac effect to determine rotation speed. While these devices display an
impressive precision and are e.g. used in avionics, they come at exorbitant costs.

To reduce shortcomings and errors of each individual localization approach or device,
they are often combined in a data fusion process. Multiple, potentially conflicting sensor
readings are combined to a single state estimate, for example by using a Kalman filter
[Kalman, 1960], which takes into account both an uncertainty measure for the current
state variables and the time-dependent credibility of the individual sensors.

Due to the enormous advances in computational power, computer vision methods have
become popular to solve the localization problem. Subsequent camera images taken
during motion are used to determine the transformation between them, and many
experiments in various configurations have been made. As an example, [Neumann and
You, 1999] detect image features and track theses features over multiple images. While
the camera sweeps over a scene, features get out of sight at one image boundary, and new
ones appear at the opposite boundary, so that the feature list is dynamically changed. In
principle, all 6 DOF pose can be determined up to a scaling factor with a camera. The use
of cameras for localization became popular in robotics due to their low price, small size,
wide availability, and similarity to the human perception. It is difficult, however, to
reliably reconstruct 3D information from 2D images, and the need for calibration and the
sensitivity of vision-based approaches to erroneous feature detection are only examples
for the issues involved. Algorithms to estimate a 6 DOF out of the 2D camera images are
complex and difficult, resulting in large computation time and requiring energy
consuming high-end PCs on the battery-powered vehicles. Although cameras are still
used in various systems, their importance for localization in mobile robotics has been
fading since the mid 1990’s due to the introduction of 2D laser scanners.

Today, the vast majority of autonomous vehicles use horizontally mounted 2D laser
scanners to detect and avoid obstacles, and to localize themselves. These scanners have
the advantage that they provide directly the 2D coordinates of obstacles in the scanner’s
coordinate system without complex processing, thus reducing computation time and
enabling high update rates. They are more reliable for detecting objects, have a large field

32 Chapter 4 – Tracking the Acquisition System

of view, and high accuracy. Distance is measured by a laser beam, which is for a
horizontally mounted 2D scanner subsequently deflected to multiple directions parallel to
the ground by a rotating mirror. Since the angle of the mirror and hence direction of the
laser beam is known, it is trivial to compute the 2D location of the point where the laser
beam has hit an object; this point is called a scan point. The obtained scan points lie on
the outline of the objects, however, naturally only surfaces directly visible from the
scanner’s location and within its sensing range can result in scan points. All other
surfaces do not appear in the scan.

If scans are taken from different positions, they may capture different surfaces or sides of
an object; eventually the scans do not even resemble each other, but are rather
complementary. However, if the scans are taken from nearby positions, it is likely that a
surface visible in one scan is also visible in the other one; in this case, the two scans
highly resemble each other. This is typically the case for the horizontal laser scans that
we record during our data acquisition. As previously calculated, the translation between
subsequent scans is less then 15 cm and the rotation is less than one degree. Since this is
small compared to the typical dimensions and distance of buildings in the scans, the
perspective remains similar even over multiple scans. Figure 4-2 shows two horizontal
laser scans taken at different times t0 and t1. The laser rays are drawn as line segments,
originating in the scanner’s center and ending at the scan point where they hit an obstacle,
e.g. a wall. The vehicle has moved between t0 and t1, and accordingly, the objects visible
in the scan have shifted in the scanner’s coordinate system. Even though the two scan in
this example are several scanning cycles apart from each other, it can be seen that the
formation of the scan points, i.e. the ends of the laser rays, is similar in both scans.
Supposed we know the exact pose for one scan, this similarity can be exploited to
estimate the pose from which the other scan was taken: the scan from the unknown
position is rotated and translated in such a way that maximum congruence with the scan
from the known pose emerges. This process is called scan matching, and where necessary
for clarity, we refer to the particular case where one scan is matched to a second scan
more specifically as scan-to-scan matching; this is to distinguish it from methods
discussed later, where a scan is matched to edges of an aerial photo or a DSM.

In Figure 4-3, the idea of scan matching is illustrated. In Figure 4-3(a), the two scans
from Figure 4-2 are drawn in the same coordinate system, with the first one as the
reference scan, and the second one as the scan to be matched. After applying an
appropriate rotation with angle ∆φ determined in Figure 4-3(b), and an appropriate
translation with (∆u,∆v) determined in Figure 4-3(c), the two scans have maximum
congruence, as shown in Figure 4-3(d). Several properties of matched scan pair in Figure
4-3(d) can be noted: First, the two scans are similar, but not exactly congruent: some
object surface parts were only visible in either of the scans, but not in the both, due to the
slightly different perspective. Second, the locations of the scan points on the surfaces
differ, hence correct matching does not imply scan points to be located perfectly on top of
each other. Some of the matching algorithms summarized in the following require point-
to-point correspondences, and in sparse scans, perfect one-to-one correspondences are not
given. Third, each individual scan has an inherent order of points, defined by the

Chapter 4 – Tracking the Acquisition System 33

scanning angle, and therefore neighbor relationships are well defined for each scan point.
This advantageous property is lost if the point sets are united, thus making operations
such as line or feature extraction more complex.

Several approaches have been developed for automatically registering two scans with
each other. In [Cox, 1991], Cox suggested to match scan points from a laser scanner with
the lines of a manually created a-priori-map of an indoor environment. He obtained an
initial estimate for a robot’s pose from odometry readings, and used scan-to-line
matching to correct for small position errors. Since the initial position estimate is close to
the actual position, scan points are close to their corresponding map lines and can be
assigned to it. A scan match quality measure is computed as the sum of each scan point’s
square distance to the corresponding line; the optimum is found with the least square
method. Problematic for this method is that few incorrect point-to-line correspondences,
for which the distance is large, can adulterate the least square computation and result in
an erroneous position estimate. Furthermore, in its proposed form, this approach is
dependent on an a-priori map and limited to polygonal environments. Nevertheless, we
will come back to this idea for the global localization in Chapter 5.

However, with a small and intuitive modification, this algorithm can also be extended to
compute the match between two scans: lines can be extracted from the first scan, and
instead of a CAD drawing of the floor, these lines are used as the a-priori reference map
for matching a second scan. Gutmann and Schlegel proposed the use of a line filter for
both reference and second scan, so that only collinear points are used for the matching
process [Gutmann and Schlegel, 1996], based on the assumption that collinear points are
likely to be stationary wall points, whereas single isolated points are likely to originate
from various other objects, e.g. moving people. They furthermore proposed another
heuristic rule to filter out scan point pairs with incorrect correspondences: points for
which the distance exceeds a threshold and the most distant twenty percent of the points
are not considered. Both modifications to the original approach intend to avoid incorrect
correspondences, however, their extension heavily relies on polygonal environments.

Lu and Milios proposed a different matching scheme, the IDC algorithm (iterative dual
correspondence, [Lu and Milios, 1994]), similar to the ICP algorithm (iterative closest
point, [Besl and McKay, 1992]). Accordingly, their algorithm is able to match two scans
directly without the need of features such as lines, but the preliminary is that the relative
transformation between the two scans is initially approximately known. In an iteration
cycle, a rule independent from the actual rotation and translation provides a guess for the
scan point correspondences, and based on these correspondences, the relative
transformation is computed and applied. Instead of Besl and McKay’s closest-point rule,
Lu and Milios suggested the matching-range-point rule, which additionally considers
rotation effects and increases the convergence speed of the algorithm drastically. They
also suggested a way to estimate the covariance matrix of the pose estimates, which is
necessary for an effective fusion with data from other sensors, e.g. by means of the
Kalman filter.

34 Chapter 4 – Tracking the Acquisition System

(a) (b)

t0 t1

Figure 4-2: Two horizontal laser scans taken at different times t0 and t1. The vehicle has moved
between t0 and t1; accordingly, the objects visible in the scan have shifted in the scanner’s coordinate
system.

(a) (b)

(c) (d)

u

v

(∆u,∆v)

∆ϕ

Figure 4-3: Scan matching of two scans taken at different times t0 and t1: (a) second scan overlaid on
top of the first scan; (b) determining necessary relative rotation; (c) after applying rotation,
determing necessary translation; (d) after applying translation, the two scans match and the relative
transformation (∆u, ∆v, ∆φ) between the scans is determined.

Chapter 4 – Tracking the Acquisition System 35

A statistical approach was introduced in [Weiss et al., 1994]. Both scans are transformed
into a stochastic histogram representation; the basic idea is that the statistical distribution
of relative single scan point positions towards each other is preserved during rotation and
translation, and therefore the shape of the histograms is invariant. For example, if one
creates a histogram with bin size of ∆x for the x-coordinates of a set of scan points, and
compares it with a histogram of the same points shifted by a translation n·∆x along the x
axis, it is apparent that the pattern of peaks is absolutely identical, except that the latter
histogram is shifted by n bins. Similarly, the shape of a histogram of the orientation
angles between subsequent points of a scan is invariant to rotations. If two scans overlap
for the most part, this property can be used to determine the transformation parameters
between them. The displacement between the histograms of the two scans, and hence the
corresponding transformation parameter, is computed by cross correlation. The shape of
the angle distribution is invariant to both rotations and translations, whereas the
coordinate distribution is not independent from the rotation. Hence, it is necessary that
the angle histogram is computed first, and the relative rotation angle is determined and
corrected, before the coordinate histograms for the x- and y-direction of each scan are
computed and correlated.

This approach works well if the environment is polygonal or contains at least contiguous
surfaces. It has the advantage, that the complexity for the histogram generation is only
O(n) for n scan points, and the cross correlation is even independent of the number of
points, in contrast to the previous approaches, which need an O(n2) computation time in
their original form and are hence less advantageous for real-time applications. However,
some of its drawbacks prohibit this method for our application: For noisy, cluttered scans
such as resulting from a tree, the orientation angles become rather random, and
determining rotation becomes difficult. Even more severe, the accuracy of the parameter
estimate is limited to the bin size of the histogram. This bin size cannot be chosen
arbitrary small, since then the histogram becomes too sparse. For our application, real-
time computation is not necessary, but accuracy is crucial. However, in the next Chapter,
we use the idea of an orientation angle histogram for the estimation of the vehicle’s
rolling angle from vertical scans.

We suggest a scan matching approach related to the one of Cox and Gutmann, but with
three major modifications: First, we use both lines and single points of the reference scan
for matching, second, we do not treat the problem of erroneous correspondences
separately, rather we consider it directly in the computation of a match quality function
by using robust least squares, and third, we compensate for effects of finite scanning time
on the scan points, which is a problem specific to our high-speed acquisition.

Since scan points of the reference scan do not necessarily correspond directly to points in
the second scan, but often lie in intermediate positions, it is advantageous to match points
not directly to points, but rather to extract lines in one scan, e.g. the reference scan, and
match the points of the second scan to the lines. However, in contrast to many indoor
navigation situations, where there is always a sufficient number of lines visible in each
scan, the scenery in urban environments is more complex because of many non-planar

36 Chapter 4 – Tracking the Acquisition System

objects such as trees, masts, cables, and partially reflecting windows. These objects
provide additional if not at times the only information about the relative pose of
successive scans, and as such it is desirable to use them for pose estimation.

Hence, we apply the following algorithm for obtaining line segment approximations to
the reference scan: We connect successive scan points to form a line strip, if the
difference between their depth values does not exceed a depth dependent threshold. More
specifically, our algorithm can be summarized as follows in pseudo-code:

Create set of lines:

 for angle: = 0 to 180
 {
 point1: = (cos(angle), sin(angle))*distance(angle);

 if abs(distance(angle) - distance(angle+1)) < maximum_discontinuity)
 {
 point2: = (cos(angle+1), sin(angle+1))*distance(angle+1);

 AddLineSegment from point1 to point2;

}
 else
 AddLineSegment from point1 to point1;
 }

Accordingly, a single isolated scan point is approximated by a “degenerated” line
segment, i.e. a point and considered during the subsequent computations. While a
disadvantage of this method is that straight lines are not computed by a least squares fit
over multiple points, the advantage is that curved objects, such as trees, and small
objects, such as masts, cables, are also used for matching. Figure 4-4 shows rays of a
laser scan in gray and the line segment approximation in black, and as seen, more
features than only long straight lines are extracted.

Chapter 4 – Tracking the Acquisition System 37

Figure 4-4: Scan and its line segment approximation

The line strip approximation of the reference scan is used as a map to register the second
scan. Therefore, we introduce a local coordinate system [u,v] implied by the reference
scan, with the sensor module at its center. The u-axis is aligned with the truck’s principal
axis, while the v-axis is orthogonal to it, with the positive v-axis pointing towards the left
side of the truck, as shown in Figure 5. The scanner provides angle and distance for each
scan point, enabling us to compute its Cartesian coordinates by using simple
trigonometric functions.

Figure 4-5: Local and global coordinate system

To match two scans, we maximize a function that computes the quality of alignment
Q = f(∆u, ∆v, ∆ϕ) for a given displacement ∆u, ∆v and a rotation ∆ϕ of the scans against
each other. Therefore, we perform the following steps: First we compute a set of lines li
from the reference scan points as described before. Given a translation vector

),(vut ∆∆= and a 2x2 rotation matrix R(∆ϕ) with rotation angle ∆ϕ, we transform the
points pj of the second scan to the points p’j according to

)(),,(' tpRvup jj +⋅∆=∆∆∆ ϕϕ . (4-1)

38 Chapter 4 – Tracking the Acquisition System

Then we compute for each point jp' the Euclidean distance),'(ij lpd to each line segment
li and set dmin to:

 { }),'(min)),,('(min ijij lpdvupd =∆∆∆ ϕ . (4-2)

Intuitively, dmin is the distance between p’j and the closest point on any of the lines in the
reference scan. Distance measurement errors of the scanners can be modeled as Gaussian;
however, in order to suppress erroneous point-to-line correspondences, we do not use the
simple sum of distance squares, rather, we use a formula known as robust least squares
[Triggs et al., 2000] and compute Q as follows:

∑ 













⋅

∆∆∆
−=∆∆∆

j s

j vupd
vuQ 2

2
min

2
)),,('(

exp),,(
σ

ϕ
ϕ (4-3)

where σs
2 is the variance of the laser distance measurement, specified by the

manufacturer. This formula takes into account the distribution of the distance
measurement values, while suppressing deviations beyond this distribution as outliers. It
has least squares-like behavior in the near range but does not take into account points that
are far away from any line. The block diagram of this quality computation is shown in
Figure 4-6.

Figure 4-6: Block diagram of quality computation

The parameters (∆u, ∆v, ∆ϕ) for the best match between a scan pair are found by
optimizing Q. Steepest decent search methods have the advantage of finding the
minimum fast, but due to noise and erroneous point-to-line assignments, they can become
trapped in local minima if not started from a “good” initial point. Therefore, we use a
combined method of sampling the parameter space and discrete steepest decent, where
we first sample the parameter space in coarse steps and then refine the search around the
minimum with steepest decent. As outlined in the following pseudo code, this function
delivers an estimate (best_d.u, best_d.v, best_d.ϕ) for the necessary transformation to
align the two scans best:

Chapter 4 – Tracking the Acquisition System 39

Find optimal scan match:

/* parameter vectors {u,v,ϕ} for our setup */
searchrange:= {150 cm, 20 cm, 10 degree};
sampledensity:= {10 cm, 10 cm, 2 degree };
stepsize: = {0.2 cm, 0.2 cm, 0.01 degree};

/* First step: Sampling parameter space */
best_d := {0,0,0};

for d.u = -searchrange.u to searchrange.u step sampledensity.u
 for d.v = -searchrange.v to searchrange.v step sampledensity.v
 for d.ϕ = -searchrange.ϕ to searchrange.ϕ step sampledensity.ϕ
 if Q(d) < Q(best_d) then
 best_d := d;

/* Second step: steepest decent */

direction := {0,0,0};

do {

if Q(best_d) < Q(best_d + {stepsize.u,0,0}) then direction.u := stepsize.u;
if Q(best_d) < Q(best_d – {stepsize.u,0,0}) then direction.u := –stepsize.u;

if Q(best_d) < Q(best_d + {0,stepsize.v,0}) then direction.v := stepsize.v;
if Q(best_d) < Q(best_d – {0,stepsize.v,0}) then direction.v := –stepsize.v;

if Q(best_d) < Q(best_d + {0,0,stepsize.ϕ}) then direction.ϕ := stepsize.ϕ;
if Q(best_d) < Q(best_d – {0,0,stepsize.ϕ}) then direction.ϕ := –stepsize.ϕ;

best_d := best_d + direction;

} while direction != {0,0,0};

return best_d;

Acquisition time for one single scan is quite small, and since the previous approaches
were developed for slow moving robots, none of them has considered motion during a
scan. However, our sensor unit is mounted on a fast moving truck, and hence intra-scan
motion can reach noticeable levels, and we can increase accuracy by compensating for it.
The acquisition time for one 180-degree-scan is 6.667 ms; for a maximum angular speed
of 45 degree/sec and a maximum velocity of 25 mph, this results in a maximum rotation
of 0.3 degrees and a maximum displacement of 7.4 cm between the first scan point at 0
degree and the last scan point at 180 degree. Dependent on the scanner’s rotation

40 Chapter 4 – Tracking the Acquisition System

direction in regard to the motion, the entire scan is linearly stretched or stitched along an
axis in case of a translation, and along the fan in case of a rotation, respectively. The
effect can come into the range of the accuracy we intend to achieve, and while not crucial
for one single scan, these errors can accumulate to a substantial amount for a long drive.

In the stationary case, the Cartesian coordinates (u,v)i of the ith point of the scan is

()
()








⋅∆
⋅∆

⋅=







i
i

d
v
u

i
i ψ

ψ
sin
cos (4-4)

where is the measured distance and id ψ∆ is the angle increment between adjacent
measurements in a scan. Supposed we know the current angular speed and the speed TΩ

TV
r

 of the truck, and assume it as constant during the short time the scan is taken, we
introduce a correction term for the dynamic case, so that the Cartesian coordinates are
computed according to

()
() itV

it
it

d
v
u

T
T

T
i

i

⋅∆⋅+







⋅∆⋅Ω−∆
⋅∆⋅Ω−∆

⋅=






 r

)(sin
)(cos

ψ
ψ (4-5)

where ψ∆ is again the angle increment and t∆ the time elapsed between adjacent
measurements in a scan. For our scanner, the values are ψ∆ = 1 degree and

 = (1/75Hz)/360 = 37 µs. t∆

The question is now how to obtain an estimate for TΩ and VT

r
. Instead of reading these

variables from additional external sensors, we compute the estimates conveniently as a
byproduct during the scan matching process: The time ∆T elapsed between the two scans
of a pair to match is given by the difference of their ordering number. Then, the speed VT

r

can simply be computed by dividing the translation by ∆T, and the rotational speed TΩ
by dividing the rotation by ∆T, respectively. One possibility is therefore to iteratively
first compute the optimal scan match without correction, then use the computed
transformation to correct the scan points, and then compute the scan match again and so
on. Since the correction is small compared to the transformation, it is sufficient to iterate
only once. However, even one single iteration would double the computation time, and it
is desirable to avoid this increase. In the next Section, we will reconstruct the driven path
by matching series of subsequent scans; since the car’s motion does not change
substantially between the single scan pairs, it is feasible to use the TΩ and V

r
 estimates

from the previous pair as a valid estimate for the current scan match.
T

Chapter 4 – Tracking the Acquisition System 41

(a) (b)
Figure 4-7: Matching scan points and line segment approximation; (a) before and (b) after match.

Figure 4-7 shows the result of a scan match performed with the described algorithm, by
comparing a scan pair before and after matching. The line segment approximation of the
reference scan is drawn in gray, and the points of the second scan are drawn in black,
respectively. While the shown example is a scan in a downtown area containing some
smooth surfaces, it is obvious that the accuracy of the matching process can depend
significantly on the particular environment. In areas with buildings and therefore many
straight lines in the scans, the matching is likely to work best; in areas where the scanner
hits mainly the leaves of trees, scan points are more random. Hence, the quality of the
scan match is lower and the maximum is eventually not very sharp. We have found that
in this case the accuracy may be lower, but due to utilization of non-collinear features
still in an acceptable range for determining the motion reliably, in contrast to most of the
existing algorithms previously summarized. Note that in the worst case, if there is an
entirely featureless view such as the one on an empty parking lot or on a freeway ramp, it
is not possible to estimate the relative motion at all. Fortunately however, usual
downtown environments are dense and full of features, so that using scan matching to
track pose is quite reliable. In particular, as it is our goal to reconstruct building
structures, pose estimation by scan matching is almost an ideal solution, since it provides
the most accuracy for the areas that are the most interesting for us. Further discussion
about the accuracy of the matching process and the pose reconstruction follows in the
next section.

4.2 Path Computation

The scan matching algorithm introduced in the previous section determines directly the
translation (∆u, ∆v) and the rotation ∆ϕ between two given scans. In the following, we
refer to the relative pose between a scan pair as a relative step; thus each step Si consists
of a ∆ui, ∆vi, and ∆ϕi estimate in the local coordinate system. We can obtain an initial
estimate for the path, i.e. the trajectory traversed during data acquisition, by defining a
starting pose and successively concatenating relative steps between subsequent scans.

42 Chapter 4 – Tracking the Acquisition System

Since the scan matching provides only a 2D estimate, the resulting path is in a plane; this
represents pose entirely if our environment is flat without significant hills.

In this case, we can describe the global 2D pose of the sensor module by the parameter
tuple (x, y, θ), where x and y are the Cartesian world coordinates, and θ is the yaw angle,
i.e. the orientation of the truck, as shown in Figure 4-5. If speed V(t) and orientation θ(t)
of the truck is known, the motion of the rear axis of the truck can be described as:

() () ())(cos)(tttVtxttx θ⋅∆⋅+=∆+ (4-6)

() () ())(sin)(tttVtytty θ⋅∆⋅+=∆+

The sensor module is not mounted above the rear axis, but in the middle of the truck, so
that during motion along a curve, it experiences a motion component not only along, but
also orthogonal to the truck’s principal axis. As an estimate for the relative position
change (∆ui, ∆vi, ∆ϕ) of the sensor module in its local coordinate system [u,v] is obtained
for each step Si, we can compute the global positions (xi, yi, θi). To compute the 2D path,
we start with an initial position (x0, y0, θ0), perform for each step Si a scan match to
obtain (∆ui, ∆vi, ∆ϕ), and apply the coordinate transformation, so that the new position
(xi+1, yi+1,θi+1) can be computed in world coordinates as:

() ()iiiiiiii vuxx ϕθϕθ ∆+⋅∆−∆+⋅∆+=+ sincos1
() ()iiiiiiii vuyy ϕθϕθ ∆+⋅∆+∆+⋅∆+=+ cossin1 (4-7)

iii ϕθθ ∆+=+1

For non-level areas, the incline results in an apparent source of error in length: The scan-
to-scan matching estimates for the 3-DOF relative motion, i.e. 2D translation and
rotation, are given in the scanner’s local scanning plane. If the vehicle is on a slope, this
local coordinate system is tilted at an angle towards the global (x,y) plane, and hence the
translation should strictly speaking be corrected with the cosine of the pitch angle.
Fortunately this stretching effect is small; the relative length error is

 22)1(1)cos(1 pitchpitchpitch
l
lerr =−−≈−=

∆ , (4-8)

and while for example 0.5 % for a substantial 10% slope, it is only 0.06% for a moderate
2% slope. Thus, it turns out that this error is easily within the correction capabilities of
our global localization to be introduced in the next Chapter. While this effect may
decrease accuracy in extremely steep area such as Russian Hill in San Francisco, we can
usually safely neglect it. Hence, we utilize the relative estimates from the scan-to-scan
matching in the following as if they were given in the global coordinate system. In any
case the resulting 2D path is a good initial approximation even for hillside areas, since
the principal motion of a vehicle is horizontal. In the next Chapter, we will describe an

Chapter 4 – Tracking the Acquisition System 43

extension that uses an airborne digital surface model and complements the 2D pose to a
full 3D pose.

Since errors in the estimation accumulate with each iteration step of equation 4-7, it is
important to recover the path with as few steps as possible by subsampling the scans by a
large factor; this is especially necessary when the truck is stationary due to traffic
conditions. On the other hand, it is desirable to use scans that are taken from nearby
positions, so that perspective change is small and overlap between scans is sufficient for
accurate matching; this requires the subsampling factor to be small. Therefore, we need
to find a compromise between these conflicting requirements.

The scanner takes horizontal scans at a frequency of 75 Hz, and with the maximum city
driving speed of 25 miles per hour, the maximum relative displacement for successive
scans is

∆umax = 25 mph/75 Hz = 14.8 cm. (4-9)

For typical distances in our measurement scenario, we have found that perspective and
insufficient scan overlap can become critical issues for position changes of more than 2
meters. To strike a balance between large and small subsampling factors, one could
define a fixed standard subsampling factor, which is determined based on the assumed
maximum driving speed, e.g. it could be 10 if a maximum displacement of 150
centimeter is allowed, since 10 x 14.8 cm is less than 150 cm. While this defines the
upper bound of the displacement, it does not constitute a lower bound, e.g. the
displacement is zero if the vehicle stands temporarily still. This can be solved by using
not a fixed subsampling factor, but rather to adapt it to the driving speed, so that
estimated displacements between successive matched scans is e.g. between 80 and 150
cm. This not only increases the accuracy of the path, but also improves the computational
efficiency. We define a minimum displacement for a step, e.g. 80 cm. To compute a new
step, we first match the scans that are the standard subsampling number apart from each
other; if the resulting displacement is greater than the minimum displacement, we accept
the match as the next step, else, we increase the subsampling factor for this pair. We
choose the next scan candidate based on extrapolating the scan number according to the
ratio of current displacement and minimum displacement, and perform the scan matching
with this new pair. The result is a path with the size of all steps in the desired range.

Since we do not have the ground truth, it is difficult to determine the actual correctness
for the driven path and the accuracy of the relative step estimates. However, we can make
experiments that give us at least hints in which range the error can be expected: we can
use the alignment of the horizontal scan points as a measure for the quality of the scan
matching result. Assuming that the surface of the wall is ideally smooth, all scan points
of a building wall should lay perfectly on a line, even if scanned from different poses.
The two major effect that cause the scan points to be off the ideal line are first, the
inherent measurement noise of the distance measurement, and second, the imperfection
of the pose computation, i.e. the scan matching. We model the pose estimates

44 Chapter 4 – Tracking the Acquisition System

(∆u, ∆v, ∆φ)i computed in the scan matching process as the sum of the true pose values
()ivu ϕ∆∆∆ ,, and an additional (unknown) error (e∆u, e∆v, e∆φ)i with a Gaussian
distribution, so that we can write

() () ()
ivuii eeevuvu ϕϕϕ ∆∆∆+∆∆∆=∆∆∆ ,,,,,, (4-10)

If we add to each of the parameters ∆ui, ∆vi, and ∆φi artificial Gaussian noise
(n∆u, n∆v, n∆φ) with a standard deviation (σn,∆u, σn,∆v, σn,∆φ), we obtain distorted estimates

() () ()
ivuiii nnnvuvu ϕϕϕ ∆∆∆+∆∆∆=∆∆∆ ,,,,,, *** . (4-11)

Then, we re-compute path and scan points with the distorted estimates, and inspect
visually the effect on the alignment. If the added noise (n∆u, n∆v, n∆φ) is well below the
inherent estimation error (e∆u, e∆v, e∆φ), there is no apparent effect on the path; however,
if the distortion comes into the same order of magnitude or exceeds the matching noise,
the alignment of the horizontal scan points degrades noticeably. Therefore, our method to
determine the inherent error is to add different levels of noise and to observe from which
level on the lines start blurring. At this level, the added distortion and the inherent errors
are approximately equal. Figure 4-8 shows a piece of the computed path, which the
vehicle traversed while scanning the half plane to the right, indicated as a series of steps
(gray arrows). From each position at the end of an arrow, a horizontal scan has been
taken, and the horizontal scan points corresponding to these positions have been
superimposed (black). The shown area is a typical city environment where both buildings
and trees are present, visible as collinear points and point clusters, respectively. In order
to investigate the effect of adding the Gaussian distortion on the alignment, we closer
examine the points in the marked square in the next figures.

Chapter 4 – Tracking the Acquisition System 45

truck scanning
directions

computed
path

examined
area 10m

Figure 4-8: Computed path and overlaid horizontal scan points; the steps of the path are indicated as
arrows (gray). From the each position at the arrow tip a horizontal scan has been taken, and all scans
are drawn from this position. The square zoom clip is examined in the next figures.

Figure 4-9 shows the effect of adding distortion to the ∆φi estimates, Figure 4-10 to the
∆ui estimates, and Figure 4-11 to the ∆vi estimates, respectively; in each case the
distortion is only added to the specified parameter and not to the others. As seen in Figure
4-9, the point alignment starts to degrade visibly for an angle distortion between σ∆φ =
0.01˚ and σ∆φ = 0.03˚. For the translation parameters ∆u and ∆v, this degradation starts
between σ = 0.3 cm and σ = 1.0 cm. Note that for the translation parameters, the
alignment only degrades along the direction the distortion is added. For the shown
example, the vehicle trajectory is approximately vertical in the figure; since the scanner’s
u-axis points along the driving direction and the v-axis is perpendicular to it, the
degradation is approximately vertical for ∆ui distortion and horizontal for ∆vi distortion.

46 Chapter 4 – Tracking the Acquisition System

1m

(a) no noise added (b) σ∆φ = 0.003˚ (c) σ∆φ = 0.01˚

(d) σ∆φ = 0.03˚ (e) σ∆φ = 0.1˚ (f) σ∆φ = 0.3˚

Figure 4-9: Alignment of scan points after adding different levels of Gaussian white noise with a
standard deviation σ∆φ to the rotation angle estimates ∆φi; the point alignment decreases visibly for a
distortion with σ∆φ > 0.01˚.

(a) no noise added (b) σ∆u = 0.03 cm (c) σ∆u = 0.1cm

(d) σ∆u = 0.3 cm (e) σ∆u = 1 cm (f) σ∆u = 3 cm
Figure 4-10: Alignment of scan points after adding different levels of Gaussian white noise with a
standard deviation σ∆u to the ∆ui estimates; the point alignment in vertical direction decreases visibly
for a distortion with σ∆u > 0.3 cm.

Chapter 4 – Tracking the Acquisition System 47

(a) no noise added (b) σ∆v = 0.03 cm (c) σ∆v = 0.1cm

(d) σ∆v = 0.3 cm (e) σ∆v = 1 cm (f) σ∆v = 3 cm
Figure 4-11: Alignment of scan points after adding different levels of Gaussian white noise with a
standard deviation σ∆v to the ∆vi estimates; the point alignment in vertical direction decreases visibly
for a distortion with σ∆v > 0.3 cm.

From these experiments, we conclude that for typical city areas, which contain a
sufficient amount of buildings, the accuracy of the scan matching process is better than
0.03 degrees for the rotation and better than 1 cm for the translation parameters. In other
words, within a local environment of a few relative steps, e.g. the length of a building, the
estimated pose is extremely accurate. As a result, points of subsequent scan columns can
be registered correctly in respect to each other, and this local pose accuracy allows the
reconstruction of an accurate 3D model for a building. However, it can be noted that
there are remaining finite errors in the estimates, and mismatches may decrease accuracy
further in areas such as empty parking lots or public parks, which do not contain
appropriate surfaces. We will discuss the effect of these errors for longer drives and
suggest a possible solution in the following section.

48 Chapter 4 – Tracking the Acquisition System

 49

5 Global Localization

Even small errors in the single relative estimates accumulate to significant global position
errors, when many subsequent relative steps are added over a longer period. Especially
inaccuracies in the relative angle estimates contribute to increasingly catastrophic global
position errors. From a signal theory viewpoint, it appears that the “high frequency”
components of the reconstructed initial path, e.g. overtaking maneuvers or turns, are
correctly recovered, but there are errors in the “low frequency” components, so that
resulting absolute position has a drift-like behavior. In Figure 5-1, a downtown Berkeley
path reconstructed from the relative position estimates as described in the previous
section is shown superimposed on a digital roadmap. This path starts at a known position,
but follows the road only for the first few hundred meters acceptably; while driving
continues, it is more and more off. In particular, there are relatively large error at some
locations, e.g. in the first turn where the scanner has faced Sproul Plaza, an area with
many trees and almost no buildings in the field of view of the scanner. As seen, this error
is propagated through the entire path segment following the turn.

Figure 5-1: Path obtained by adding relative steps overlaid on top of a digital road map. During the
first few hundred meters, the path follows the road map; the longer the driving, the more the path
separates from the map, and it is finally completely off the real road.

This example illustrates the necessity of correcting pose globally, and we will describe
two approaches to obtaining an estimate for the absolute pose in the following. Since we
want to keep the high local precision of the scan matching, which enables us to assemble
subsequent scans consistently, we combine the advantages of both, i.e. we use the scan-
to-scan matching locally, while correcting the position with absolute estimates globally.

50 Chapter 5 – Global Localization

5.1 Background and Related Work

One of the oldest localization approaches is the navigation based on landmarks, and
where natural landmarks were not available or visible, artificial ones such as beacons
have been placed at known positions. During the centuries, beacons have changed from
fires in ancient marine navigation to radio signal transmitting stations. For indoor
applications, various types have been utilized, including sonic or laser beacons, corner
cubes, reflectors, bar-codes, spot marks, and many others. A sensor on the vehicle detects
the angle and eventually the distance at which a beacon signals is received. Sensors can
be ultrasonic receivers for ultra sound beacons, photo diodes for laser beacons or
reflectors, and vision recognition systems. Then, the position is determined using simple
geometry. For example, [Leonard and Durrant-Whyte, 1991] extract beacons consisting
of planes, cylinders, and corners from sonar scans and match them with landmarks in a
geometric map of the environment. However, this approach is not suitable for an urban
environment. First, buildings block the direct view to beacons, so that they are not visible
in most locations, and second, setting up an environment is a tremendous effort in both
timely and financial regard; practically, it is not realizable to install enough beacons to
completely cover the area of an entire city.

For navigation in outdoor environments, the Global Positioning System (GPS) has
become the standard source for position estimation. Originally developed by the U.S.
Department of Defense as a military system, GPS has become a global utility since the
mid 1980s. It provides global 3D position in form of latitude, longitude, and altitude, and
benefits users around the world in many different applications, including air, road, and
marine navigation. Twenty-four satellites are positioned around the globe, and each
satellite transmits an individual Pseudo-Random-Noise signal. From this signal, a user
can determine the distance to each satellite via time-of-flight and find his position by
triangulation. In this sense, one can regard GPS as an extremely sophisticated
extraterrestrial beacon system. The number of satellites visible from an earth location
depends on both location and time of day; at least four satellites are necessary to compute
the position. The possible accuracy depends on number and constellation of the satellites,
and atmospheric distortion effects. Until May 2000, the Department of Defense also
added an intentional distortion called Selective Availability to the signal, in order to limit
the absolute position accuracy for civil users to about 100 meters. Accuracy can be
significantly increased with differential GPS, or DGPS. In this setup, a second GPS
receiver is placed at a know position, for example on a USGS (United States Geological
Survey) landmark. The various sources of error result in a total time-dependent offset
between the known reference position and its GPS estimate; this offset is then used to
correct the GPS estimates for the unknown position of the user.

However, even DGPS cannot provide continuously reliable localization at centimeter-
accuracy in urban environments. In presence of high building and in “urban canyons”, the
direct line-of-sight to most satellites is blocked. Due to this occlusion, there are at many
locations not enough satellites to determine the position, and therefore no position
estimates. Furthermore, there can be multi-path reflections of the satellite signals, e.g.

Chapter 5 – Global Localization 51

from building walls, so that the calculated time-of-flight to the satellite and hence the
computed global pose is erroneous. Commercial GPS car navigation systems overcome
these problems by using motion estimates from odometry, i.e. counting the rotations of
the wheels and determining the steering angle. While a typical low-cost car GPS receiver
can have a standard deviation of as high as 100 meters and many signal dropouts, the
odometry provides continuously relative position estimates at higher precision, but with
drift-like behavior. Where available, the absolute GPS estimates are therefore used to
correct the relative motion estimates such that the mean difference between position and
GPS is zero. This technique can achieve accuracy in the low meter range, which is
sufficient for tracking a vehicle in a graph-like digital roadmap. In our localization
approach, we will exploit the same idea, i.e. utilizing accurate, but drift-prone local
estimates, and correcting them with coarser, but globally correct absolute position
estimates.

Some interesting techniques come from the field of autonomous mobile robotics. Since
position determination is one of the core problems in this field, multiple map-based
localization approaches have been developed, especially for indoor navigation. A map
can either be metric, i.e. it contains the geometry of objects in exact coordinates and
dimensions, or topological, i.e. it contains the connectivity of objects or places in a graph
at a more abstract level. As an example, the answer for the question “Where is room
307?” could be “10 meter west and 20 meter north from here” if a metric map is used, or
“It’s the third room on the left side” if a topological map is used. If not explicitly noted
otherwise, in this thesis the term “map” will implicitly mean metric map, in accordance to
the common usage of this term in geography. Popular representations for metric maps in
robotics are occupancy grids, where the 2D map space is divided into fine-grained grid
cells, and each cell is either marked as occupied or empty, and polygonal maps, where
outlines of objects are stored as polygons. Early examples of the first type of
representation are given in [Elfes, 1987] and [Moravec, 1988], and for the latter one in
[Chatila and Laumond, 1985].

Most work has focused on localizing a robot in respect to a preexisting, a-priori map of
the environment, in which characteristic features are noted. Features can be explicit
landmarks, often entered manually into the map, e.g. lines from existing CAD drawings
of a building. Features can also be rather implicit, for example if previous raw
measurements are marked in a map without further processing, and e.g. denote the
location of a wall. The robot uses its perception, i.e. sensor readouts, to detect and
identify surrounding landmarks, and the most popular sensors are cameras, ultrasonic
sensors, and laser scanners. The process of explicitly computing and identifying a
landmark in the sensor data is not always necessary; some approaches can match raw data
directly with the map. This is advantageous if feature extraction is difficult or not
reliable. However, even these approaches rely implicitly on features contained in both
model and perception. More recent work has addressed the problem of exploring an
unknown environment in which both, localization and map building has to be done
simultaneously. The transitions between these two scenarios are often fuzzy, for example

52 Chapter 5 – Global Localization

if a robot starts with an incomplete map and updates it by adding missing objects or
detecting dynamic changes.

There are various strategies to process the perceived input and to determine and represent
a robot’s pose. Computational expensive feature detection usually requires a search space
reduction, which typically uses an approximate pose estimate from a tracking process, i.e.
the information about previous positions and cues from other sensors such as odometry
readings. Hence, pose and perception mutually affect each other, and it is important how
pose and its uncertainty are represented. While in the early days of mobile robotics
system state was described by a single parameter set, a representation of its uncertainty
has been introduced with the Kalman filter [Kalman, 1960]. In recent years, an entire
field called probabilistic robotics has emerged, in which the believed robot pose can be
represented by arbitrary probability distribution; we will give a more detailed overview
over this field in Section 5.5.

Depending on the believed pose range, the location for which map landmarks and
perceived features match the best is determined in a data fusion process. [Schiele and
Crowley, 1994] compare several approaches using occupancy grid maps. Ultrasonic
sensors are used to localize the vehicle based on the grid map, and the grid is updated if
measurements coherently indicate a status change for a cell. As already mentioned, [Cox,
1991] suggested to match scan points from a laser scanner with the lines of a manually
created a-priori floor plan. In this case, line segments are the features of a map, and the
raw scan points are used to perform a point-to-line match as described in the previous
section. [Weiss et al., 1994] go even further in a localization approach also based on laser
scans: Neither map nor perception depends on explicit landmarks; rather, scans from
several known positions and orientations are taken, or simulated using a line map, and
their histogram statistics are stored along with the location in a scan database. Then,
during the robot’s motion, the histogram of an incoming scan is computed and compared
to the histograms in the database, essentially performing a scan-to-scan match as
described in Chapter 4. Then, the relative pose to the scan with the most similar
histogram in the database is computed, and the absolute pose can be determined with the
known pose of the database scan.

If a map of the environment is not available, both map building and navigation must be
performed iteratively. The preliminary map is used for estimation of the current position,
e.g. by using the techniques described above, and subsequently updated by registration of
new features. This straightforward, iterative map building process has pitfalls. Since there
are errors in the vector estimates of the relative movement as well as in the map-based
localization, new features may be registered at inaccurate or incorrect locations. This
yields an inaccurate map, and hence an even more inaccurate pose estimation in the next
localization phase, resulting in an inevitable accumulation of error over time. [Lu and
Milios, 1997a,b] addressed this problem by requesting consistency over the entire set of
scans, and referred to it as consistent pose estimation. They assume that for typical
mobile robotics application, there is usually a high degree of overlap among arbitrary
scan pairs, since the range of a laser scanner is large compared to the robot’s

Chapter 5 – Global Localization 53

environment, and the robot traverses areas over and over again. Hence the map-building
problem can be formalized as an optimization problem, i.e. maximizing the congruence
of set of scans with the individually associated poses as the parameters. It is, however,
difficult to find this global maximum. For example, if the optimal match for N=1000
scans has to be found, the corresponding search space is 3N = 3000-dimensional. Lu and
Milios use hill-climbing to find this optimum, but since hill-climbing can easily be
trapped in a local minimum, it is only suitable for small corrections of good initial
position estimates. If a robot moves in large cyclic environment, and traverses a long
distance without overlap to previous scans, there can be a substantial difference between
its estimated and actual pose when the robot returns to its starting location. This
difference can be so large that the robot does not even notice that it closed the loop and
reached an already familiar area, and continues the map building process by adding more
and more “new” features.

[Gutmann and Konolige, 1999] extend Lu and Milios’ work to continuously correlate
entire map patches in a background process, in order to detect overlaps and close
potentially undiscovered loops. Their approach is incremental and therefore suitable for
real-time map generation. [Thrun et al., 1998b] require some manual intervention during
the map building process: A button has to be pressed each time the robot passes a
“critical” area such as a crossing or a door, thus creating an implicit topological model
and limiting the search space for closing the loop. Then, they use the Expectation-
Maximization (EM) algorithm, originally proposed by [Dempster et al., 1977], to find the
pose parameter configuration for the optimal alignment of the scans. They show that with
this method, it is possible to offline correct erroneous tracking to a great extend, and to
create a reasonable map even in presence of large odometry errors. However, if the size
of the covered area exceeds the range of the laser scanner substantially, arbitrary scan
pairs do in general not overlap, and the absolute accuracy of the resulting map is poor for
all of the above approaches. Hence, if a global a-priori map is available, it is
advantageous to use this map rather than to determine global pose based on cross-
consistency.

While applicable for an indoor environment in absence of an initial map, consistent pose
estimation would not achieve satisfactory results for a city environment. First, a city is an
extremely circular environment, and hence generally difficult for a fully automated
consistent pose approach as pointed out above. Second, in contrast to typical indoor
robotics applications, scan range is small compared to traveled distances before closing a
loop, and arbitrary scan pairs do not generally overlap. Loops can be extremely large, i.e.
there are for long driving periods no cross connections to other parts of the map, resulting
in extensive position uncertainty for these sections. Third, a city is orders of magnitude
larger than an indoor environment. The above algorithms are not capable of handling the
simultaneous processing of tens or hundreds of thousands scans. For Lu and Milios’
approach, the amount of computations grows O(n3) with the number n of scans; Gutmann
and Konolige as well as Thrun et al. have to subsample the amount of used scans to a few
hundreds in order to apply their algorithms, even though the dimensions of their area are

54 Chapter 5 – Global Localization

less than a few tens of meters. For these reasons, we cannot rely on scan consistency to
globally correct the relative path estimates; we need a global map of the city.

In [Frueh and Zakhor, 2001], we propose the usage of an aerial photo as a global map and
to determine the acquisition vehicle’s pose in respect to this map. In this thesis we extend
the idea to alternatively using a Digital Surface Model (DSM) as a global reference. The
basic idea behind our pose correction is that objects visible during ground-based data
acquisition must in principle also appear in the airborne view. Making the assumption
that the position of building facades and building footprints are identical or at least in
most cases sufficiently similar, one can expect that the shape of the horizontal laser scans
match edges in an airborne image or a DSM. In the following, we will create an airborne
edge map and describe two methods to match the ground based laser scans directly with
the map, in order to arrive at global position estimates and hence globally consistent 3D
models. The first method is non-probabilistic and needs additionally a digital road map of
the city district; the second method is probabilistic, robust, and requires only an aerial
photo or an airborne DSM.

5.2 Global Maps from Aerial Images or Airborne Laser Scans

As already stated, even the accuracy of DGPS devices can be as low as meter range in
“urban canyons”, with frequent signal dropouts. This comes at a price that would more
than double the total costs of our entire acquisition system. However, for most urban
areas, there are perspective corrected aerial photos and digital roadmaps available, often
at no costs. Their resolution is up to sub-meter range, and they provide a geometrically
correct view over the entire city area. As an alternative, Digital Surface Models (DSM),
which are mainly created from airborne laser scans and provide also a metric view over
an entire area, have become increasingly available during the last years. As such, it is
conceivable to use either one as a map in order to arrive at global position without use of
GPS devices. One more advantage of using aerial photos or a DSM over GPS is that the
same airborne data can potentially also be used to derive an airborne 3D model of a city,
which can finally be merged with 3D facade models obtained from ground level laser
scans. Indeed, in Chapter 7, we describe an approach to merging an airborne surface
mesh obtained from a DSM with facade models obtained from ground-based laser
scanning. Using the localization methods described in this chapter, the global pose can be
determined in respect to the airborne data, thus providing an elegant solution to the
registration problem occurring in any model fusion process.

In this section, we create a global edge map representing the footprints of the buildings
from aerial photos or from a DSM obtained from airborne laser scans. This map does not
contain explicitly defined line segments; rather, we differentiate the image and obtain an
edge image, in which the intensity value of a pixel is proportional to the local strength of
an edge. Since the map area is quantized into discreet pixels, it resembles an occupancy
grid representation for discontinuities.

Chapter 5 – Global Localization 55

5.2.1 Edge Map from Aerial Photo

In general, photos are created by a perspective projection and as such not metric maps.
Only for the special case that the photo is taken from infinity and exactly perpendicular to
the ground, the projection becomes parallel and the photo is a metric map of the area; in
this case the photo is called ortho-photo. In reality, aerial photos are not taken from
infinity, however, if they are taken sufficiently perpendicular to the ground, it is at least
approximately metric within any plane parallel to the ground; in particular, the ground is
mapped metrically if the terrain is completely flat. All objects outside a flat ground plane
have a different metric and the perspective shifts their location in the photo.
Unfortunately, the desired footprints of buildings are rarely visible from airborne view;
instead, the rooftops are visible. These rooftops are outside the ground plane and show
therefore a perspective shift, with a direction depending on their location in respect to the
camera’s axis of view, and a length proportional to the height of the building. This is
shown as an example for the 92–meter Sather Tower on the Berkeley campus in Figure
5-2. Note that for the surrounding lower buildings the perspective shift is far less
noticeable.

Figure 5-2: Perspective shift for the 92-meter Berkeley campanile (Sather Tower) and surrounding
lower buildings

The farther the distance between camera and ground, the less the perspective shift. In
case of infinite distance, the perspective camera projection turns into a parallel
projection; there is not perspective shift at all and the photo is perfectly orthographic.
Perspective shift can be a crucial problem for areas with many high-rising skyscrapers;
however, for the region we are processing, the percentage of tall buildings is sufficiently
small. In addition, the algorithms introduced in the next sections are designed to be rather

56 Chapter 5 – Global Localization

insensitive to small errors in perspective displacement, and we will show that it is
possible to obtain a consistent model. However, for some cities this assumption can
eventually not be made. One possibility is then to use high-resolution satellite image
instead of aerial photos, since they are taken from a much higher distance to the ground.
A second possibility is to determine the height of buildings by stereo vision algorithms,
and to use the obtained disparity map to correct for perspective shifts and create an
artificially orthographic image.

Besides the shift of rooftops, there are other sources of errors: Edges in the image are not
only originate from buildings, but also from false, non-3D objects such as road stripes,
crosswalk borders, and curbs. Especially problematic are shadows, because they typically
result in strong edges in the image, as seen in Figure 5-2 for the campanile. For these
edges, there is no corresponding 3D object visible in the ground-based scans, hence
reducing the similarity of scans and edge map. Additionally, aerial photos and ground-
based scans may not have been taken at the same time, so that their content is potentially
different. For our data, we have noticed that some places have been entirely changed
between the two acquisitions, for example a former parking lot has been replaced by a
building. Also, dynamic objects such as cars or buses can cause discrepancies.

Despite these potential problems, we assume that for our data set perspective is negligible
and that on average the actual, correct 3D edges are dominating. Assuming that there are
intensity boundaries between different objects such as buildings and ground, we can
detect object boundaries as edges in the image. We do not want explicitly extract
contiguous edges or compute a polygonal representation; rather, we intend to incorporate
all information contained in the photo equally in the edge image. For our purpose, a
simple Sobel edge detector is therefore more appropriate than e.g. a sophisticated Canny
edge detector, which tries to track intensity discontinuities. For example in tree areas, the
Canny detector would focus on the sharp boundaries of the shadow, while omitting the
weaker actual tree boundaries. For the same reason, we do not apply common image
processing steps such as thresholding after the differentiation. Applying a Sobel edge
detector to an aerial image, we obtain an edge image, where the intensity of a pixel is
proportional to the strength of its 3D discontinuity. Figure 5-3(b) shows an aerial image
from downtown Berkeley and the corresponding edge image.

Chapter 5 – Global Localization 57

(a) (b)

Figure 5-3: Edge map from aerial photo; (a) original aerial photo, and (b) edge map obtained after
Sobel filter

5.2.2 Edge Map from DSM

An alternative source of a global edge map is a Digital Surface Model (DSM), which is
an array of altitude points uniformly sampled over a 2D area, and can as such be regarded
as an airborne height map or depth image. A DSM can be obtained by manual or
automated matching of stereo images, by Synthetic Aperture RADAR (SAR), or from
airborne laser scans. While we do not make any restrictions about the source of the DSM,
we will in Chapter 7 specifically go into details as how to create a DSM from airborne
laser scans. Figure 5-4 shows an example for a DSM visualized as a depth image. Each
pixel represents a 0.5 by 0.5 meter area on the ground, and its gray value is proportional
to the altitude at this location. Since each DSM implicitly defines a depth image, we will
in the following use the term DSM also to describe the associated image.

A DSM is a better source for a global edge map than aerial images, for the following
reasons: First, it contains two different types of information usable for localization of the
data acquisition vehicle, (a) the location of building facades as height discontinuities, and
(b) the terrain shape and hence the altitude z of the streets the vehicle is driven at.
Second, all intensity differences in the DSM are actual 3D discontinuities, whereas for
aerial photos, high intensity differences for shadows of buildings or trees result in false
edges. Third, there is no perspective shift of building tops; the DSM is virtually a perfect
ortho-image. The scan points forming the basis of the map are given in their true world
coordinates, and as described in Chapter 7, the map is in fact constructed by a parallel
projection perpendicular to the ground. Therefore, in contrast to the perspective
projection of the aerial photo, all image edges are independent of the building height at
the correct x,y location in the ground plane. However, one problem remains for both
images: there can be a difference between the roof of a building and its footprint, i.e. its
shape in the horizontal plane in which the ground-based scans are taken, if for example
the building has an overhanging roof.

58 Chapter 5 – Global Localization

Figure 5-4: Digital Surface Model, displayed as a depth image

To detect edges in the DSM, we could in principle apply again a Sobel edge detector
directly to the gray level representation of the DSM. However, the Sobel edge detector
treats the darker and the brighter sides of an image discontinuity equally and marks the
boundary pixels at both sides. Since the width of an edge is two pixels even at a sharp
discontinuity, it tends to produce thick edges. For a DSM, we have more information at
discontinuities: while in an aerial photo one cannot make reliable assumptions about
which side of a discontinuity is the building top and which is the ground, this information
is explicitly given in a DSM. Instead of the Sobel edge detector, we define a discontinuity
detection filter, which marks a pixel if at least one of its neighboring pixels is more than a
threshold ∆zedge below it, i.e

Discontinuity edge filter:

for x:=0 to dsm_dimensionX {
 for y:=0 to dsm_dimensionY {

is_edge(x,y) := false;

for all neighbors of (x,y) {
 if z(neighbor) < z(x,y)- ∆zedge then {
 is_edge(x,y) := true;

 };
 };
 };
};

Chapter 5 – Global Localization 59

Hence, only the outermost pixels of taller objects such as building tops are marked, but
not the adjacent ground, and the resulting edge map is sharper than the edge map
obtained from a Sobel filter. It is in fact a global occupancy grid for building walls.
Figure 5-5(a) shows an example of an edge map resulting from a Sobel filter, Figure
5-5(b) shows the results of the proposed discontinuity filter for comparison, applied to the
DSM of Figure 5-4.

(a) (b)
Figure 5-5: Edge map obtained from DSM with (a) Sobel filter, (b) proposed alternative discontinuity
filter

The second type of information in the DSM is the terrain shape. Since our vehicle always
drives on the road, an estimate for its z coordinate can be obtained from the terrain
altitude. It is not possible to directly use the z value at a DSM location, since the airborne
laser captures cars on the road and overhanging trees during our airborne data acquisition,
resulting in z values up to several meters above street level at these locations. For a
particular location, we estimate the altitude of the street level by averaging over the z
coordinates of available ground pixels within a surrounding window, weighing them with
an exponential function decreasing with distance. The result is a smooth, dense Digital
Terrain Model (DTM), containing ground level estimates for the terrain shape for roads
as shown in Figure 5-6(b). The terrain altitude at building locations is rather hypothetical
and not of any interest for our application, since the vehicle has certainly not been at
these locations.

60 Chapter 5 – Global Localization

(a) (b)
Figure 5-6: (a) Original DSM, (b) estimated DTM, with some blank spots at building locations

5.3 Congruence Coefficient between Ground Based Laser Scans and

Airborne Edge Maps

In this section, we compute a measure as how well the ground-based laser scan points
match to the airborne edge map. Given a 2D pose (x,y,θ) of the truck in the world
coordinate system and the corresponding horizontal laser scan, we can transform the local
coordinates (uj,vj) of the jth scan point into edge map coordinates (x’j,y’j) according to

 (5-1) () 







⋅+








=









j

j

j

j

v
u

R
y
x

y
x

θ
'
'

where R(θ) is the 2 x 2 rotation matrix with angle θ. Summing up the intensity values of
the corresponding pixels, we define a coefficient c(x,y,θ) for the congruence between
edge image and scan as

()

∑
∑

=

j

j
jj

I

xxI
yxc

max

','
),,(θ , (5-2)

where I(x,y) denotes the intensity of the edge image at the world coordinates (x,y) and
Imax its maximum possible value. The division by the maximum value normalizes c(x,y,θ)
to the range [0, 1], with c(x,y,θ) = 1 if all scan points are at an edge of maximum strength,
i.e. perfect match, and c(x,y,θ) = 0 if no scan point falls on an edge, i.e. no match at all.
One can regard the ensemble of laser scan points in the local coordinate system as a
second edge image; in this view, equation 2 essentially computes the image correlation
between the two edge images as a function of translation and rotation. Therefore, we can
refer to c(x,y,θ) also as a cross correlation coefficient. For the same scan, different global

Chapter 5 – Global Localization 61

position parameters (x,y,θ) yield different coefficients c(x,y,θ); the highest coefficient is
obtained for the parameter set for which the scan and the edge map match best.

Figure 5-7 shows two examples for the congruence coefficient; for each figure, the laser
scan points (black) are superimposed on the edge image (gray), and the hypothesized
position (x,y) is marked as an encircled cross. The scan corresponding to (xa, ya, θa)
shown in Figure 5-7a has a coefficient of only c(xa, ya, θa) = 0.377, whereas the maximum
congruence, 0.527, occurs at (xb, yb, θb). In this example, the difference between the two
pose parameter sets is

 (∆xa, ∆ya, ∆θa) = (xa, ya, θa) - (xb, yb, θb) = (4.0 m, 4.5m, -2º),

denoted by the arrow shown in Figure 5-7b. While at a first glance, the difference
between the two coefficient values does not seem to be striking, the difference is actually
significant and the maximum sharp. As seen, in accordance to the coefficient, the scan
points for pose (xa, ya, θa) fit the edges significantly more closely than the ones for pose
(xb, yb, θb).

a) b)
Figure 5-7: Edge image with (a) scan superimposed from pose (xa, ya, θa), with c(xa, ya, θa) = 0.377; (b)

at pose (xb, yb, θb), with c(xb, yb, θb) = 0.527, optimally matching the airborne edge map

5.4 Global Map Position by Maximizing Congruence

An intuitive method for correcting small errors in the vehicle’s global pose is to optimize
the congruence coefficient introduced in the previous subsection. Initial pose estimates
are obtained by the scan matching and path computation process. Then, the congruence
coefficient is computed for a certain parameter range around the initial pose estimate, for
example the marked rectangular area {±∆xmax, ±∆ymax} in Figure 5-7 and various angles.
The parameters of the largest coefficient are considered as the true pose, and the path is
corrected accordingly.

62 Chapter 5 – Global Localization

Unfortunately, as seen in Figure 5-1, the initial path has extreme deviations from the true
positions, and at some points substantial corrections are required. While the correct
position can be found for most parts without problems, there are some map regions, such
as residential areas or parking lots, without clear edge features; even worse, the accuracy
of the scan matching and hence of the initial path is especially low for these regions, as
explained in Section 4.2. Once the deviation from the true pose exceeds the search
window around the initial pose estimate, the true pose cannot be found any more and the
track of the path is entirely lost. Therefore, it is not possible to recover the entire driven
path with this procedure alone.

We suggest two different solutions for this problem:
(a) Applying a coarse adjustment to the initial path by using digital roadmaps in order to
bound the deviations, and “fine-tuning” the resulting adjusted path by maximizing
congruence; or (b), using more sophisticated, robust probabilistic localization methods to
consider the increasing uncertainty in difficult regions.

5.4.1 Adjustment Using Digital Roadmaps

Digital roadmaps are available for all major cities worldwide; in particular, for the Bay
Area in California, roadmaps registered with aerial images can be downloaded from the
United States Geographic Survey (USGS)'s web sites. A roadmap can be interpreted as a
graph, where every intersection or turn is a node, and the road segment in between is an
edge. The important information the digital roadmap can provide is the topology and
geometry of the city, and hence the possible driving paths. In this sense, our approach is
similar to the one in [Thrun et al., 1998b], which also employs a topological map to
reduce search space, but in our approach there is no manual step involved. If for example
during a vehicle turn operation an overall estimation error of several degrees occurs,
roadmaps can be used to correct the angle. The accuracy of this method is limited to the
width of the road, which we assume to be unknown. It is especially important that we
recover the “high-frequency” components of the vehicle’s path, e.g. lane changes,
because for these cases the resulting 3D model would have incorrect shapes if the driving
path is assumed to be a straight line.

In order to find and assign road segments to the traveled path, we make the following
assumptions:

1. The starting position is on a road node.
2. The truck can only move along the roads in the map and never off road.
3. Significant changes in driving direction (turns) necessarily occur on road nodes

and nowhere else.

Note that in a digital roadmap, a curvy road without cross intersections is represented as a
sequence of nodes with only one possible connection at an angle.

Chapter 5 – Global Localization 63

Given the path {(xk, yk, θk)} computed from the relative position changes, a line segment
approximation of our traveled path as shown in Figure 5-8 can be obtained by detecting
all turns as major changes in driving directions, and fitting a straight line segment
between two turns. Each line li has a corresponding driving vector di; the intersection of
neighboring lines results in nodes. Since intermediate nodes may be passed without
changing driving direction significantly, we apply a tree search to the digital roadmap to
find the node where direction and traveled distance fits best to the approximation.

nodes

di

di+1

di-1

Figure 5-8: Path and its line segment approximation

Our proposed algorithm to track position on the roadmap can be summarized this way:

1) Select manually the staring point S of the traveled path on the map.
2) Choose the first driving vector d1 in the line segment approximation and add it to

S in order to determine the goal point G on the map:
3) Start a tree search in the roadmap that finds all possible road paths that have

approximately the same direction as d1 and no major direction changes between
successive road edges.

4) Compute the Euclidean distance of each road node Nk passed in 3) to the goal
point G and find the one with the shortest distance Nopt. This is the most probable
end node and as such a correction angle ∆θ and a length correction factor η can
be computed.

5) Stretch the direction vector d1 by η.
6) Rotate all dj with j≥1 by the correction angle ∆θ.
7) Take G as new starting point S.
8) Repeat steps 1 through 7 for all line segments li.

Using this algorithm we obtain a vector graph on the road map and therefore a correction
for the length and the angle of each line segment. These adjustments are applied to the
initial position estimates {(xk, yk, θk)}, while taking into account the quality value Qk
computed for each step k during the scan-to-scan match described in section 4.1. We

64 Chapter 5 – Global Localization

assume that length errors occur mainly during long straight paths, whereas orientation
errors are mainly made during turns, and hence we distribute corrections accordingly,
weighing them inversely proportional to Qk. The result is an adjusted path estimate
{(xk’, yk’, θk’)} that fits approximately to the roadmap, while it is still ambiguous to
within the width of the road, i.e. several meters. Also, the path is only bound to the road
map at intersections, but not between them, and can therefore deviate more than the width
of the road only. This becomes particularly noticeable when the acquisition vehicle
travels a long distance in between scanning of the two sides of a given road. However,
the remaining deviation is now small enough so that the next step, maximizing the
congruence coefficient in order to refine the correction, can be applied.

The adjustment procedure and its result are shown in Figure 5-9. In Figure 5-9(a), the
initial path estimate obtained from scan-to-scan matching is drawn, overlaid on top of the
digital roadmap. While the basic shape of the driven path is clearly visible, the absolute
position is increasingly incorrect after a few hundred meters, mainly due to angle errors
in turns. Applying the tree search in the road map, we find the traveled roads as a vector
graph, containing the recovered sequence of traversed nodes, i.e. road intersections, as
marked in the roadmap shown in Figure 5-9(b). Finally, Figure 5-9(c) shows the resulting
adjusted path after distributing the corrections among the relative estimates. The shape of
this path matches the actual roads significantly better, especially at node points.
However, between nodes it is sometimes more inaccurate than road width alone could
explain, mainly because our adjustment distributes orientation errors only in turns and
length errors only on straight stretches, which is not necessarily where the errors actually
occur.

Chapter 5 – Global Localization 65

(a) Initial path estimate from scan-to-scan matching

(b) Vector graph

(c) Path after correction

Figure 5-9: Initial path, vector graph, and corrected path superimposed on the digital road map
(gray).

66 Chapter 5 – Global Localization

5.4.2 Pose Refinement Based on Maximizing the Congruence Coefficient

To obtain estimates for the absolute map poses (, ,) with the maximum cross
correlation between edge map and scan, we assume that the adjusted relative estimates
{(∆u

kx̂ kŷ kθ̂

k’, ∆vk’, ∆ϕk’)} computed in the previous section are close enough to the actual
values, and therefore, we iteratively apply a relative step and search the parameter space
within a search window (±∆xmax, ±∆ymax, ±∆θmax) around {(xk’, yk’, θk’)}. The window
dimensions 2∆xmax and 2∆ymax are chosen based on the assumed maximum deviation;
they depend not only on road width, but include additional heuristics about occurring
offsets. As both scan points and edge map are highly discontinuous, the scan-to-map
congruence can have completely different values for offsets as small as one or two pixels.
Therefore, there are numerous local maximums within the search window, and it is not
possible to apply hill-climbing methods to find the global maximum. Fortunately, the
parameter space is only three-dimensional and the search window is relatively small, and
hence it is feasible to search for the global maximum by sampling the parameter space
and apply a hill-climbing search only around the best parameter sample:

Find poses (, ,) with maximum correlation kx̂ kŷ kθ̂

{
 (x0’, y0’, θ0’) = selected starting pose in edge map;

 for each relative step k do {
 pose = (xk-1’, yk-1’, θk-1’) + (Rot(θk-1’)·(∆uk’, ∆vk’), ∆ϕk’);

 max_congruence_pose = pose;

 /* coarse search – sampling parameter space */
 for dx:= -∆xmax to ∆xmax step ∆xcoarse
 for dy:= - ∆ymax to ∆ymax step ∆ycoarse
 for dθ:= - ∆θmax to ∆θmax step ∆θcoarse
 if c(pose + (dx, dy, dθ)) > c(max_congruence_pose)
 max_congruence_pose = pose + (dx, dy, dθ);

 /* now refine fine search with steepest decent */

 pose = max_congruence_pose;

 do {
 last_pose = pose;

 if c(pose + (∆xfine,0, 0)) > c(pose) pose = pose + (∆xfine,0, 0);

 if c(pose - (∆xfine,0, 0)) > c(pose) pose = pose - (∆xfine,0, 0);

if c(pose + (0, ∆yfine,0, 0)) > c(pose) pose = pose + (0, ∆yfine,0, 0);

Chapter 5 – Global Localization 67

 if c(pose - (0, ∆yfine,0, 0)) > c(pose) pose = pose - (0, ∆yfine,0, 0);

 if c(pose + (0, 0, ∆θfine,)) > c(pose) pose = pose + (0, 0, ∆θfine,);
 if c(pose - (0, 0, ∆θfine,)) > c(pose) pose = pose - (0, 0, ∆θfine,);

 } while (pose != last_pose);

 (kx , ,) = pose; ˆ kŷ kθ̂

 } next k
}

Applying this method, a series of intermediate global poses (, ,) is obtained, for
witch the congruence is maximal. These poses have a resolution of map pixel size, and
among them outliers can occur, since there may be mismatches due to shadows, false
edges, and perspective shifts. We define an intermediate correction vector as difference
between roadmap-adjusted pose and intermediate global pose. Intermediate poses with
low congruence coefficient are not considered, since the matching results are likely not to
be reliable, and outliers are found and eliminated by median filtering. Averaging over
several neighboring correction vectors, we obtain smoothed vectors and can correct the
road-map-adjusted path accordingly. In areas with few reliable global poses, the original
roadmap-adjusted path is virtually left unchanged.

kx̂ kŷ kθ̂

While it is possible to correct the path reliably in areas with clear building edges, this
method has an apparent disadvantage: once the track of the vehicle in the photo is lost
and the believed pose is significantly far from the actual path, the algorithm may not
recover if the correct match is outside the search window. This potentially occurs in areas
such as suburban houses hidden among trees, in which no distinctive line features, but
numerous false edges e.g. from tree shadows, are present. In these areas, the accumulated
errors can exceed the correlation search range during longer drives. Unfortunately,
extending the search window size is not an acceptable solution, since it does not only
increase computation time, but also the possibility of finding remote, erroneous scan-to-
photo matches in ambiguous situations. Therefore, the selection of heuristic parameters
such as search window size and correction vector weight is crucial for the success of the
method. Furthermore, this method represents the pose only as one discreet set of
parameters; no measure for its uncertainty is incorporated.

5.5 Global Map Position Based on Monte Carlo Localization

In this section, we investigate the use of Monte-Carlo-Localization (MCL) as a more
robust way to improve our pose estimation from laser scans. MCL is an approach in
probabilistic robotics and a subclass of Markov Localization. In the following section, we
give a short overview over the field of probabilistic robotics, and describe our adaptation
of the localization techniques to the specific problem of localizing the acquisition vehicle
in the city.

68 Chapter 5 – Global Localization

5.5.1 Probabilistic Robotics – Background

In probabilistic robotics, the pose estimate πt for a time t is not only represented by one
single set of parameters, but instead by a probability distribution over the parameter
space, hence representing uncertainty of the estimation process. Most approaches make
the restrictive assumption, that the environment of the robot is static, although practically
they often work also in partially dynamic environments. In a static environment, sensor
readings depend only on the state, i.e. the pose of the robot, and not on past or future
events or measurements. In other words, the robots pose is the only state in the
environment, and it is all one needs to know in order predict the sensor measurements.
This assumption is generally known as Markov assumption, and the class of localization
approaches making this assumption is called Markov Localization [Russell and Norvig,
1995], [Simmons and Koenig, 1995]. In contrast to mobile robotic applications such as an
interactive museum guide, the static environment assumption is easily fulfilled in our
case. Since the horizontal scanning plane is well above dynamic obstacles such as cars
and pedestrians, laser sensor readouts are not affected and depend only on static objects
such as trees and buildings.

An excellent overview over the major concepts as well as an extension for dynamic
environments is given in [Fox et al., 1999a]. The key idea of Markov localization is to
interpret the state, i.e. pose πt, at the time t as a random variable, and to estimate its
probability density, typically called the belief, conditioned on a series of input data.
Formally, the believe can be denoted as

)..|()(0ddpBel ttt ππ = (5-3)

where d0..dt is the input data from time 0 to time t. Input data can be distinguished into
motion data, denoted as a for action and perception data, denoted as o for observation.
For example, motion data is typically odometry information, and perception data is
information captured by sensors. In this notation, the data inputs dt are discretized: an
action at summarizes all effects from the time interval [t-1; t], and an observation ot is a
perception snapshot at time t.)(tBel π is the updated belief after consideration of dt;
consequentially, the belief remains unchanged until the next data set arrives. As such,
only motion changes the actual state of the system while the perception does not;
however, both affect our belief about the state. Starting from an initial belief)(0πBel , for
example a Dirac function if the starting pose is exactly known, or a uniform distribution
if unknown, the belief is recursively updated as new data comes in.

It has to be a distinguished whether the incoming data is perception data or motion data:

b) Motion data
In this case, dt is at and Equation 5-3

)..,|()..|()(010 ddapddpBel tttttt −== πππ . (5-4)

Chapter 5 – Global Localization 69

Using the theorem of Total Probability, this can be written as

')..,|'()',..,|(

)..,|()(

1011101

01

−−−−−

−

⋅⋅=

=

∫ tttttttt

tttt

dddapddap

ddapBel

ππππ

ππ
 (5-5)

Again, Markov assumption suggests for the first term on the right-hand side

)',|()',..,|(1101 −−− = ttttttt apddap ππππ , (5-6)

and since πt-1 does not depend on at, the second term can be written as

)'()..|'()..,|'(1011011 −−−−− == tttttt Belddpddap πππ , (5-7)

hence yielding the final recursive update equation

 . (5-8) ')'()',|()(111 −−− ⋅⋅= ∫ tttttt dBelapBel πππππ

The term)',|(1−ttt ap ππ denotes the probability of a state πt given an action at and an
previous pose πt-1’; to compute this probability, a motion model is necessary. In the
motion step, two probability distributions are convoluted; intuitively, the motion flattens
the probability distribution, because additional uncertainty is introduced, as shown in
Figure 5-10 for a one-dimensional state space: The initial belief has its peek at xp, then,
an uncertain motion in the x-direction with expected value ∆x occurs, shifting and
flattening the resulting belief.

70 Chapter 5 – Global Localization

Figure 5-10: Updating the believe for the x coordinate with motion data; (a) initial belief, (b) action
estimate with uncertainty, (c) new belief as the convolution if the two probability densities

a) Perception data
In this case, dt can be written as ot and the belief can be expressed as

)..,|()..|()(010 ddopddpBel tttttt −== πππ . (5-9)

Using Bayes’ rule, this can be transformed to

Chapter 5 – Global Localization 71

)..|(

)..|()..,|()(
01

0101

ddop
ddpddopBel

tt

ttttt
t

−

−− ⋅
=

πππ . (5-10)

Due to the Markov assumption, ot depends only on the state πt and not on d0..dt-1, so that

)|()..,|(01 ttttt opddop ππ =− . (5-11)

Since the denominator is a constant in regard of πt, it can be put in a normalization factor

)..|(

1

01 ddop tt −

=η , (5-12)

hence simplifying Equation 5-10 to

)..|()|()(01 ddpopBel ttttt −⋅⋅= ππηπ . (5-13)

Furthermore, we can write)..|()..|(01101 ddpddp tttt −−− = ππ , since the belief does not
change if no additional data arrives, so that Equation 5-13 can finally be written as

)()|()(1−⋅⋅= tttt BelopBel ππηπ , (5-14)

providing a recursive formula to update the belief for incoming sensor data. The
normalization factor η can easily be computed with the theorem of Total Probability, i.e.

 (5-15) 1)(=∫

∞
tt dBel ππ

The term)|(ttop π denotes the probability of the observation ot given the pose πt; to
compute this probability, a perception model is necessary. In the perception step, two
probability distributions are multiplied. Generally, the perception sharpens the position
estimate, because additional information is used to modify the distribution, as shown in
Figure 5-11 for a one-dimensional state space: The initial belief has its peek at xp. Then,
an uncertain observation suggests that the actual position is slightly to the left, and since
the resulting belief is computed by multiplying the two density functions; its maximum is
in the “common” area. Hence, the resulting belief is sharper.

72 Chapter 5 – Global Localization

Figure 5-11: Updating the believe for the x coordinate with perception data; (a) initial belief, (b)
observation estimate with uncertainty, (c) new belief as the multiplication of the two probability
densities

Markov localization provides the recursive update equations for both, motion and
perception data; however, it is neither specified how the probability densities can be
represented, nor how the probabilities)|(ttop π and)',|(1−ttt ap ππ can be obtained.
The computation of)',|(1−ttt ap ππ is usually easier, since the motion model for a robot is
rather precise; the exact computation of)|(ttop π is more difficult. Fortunately, it is
sufficient to possess only very approximate knowledge of the exact perception and
motion probabilities)|(ttop π and)',| 1−ttt a(p ππ . Practically, the results do not differ

Chapter 5 – Global Localization 73

substantially, as long as the behavior of modeled and actual probabilities is sufficiently
similar.

As this method carries on multiple hypotheses, it is robust enough to recover from
position errors and mismatches, and capable of finding the correct pose, even if the initial
pose is not given precisely or at all. However, the crucial point in Markov localization is
the implementation, because a reasonable representation for the probability distribution
needs to be found. Common approximations of the belief in the current literature are:

a) Gaussian approximation

Based on the Kalman filter [Kalman, 1960], the restrictive assumption is made that
belief, action and observation are Gaussians, and can hence be represented by only
two parameters: mean value and variance. Since this assumption renders computation
simple and efficient, it has been very popular for tracking a robot real-time. In this
context, it has been applied successfully in many applications, and has proven to be
robust, if the uncertainty remains small. However, in its plain form, it has the severe
drawback that it cannot handle multiple hypotheses in case of ambiguity. This
problem has been addressed by proposing multi-hypotheses Kalman filters, which
represent the belief as mixtures of Gaussians [Jensfelt and Kristensen, 1999],
[Roumeliotis and Bekey, 2000]. However, even multi-hypotheses Kalman filters are
not capable of recovering from catastrophic localization failures, such as in the
kidnapped robot problem or in the initial global localization problem. Furthermore,
the perception probability)|(ttop π has also to be assumed as Gaussian, and this is
not correct in our case.

b) Grid based representation

A second popular approach is grid-based Markov localization, where the parameter
space is sampled as a probability grid, e.g. in [Fox et al., 1999a], [Thrun, 2000]. The
parameter space is partitioned into grid cells, each representing the probability in a
parameter “cube” by a floating point value. However, for a downtown area, this
would lead to more than 108 states and hence large computational complexity, even
for a resolution as low as 1 meter x 1 meter x 2 degrees.

c) Particle Filtering

In particle filtering [Gordon et al., 1993], also known as condensation algorithm in
computer vision and as Monte-Carlo-Localization (MCL) in the context of robot
localization [Fox et al., 2000], a large number of random samples (or particles) is
utilized to represent probability distributions. These particles are propagated over
time using a combination of sequential importance sampling and resampling steps,
shortly referred to as sampling-importance-resampling. The resampling step
statistically multiplies or discards particles at each step according to their importance,
concentrating particles in regions of high posterior probability. Hence, the particle
density is statistically equivalent to the probability density. Although powerful and
robust, particle filters are intuitive and relatively simple to implement.

74 Chapter 5 – Global Localization

5.5.2 Monte-Carlo-Localization

Due to the large extend of a city environment, the necessity to represent multiple distinct
hypothesis, and the requirement to recover from localization failures, the usage of particle
filters appears most favorable to us. In our particular MCL problem, π is a three-
dimensional state variable with the parameters (x, y, θ), the motion estimates are obtained
form the scan-to-scan matching results (∆uk,∆vk,∆ϕk) for each step k, as described in
Chapter 4, and the perception is given by the congruence coefficient c(x, y, θ) between
laser scans and aerial edge map. Applying above ideas, we suggest the following
procedure:

We represent the probability distribution of π by a set S of particles Pi, each with an
importance factor wi. In an iterative process, the set Sk of N particles is transformed into
another set Sk+1 of N particles by applying the following three phases: (a) motion; (b)
perception, and (c) importance resampling. Each particle Pi is associated with a specific
parameter set (x(i), y(i), θ(i)), and the number of particles within a “cube” in the state space
around (x, y, θ) is proportional to the probability density at (x, y, θ). Therefore, the
histogram over (x(i), y(i), θ(i)) of all particles approximates the probability distribution of
(x, y, θ). As such, it is this distribution function of the random variable π =(x,y,θ) that is
being propagated from iteration k to k+1 based on the scan-to-scan match in the motion
phase, and the scan-to-edge map match in the perception phase.

We assume as a motion model)',|(1−ttt ap ππ that the distribution of the relative position
estimates (∆uk,∆vk,∆ϕk) obtained from scan-to-scan matching in Chapter 4 is Gaussian
with variances σu

2, σv
2, σϕ

2. Note that this refers only to the motion model; it does not
imply any Gaussian distribution for the belief. Specifically, in the motion phase, we start
with the relative position estimate (∆uk,∆vk,∆ϕk), and add to it a white Gaussian random
vector to obtain a new random vector, i.e.

))(),(),((),,()~,~,~(ϕσσσϕϕ nnnvuvu vukkkkkk +∆∆∆=∆∆∆ (5-16)

where n(σ) denotes Gaussian white noise with variance σ2, and σu

2, σv
2, σφ2 represent

scan-to-scan measurement noise variance. Intuitively, one can imagine that for some of
the particles, the added noise compensates by chance for the actual measurement error.
From the scan point alignment experiments in Chapter 4, we have obtained approximate
knowledge about σu, σv, and σφ; however, added noise level should be set higher than the
true measurement uncertainty. The reason is that otherwise, in case of an extreme
matching error, eventually the correct noise addition is not given to any particle, since it
is unlikely to draw a value from the far outskirts of the distribution. Thrun et al. note that
MCL can fail if assumed noise level is too small, and have recently suggested Mixture-
MCL as an extension that might overcome this problem [Thrun et al., 2001].

According to initial path computation, the parameter set of the ith particle Pi, is
transformed to

Chapter 5 – Global Localization 75

 () 








∆
∆

⋅∆++







=









k

k
k

i
i

i

i

i

v
u

R
y
x

y
x

~
~

~
'
')(

)(

)(

)(

)(

ϕθ (5-17)

 k
ii ϕθθ ~')()(∆+= .

Intuitively, this means that the amount of movement of each individual particle is drawn
from a probability distribution function of the random variable (∆uk,∆vk,∆ϕk). As a result
of this phase, particles that share originally the same parameter set are “diffused” after
the transformation in Equation 5-17.

For the perception model, we utilize the correlation coefficient c(x(i)’, y(i)’, θ(i)’) between
horizontal laser scans and aerial edge map as a measure for the probability)|(ttop π .
During the perception phase, for each particle with a new pose (x(i)’, y(i)’, θ(i)’), we set a
preliminary importance factor wi* to the correlation coefficient c(x(i)’, y(i)’, θ(i)’) between
laser scans and aerial photos, according to Equation 5-2. We subsequently normalize wi*
to obtain the true importance factor wi as follows:

∑

=

particles
j

i
i w

ww *

*

, (5-18)

Since c(x(i)’, y(i)’, θ(i)’) is a measure of how well the current scan matches to a particular
vehicle pose (x(i)’, y(i)’, θ(i)’), intuitively, the importance factor wi determines the
likelihood that a particular particle Pi is a good estimate for the actual truck position. As
such, the importance factor of each particle is used in the selection phase to compute the
set Sk+1 from set Sk in the following way: a given particle in set Sk is passed along to set
Sk+1 with a probability proportional to its importance factor. We refer to the “surviving”
particle in set Sk+1 as a child, and its corresponding original particle in set Sk as its parent.
In this manner, particles with high importance factors are likely to be copied into Sk many
times, whereas particles with low importance factors are likely not to be copied at all.
Thus, “important” particles become parents of many children. This selection process
allows removal of “bad” particles and boosting of “good” particles, resembling a sort of
evolution process. This selection phase is also referred to as importance sampling.

Starting with an uniformly distributed set S0 on the starting position in the aerial image,
we apply the above three phases at each step k, in order to arrive at a series of sets Sk.
More specifically, our algorithm can be summarized as follows:

76 Chapter 5 – Global Localization

Monte Carlo Localization:

1. Distribute randomly an initial set S0 of N particles around the approximate starting
position in the edge map

2. For each relative step k
{
 // Motion and Perception
 For particles i:=0 to N of Sk

a) Generate and add random noise to motion estimate according to Equ. 5-16
b) Move particle Pi according to Equ. 5-17 by distorted motion estimate

)~,~,~(kkk vu ϕ∆∆∆
c) Set importance factor wi

* of Pi to congruence coefficient c(new particle pose)

 // Importance resampling
 1. Normalize importance factors wi according to Equ. 5-18

 2. Pick particles for the next generation with a probability proportional to their

importance factor:

 for i:=0 to N {
 r = random number(0, 1)
 for j:=0 to N {
 r: = r - wi;
 if r<0 then exit j-loop; // if wj is large, it is more likely that
 // the loop is exited at this j
 }
 copy Pj into next generation Sk+1
}

Figure 5-12 shows one of resulting Sk as an example, superimposed on the aerial image.
This set of particles appears like a blob, with the density the highest at the dark spot in
the blob.

Chapter 5 – Global Localization 77

Figure 5-12: Set of particle representing the pose belief, superimposed on the aerial image. In this

visualization, the probability density is expressed by different colors.

It is quite simple to incorporate additional information such as the digital roadmap or
eventual GPS readouts during the belief computation, in order constrain parameter space.
For example, since we have the digital roadmap registered with the aerial photo available,
we can restrict positions of the particles to within a few-meter-wide strip around roads.
This can be done efficiently by marking allowed locations in the edge map as shown in
Figure 5-13, where the parameter space is restricted to within the darker 25 meters wide
strip around roads. Assigning a zero importance to each “off-road” particle, we can
prohibit its selection during the resampling process. Though this is not necessary for
obtaining the correct path, it can greatly decrease computation time, because incorrect
particles can be removed immediately, and therefore much fewer particles are needed,
while the probability distribution near the roads is still represented appropriately.

78 Chapter 5 – Global Localization

Figure 5-13: Restricting parameter space to locations near roads.

The remaining question is how to obtain the actual global pose at step k from each set Sk,
and this is a non-trivial problem. While the belief provides a good measure for the range
of possible poses, it is not clear which pose in this range is the actual one. Even if we
knew most of the previous and following poses perfectly, we were not able to resolve
intermediate uncertainty and determine all locations exactly.

One possibility to obtain a concrete global estimate is to compute the center of mass of
the Sk. However, the belief represents only past data, and this would include many
particles to be revealed as inappropriate in later steps. For example, if the belief at step k
consists of two distinct peeks, one of them to be revealed as erroneous by future data,
simply estimating the pose as the center of mass incorrectly results a position in the
middle of the two possibilities. Since we know the evolution of the particle sets over
time, we can disregard the particles revealed as erroneous in the future. Specifically, we
keep track of the “ancestry” of particles and consider only those particles in Sk, whose
descendents have survived after M steps later, and hence are in the set Sk+M. We then
compute the center of mass for these particles in set Sk, and use it as the global 2D map
pose estimate for step k. While these estimates are suitable as global references, their
absolute position accuracy is not in the centimeter range necessary for an accurate 3D
reconstruction. In this sense, they are comparable with GPS readouts, and to obtain the
final poses we have to combine the local accuracy of the initial path with the globally
correct map positions from MCL.

It would be desirable to adjust the initial path to the global 2D map poses in the same
simple and intuitive manner that we used for the congruence maximization, i.e. averaging
the correction vectors. However, since MCL does not require an adjustment with a digital
roadmap as an intermediate step, we only have the initial path with its strong distortions,
and hence extremely large global correction vectors. The essential problem is for the path
computation, rotations and translations are coupled, since even small changes in a relative

Chapter 5 – Global Localization 79

angle at the beginning of the path can change subsequent positions substantially. One
alternative solution is minimizing some distance function between initial path and global
points, but since such a function is affected by each parameter of the relative estimates,
the resulting optimization problem has some thousand dimensions, and the strong
influence of angles for all subsequent positions can cause numerical instability and make
the search for the global optimum hard. Fortunately, we can exploit that global yaw
angles in the path depend only on previous relative angle estimates, but not on position
estimates. Thus, we can decouple the yaw angle correction from the position correction:
we first correct the yaw angles separately by subtracting averaged angle differences
between initial and global poses, recompute the path with the new angles, and apply
averaged correction vectors to the x and y coordinates. Since this independence is not
mutual, it is important that the angle correction is performed before the position
correction. The result of this correction is a final 2D path, with both local accuracy and
correct global pose in all three DOF.

We have assumed perfectly flat environment for global registration in respect to an
airborne photo, and hence the 3 DOF (x,y,yaw) describe global pose completely. For the
registration in respect to an airborne DSM, we can abandon the restriction to flat
environments and create correct models even for hill areas. Utilizing the additional
altitude information the airborne laser provides, two more DOF can be estimated in a
simple manner: We can fairly assume that the vehicle never leaves the ground while
driving in the city. An estimate for the ground level as a smooth 2D manifold has been
computed in Section 5.2, and thus we set the final zk coordinate to the altitude of the
ground level at (xk,yk) location.

Furthermore, the slope is the gradient of the ground level in driving direction; hence, the
slope or equivalently the pitch angle, can be computed as















−+−

−
==

−−

−
2

1
2

1

1

)()(
arctan)arctan(

kkkk

kk
kk

yyxx
zzslopepitch (5-19)

by using the altitude difference and the traveled distance between successive positions.
Since the resolution of the airborne scans is only about one meter and the ground level
was obtained in a smoothing process, the estimated pitch does not contain highly
dynamic pitch changes e.g. caused by pavement holes and bumps. Nevertheless, due to
its size and length, the truck is relatively stable lengthwise and as such, the obtained pitch
is an acceptable estimate.

The last missing DOF, the roll angle, could similarly be estimated using airborne data,
but in this case we have two superior alternatives: The first alternative is to assume
buildings are generally built vertically, and apply a histogram analysis on the angles
between successive vertical scan points. If in average the distribution peak is not centered
at 90 degree, the difference between 90 degree and the actual peak angle can be used as
roll estimate. The second alternative is to use the ground-based image data to detect the

80 Chapter 5 – Global Localization

ups and downs during driving; in contrast to the vertical laser scans, images overlap
substantially, thus allowing to determine the relative rolling angles for the camera poses
[Flynn, 2002]. Finally, intermediate pose between these dense, accurate global poses are
computed by linear interpolation. The result is a 6-DOF path, completely registered with
the airborne laser data.

 81

6 Automated Facade Model Generation

In the previous chapters, we managed to solve the problem of accurately determining the
vehicle’s pose during the data acquisition. In this Chapter, we address the problem of
automatically creating a detailed, textured 3D facade mesh from ground-based vertical
scans and image data, representing the building walls at the highest level of detail. We
propose an ensemble of data processing techniques to create visually appealing facade
meshes by removing cluttered foreground objects and filling holes in the building
facades. Our objectives are robustness and efficiency with regard to processing time, in
order to ensure the scalability to the enormous amount of data for an entire city.

Figure 6-1: Vertical scan points

Knowing the pose of the acquisition sensor accurately, it is straightforward to compute
the 3D coordinates of the vertical laser scan points, resulting in a structured point cloud
as shown in Figure 6-1. This point cloud contains vertices for any object in the scanner’s
field of view; many objects in the scene are not desired in a facade model, such as
pedestrians, cars and trees. Additionally, there are many erroneous vertices, e.g. due to
glass surfaces, and facade areas without any scan point, due to occluding foreground
objects. Hence, a simple triangulation of the raw scan points, for example by connecting
neighboring points if their distance is below a threshold value, does not result in an
acceptable reconstruction of the street scenery, as shown in Figure 6-2(a) and (b). Even
though the 3D structure can be easily recognized when viewed from a viewpoint near the
original acquisition position as in Figure 6-2(a), the mesh appears cluttered due to several
reasons: first, there are holes and erroneous vertices due to reflections off the glass on

82 Chapter 6 – Automated Facade Model Generation

windows; second, there are many pieces of geometry “floating in the air”, corresponding
to partially captured objects and measurement errors; and third, occluding foreground
objects such as cars and trees cause large holes in the geometry behind. The mesh appears
even worse when viewed from other viewpoints such as the one shown in Figure 6-2(b).
Then, the large holes in the building facades caused by occlusion become visible, and
furthermore foreground objects become almost unrecognizable when viewed sideways,
since the laser scanner has only captured their frontal view. Since we are mainly
interested in the building facades, it is our goal to identify foreground and facades in the
scans, and to remove foreground objects and fill holes in the facades.

a)

b)
Figure 6-2: Triangulated raw points; (a) front view; (b) side view.

Previous work for scan point processing and model generation has mostly focused on 3D
scanners, and thus the general approach to fill gaps caused by occlusions is to combine
multiple scans taken from different viewpoints, for example in [Curless and Levoy,
1996], [Stamos and Allen, 2002], [Davis et al., 2002]. In our case scans from other
viewpoints are not available, as we drive by a street only once. If we want to fill the holes
prohibiting a correct appearance, we rather have to reconstruct occluded areas by only
using cues from neighboring scan points, and as such, there has been little work to solve
this problem. One approach [Stulp et al., 2001] suggested planar segmentation to 3D laser

Chapter 6 – Automated Facade Model Generation 83

scans from an indoor environment, in order to identify foreground objects such as chairs
and occluded planar areas behind, e.g. walls. What makes the problem hard in our case of
a city environment is the common presence of “uncooperative” materials such as glass
and shiny steel, resulting in erroneous scan points, also around the holes. However, in
contrast to merged sets of 3D laser scans, our data has the advantage that it comes in a
strict row-column fashion, and this regular topology enables the application of fast image
processing algorithms. In this Chapter, we describe first our strategy to handle the large
amounts of data by a path subsplitting and depth image generation scheme. We will then
introduce our algorithms to transform the raw scans into a visually appealing facade
mesh, to automatically texture map this mesh, and to create a hierarchy of levels of
details to enable interactive rendering.

During data acquisition, we capture simultaneously a long series of vertical and
horizontal scans. Using the localization methods in Chapters 4 and 5, the entire “capture”
path of the acquisition truck can be reconstructed in a global Cartesian coordinate system
[x,y,z], and thus, we can associate an accurate pose estimate with each of the
simultaneously captured vertical scans. To partially compensate for the unpredictable,
non-uniform motion of the truck, the vertical scan series is subsampled such that the
spacing between successive scans is roughly equidistant, e.g. about 10 or 15 centimeters,
hence greatly reducing the amount of scans during slow motion or standstill times. This is
especially reasonable if one considers the scanner’s quite large beam divergency of 15
milliradians, resulting in a spot size and thus a resolution of 15 centimeters in a 10-meter
distance, so that denser scans would be completely redundant anyways. The resulting
subsampled series of vertical scans Sn is used for the 3D reconstruction. In the following
sections, we index the vertical scan by their number n and denote a scan point by its
(integer) azimuth angle υ. Furthermore, let sn,υ be the distance measurement on a point in
scan Sn with azimuth angle υ. Then, dn,υ=cos(υ)· sn,υ is the depth value of this point with
respect to the scanner, i.e. its orthogonal projection into the ground plane. The scanning
setup and its denotations are shown in Figure 6-3.

84 Chapter 6 – Automated Facade Model Generation

Figure 6-3: Scanning setup and denotations

6.1 Segmentation of the Driving Path Into Quasi-Linear Segments

The data captured during a few-minutes drive consists of tens of thousands of scan
columns. Since successive scans in time correspond to spatially close points, e.g. a
building or a side of a street block, it is computationally advantageous not to process the
entire data as one block, rather to split it into smaller segments to be processed
separately. We impose the constraints that (a) path segments have low curvature, and (b)
scan columns have a regular grid structure. The latter constrain allows us to readily
identify the neighbors to right, left, above and below for each point, and, as seen later, is
essential for the generation of a depth image and segmentation operations.

Scan points for each truck position are obtained as we drive by the streets. During straight
segments, the spatial order of the 2D scan rows is identical to the temporal order of the
scans, forming a regular topology. Unfortunately, this order of scan points can be
reversed during turns towards the scanner’s side of the car. Figure 6-4(a) and (b) show
the scanning setup during such a turn, with scan planes indicated by the two dotted rays.
During the two vertical scans, the truck performs not only a translation but also a
rotation, making the scanner look slightly backwards during the second scan. If the
targeted object is close enough, as shown in Figure 6-4(a), the spatial order of scan points
1 and 2 is still the same as the temporal order of the scans; however, if the object is
further away than a critical distance dcrit, the spatial order of the two scan points is
reversed, as shown in Figure 6-4(b).

Chapter 6 – Automated Facade Model Generation 85

(a)

(b)

Figure 6-4: Scan geometry during a turn, (a) normal scan order for closer objects; (b) reversed scan
order for further objects.

For a given truck translation of ∆s and a rotation ∆θ between successive scans, the
critical distance can be computed as

)sin(θ∆

∆
=

sdcrit . (6-1)

Thus, dcrit is the distance at which the second scanning plane intersects with the first
scanning plane. For a particular scan point, the order with its predecessors is distorted if
its depth dn,υ exceeds dcrit; this means that its geometric location is somewhere in between
points of previous vertical scans. The effect of such order reversal can be seen in the
marked area in Figure 6-5, for an acquisition path indicated by the dotted line. At the
corner, the ground and the building walls are scanned twice, first from a direct view and
then from an oblique angle, and therefore out of order and with lower accuracy. These
oblique points destroy the regular topology between neighboring scan points.

86 Chapter 6 – Automated Facade Model Generation

Figure 6-5: Scan points with reversed order at a turn.

Since the “out of order” scans obtained in these scenarios correspond to points that have
already been captured by “in order” scans and are therefore redundant, our approach is to
discard them and use only the “in order” scans. For typical values of displacement,
turning angle, and distance of buildings from our driving path, this occurs only in scans
of turns with significant angular changes. By removing these “turn” scans and splitting
the path at the “turning points”, we obtain path segments with low curvature that can be
considered as locally quasi-linear, and can therefore be conveniently processed as depth
images, as described in the following section. In addition, to ensure that these segments
are not too large for further processing, we subdivide them if they are larger than a
certain size. Specifically, in segments that are longer than 100 meters, we identify vertical
scans that have the fewest scan points above street level, corresponding to empty regions
in space, and divide at these locations. Furthermore, we detect redundant path segments
for areas captured multiple times due to multiple drive bys, and use only one of them for
reconstruction purposes. Figure 6-6(a) and Figure 6-6(b) show an example of an original
path and the resulting path segments, respectively, both overlaid on a roadmap. The small
lines perpendicular to the driving path indicate the scanning plane of the vertical scanner
for each position.

Chapter 6 – Automated Facade Model Generation 87

(a) (b)
Figure 6-6: Driven path; (a) before segmentation; (b) after segmentation into quasi-linear segments.

6.2 Converting Path Segments To Depth Images

In the previous section, we create path segments that are guaranteed not to contain scan
pairs with permuted horizontal order. As the vertical order is inherent to the scan itself,
all scan points of a path segment form a 3D scan grid with regular, quadrilateral
topology. This 3D scan grid can be transformed into a 2.5D representation, i.e. a depth
image in which each pixel represents a scan point, and the gray value for each pixel is
proportional to the depth of the scan point. The advantage of a depth image is its
intuitively easy interpretation, and the increased processing speed the 2D domain
provides. However, most operations that are performed on the depth image can be done
as well on the 3D point grid directly, just not as conveniently.

A depth image is typically used for representing the data from 3D scanners. While image
size and resolution are dependent on the specific scanner, the depth value assigned to
each pixel is usually the distance between scan point and scanner origin, or its cosine
with respect to the ground plane. As we expect mainly vertical structures, we choose the
latter option and use the depth dn,υ = cos(υ)· sn,υ rather than the distance sn,υ, so that the
depth image is basically a tilted height field. The advantage is that in this case points that
lie on a vertical line, e.g. a building wall, have the same depth value, and are hence easy
to detect and group. Note that our depth image differs from one that would be obtained
from a normal 3D scanner, as it does not have one single center from which the scan
points are measured. Instead, there are different centers for each individual vertical
column along the path segment. The obtained depth image is neither a polar nor a parallel
projection; it most resembles to a cylindrical projection. Due to non-uniform driving
speed and non-linear driving direction, these centers are in general not on a line, but on
an arbitrary shaped, though low-curvature curve, and the spacing between them is not

88 Chapter 6 – Automated Facade Model Generation

exactly uniform. Because of this, the grid position specifies in the strict sense only the
topological order of the depth pixels, and not the exact 3D point coordinates. However,
topology and depth value are a good approximation for the exact 3D coordinates,
especially within a small neighborhood. While the depth image facilitates the use of
standard image processing techniques such as region growing, the actual 3D vertex
coordinates are still kept and used for some 3D operations such as plane fitting. Figure
6-7(a) shows an example of the 3D vertices of a scan grid, and Figure 6-7(b) shows its
corresponding depth image, with a gray scale proportional to dn,υ.

(a)

(b)
Figure 6-7: Scan grid representations; (a) 3D vertices; (b) depth image.

Chapter 6 – Automated Facade Model Generation 89

6.3 Properties of City Laser Scans

In this section, we briefly describe special properties of scans taken in a city environment,
resulting from the physics of a laser scanner as an active device measuring time-of-flight
of light rays. It is essential to understand these properties and the resulting imperfections
in distance measurement, since at times they lead to scan points that appear to be in
contradiction with human eye perception or a camera. As the goal of our modeling
approach is to generate a photo-realistic model, we are interested in reconstructing what
the human eye or a camera would observe while moving around in the city. As such, we
discuss the discrepancies between these two different sensing modalities in this section.

a) Discrepancies due to different resolution

The beam divergence of the laser scanner is about 15 milliradians (mrad) and the spacing,
hence the angular resolution, is about 17 mrad. As such, this is much lower than the
resolution of the camera image with about 2.1 mrad in the center and 1.4 mrad at the
image borders. Therefore, small or thin objects, such as cables, fences, street signs, light
posts and tree branches, are clearly visible in the camera image, but only partially
captured in the scan. Hence they appear as “floating” vertices, as seen in the depth image
in Figure 6-8.

Figure 6-8: "Floating” vertices.

b) Discrepancies due to the measurement physics

Camera and eye are passive sensors, capturing light from an external source, in contrast
to a laser scanner, which is an active sensor and uses light that it emits itself. This results
in substantial differences in measurements on reflecting and semitransparent surfaces,
which are in form of windows and glass fronts frequently present in urban environments.

90 Chapter 6 – Automated Facade Model Generation

Typically, there is at least 4% of the light reflected at a single glass/air transition, hence
totaling to at least 8 % per window. If the window has a reflective coating, this
percentage is even larger. The camera typically sees a reflection of the sky or a nearby
building on the window, often distorted or merged with objects behind the glass.
Although most image processing algorithms would fail in this situation, the human brain
is quite capable of identifying windows. In contrast, depending on the window
reflectance, the laser beam is either entirely reflected, most times in a different direction
from the laser itself and hence not resulting in any distance value, or is transmitted
through the glass. If it hits in the latter case a lambertian surface behind the window, the
backscattered light travels again through the glass, as shown in Figure 6-9. The resulting
surface reflections on the glass only weaken the laser beam intensity, eventually below
the detection limit, but do not otherwise necessarily affect the distance measurement.
Thus, the window is quasi non-existent to the laser, and the measurement point is
generally not on the window surface, unless the surface is by chance orthogonal to the
beam. In case of multi-reflections, the situation becomes even worse as the measured
distance is almost random.

Figure 6-9: Laser measurement in case of a glass window

c) Discrepancies due to different scan and viewpoints

Laser and camera are both limited in that they can only detect the first
visible/backscattering object along a measurement direction and can as such not deal with
occlusions. If there is an object in the foreground, such as a tree in front of a building, the
laser cannot capture what is behind it; hence, generating a mesh from the obtained scan
points results in a hole in the building. We refer to this type of mesh hole as occlusion
hole. As the laser scan points resemble a cylindrical projection, but rendering is parallel
or perspective, it is in presence of occlusions virtually impossible to reconstruct the
original view without any hole, even for the viewpoints from which data was acquired.
An interesting fact is that the wide-angle camera images captured simultaneously with the
scans often contain parts of the background invisible to the laser. These images could
potentially be used to either fill in geometry based on stereo techniques, or to at least
verify the validity of geometry filled in by the interpolation techniques described in the
next sections.

Chapter 6 – Automated Facade Model Generation 91

In order to make our facade models photo-realistic, we need to devise techniques for
detecting discrepancies between the two sensing modalities, removing invalid scan
points, and filling in holes resulting from both occlusions and mirroring surfaces; we will
describe our approach to these problems in the following sections.

6.4 Multi-Layer Representation

To achieve that the facade model looks reasonable from every viewpoint, it is necessary
to complete the geometry for the building facades. As our facades are not only manifolds,
but also resemble a height field, it is possible to introduce a representation based of
multiple depth layers for the street scenery, similar to the one proposed in [Chang and
Zakhor, 1999]. Each depth layer is a scan grid, and the scan points of the original grid are
assigned to exactly one of the layers. If there is a point at a certain grid location in a
foreground layer, this location is empty in all scene layers behind it and needs to be filled
in.

Even though the concept can be applied to an arbitrary number of layers, it is for our
problem sufficient to generate only two layers, a foreground and a background. To assign
a scan point to either one of the two layers we make the following assumptions about our
environment: Main structures, i.e. buildings, are usually (a) vertical, and (b) extend over
several feet in horizontal dimension. For each vertical scan Sn corresponding to a column
in the depth image, we define the main depth as the depth value that occurs most
frequently, as shown in Figure 6-10. The scan vertices corresponding to the main depth
lie on a vertical line, and the first assumption suggests that this is a either a main
structure, such as a building, or perhaps other vertical objects, such as a street light or a
tree trunk. With the second assumption, we filter out the latter class of vertical objects.
More specifically, our processing steps can be described as follows:

We sort all depth values sn,υ for each column n of the depth image into a histogram as
shown in Figure 6-10(a) and (b), and detect the peak value and its corresponding depth.
Applying this to all scans results in a 2D histogram as shown in Figure 6-11, and an
individual main depth value estimate for each scan. According to the second assumption,
isolated outliers are removed by applying a median filter on these main depth values
across the scans, and a final depth value is assigned to each column n. We define a “split”
depth γn for each column n, and set it to the first local minimum of the histogram
occurring immediately before main depth, i.e. with a depth value smaller than the main
depth. Taking the first minimum in the distribution instead of the main value itself has the
advantage that points clearly belonging to foreground layers are splits off, whereas
overhanging parts of buildings, for which the depth is slightly smaller than the main
depth, are kept in the background layer where they logically belong to, as shown in
Figure 6-10.

92 Chapter 6 – Automated Facade Model Generation

(a)

 (b)
Figure 6-10: Main depth computation for a single scan n; (a) laser scan with rays indicating the laser
beams and dots at the end the corresponding scan points; (b) computed depth histogram

Figure 6-11: Two-dimensional histogram for all scans of a path segment.

Chapter 6 – Automated Facade Model Generation 93

A point can be identified as a ground point if its z coordinate has a small value and the
direction to its neighbors is approximately horizontal. We prefer to include the ground in
our models and hence assign ground points also to the background layer. Therefore, we
perform the layer split by assigning a scan point Pn,υ to the background layer, if sn,υ > γn or
Pn,υ is a ground point, and otherwise to the foreground layer. Figure 6-12 shows an
example for the resulting foreground and background layers.

(a)

(b)

Figure 6-12: Separation into two scene layers; (a) foreground layer; (b) background layer.

Since the steps described in this section assume the presence of vertical buildings, they
cannot be expected to work for segments that are dominated by trees; this also applies to
the processing steps we introduce in the following sections. As our goal is to reconstruct
buildings, path segments can be either omitted or left unprocessed and included “as is” in
the city model, if they do not contain any structure. Typical for a tree area is its cluttered
geometry, resulting in a large variance among adjacent depth values, or even more
characteristically, many significant vector direction changes for the edges between
connected mesh vertices. We define a coefficient for the fractal nature of a segment by
counting vertices with direction changes greater than a specific angle, e.g. twenty
degrees, and dividing them by the total number of vertices. If this coefficient is large, the
segment is most likely a tree area and should not be made subject to the processing steps

94 Chapter 6 – Automated Facade Model Generation

described in this section. This is for example the case for the segment shown in Figure
6-8.

After layer splitting, all grid locations occupied in the foreground layer are empty in the
background layer. The vertical laser does not capture any occluded geometry, and in the
next section we will describe an approach for filling these empty grid locations based on
neighboring pixels. However, sometimes there is some more data available from other
sources, e.g. in our case 3D vertices can be derived from stereo vision and from the
horizontal scanner used for navigation. Thus, it is conceivable to use this additional
information to fill some holes in the depth layers. Our approach to doing so is as follows:

Given a set of 3D vertices Vi obtained from a different modality, determine the closest
scan direction for each vertex and hence the grid location (n,υ) it should be assigned to.
As shown in Figure 6-13, each Vi is assigned to the vertical scanning plane Sn with the
smallest Euclidean distance, corresponding to column n in the depth image. Using simple
trigonometry, the scanning angle under which this vertex appears in the scanning plane
and hence the depth image row υ can be computed, as well as the depth dn,υ of the pixel.

Figure 6-13: Sorting additional points into the layers.

We can now use these additional vertices to fill in the holes. To begin with, all vertices
that do not fall onto a background hole location are ignored. If there is exactly one vertex
falling onto a grid location, its depth is directly assigned to that grid location; for
situations with multiple vertices, the median depth value for this location is chosen.
Figure 6-14 compares the background layer before and after sorting in 3D vertices from
stereo vision and horizontal laser scans. As seen, some smaller holes can be entirely
filled, and the size of others becomes smaller, e.g. the holes in the tall building on the left
side caused by the trees. Note that this intermediate step is optional and depends as a
matter of course on the availability of additional 3D data.

Chapter 6 – Automated Facade Model Generation 95

(a)

(b)
Figure 6-14: Background layer; (a) before and (b) after sorting in some additional points from stereo
vision and horizontal laser scans.

6.5 Background Layer Postprocessing and Mesh Generation

In this section, we will describe a strategy to remove erroneous scan points and to fill in
holes in the background layer. As stated in the beginning of this chapter, there exists a
variety of successful hole filling approaches based on fusing multiple scans taken from
different positions. In particular, most previous work on hole filling has been focusing on
reverse engineering applications, in which a 3D model of an object is obtained from
multiple laser scans taken from different locations and orientations, e.g. with a turn table.
Since these existing hole-filling techniques are not applicable to our experimental setup,
our approach is to estimate the actual geometry solely based on the surrounding
environment and reasonable heuristics. One cannot expect this geometry to be perfect in
all possible cases, rather to lead to an acceptable result in most cases and thus reducing
the amount of eventual further manual interventions and postprocessing drastically.
Additionally, the estimated geometry could be made subject to further verification steps,
such as consistency checks by applying stereo vision techniques to the intensity images
captured by the camera.

96 Chapter 6 – Automated Facade Model Generation

Our data typically exhibits the following characteristics:

• Occlusion holes, such as those caused by a tree, are large and can extend over
substantial parts of a building.

• A significant number of scan points surrounding a hole may be erroneous due to
glass surfaces.

• In general, a spline surface filling is unsuitable, as building structures are usually
piecewise planar with sharp discontinuities.

• The size of a data set resulting from a city scan is huge, and therefore the
processing time per hole should be kept to a minimum.

Based on the above observations, we propose the following steps for data completion:

1. Detecting and removing erroneous scan points in the background layer

We assume that erroneous scan points are due to glass surfaces, i.e. the laser measured
either an internal wall/object, or a completely random distance due to multi-reflections.
Either way, the depth of the scan points measured through the glass is substantially
greater than the depth of the building wall, and hence these points are candidates for
removal. Since glass windows are usually framed by the wall, we remove the candidate
points only if they are embedded among a number of scan points at main depth. An
example of the effect of this step can be seen by comparing the windows of the original
image in Figure 6-15(a) with the processed background layer in Figure 6-15(b).

2. Segmenting the occluding foreground layer into objects

In order to determine holes in the background layer caused by occlusion, we segment the
occluding foreground layer into objects and project segmentation onto the background
layer. This way, holes can be filled in one “object” at a time, rather than all at the same
time; we have discovered that more localized hole filling algorithms are more likely to
result in visually pleasing models than global ones. We segment the foreground layer by
taking a random seed point that does not yet belong to a region and applying a region
growing algorithm that iteratively adds neighboring pixels if their depth discontinuity or
their local curvature is small enough. This is repeated until all pixels are assigned to a
region, and the result is a region map as shown in Figure 6-15(c). For each foreground
region, we determine boundary points on the background layer; these are all the valid
pixels in the background layer that are close to hole pixels caused by the occluding
object.

3. Filling occlusion holes in the background layer for each region

As the foreground objects are located in front of main structures and in most cases stand
on the ground, they occlude not only parts of a building, but also parts of the ground.
Specifically, a low object such as a car with a large distance to the main structure behind
causes an occlusion hole typically in the ground and not in the main structure; this is

Chapter 6 – Automated Facade Model Generation 97

because the laser scanner is mounted on top of a rack, and as such has a top down view of
the car. As a plane is a good approximation for the ground, we fill in the ground section
of an occlusion hole by the ground plane. Therefore, for each depth image column, i.e.
each scan, we compute the intersection point between a line through the main depth scan
points and a line through ground scan points. The angle υ’n at which this point appears in
the scan marks the virtual boundary between ground part and structure part of the scan;
we fill in structure points above and ground points below this boundary in a different
way:

Applying a RANSAC algorithm, we find the plane with the maximum consensus, i.e.
maximum number of ground boundary points on it, as the optimal ground plane for that
local neighborhood. Each hole pixel in column n with υ < υ’n is then filled in with a depth
value according to this plane. It is possible to apply the same technique to the structure
hole pixels, i.e. the pixels with υ > υ’n, by finding the optimal plane through the structure
boundary points and filling in the hole pixels accordingly. However, we have found that
in contrast to the ground, surrounding building pixels do often not lie on a plane. Instead,
there are discontinuities due to occluded boundaries and building features such as
marquees or lintels, in most cases extending horizontally across the building. Therefore,
rather than filling holes with a plane, we fill in structure holes line by line horizontally, in
such a way that the depth value at each pixel is the linear interpolation between the
closest right and left structure boundary point, if they both exist; otherwise no value is
filled in. In a second phase, a similar interpolation is done vertically, using the already
filled in points as valid boundary points. This method is not only simple and therefore
computationally efficient, it also takes into account the surrounding horizontal features of
the building in the interpolation. The resulting background layer is shown in Figure
6-15(d).

 4. Postprocessing the background layer

The resulting depth image and the corresponding 3D vertices finally be cleaned up by
removing scan points that remain isolated, and by filling small holes surrounded by
geometry using linear interpolation between neighboring depth pixels. The final
background layer after applying all processing steps is shown in Figure 6-15(e).

98 Chapter 6 – Automated Facade Model Generation

(a)

(b)

 (c)

(d)

(e)

Figure 6-15: Processing steps for a depth image. The individual figures show: (a) initial depth image;
(b) background layer after removing invalid scan points; (c) foreground layer segmented; (d)
occlusion holes filled, and (e) final background layer after filling remaining holes.

Chapter 6 – Automated Facade Model Generation 99

In order to create a mesh, each depth pixel can be transformed back into a 3D vertex, and
each vertex Pn,υ is connected to a depth image neighbor Pn+∆n,υ+∆υ if

 max,, || sss nnn <−∆+∆+ υυυ or cos max cos ϕϕ > , (6-2)

with

 ||||
)()(cos

,,,,

,,,,

υυυυυυ

υυυυυυϕ
∆+∆+∆−∆−

∆+∆+∆−∆−

−⋅−

−⋅−
=

nnnnnn

nnnnnn

PPPP
PPPP . (6-3)

Intuitively, neighbors are connected if their depth difference does not exceed a threshold
smax or the local angle between neighboring points is smaller than a threshold angle ϕmax.
The second criteria is intended to connect neighboring points that are on a line, even if
their depth difference exceeds smax. The resulting quadrilateral mesh is split into triangles,
and mesh simplification tools such as Qslim [Garland and Heckbert, 1997] or VTK
decimation [Schroeder et al., 1992] can be applied to reduce the number of triangles.
Figure 6-16(a) shows an example for a facade mesh obtained directly from triangulating
the raw scan points, and Figure 6-16(b) the triangular mesh created after applying the
proposed automatic hole filling and foreground removal procedure. It can be seen that the
difference between the two meshes is quite substantial, and although the processed mesh
may not be as perfect as if edited manually, it appears as an acceptable facade model.

100 Chapter 6 – Automated Facade Model Generation

(a)

(b)

Figure 6-16: Generated meshes, (a) original mesh from triangulation of raw scan points; (b) after
applying the proposed foreground removal and hole filling procedure

6.6 Automated Texture Mapping

Photo-realism cannot be achieved by using geometry alone; rather, we use images of the
actual scene to texture map the geometry and make the facade models appear realistic. As
described in Chapter 3, our data acquisition system includes a digital color camera with a
wide-angle lens, and its intrinsic parameters and extrinsic parameters in respect to the
laser scanners’ coordinate system have been calibrated prior to the data acquisition. Since
it is synchronized with both scanners and hence taking snapshots at exactly defined times,
we can utilize the pose of the horizontal laser scanner and assign a camera pose to each
image. This the key for successful photo-realistic model generation in our approach, and
a substantial advantage compared to other texture mapping techniques, which attempt to
fit laser scans and camera images e.g. by a complicated and error-prone vanishing line
detection. After removing the lens distortion in the images, a 3D vertex can be mapped to
its corresponding intensity image pixel by a simple projective transformation. Since the
3D mesh triangles are small compared to their distance to the camera, perspective
distortions within a triangle can be fairly neglected, and each mesh triangle can be texture
mapped with the corresponding picture triangle by applying the projective transformation
only to the three corner points. We refer to the corresponding triangle in the picture as
texture triangle and to the pixel coordinates of its corner points as texture coordinates, in
compliance with the common terminology in computer graphics.

Chapter 6 – Automated Facade Model Generation 101

As described in Section 6.3, camera and vertical laser scanner have different viewpoints
during data acquisition, and in most camera pictures at least some mesh triangles of the
background layer are occluded by foreground objects; this is particularly true for triangles
that consist of filled-in points, since for them the direct view is certainly occluded. An
example of this is given below: Figure 6-17(a) shows an image of a street scenery, and
Figure 6-17(b) the triangular mesh back-projected into the image, and as seen, triangles
of both the tree and the building project to the same image location, which is only
possible since they have been filled in or acquired from different viewpoints than the
image. Although the pixel location of the projected background triangles is correct, the
corresponding texture is incorrect since it merely corresponds to the occluding
foreground objects.

However, after splitting the scan points to the two layers, the foreground geometry is
readily identified, and both foreground scan points and triangles can be marked in each
camera picture, as shown in Figure 6-17(c) with white color. In order to select specific
camera images to texture map a specific mesh triangle in the background layer, we
determine whether any of the triangle’s corner points projects to a white marked pixel for
each picture containing the triangle in its field of view; if this is not the case, the picture
is utilizable for texturing the triangle. For the particular wide-angle lens we use, typical
building topologies, and typical driving speeds, a background layer point is usually in the
field of view of about 10 to 20 pictures. If the data acquisition has taken place on a sunny
day, the lighting conditions can for some pictures exceed the dynamic range of the
camera, resulting in over-saturated and unusable pictures when facing the sun. Exploiting
that in this case there are anomaly few dark pixels, we can identify those images via a
color histogram analysis, and prohibit their use for texture mapping, if better images are
available. In most situations, we still have a choice among multiple images, and then we
choose the most direct view to texture map the triangle. However, if a foreground object
and a building facade are too close, some facade triangles may not be visible in any
picture and hence cannot be texture mapped at all. For those triangles, no real image data
is available and either they are left untextured of an appropriate texture is merely
invented. One possible solution is the use of a texture synthesis algorithm as suggested in
[Efros and Freeman, 2001], or to create artificial texture for example in a copy-and-paste
like fashion.

102 Chapter 6 – Automated Facade Model Generation

(a)

(b)

(c)

Figure 6-17: Mesh triangles projected into camera images; (a) initial camera image; (b) mesh
triangles projected into the image, with some foreground and background triangles projecting to the
same image area (arrow); (c) foreground objects marked white.

Chapter 6 – Automated Facade Model Generation 103

6.7 Model Optimization for Interactive Rendering

While the actual model generation is finished with the creation of the geometric mesh and
the establishment of the corresponding picture area as the texture, the model is in this
form virtually unusable for interactive rendering: Displaying an entire city data set would
require a graphics card to load and render millions of triangles and thousands of pictures
at a time, by far exceeding the capabilities even of modern graphics cards. To overcome
this problem, we optimize the original mesh in two additional processing steps: First, we
create a texture atlas to reduce the amount of image data necessary for texturing, and
second, we create multiple level-of-details and a hierarchical scene graph to manage the
amount of triangles and texture.

a) Texture atlas generation
Observing that most parts of a camera image are not utilized since they show foreground
objects or are visible in other images at a more direct view, we can reduce the amount of
necessary texture imagery drastically by extracting only the parts actually used. The
inherent row-column structure of the triangular mesh permits to assemble a new artificial
image with a corresponding row-column structure and reserved spaces for each texture
triangle. This so-called texture atlas is created by copying and warping each individual
texture triangle to fit into the corresponding reserved space. Then, the texture coordinates
of the mesh triangles are adjusted accordingly, and instead of the numerous original
images, the atlas is used to represent the texture. Since in this manner the mesh topology
of the triangles is preserved and adjacent triangles align automatically due to the warping
process, the resulting texture atlas resembles a mosaic. While the atlas is in fact not
precisely metric due to slightly non-uniform spacing between vertical scans, these
distortions are small and irrelevant in the context of texture mapping, since they are
completely reverted by the graphics card hardware during the rendering process. Figure
6-18 illustrates the atlas generation: From the acquired stream of images, over-saturated
frames have been removed. During texture mapping, a corresponding texture triangle in
one of the images is assigned to each mesh triangle and then copied into the texture atlas
as symbolized by the arrows. In this illustration, only five original images are shown;
actually, in this example 58 images of 1024 by 768 pixels size are combined to create a
texture atlas of 2559 by 476 pixels. Thus, the texture size is reduced from 45.6 million
pixels to 1.2 million pixels, while the resolution remains the same.

104 Chapter 6 – Automated Facade Model Generation

Figure 6-18: Automatic texture atlas generation. Texture triangles from various pictures are
assembled to one single artificial image. One image has been prohibited for texture mapping due to
over-saturation of the camera; for the others, the arrows illustrate the process of copying triangles.

b) Level-of-detail and scene graph generation
An entire city consists of tens of millions triangles and even after atlas generation, the
texture for an entire city district can easily total to some hundred megabytes, thus
exceeding the rendering capabilities of any existing graphics card. But since for any
given viewpoint only a small subset of the entire model has to be shown at the highest
resolution, an elegant solution is to store multiple level-of-details (LOD) for each facade
mesh and select the appropriate LOD during rendering. To obtain a lower LOD, we resize
the atlas to a fraction of its original dimensions via bicubic interpolation and scale the
texture coordinates accordingly. For the geometry, the amount of triangles is reduced
with the Qslim mesh simplification algorithm [Garland and Heckbert, 1997], which
removes and regroups triangles of a given mesh based on edge collapsing. The atlas
texture coordinates of the remaining mesh vertices can thereby simply be reused; since
the atlas is approximately metric, the new, larger triangles are textured with the
composed texture from several original texture triangles. Small distortions due to the
warping process in the atlas composition are not noticeable from the far-away view for
which the lower LODs are used.

Already one single path segment can result in a quite large facade mesh, and its
megabytes of texture can reach dimensions that are not supported by OpenGL anymore.
Additionally, the entire segment has to be rendered in the highest LOD, even if the
viewer is close to only a small part of it, e.g. requiring several complete facade meshes at
highest LOD while the viewer is at a street intersection. Therefore, it is not efficient to

Chapter 6 – Automated Facade Model Generation 105

use such a large facade mesh as the smallest LOD unit, rather, we subdivide the facade
mesh together with the texture atlas along vertical planes and generate different LODs for
each sub-mesh, thus enabling enhanced flexibility for switching LODs. Dividing all LOD
meshes along the same vertical planes has the advantage that seams between different
LODs are far less noticeable. As illustrated in Figure 6-19, all sub-meshes are then
combined in a hierarchical scene graph, controlling the switching of the LODs dependent
on the viewer’s position and establishing compliance with the limitations of graphics
hardware. This enables us to render the enormous amount of both geometry and texture
even with a standard web based VRML renderer such as Cosmo player.

Figure 6-19: Subdividing the mesh of a path segment into sub-meshes and generation of a scene
graph

106 Chapter 6 – Automated Facade Model Generation

 107

7 Airborne Model Generation and Model Fusion

While the facade models generated in the previous chapter offer a virtual view as seen
from street level, they do not contain any information about roofs, terrain, or building
structures behind the facades. Essentially, these models are the virtual equivalent to a
Hollywood city, and it is apparent that solely facades are not sufficient for virtual fly-
thrus. Therefore, we outline in this Chapter methods of enhancing the facades with roofs
and terrain shape from airborne laser scans. From these scans, we create a DSM, convert
it to a surface mesh, and texture map it with aerial color images. Then, we merge the
airborne surface mesh and the facade models, in order to obtain a complete model
suitable for both walk- and fly-thru. It turns out that one of the greatest advantages of our
particular localization method is its inherent registration of the facade models with a
global model, hence substantially facilitating subsequent model merging.

7.1 Resampling and DSM Generation from Airborne Laser Scans

Due to advances in technology, airborne laser scans have become a data source for 3D
modeling in recent years. To scan a city from an airborne view, a far-range 2D scanner is
mounted on board a plane, so that it scans along a line perpendicular to the flight
direction. Due to the plane’s forward motion, the scan line sweeps over the ground. The
unpredictable roll and tilt motion of the plane generally destroys the inherent row-column
order of the scans. Therefore, GPS and INS readouts are captured simultaneously along
with the scanning process, and 3D vertices are directly obtained from the position and
orientation of the scanner and the measured distance. Thus, the scans may be interpreted
as an unstructured set of 3D vertices in space, with the x,y coordinates specifying the
geographical location and the z coordinate the altitude. Both flight and data conversion is
usually done by a professional company, and as a customer one simply buys the resulting
set of 3D scan points.

Typically, the accuracy of one single scan point is in the range of one foot, whereas the
non-uniform density of scan points is a function of the flight altitude and can be specified
in points per square meter. In order to further process the scan efficiently, it is
advantageous to resample the scan points to a DSM, which is a regular row-column array
over the geographical area, with a z value assigned to each grid cell. Unfortunately, this
step generally reduces the lateral resolution to the grid spacing, and since scan sweeps
overlap and single measurements are taken under different oblique angles, there are
potentially different z values for identical (x,y)-locations, e.g. multiple scan points on a
vertical wall or on the roof above. Furthermore, near discontinuities, it is random where
exactly the laser hits the surface; thus, without further assumptions, the location of an
edge cannot be determined more accurately than the sample density. This causes edges to
be jittery in a DSM obtained from laser scans, and the accuracy for determining
orientation of edges is not as high as with aerial photos. However, the enormous
advantage of airborne laser scans is that they provide directly correct 3D coordinates for

108 Chapter 7 –Airborne Model Generation and Model Fusion

the geometry, and no error-prone camera parameter estimation, line or feature detection
and matching has to be performed.

To transfer the scans to a DSM, we define a row-column grid in the ground plane and sort
scan points into the grid cells. The density of scan points varies and hence there are cells
with no scan point and others with multiple scan points. Since both the percentage of
empty cells and the resolution of the DSM depend on the grid spacing, a compromise
must be found, leaving few cells without a sample while maintaining the resolution at an
acceptable level. In our case, we have chosen to select a square cell size of 0.5 by 0.5
meter, which fills about half of the cells. We create the DSM by assigning each cell the
highest z value occurring among its member points, so that overhanging rooftops of
buildings are preserved while lower points on sidewalls are suppressed. The empty cells
are filled by nearest-neighbor-interpolation, in order to preserve sharp edges. Each grid
cell can be interpreted as a vertex with x- and y- coordinates the location of the cell
center and the z coordinate the altitude value, or as a pixel at (x,y) with a gray intensity
proportional to z. Figure 7-1 shows an example of a point cloud and the resulting DSM
encoded as a gray image.

(a) (b)
Figure 7-1: (a) Raw scan points and (b) resampled DSM as gray image

Note that a DSM is one of the most basic representations for a model. In fact, any
polygonal model in which buildings are represented in a “shoe-box” fashion can easily be
transformed into a DSM; similarly, a DSM can be obtained from stereo vision or SAR.
Hence, the mesh generation and model fusion steps described in the following sections
are by no means limited to the case of airborne laser scans; rather, they comprise a very
general approach to complement facade models with data from airborne view.

Chapter 7 –Airborne Model Generation and Model Fusion 109

7.2 Airborne Model from the DSM

Previous work has focused on the extraction of polygonal building models from DSMs,
often supported by additional data. Similar to airborne stereo vision, most approaches
attempt to match certain primitive polygonal building types to the DSM, either from a set
of predefined types, or more sophisticated, derived from planar surfaces in the DSM itself
and eventually additional data. Example for model reconstruction from laser scans only
can be found in [Weidner and Förstner, 1995], [Vosselman, 1999] and [Maas, 2001].
Other approaches avoid the problem of jittery edges in a DSM by utilizing multiple
additional data sources such as digital ground plans ([Haala and Brenner, 1997], [Brenner
et al., 2001], [Vosselman and Dijkman, 2001]). It has also been popular to extract edge
locations and directions from aerial photos ([Förstner, 1999], [Ameri and Fritsch, 2000])
or hyperspectral images ([Haala and Brenner, 1999]) at higher resolution, and to combine
this accurate edge information with the accurate altitude information from the DSM.
While the advantage of these model-based approaches is their robust reconstruction of
geometry, even in the presence of erroneous scan points and low sample density, they are
often highly dependent on the shape assumptions that are made. In particular, the results
are poor if many non-conventional buildings are present or if buildings are surrounded by
trees, conditions that are particularly true of the Berkeley campus. Although the resulting
model may appear “clean” and precise, the geometry and location of the reconstructed
buildings is not necessarily correct if the underlying shape assumptions are invalid.

From the ground-based acquisition described in the previous section an accurate model of
the building facades is readily available, and as such, we are primarily interested in
adding the complementary roof and terrain geometry. Hence, we can apply a different
strategy to create a model from airborne view, namely transforming the cleaned-up DSM
directly into a triangular mesh and reducing the number of triangles by simplification.
The advantage of this method is that the mesh generation process can be controlled on a
per-pixel level; we exploit this property in the model fusion procedure described in
Section 7.3. Additionally, this method has a low processing complexity and is robust:
Since no pre-defined models are required, it can be applied to buildings with unknown
shapes, even in presence of trees. Admittedly, this comes at the expense of a larger
number of polygons.

7.2.1 Processing the DSM

The DSM contains not only the plain rooftops and terrain shape, but also many other
objects such as cars, trees, etc. Roofs, in particular, look “bumpy” due to a large number
of smaller objects such as ventilation ducts, antennas, and railings, which are impossible
to reconstruct properly at the DSM’s resolution. Furthermore, scan points below
overhanging roofs cause ambiguous altitude values, resulting in jittery edges. In order to
obtain a more visually pleasing reconstruction of the roofs, we apply several processing
steps:

110 Chapter 7 –Airborne Model Generation and Model Fusion

(a)

(b)

(c)
Figure 7-2: Processing steps for DSM; (a) DSM obtained from scan point resampling; (b) DSM after
flattening roofs; (c) segments with RANSAC lines in white.

The first step is aimed at flattening “bumpy” rooftops. To do this, we first apply to all
non-ground pixels a region-growing segmentation algorithm based on depth discontinuity
between adjacent pixels. Small, isolated regions are replaced with ground level altitude,
in order to remove objects such as cars or trees in the DSM. Larger regions are further
subdivided into planar sub-regions by means of planar segmentation. Then, small regions
and sub-regions are united with larger neighbors by setting their z values to the larger
region’s corresponding plane. This procedure is able to remove undesired small objects

Chapter 7 –Airborne Model Generation and Model Fusion 111

from the roofs and prevents rooftops from being separated into too many cluttered
regions. The resulting processed DSM for Figure 7-2(a) is shown in Figure 7-2(b).

The second processing step is intended to straighten jittery edges. We re-segment the
DSM into regions, detect the boundary points of each region, and use RANSAC [5] to
find line segments that approximate the regions. For the consensus computation, we also
consider boundary points of surrounding regions, in order to detect even short linear sides
of regions, and to align them consistently with surrounding buildings; furthermore, we
reward additional bonus consensus if a detected line is parallel or perpendicular to the
most dominant line of a region. For each region, we obtain a set of boundary line
segments representing the most important edges, which are then smoothed out. For all
other boundary parts, where a proper line approximation has not been found, the original
DSM is left unchanged. Figure 7-2(c) shows the regions resulting from processing Figure
7-2(b), superimposed with the corresponding RANSAC lines drawn in white. Compared
with Figure 7-2(b), most edges are straightened out.

7.2.2 Textured Mesh Generation

Since the DSM has a regular topology, it can be directly transformed into a structured
mesh by connecting each vertex with its neighboring ones. The DSM for a city is large,
and the resulting mesh has two triangles per cell, yielding 8 million triangles per square
kilometer for the 0.5 m × 0.5 m grid size we have chosen. Since many vertices are
coplanar or have low curvature, the number of triangles can be drastically reduced
without significant loss of quality. We use the Qslim mesh simplification algorithm
[Garland and Heckbert, 1997] to reduce the number of triangles. Empirically, we have
found that it is possible to reduce the initial surface mesh to about 100,000 triangles per
square kilometer at highest level-of-detail without noticeable loss in quality.

Using aerial images taken with an uncalibrated camera from unknown poses, we texture-
map the reduced mesh in a semi-automatic way: A few correspondence points are
manually selected in both the aerial photo and the DSM, taking a few minutes per image.
Then, both internal and external camera parameters are automatically computed and the
mesh is texture-mapped. Specifically, a location in the DSM corresponds to a 3D vertex
in space, and can be projected into an aerial image if the camera parameters are known.
We utilize an adaptation [Araujo et al., 1998] of Lowe’s algorithm [Lowe, 1991] to
compute the optimal camera pose by minimizing the difference between selected
correspondence points and computed projection. After the camera parameters are
determined, for each geometry triangle, we identify the corresponding texture triangle in
an image by projecting the corner vertices. Then, for each mesh triangle the best image
for texture-mapping is automatically selected by taking into account resolution, normal
vector orientation, and occlusions. Figure 7-3 shows the resulting texture-mapped
airborne model.

112 Chapter 7 –Airborne Model Generation and Model Fusion

Figure 7-3: Texture-mapped airborne model.

7.3 Merging Ground-Based Models and Airborne Surface Mesh

In the previous sections, we have described the creation of a DSM and a textured surface
mesh, and in this section we describe an approach to merge the ground-based facade
models with this surface mesh. Since the global localization methods of Chapter 5 correct
the initial path according to the edges in the DSM, one of the core problems of model
merging, namely the model registration, is already automatically solved. Hence, the
remaining difficulty is to combine facades and surface mesh to a single, consistent model.

Common approaches for fusing meshes, such as sweeping and intersecting contained
volume [Stamos and Allen, 2002], or mesh zippering [Turk and Levoy, 1994], require a
substantial overlap between the two meshes. This is not the case in our application, since
both views are almost perfectly complementary. Additionally, the two meshes have
entirely different resolutions: with about 10 to 15 cm, the resolution for the facade
models is almost an entire order of magnitude higher than for the airborne surface mesh.
Furthermore, it has to be guaranteed that parts of the model fit together even if they are
displayed at different level-of-details, which is inevitable to enable interactive rendering.
Rather than creating a perfectly consistent CAD model, our goal is a photo-realistic
virtual exploration of the city, and hence satisfying visual appearance is more important
than CAD model properties such as watertightness. Both meshes are generated
automatically, and given the complexity of a city environment, it is inevitable that some
parts are only partially captured or erroneous, potentially resulting in substantial
discrepancies between the two meshes.

Chapter 7 –Airborne Model Generation and Model Fusion 113

Due to the higher resolution, it is reasonable to give preference to the ground-based
facades wherever available, and use only roof and terrain shape from the airborne mesh.
Instead of searching through the airborne mesh and removing triangles for which ground-
based geometry is available, it is more efficient to consider this redundancy already in the
mesh generation step. For all vertices of the ground-based facade models, we mark the
corresponding cells in the DSM; furthermore, we identify and mark all areas classified as
foreground by our automated facade processing. These marks control the subsequent
airborne mesh generation, specifically, during the generation of the airborne mesh,
vertices at facade positions are not connected, and the z values for the foreground areas
are replaced by the ground level estimate. The latter step is necessary to enforce
consistency, since it removes foreground objects, which have been deleted during the
facade model generation, also in the airborne mesh. Figure 7-4(a) shows the DSM with
facade areas marked in black and foreground areas marked in white, and Figure 7-4(b)
shows the resulting airborne surface mesh with the corresponding facades removed and
the foreground areas leveled to DTM altitude.

(a) (b)

Figure 7-4: Removing triangles from the airborne surface mesh where ground-based facades are
available; (a) foreground (white) and facades (black) marked in the DSM; (b) resulting mesh with
corresponding facades triangles removed (white arrows).

Now the facade models can be put in place, but facades and airborne mesh do not match
perfectly due to their capturing viewpoint and different resolution: Any ground-based
vertex set back from the facades, e.g. in a house entrance, causes the corresponding cell
to be omitted during meshing. As a result, the removed geometry is slightly larger than
the actual ground–based facade to be placed in the corresponding location. To solve this
discrepancy and make the mesh transitions less noticeable, we fill the gap with additional
triangles joining the two meshes, and we refer to this step as “blending”. Our approach to
creating such a blend mesh is to first create a mesh overlap artificially by extruding the
buildings along an axis perpendicular to the facades, and then shift the location of the
“loose end” vertices to the closest airborne mesh surface. The outline of this procedure is
illustrated in Figure 7-5; it is similar to the way plumb is used to close gaps between

114 Chapter 7 –Airborne Model Generation and Model Fusion

windows and roof tiles. These blend triangles, and the non-textured triangles that were
out of the camera’s field of view, are finally texture mapped with the aerial imagery, and
as such they attach at one end to the ground-based model, while fitting at the other end to
the airborne model. Figure 7-6 shows the blending steps for a concrete example.

Figure 7-5: Steps to create blend triangles. Shown is a vertical cut through a facade mesh; (a) initial
airborne model; (b) triangles of airborne model removed and ground-based model placed in the
resulting gap; (c) blending both meshes with extruded triangles.

(a) (b)

(c) (d)

Figure 7-6: Creation of a blend mesh; (a) initial facade model; (b) facades extruded; (c) "loose ends"
adjusted to airborne mesh surface; (d) blend triangles texture mapped

 115

8 Results

In the preceding chapters, we have proposed a new approach to acquire data from
ground-based view and to create photo-realistic building facade models in a fast and
automated way. This chapter is devoted to applying the described algorithms to real-
world data and to analyzing both the efficiency of our algorithms and the quality of the
obtained results.

8.1 Ground-Based Data Acquisition

The ground-based data was acquired during a 37-minute-drive in Berkeley, California,
for which the speed was only limited by the normal traffic conditions during business
hours. Starting from Warring Street in the Berkeley Hills, we descended through
residential areas, passed through Telegraph Avenue, then further down along Bancroft
Way and around the U.C. Berkeley campus. Finally, we went in clockwise loops around
the blocks between Shattuck Avenue and Milvia Street, while always driving two blocks
southwards on Shattuck and only one block northwards on Milvia. As our devices are
mounted only on the right side of the truck, driving in loops is the only way to acquire
data for both sides of the streets, and hence obtain the facades completely for an entire
area. The driven path had a total length of 10.2 kilometers, and while driving, we
captured 148,665 vertical and horizontal scans, consisting of 39.74 million 3D scan
points along with a total of 7,200 images.

Roughly the first third of the driven path, before we reach Telegraph Avenue, is on a
hillside and contains steep slopes. It leads through residential and campus areas for which
often only trees are in the field of view of our sensors, and it also passes a huge empty
parking lot and a plaza. This part of the path was intended to test the robustness of the
MCL localization on edge maps from the DSM, while a 3D facade reconstruction is not
possible, due to occlusion or complete absence of building structures. To analyze our
geometry reconstruction techniques, we use the 6769 meters long path segment where
urban structures are present, starting from Telegraph Avenue to the end of the path.
During this 24-minute part of the path, we captured 107,082 vertical scans, consisting of
a total of 28.63 million scan points. For the last 11 minutes or 3043 meters of our path,
we drove in loops around the downtown blocks between Shattuck Avenue and Milvia
Street, and we captured both laser scans and camera images. Thus, for this area, we have
all measurement modalities completely available, and hence we can both create texture
mapped facade models and merge these with the airborne surface mesh from the DSM.

8.2 Tracking

We apply the scan-to-scan matching and the path computation described in Chapter 4 to
the acquired horizontal laser scans and obtain a series of relative 3-DOF pose estimates.
We have analyzed the accuracy of the scan matching process already in Chapter 4.2 and

116 Chapter 8 – Results

determined the approximate accuracy of the matching result to be better than
0.03 degrees for the rotation and better than 1 cm for the translation parameters for areas
providing a “normal” amount of features.

To evaluate the effectiveness of the adaptive subsampling of horizontal scans for the path
computation, we compare the resulting path for a downtown Berkeley city block,
acquired in 118 seconds driving time. Figure 8-1 shows path and scan points obtained
with a fixed subsampling factor of 10, and Figure 8-2 using the adaptive subsampling
method, respectively. In both figures, the computed path is represented by the black line
going around the block; orthogonal to it, the scanning direction of the vertical laser
scanner for each computed position is shown. Also shown are the points of the horizontal
laser scan for each position, superimposing to a footprint of the building facades. The
alignment of these scan points is a measure of the computed path accuracy; if the path is
correct, the points of a building wall measured from different positions should ideally lay
on a sharp line, otherwise they will form rather a blurred strip.

For the fixed subsampling factor used in Figure 8-1, the areas where the truck moved
slowly or stopped completely can be clearly identified by looking at the drawn vertical
scanner directions: positions are computed at fixed time intervals, and therefore the
density of estimates is higher during slow motion. For these parts of the path, the scan
point alignment is visibly worse than for the rest, as shown in the detailed view, because
the accumulation of the estimation noise leads to position inaccuracy. Figure 8-2 shows
the same path calculated with adaptive subsampling, given a desired minimum of 80
centimeters and a maximum of 150 centimeters per step. As seen in the detailed view, the
scan alignment is significantly better, regardless of speed or stopping times during data
acquisition. This also results in correct angles between the roads. Note that the upper and
lower part of the traveled path are not parallel, because we changed lanes during driving;
this lane change occurs in the path as evidenced by the decrease in distance between
computed path and building facades from left to right in the upper trajectory of Figure
8-2. Furthermore, the angle between the two roads and Shattuck Av. on the right side of
the Figure 8-2 is actually not 900, also computed correctly by our algorithm.

Chapter 8 – Results 117

Figure 8-1: Path computed with fixed subsampling factor of 10

Figure 8-2: Path computed using adaptive subsampling

118 Chapter 8 – Results

We have applied the scan matching and initial path computation to the entire driven path.
With a minimal displacement of 80 cm and a maximum displacement of 150 cm for a
single step, the adaptive subsampling yields 10109 relative estimates for the entire 10.2
km path. For obtaining this 10109 relative steps, 6753 additional intermediate scan
matches were computed in the adaptive subsampling and not regarded as a full step, since
the distance to the end position of the previous step was too small, so that we had in fact
to perform a total of 16862 scan matches.

Figure 8-3: Path computed by concatenating relative pose estimates obtained in the scan-to-scan
matching process, superimposed on top of the DSM

Figure 8-3 shows the path computed by concatenating these relative steps, superimposed
on top of the DSM. The sequence of turns and straight drives is clearly recognizable, and
the error between relative poses in the path is small within a certain neighborhood.
However, it is apparent that the global position becomes increasingly incorrect for longer
driving, and for area traversed multiple times the individual facades would not match
consistently.

Chapter 8 – Results 119

8.3 Global Localization Based on Aerial Images

In order to correct the apparent errors in global pose with the methods described in
Chapter 5, we first compute an edge map from an aerial photo. As a manual step, we
either mark the approximate starting point of our data acquisition in the aerial photo, or
enter the name of the corresponding road intersection. If desired, this step could easily be
automated as well if a low-cost, low-accuracy GPS is used to obtain the starting position.
However, due to the small effort that it takes, we do not consider this step worth to be
automated, especially since it has to be done only once per data acquisition,
independently from the length of the subsequent driving.

8.3.1 Edge Map Computation

While perspective-corrected black and white photos with a 1-meter resolution, registered
to digital roadmaps, are readily available from the United States Geological Survey
(USGS), we choose to use a higher contrast aerial photograph obtained from Vexcel
Corporation, CO, USA, witch has a resolution of one foot per pixel and covers the entire
area of our data acquisition. This aerial photo is not a perfect ortho-photo, however, it has
been taken approximately perpendicular to the ground. As shown in Figure 8-4, we have
analyzed the metric properties of the aerial image by superimposing a metrically correct
digital roadmap available from the USGS web site. Although the area marked by the
dashed rectangle is not completely flat, we could verify that for this area the effect of
perspective distortion within the ground plane is negligible; it includes the entire urban
path segment starting from Telegraph Avenue. Hence, the photo can be used as a metric
global reference for this area, and applying a Sobel filter, we compute the edge map
shown in Figure 8-5, with a detailed view on Shattuck Avenue. However, the
superposition also revealed the photo’s metric to be erroneous for the hillside area
traversed in the first part of the path, due to significant perspective shifts of the roads
caused by the elevation in the Berkeley Hills. Thus, it cannot be used for this area.

120 Chapter 8 – Results

Figure 8-4: Aerial image superimposed with digital roadmap (white)

Figure 8-5: Edge map derived from aerial photo

Chapter 8 – Results 121

8.3.2 Localization by Maximizing Congruence

We have applied the global pose correction based on maximizing congruence to the
entire path segment starting from Telegraph Avenue, for which the aerial image can be
regarded as metric. As already described in Section 5.4.1, we have used the digital
roadmap to coarsely adjust the initial path obtained from scan-to-scan matching. Then, as
shown in Figure 8-6, we have applied the congruence maximization technique from
Section 5.4.2 to further refine the global pose. Figure 8-6(a) shows the roadmap-adjusted
path, and Figure 8-6(b) and (c) the corrected path superimposed on the edge map and the
aerial photo, respectively. Notice that the roadmap-adjusted path shown in Figure 8-6(a)
is situated outside the edge boundaries of the actual road, and is visibly incorrect.
Furthermore, the corresponding laser scans do not match the building edges, confirming
global pose inaccuracy in Figure 8-6(a). As seen, these problems are clearly absent in
Figure 8-6(b). Due to the averaging over multiple correction vectors and relying on
features such as trees, the correct location in respect to the ground can be found even in
presence of a perspective rooftop shift of the two taller buildings in the middle of the
image. Notice that we also correctly recover the lane change from the right to the left lane
after the crossing in the middle (the shown Telegraph Avenue is a two-lane one-way
street).

(a) (b) (c)

Figure 8-6: Global pose by maximizing congruence. The figures show path and laser scans
superimposed on edge images for (a) original path; (b) path corrected by maximizing congruence; (c)
corrected path superimposed over original aerial image

122 Chapter 8 – Results

While we have found that the correction works well in downtown areas as shown above,
it is unfortunately less reliable in suburban areas with houses hidden among trees. In
particular for residential areas, the selection of heuristic parameters such as search
window and correction vector weight turns out to be crucial for the success of the
method. While we have been able to recover the entire path for one specific parameter
set, we have always lost track of the vehicle for others, similar sets while looping in a
particular residential area. Hence, we believe that this method cannot be reliably applied
to recover trajectories through arbitrary residential areas. This method is also incapable of
pursuing multiple distinct pose hypotheses in ambiguous situations, and no measure for
the pose uncertainty is incorporated, since pose is represented only as one discreet set of
parameters.

8.3.3 Monte Carlo Localization

In order to track the vehicle in the aerial image more reliably, we used the robust Monte-
Carlo-Localization described in Section 5.5. We initialized a set S0 of N particles by
distributing them uniformly within an interval [±∆x,±∆y,±∆θ] = [±10m,±∆10m,±∆100]
around the selected starting position in the aerial image. Then, we apply the three phases
motion, perception, and resampling iteratively for each step k, in order to arrive at a
series of sets Sk, as shown in Figure 8-7. Superimposed on the edge map, Figure 8-7(a),
Figure 8-7(b), and Figure 8-7(c) show the particle set Sk at iterations 0, 30, and 100
respectively. As seen, the blob of particles moves correctly along the path traversed
during data acquisition.

(a) (b) (c)

Figure 8-7: Sets of particles (black) overlaid over aerial edge map (gray) (a) Initial uniform
distribution S0; (b) set S30 after 30 iterations of motion and perception; (c) set S100 after 100
iterations of motion and perception.

Chapter 8 – Results 123

In residential areas with many trees, both false edges in the aerial image and increased
inaccuracy in the scan-to-scan matching process contribute to a large position
uncertainty. Therefore, the number N of used particles has to be quite large in order to
represent the extended belief densely enough. In our experiments, we found out that to
recover the entire path reliably, a number of N>120,000 particles is needed; this is about
two orders of magnitude more than the “optimal” particles set size of 1000 to 5000,
which Fox reported in [Fox et al., 2000] for a much smaller indoor environment and a
hand-made edge map. However, if we opt to use the additional information a digital
roadmap can provide, and constrain possible positions of particles to locations nearby
roads, we can significantly reduce the necessary amount of particles.

Using the modified edge map shown in Figure 5-13, where a 25 meters wide strip around
roads has been marked, we prohibit the selection of all “off-road” particles by assigning a
zero importance during the resampling process. Hence, particles are not “wasted” on
obviously incorrect locations and therefore much fewer particles are needed, while the
probability distribution of the belief near the roads is still represented appropriately. In
Figure 8-8, we compare the belief computed with N=200,000 particles without
restrictions versus the belief computed with N=10,000 particles only, but restricted within
the 25 meter wide strip around the roadmap we have marked in the edge map. As seen,
the spread of the particles is significantly reduced in Figure 8-8(b). We have found that
with the road-area restricted edge map, the amount of necessary particles to recover the
path reliably drops to less than 10,000, thus decreasing computational time greatly.

(a) (b)

Figure 8-8: Restricting particles to locations near roads; belief computed with (a) N=200,000
particles without restrictions, (b) N=10,000 particles restricted within a 25 meter wide strip around
the roadmap (black)

With the methods developed in section 5.5.2, we compute from each set Sk an
intermediate global pose estimate (, ,) by considering only particles which have
descendants 50 resampling generations later, and we distribute global corrections among
the relative steps. Concatenating these corrected steps, we obtain a final path registered
with the aerial photo. Figure 8-9 shows the laser scan points drawn for each intermediate

kx̂ kŷ kθ̂

124 Chapter 8 – Results

position in black, superimposed with the edge image. It can be seen that these scan points
match with edges of the aerial image in most cases, as shown in the two detail views in
the lower left and upper right. The area with the most position uncertainty and thus the
least match is a suburban area shown in the upper left detail view, where the algorithm
faces many false edges corresponding to shadows of trees, and hence the ground based
scans and aerial edge map are simply different. Despite this temporary loss of accuracy in
position estimation, the algorithm recovers as soon as distinct features become available
again. We have found that MCL is a very robust approach for recovering the driven path.

Figure 8-9: Scan points drawn for MCL-corrected path

Using an aerial photo, however, has two potential disadvantages: for the first, strong
edges in the aerial photo might not be at their correct 2D location, since they may result
from perspective-shifted building tops, or simply from intensity discontinuities only.
Hence, even if the scan points match the global edge map, the position could be
erroneous in regard to the true geographical location. For the second, no altitude
information can be recovered, and hence the approach is restricted to flat urban areas. In
the next section, we explore the use of an edge map from airborne laser scans instead of
an aerial image in order to overcome both problems.

Chapter 8 – Results 125

8.4 MCL Based on Airborne Laser Scans

Airborne laser scans of Berkeley were acquired in conjunction with Airborne 1 Inc., Los
Angeles, CA, in about one hour acquisition time. The entire data set consists of 48
million scan points, which have an accuracy of 30 centimeters in horizontal and vertical
direction and a raw spot spacing of 0.5 meter or less, and both the first and the last pulse
of the returning laser light is measured. Choosing a grid spacing of 0.5 by 0.5 meter and
applying the resampling technique described in Section 7.1, we obtain a Digital Surface
Model as shown in Figure 8-10. Again, we need an edge map in order to apply the global
correction procedure from Chapter 5. Therefore, we compute this edge map from the
DSM by using the discontinuity filter proposed in Section 5.2.2, as shown for downtown
Berkeley in Figure 8-11. We also compute a corresponding DTM containing the terrain
altitude with the method we have described in Section 5.2.2.

Figure 8-10: Digital Surface Model of Berkeley, encoded as gray image; the white rectangle marks
the downtown area shown in the next figure

126 Chapter 8 – Results

Figure 8-11: Edge map from DSM for downtown Berkeley area

Both the DSM and the corresponding edge map are in fact orthogonal projections onto
the ground and are hence metric even for hillside areas, in contrast to the edge map from
the aerial photo in the previous section. Therefore, we can use it to correct the global pose
of the entire 10.2-kilometer path, including the first part in the hills. We have applied the
same procedure as for the edge map from aerial images, i.e. selecting the starting position
in the edge map, applying iteratively Monte Carlo Localization for each relative step k to
obtain a particle set Sk, and computing a corrected global pose from each Sk.

We have found that despite its lower resolution, the edge map from the DSM is far
superior to the edge map from the aerial images, due to the absence of false edges and
perspective shifts. For the 1-foot aerial images, the uncertainty was enormous at some
locations, and without digital roadmap, it was necessary to utilize 120,000 particles to
approximate the spread-out probability distribution appropriately and track the vehicle
reliably. In contrast, for the edge map derived from airborne laser scans, the spread of the
particle set was extremely low throughout the entire computation, and we have found that
the vehicle could easily be tracked with as little as 1000 particles. It is recommendable
though to use more particles in order to minimize noise in the global pose estimates.
Figure 8-12 shows an example particle sets Sk, computed during Monte-Carlo-
Localization with 5000 particles. It can be seen that the spread of the particles and hence
the uncertainty of the global pose estimation is small even in residential and hillside
areas.

Chapter 8 – Results 127

Figure 8-12: Set of particles (yellow/red) overlaid over DSM (gray)

After computing intermediate global pose estimates from the particle sets, we have
applied the global correction according to Section 5.5.2 in the following manner: First,
we calculated the yaw angle difference between initial path, as shown in Figure 8-13(a),
and we correct the yaw angles according to the smoothed difference. Then, we have
recomputed the path, and calculated the x and y differences to the intermediate global
poses, as shown in Figure 8-13(b). Similarly, we corrected the x and y coordinates
according to the smoothed x and y differences, and obtained the final path. In both
figures, the curves around the horizontal axes are the differences after correction, and as
seen, only the high-frequency components are kept. We found that errors in the yaw
angles are by far more significant for the global position than errors in the x,y estimates:
while the initial path is off by several hundred meters, the difference between the yaw-
angle corrected path and the intermediate global positions is only a few meters, as seen
Figure 8-13(b).

Figure 8-13: Global correction along the traveled path; (a) yaw angle difference between initial path
and global estimates before and after correction; (b) differences of x and y coordinates before and
after correction. In both diagrams, the differences after corrections are small (curves close to the
horizontal axis).

128 Chapter 8 – Results

(a)

(b)

Figure 8-14: Entire traveled path superimposed on top of the DSM; (a) initial path from scan-to-scan
matching; (b) path corrected with MCL.

Chapter 8 – Results 129

In Figure 8-14, the entire 10.2 km path including the hillside segment is drawn in white
and superimposed on top of the DSM. Figure 8-14(a) shows the initial path obtained from
scan-to-scan matching, and Figure 8-14(b) the path corrected with MCL, using the edge
map from the DSM. As seen, the initial path does not match the DSM, whereas the MCL
corrected path fits well to it. Accordingly, for the corrected path, the ground-based
horizontal scan points match the depth discontinuities in the DSM, as shown in the close-
up view on the downtown area in Figure 8-15. Thus, the ground-based data is registered
with the airborne scans.

Figure 8-15: Horizontal scan points for corrected path superimposed on top of the DSM.

Using the DTM computed from the DSM, we assign each 3-DOF pose the altitude as the
z-coordinate and the slope as the z-derivative in driving direction, or equivalently, the
more commonly used pitch angle as the inverse tangent of the slope. Figure 8-13(a)
shows the z-coordinate and Figure 8-13(b) the pitch angle and hence the incline during
the drive; clearly visible is the incline from our higher starting position near the Berkeley
Hills down towards the San Francisco Bay, as well as the ups and downs on this incline
while looping around the downtown blocks. While the pitch angle reaches 6 degrees and
more in some parts of the hillside drive, it is at most about 2 degrees for the more level
downtown blocks.

130 Chapter 8 – Results

Figure 8-16: Assigned z coordinates and pitch angle

8.5 Facade Model Generation

After determining the vehicle’s pose accurately for each scan as described in the previous
section, it is straightforward to transform the vertical 2D scans into 3D scan points. We
now apply the framework of data processing techniques introduced in Chapter 6 in order
to create visually appealing facades completely automatically. In the following, we apply
our geometry reconstruction techniques to the entire 6769 meters long path segment
starting from Telegraph Avenue to the end. For our geometry processing, we utilize the
6-DOF path corrected with MCL using the edge map from the DSM, since it contains
also altitude and incline information. We can subsequently apply automated texture
mapping to the downtown blocks, for which we captured all facades accessible from the
roads and for which we have recorded color images.

Applying the path splitting techniques described in 6.1 results in 73 quasi-linear path
segments, as shown in Figure 8-17 overlaid with the digital roadmap. There is no need
for further manual cutting, even at Shattuck Avenue, where the “Manhattan geometry” of
Berkeley is not preserved.

Chapter 8 – Results 131

Figure 8-17: Entire path after split in quasi-linear segments.

We have applied the postprocessing methods to all 73 segments, and performed an
evaluation of the obtained results. As we do not have the ground truth to compare with,
and as our main concern is the visual quality of the generated model, we have generated
two facade meshes for each of the 73 segments for comparison: the first mesh is obtained
by directly triangulating the raw scans, and the second one from the depth image to which
we have applied the postprocessing steps described in Chapter 1. Manually inspecting the
results, we have subjectively classified the degree to which the proposed postprocessing
procedures have improved the visual appearance. The classification categories are
“significantly better”, “better”, “same”, “worse” and “significantly worse”. In Figure
8-18, we show a comparison of some examples for meshes generated directly from the
raw scan points (right) and meshes generated after the postprocessing steps (left),
together with the corresponding classifications we assigned. As seen, except for pair “f”,
the proposed postprocessing steps result in visually more pleasing models.

132 Chapter 8 – Results

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8-18: Generated facade meshes, left side original, right side after the proposed foreground
removal and hole filling procedure. The classification for the visual impression is “significantly
better” for the first four image pairs, “better” for pair e and “worse” for pair f.

Chapter 8 – Results 133

The evaluation results for all 73 segments with and without the postprocessing techniques
described in Chapter 6 are shown in Table 1. Even though 8 % of all processed segments
appear visually inferior to the original, the overall quality of the facade models is
significantly improved.

Significantly better 35 48 %
Better 17 23 %
Same 15 21 %
Worse 5 7 %
Significantly worse 1 1 %
Total 73 100%

Table 1: Subjective comparison of the processed mesh vs. the original mesh for all 73 segments.

We have found our processing methods to work well in the downtown areas, where there
are clear building structures and few trees. The important downtown segments are in
most cases ready to use and do not require any further manual intervention. However, in
residential areas, where the buildings are often almost completely hidden behind trees, it
is difficult to accurately estimate the geometry. Hence, the few problematic segments all
occur in residential areas, consisting mainly of trees. The tree detection algorithm in
section 6.4 classifies 10 segments as “critical” in that too many trees are present. Pair f in
Figure 8-18 is one of these segments, and hence should be omitted or left “as is” rather
than processed. All 6 problematic segments corresponding to “worse” and “significantly
worse” rows in Table 1 are among them, yet none of the improved segments in rows 1
and 2 are detected as critical. This is significant because it shows that (a) all problematic
segments correspond indeed to regions with a large number of trees, and (b) they can be
successfully detected and hence not be subjected to the proposed steps. Table 2 shows the
evaluation results if only non-critical segments are processed. As seen, the postprocessing
steps described in Chapter 6 together with the tree detection algorithm improve over 80%
of the segments, and never result in degradations for any of the segments.

Significantly better 35 56 %
Better 17 27 %
Same 11 17 %
Worse 0 0 %
Significantly worse 0 0 %
Total 63 100%

Table 2: Subjective comparison of the processed mesh vs. the original mesh for the segments
automatically classified as non-tree-areas.

Note that the evaluation of our technique is based on comparing the non-textured
geometry. In a comparison in which both models are texture mapped, the processed mesh
is even more likely to be visually superior to the original, since texture distracts the

134 Chapter 8 – Results

human eye from geometry imperfections such as those potentially introduced by hole
filling algorithms. With the automated foreground marking procedure described in
Section 6.6, the facade meshes can be texture mapped. In Figure 8-19, we compare the
two facade meshes for downtown city block side shown in Figure 8-18(d) after texture
mapping. The upper mesh is generated without and the lower mesh with the
postprocessing procedure, respectively. As seen, the visual difference between the two
meshes is striking, for the reasons described above. Note the facade area occluded by the
two trees on the left side of the original mesh has been completely filled with geometry
and texture mapped from oblique camera views as much as possible. Nevertheless, a few
triangles are not visible in any camera image and therefore left untextured, possibly to be
subjected to a texture synthesis algorithm in future work.

Figure 8-19: Textured facade mesh without (top) and with (bottom) processing.

For 12 out of the 73 segments, additional 3D vertices derived from stereo vision
techniques are available. Sorting in these 3D points into the layers according to section
6.4 does fill some of the holes. For these specific holes, we have filled the holes prior to
our processing based on stereo vision vertices and compared the results with those solely
based interpolation as in Table 1 and Table 2. We have found no substantial differences,

Chapter 8 – Results 135

suggesting that our processing and interpolation scheme alone yields already reasonable
results. Often, the interpolated mesh vertices even appear to be slightly more accurate
than the stereo vision based vertices as they are less noisy, and hence we found no reason
of additional exploiting stereo vision data for our model generation. Figure 8-20(a) shows
an example before processing, and Figure 8-20(b) shows the tree holes completely filled
in by stereo vision vertices. As seen, the outline of the original holes can still be
recognized in Figure 8-20(b), whereas the points generated by interpolation alone are
almost indistinguishable from the surrounding geometry, as seen in Figure 8-20(c).

(a)

(b)

(c)

Figure 8-20: Hole filling (a) original mesh with holes behind occluding trees; (b) filled by sorting in
additional 3D points using stereo vision; (c) filled by using the interpolation techniques of section 6.5

136 Chapter 8 – Results

Combining all individually processed segments in the common global coordinate system,
we obtain facade meshes for the entire traveled path starting from Telegraph Avenue, as
shown in Figure 8-21. For better visualization, these facades are superimposed over an
aerial image.

Figure 8-21: Non-textured facade models for the entire path, overlaid on top of an aerial photo.

For the looped downtown blocks, we have camera images available and can hence apply
the automated texture mapping procedure described in section 6.6, which is capable of
handling occlusions and determining the image areas with a direct view on the facades
behind. We texture map the facade meshes completely except the upper parts of tall
buildings, which were out of the limited field of view of the camera during data
acquisition. A bird’s eye view over the texture mapped downtown facade models is
shown in Figure 8-22, and close-up views are shown in Figure 8-23 and Figure 8-24.

Chapter 8 – Results 137

Figure 8-22: Bird's eye view on the texture mapped facade models for the downtown blocks

Figure 8-23: Close-up view on the ground-based facade models, seen from the backside of an
Addison Street facade.

138 Chapter 8 – Results

Figure 8-24: Close-up view on the ground-based facade models, seen from Center Street.

According to section 6.7, we optimize the facade meshes for rendering by creating
multiple levels of details; specifically, we generate for each an atlas as an efficient texture
representation and reduce the number of triangles using the Qslim mesh simplification
tool. Then, we further subdivide the meshes along vertical cutting planes and combine all
sub-meshes in a hierarchical, 3-LOD scene graph. This enables us to render the texture
mapped facades interactively for the entire downtown path with a standard VRML
viewer, as seen in the screenshot in Figure 8-25.

Chapter 8 – Results 139

Figure 8-25: Viewing the texture mapped model with a standard web-based VRML browser, in this
case Computer Associates’ Cosmo Player.

8.6 Airborne Modeling

According to section 7.2, we have computed an airborne surface mesh for the downtown
Berkeley area by (a) resampling aerial laser scan points to a DSM, (b) processing the
DSM by flatten planar surfaces and straightening edges, (c) connecting vertices in the
DSM, and (d) reducing the mesh to about 100,000 triangles per square kilometer by using
qslim mesh simplification. Figure 8-26(b) shows the resulting surface mesh. For
comparison purpose, Figure 8-26(a) shows the surface mesh as obtained without the
DSM processing steps; as seen, the processing improves the visual appearance of the
mesh significantly. In addition, during a helicopter flight, we have acquired 12 aerial
color images of the Berkeley area at oblique angles. In about an hour of manual work, we
have registered these images by selecting correspondence points between the images and
the DSM, and automatically solving for the camera pose. Knowing the camera pose, the
corresponding image location for each surface mesh vertex has been computed, the
optimal image for each triangle has been selected by taking into account resolution,
normal vector orientation, and occlusions, and the mesh has been texture mapped

140 Chapter 8 – Results

accordingly. Figure 8-27(c) shows the airborne model from Figure 8-26(b) after texture
mapping with 12 aerial images.

It is difficult to evaluate the accuracy of this airborne model, as no ground truth with
sufficient accuracy is readily available, even at the city’s planning department. It can be
noted though that by removing small features on building tops, we have admittedly
sacrificed geometric accuracy for the sake of visual appearance. However, while some
details are actually missing in the geometry, they visually appear to be present due to the
texture-mapped aerial imagery. Thus, by creating a false impression of geometric detail,
our approach combines elements of model-based and image-based rendering. While this
is undesirable in some applications, we believe it is appropriate for the purpose of
interactive visualization.

(a)

(b)
Figure 8-26: Airborne model for downtown Berkeley; (a) original DSM directly triangulated, (b)
triangulated after DSM postprocessing.

Chapter 8 – Results 141

Figure 8-27: Airborne model for downtown Berkeley after texture-mapping with 12 aerial images.

8.7 Model Merging

Monte-Carlo-Localization and pose correction have globally adjusted the path to fit the
edges of the DSM. Thus, as a great advantage of our specific localization approach, the
ground-based models and the airborne surface mesh derived from the DSM are
automatically registered with each other. However, if no model merging is performed and
the models are simply overlaid in the same coordinate system, it is random which mesh is
on top and thus visible, and as seen in Figure 8-28 and indicated by arrows, the low-
resolution, coarse airborne mesh covers at numerous locations the high-quality facade
models.

We perform the model merging methods described in Section 7.3, i.e. we mark DSM
cells corresponding to ground-based facade vertices and foreground objects, regenerate
the surface mesh, and create a blend mesh to fill gaps and smooth the transition between
the two meshes. Figure 8-29 illustrates the visual superiority of the highly detailed
ground-based facade models for walk-thrus: while the facades on the right street side
originate from the airborne surface mesh, they are on the left side replaced by the highly
detailed ground-based facade model. As seen, the inserted ground-based facades appear
significantly more suitable for a walk-thru. Figure 8-30 shows the resulting combined
model for the looped downtown Berkeley blocks viewed while walking or driving, Figure
8-31 shows the same model as seen from a building top, and Figure 8-32 shows the
model as it occurs in a Bird’s eye view.

142 Chapter 8 – Results

Figure 8-28: Ground-based models and airborne surface mesh overlaid on top of each other, without
applying model merging steps. While the two meshes are registered with each other, the coarse
airborne triangles cover the high-resolution facade models in numerous locations, e.g. where
indicated by the white arrows.

Figure 8-29: Comparison of walk-thru view on facades from ground based versus airborne
acquisition; while the facade on the right street side originates from the airborne surface mesh, it is
on the left side replaced by the highly detailed ground-based facade model.

Chapter 8 – Results 143

Figure 8-30: Walk-thru view of the merged model

Figure 8-31: Virtual view from a building top of the merged model.

144 Chapter 8 – Results

Figure 8-32: Bird’s eye view of the merged model.

8.8 Performance and Complexity

Besides automatism and photo-realism, the scalability to large environments is one of our
key objectives. We have applied our methods to a substantial urban area, and this section
is dedicated to analyzing computational performance and scalability for the processed
data and beyond it. Ultimately, our methods should be applicable to extremely large
urban environments with up to tens of square miles, e.g. the metropolitan Los Angeles or
the San Francisco Bay Area.

The proposed acquisition and processing scheme utilizes a large number of various
individual algorithms, taking different input and output data and thus having different
individual complexity measures. However, scalability to large environments means the
computational complexity as a function of the covered area size. Since we can fairly
assume that area size, number of contained facades, and path length are approximately
proportional, the crucial question is how the complexity increases with the length of the
driven path, and we analyze this complexity in the following:

First, the data acquisition time is linear in path length, and so is the amount of acquired
data. While practically the maximum path length is limited by the size of the storage
media, it is trivial to overcome this potential bottleneck simply by adding additional hard
disk drives. Second, scan-to-scan matching, initial path computation, and MCL correction

Chapter 8 – Results 145

are linear in path length, and similarly edge map generation from both aerial photo and
DSM is linear in area size. Here, the usage of a global edge map for the localization turns
out to be enormously advantageous, since we do not have to perform the O(n2) data cross
consistency matching necessary in some previous approaches. Third, the ground based
data processing is linear in path length: while some of the functions such as marking
foreground in the images for texture mapping show O(n2) complexity with the size of the
path segment in our implementation, this does not have an effect on the overall
scalability, since the segment size is confined to a maximum length by the path
segmentation techniques. Fourth, due to the O(n) behavior of the qslim mesh
simplification, the airborne surface mesh generation is also linear in area size, and
similarly the DSM marking and blending is linear in path length. Hence, the proposed
automated model generation procedure is completely linear in area size and path length,
and thus easily scalable to large environments. In fact, the average time per area for the
diminutive manual interaction practically even decreases with larger areas, since the two
necessary manual steps besides driving, i.e. entering the starting position for the MCL
localization and selecting correspondence points for the airborne texture mapping, are
one-time tasks independent on the covered area size.

Table 3 shows the processing time for the vehicle localization, i.e. the path computation
and global correction based on the edge map from the DSM, for the entire 10,2 km/37
minutes drive on a 2 GHz Pentium 4 PC. The computationally most expensive part is the
accurate scan matching process, with about two thirds of the total computation time of
roughly 4 hours. Since the computation time is proportional to the path length, one can
figuratively consider our “localization speed” to be about 43 meters path per minute.

Processing times to localize the vehicle for the entire 10,2-km/ 37-
minutes drive
Data conversion 32 min
Scan matching and initial path computation 148 min
Monte Carlo Localization (with DSM and 5,000
particles) and global correction

55 min

Total localization time 235 min
Table 3: Computation times for the vehicle localization, i.e. the complete path computation and
global correction, for the entire 10.2 km path traversed in 37 minutes driving time.

For the 3043 meters/11 minutes downtown part of our drive, where we loop around the
block between Shattuck Avenue and Milvia Street, we have performed the entire model
generation procedure, including texture mapping and merging with the DSM, and have
measured the computation times again on a 2 GHz Pentium 4 PC, as shown in Table 4.
Although this data set consists of millions of scan points and a few thousand camera
images, the processing time for the entire model generation is only about 2 ½ hours.
Since again this computation time scales with path length and area size, respectively, one
can figuratively consider our “total model generation speed” to be about 20 meter facades
per minute.

146 Chapter 8 – Results

Processing times for the 3043-meter/ 11-minutes downtown drive
Data conversion 14 min
Scan matching and initial path computation 52 min
Monte Carlo Localization (with DSM and 5,000
particles) and global correction

18 min

Path segmentation 1 min
Geometry reconstruction 6 min
Texture mapping 27 min
Model optimization for rendering 19 min
DSM computation and projecting facade locations 6 min
Generating textured airborne mesh and blending 19 min
Total model generation time 162 min

Table 4: Processing times for the entire model generation of the downtown Berkeley blocks, acquired
in a 3043-meter/ 11-minutes drive

Note that there is additionally the manual step of selecting correspondences for the
registration of DSM and aerial image, necessary for texture mapping the airborne surface
mesh. The selection of 8 to 10 correspondence points for each image took about an hour
for a large area of Berkeley; since the area covered by these images is about 4 times
larger than the downtown blocks, the manual selection time prorated to the downtown
area is only about 15 minutes. All other steps of the airborne model generation and the
entire ground-based model generation are completely automated and do not need manual
intervention at any point.

As a summary for this section, it can be noted that our approach results in a highly
detailed, photo-realistic 3D city model suitable for both virtual walk- and fly-thrus. In
contrast to most other methods, the generation of this photo-realistic model is automated,
and furthermore, our approach is extremely fast: the acquisition time for five downtown
Berkeley blocks has been only 11 minutes, and the total processing time only 2 ½ hours,
hence to the best of our knowledge outperforming all existing methods. Since the
complexity of the developed approach is linear in area size, it is scalable and applicable
to large environments.

 147

9 Summary and Conclusion

This dissertation addresses the problem of acquiring photo-realistic models of urban
environments for various virtual reality purposes, in particular for virtual walk-, drive- or
fly-thrus. In photo-realistic walk- or drive-thru applications, an enormous level of detail
at ground level is required. Existing semi-automated methods fall short of providing this
level of detail in reasonable time and at affordable costs, since they are complicated and
require substantial manual intervention. In this thesis, we propose an innovative approach
to overcome these limitations by capturing highly detailed facade models from a ground-
based view. The broad scope of the model acquisition problem requires an
interdisciplinary solution, and accordingly, we employ methods from mobile robotics,
optical measurement techniques, computer vision, and computer graphics. Our key
design objectives are automatism, speed, scalability, and photo-realism: firstly, our
approach is completely automated, i.e. no manual intervention is needed at any time.
Secondly, both data acquisition and processing are extremely fast, potentially enabling
the generation of a large-scale city model within hours. Thirdly, the complexity of the
devised algorithms is linear, and computation time increases only proportionally to the
covered area; thus, the algorithms are in principle extendable to arbitrary large areas.
Fourthly, the created building models are visually as realistic as a photograph.

In our approach, we capture facade models from a ground-based view, while moving at
normal speeds on public roads, with an acquisition vehicle equipped with laser scanners
and a digital camera. Data is acquired continuously while driving by the buildings, rather
than in a slow stop-and-go fashion, thus allowing the traversal of an entire city within a
few hours. The collected data is processed offline, and 3D models of the building facades
are generated completely automatically. Additionally, we show that it is possible to
merge these facade models with data from an airborne view, in order to create a complete
3D model, containing facades as well as building tops and terrain shape.

More specifically, we have developed a sensor system and have mounted this system on a
rack on top of a pickup truck. The 3D geometry of a city is acquired using a combination
of two inexpensive 2D laser scanners mounted perpendicularly to one another, one
horizontally and one vertically. The corresponding texture is acquired using a digital
color camera. All devises are controlled by real-time software and synchronized by
hardware signals; hence, it is possible to determine corresponding individual scans and
images. In contrast to the 3D scan registration problem commonly occurring in
approaches based on 3D scanners, we face a localization problem: in order to combine
the individual scans and images to a model, the pose of the sensors during the acquisition
has to be determined extremely precisely. We propose to solve this problem in an offline
computation by first matching subsequent horizontal scans in order to obtain their relative
pose and then by concatenating these relative poses to an initial path estimate. Because
during longer periods of driving, small errors in the relative poses accumulate to form
substantial errors in global pose, we devise, in addition, a global correction based on an
edge map of the city area, which we derive either from aerial images or from airborne
laser scans. Using probabilistic Monte-Carlo Localization, we are able to match

148 Chapter 9 – Summary and Conclusion

horizontal laser scans to the edge map and correct the path globally. Hence, we can
assign a globally correct pose to each acquired laser scan and camera image.

We have developed an entire framework of completely automated algorithms in order to
fuse the raw data to globally consistent facade models. First, we handle the large amounts
of data by sub-splitting the driven path and processing the scan points for each segment
separately as a depth image. In the depth domain, we identify foreground objects, such as
trees and building facades in the background, by histogram analysis. Subsequently, we
remove erroneous scan points and foreground objects, and we fill holes by adaptive
interpolation. By triangulation, the processed points are transformed into a geometric
facade mesh. Since the camera is calibrated and the image acquisition is synchronized
with the laser scanners, we directly project the triangular mesh onto the images, identify
for each triangle the corresponding image location, and texture-map the mesh while
handling occlusions from foreground objects. Then the facade mesh is optimized for
interactive rendering: we create an atlas as an efficient texture representation, generate
multiple level-of-details by using mesh simplification algorithms, subdivide the facades
models, and combine all submodels in a hierarchical scene graph. This enables us to
explore large facade models even with standard VRML viewers.

Finally, we use airborne laser scans to complete the facade models with rooftops and
terrain shape. We create a DSM from the scans, convert it to a triangular surface mesh,
and texture-map this mesh with aerial images. Due to our specific global localization
method, the facade models are automatically registered with the DSM; thus, the only
remaining problem to solve is merging surface mesh and facade models in a consistent
way. To do so, we mark the location of facades and foreground objects in the map and
remove surface mesh triangles corresponding to marked locations. Then we put the
facade models in place and create a blend mesh to connect both meshes seamlessly. The
result is a texture-mapped 3D model suitable for walk-, drive-, and fly-thrus.

We have applied the developed methods on a large data set of downtown Berkeley and
have analyzed both the quality of the results and the processing speed of the algorithms.
We have found that our approach is capable of generating a highly detailed, photo-
realistic 3D model of the architectural structures. Furthermore, both data acquisition and
automated model generation are extremely fast: for five downtown Berkeley blocks, the
acquisition time has been only eleven minutes and the total processing time only two-
and-a-half hours, thereby greatly outperforming, to the best of our knowledge, all existing
methods. Since the complexity of our approach is linear in area size, it is scalable and
applicable to large environments.

There are several ways in which this work could be extended in the future. However, the
following avenues appear particularly important or promising to us:

Modeling foreground objects
In our current approach, foreground objects, such as trees, cars, traffic signs, light posts
and telephone masts, are simply removed, as they are not part of the architectural

Chapter 9 – Summary and Conclusion 149

structure. However, these objects could substantially contribute in making the street
scenery lively and real. Given the complexity and clutter of the foreground scenery, the
proper reconstructing of the individual objects appears to us a challenging problem,
especially since only one side of the objects is captured, and the scan resolution is not
adequate for fine objects, such as a cable mast. A potentially suitable solution could be to
identify certain object types, such as trees or cars, and to replace them by generics of
comparable size and appearance. Both laser scans and images could be used for this
classification, requiring complex computer vision and image understanding techniques.

Airborne model generation
We have shown that it is possible to merge the ground-based facades directly with a
surface mesh from an airborne view, with the advantage of not having to make any
assumptions about building shapes and at the cost of, at times, jittery edges for areas with
no available ground-based facade. The airborne model generation could be greatly
extended by using more sophisticated approaches already known in the literature: for
example, by combining edge information from both the DSM and the aerial image.
Fusion of the thus obtained polygonal model with the ground-based facade models may
open up new problems and vistas. Additionally, the planar facades even of extremely tall
buildings or backsides in this airborne model could be texture-mapped by using far-away
views occasionally visible in the ground-based images. Both could possibly result in
higher model quality for the non-ground-based model parts.

Texture reduction and synthesis
Since architectural structures are highly repetitious, it is often possible to find identical
texture in many different locations on a facade. This could be exploited for two purposes:
first, the amount of necessary texture memory could be further reduced by determining
and re-using redundant texture patches. This is particularly important since texture
consumes the most memory on the graphics card. Second, if there are extremely large
foreground objects, it can occur that some facade triangles are not visible in any camera
image and can therefore not be texture-mapped at all during the model generation
process. The redundancy in architectural structure could be used to fill these texture holes
in a copy-and-paste-like fashion, and we have already obtained encouraging results in
preliminary attempts to do so.

150 Chapter 9 – Summary and Conclusion

 151

References

[Ameri and Fritsch, 2000] B. Ameri and D. Fritsch: “Automatic 3D building

reconstruction using plane roof structures”, ASPRS Congress 2000, Washington,
DC, 2000

[Antone and Teller, 2000] M.E. Antone and S. Teller: “Automatic recovery of relative
camera rotations for urban scenes. “ Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Hilton Head Island, 2000, p.282-9

[Araujo et al., 1998] H. Araujo, R. L. Carceroni, and C. M. Brown, “A Fully Projective
Formulation to Improve the Accuracy of Lowe's Pose-Estimation Algorithm”,
Computer Vision and Image Understanding, Vol. 70, No. 2, pp. 227-238, May 1998

[Baillard and Zisserman, 1999] C. Baillard and A. Zisserman: “Automatic
reconstruction of piecewise planar models from multiple views”, Proceedings of the
Conference on Computer Vision and Pattern Recognition, 1999, pp. 559-565

[Besl and McKay, 1992] P. J. Besl and N. D. McKay: "A method for registration of 3-D
shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239-256, 1992.

[Borenstein et al., 1996] J. Borenstein, B. Everett, and L. Feng: “Navigating Mobile
Robots: Systems and Techniques”, A. K. Peters, Ltd., Wellesley, MA, 1996.

[Bortwick and Durrant-Whyte, 1994] S. Bortwick and H. Durrant-Whyte: ”Dynamic
Localization of Autonomous Guided Vehicles”, Proc. of Int. Conf. On Multisensor
Fusion and Int. Systems, Las Vegas, 1994, p. 92-97

[Brenner et al., 2001] C. Brenner, N. Haala, and D. Fritsch: “Towards fully automated
3D city model generation”, Automatic Extraction of Man-Made Objects from
Aerial and Space Images III, 2001

[Bukowski and Séquin, 1995] R. Bukowski and C. H. Séquin: “Object Associations: A
Simple and Practical Approach to Virtual 3D Manipulation”, Symposium on
Interactive 3D Graphics, Monterey, pp 131-138, 1995

[Chan et al., 1998] R. Chan, W. Jepson, and S. Friedman: “Urban Simulation: An
Innovative Tool for Interactive Planning and Consensus Building”, Proceedings of
the 1998 American Planning Association National Conference, Boston, MA pages
43-50, 1998

[Chang and Zakhor, 1999] N.L. Chang and A. Zakhor: “A Multivalued Representation
for View Synthesis”, Proc. Int’l Conference on Image Processing, Kobe, Japan,
1999, vol. 2, pp. 505-509

[Chatila and Laumond, 1985] R. Chatila and J.-P. Laumond: “Position referencing and
consistent world modeling for mobile robots”, Proceedings of the 1985 IEEE
International Conference on Robotics and Automation, 1985.

[Cipolla et al., 1999] R. Cipolla, D. Robertson, and E. Boyer: "PhotoBuilder - 3D
Models of Architectural Scenes from Uncalibrated Images", ICMCS, 1999, Vol. 1,
pp 25-31

[Cox and Wilfong, 1990] I.J. Cox and G.T. Wilfong, editors: “Autonomous Robot
Vehicles”, Springer Verlag, 1990.

152 References

[Cox, 1991] I.J. Cox: “Blanche - An experiment in guidance and navigation of an
autonomous robot vehicle”, IEEE Transactions on Robotics and Automation, vol 7,
pp 193-204, 1991

[Curless and Levoy, 1996] B. Curless and M. Levoy: “A volumetric method for
building complex models from range images”, SIGGRAPH, New Orleans, 1996, p.
303-312

[Davis et al., 2002] J. Davis, S. Marschner, M. Garr, and M. Levoy: “Filling holes in
complex surfaces using volumetric diffusion”, First International Symposium on 3D
Data Processing, Visualization, Transmission (3DPVT), Padua, Italy, 2002

[Debevec et al., 1996] P. E. Debevec, C. J. Taylor, and J. Malik: “Modeling and
Rendering Architecture from Photographs”, Proc. of ACM SIGGRAPH 1996

[Dellaert et al., 1999] F. Dellaert, W. Burgard, D. Fox, and S. Thrun: “Using the
condensation algorithm for robust, vision-based mobile robot localization”, Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999

[Dempster et al., 1977] A.P. Dempster, N.M. Laird, and D.B. Rubin: “Maximum
likelihood from incomplete data via the EM algorithm”, J. Roy. Stat. Soc. (series B)
39, 1-38, 1977

[Dick et al., 2001] A. Dick, P. Torr, S. Ruffle, and R. Cipolla: “Combining Single View
Recognition and Multiple View Stereo for Architectural Scenes”, International
Conference on Computer Vision, Vancouver, Canada, 2001, p. 268-74

[Dorai et al., 1998] C. Dorai, G. Wang, A.K. Jain and C. Mercer: “From Images to
Models: Automatic 3D Object Model Construction from Multiple Views”, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 82-89, 1998

[Efros and Freeman, 2001] A. Efros and W. Freeman: “Image Quilting for Texture
Synthesis and Transfer”, Proceedings of ACM SIGGRAPH '01, Los Angeles,
USA, 2001

[Elfes, 1987] A. Elfes: “Sonar-based real-world mapping and navigation”, IEEE Journal
of Robotics and Automation, RA-3(3):249–265, June 1987

[El-Hakim et al., 1998] S. El-Hakim, C. Brenner, and G. Roth: “An Approach to
Creating Virtual Environments Using Range and Texture”, Proc. ISPRS
Commission V Symposium, Hakodate, Japan, 1998

[Faugeras et al., 1998] O. Faugeras, L. Robert, S. Laveau, G. Csurka, C. Zeller, C.
Gauclin, and I. Zoghlami: “3D Reconstruction of Urban Scenes from Image
Sequences”, Computer Vision and Image Understanding, Vol.69, No.3, March 292-
309, 1998

[Flynn, 2002] J. Flynn: “Motion from Structure: Robust Multi-Image, Multi-Object Pose
Estimation”, Master’s thesis, Spring 2002, U.C. Berkeley

[Förstner, 1999] W. Förstner: “3D-City Models: Automatic and Semiautomatic
Acquisition Methods”, Photogrammetrische Woche, Stuttgart, 1999

[Fischler and Bolles, 1981] M. A. Fischler and R. C. Bolles: ”Random sample
consensus: a paradigm for model fitting with application to image analysis and
automated cartography”, Communication Association and Computing Machine,
24(6), pp.381-395, 1981

References 153

[Fox et al, 1999a] D. Fox, W. Burgard, S. Thrun: “Markov Localization for Mobile
Robots in Dynamic Environments”, Journal of Artificial Intelligence Research 11,
pp. 391-427, 1999

[Fox et al, 1999b] D. Fox, W. Burgard, F. Dellaert, and S. Thrun: “Monte carlo
localization: Efficient position estimation for mobile robots”, In Proc. of the
National Conference on Artificial Intelligence (AAAI), 1999

[Fox et al., 2000] D. Fox, S. Thrun, F. Dellaert, and W. Burgard: “Particle filters for
mobile robot localization”, In A. Doucet, N. de Freitas, and N. Gordon, edts,
Sequential Monte Carlo Methods in Practice. Springer Verlag, New York, 2000

[Frere et al. 1998] D. Frere, J. Vandekerckhove, T. Moons, and L. Van Gool:
“Automatic modelling and 3D reconstruction of urban buildings from aerial
imagery”, IEEE International Geoscience and Remote Sensing Symposium
Proceedings, Seattle, 1998, p.2593-6

[Früh et al., 2000] C. Früh, M. v. Ehr, and R. Dillmann: “Aufbereitung von Laserdaten
für ein mobiles autonomes 3D-Meßsystem“, Autonome Mobile Systeme, Karlsruhe,
Germany, 2000, p. 263-270

[Früh et al., 2001] C. Früh, J. Flynn, H. Foroosh, and A. Zakhor: “Fast 3D model
generation for urban environments”, Workshop on the Convergence of Graphics,
Vision, and Video (CGVV’01), Berkeley, USA, March 2001

[Früh and Zakhor, 2001 a] C. Früh and A. Zakhor: ”Fast 3D model generation in urban
environments”, IEEE Conf. on Multisensor Fusion and Integration for Intelligent
Systems, Baden-Baden, Germany, 2001, p. 165-170

[Früh and Zakhor, 2001 b] C. Früh and A. Zakhor: ”3D model generation of cities
using aerial photographs and ground level laser scans”, Computer Vision and
Pattern Recognition, Hawaii, USA, 2001, p. II-31-8, vol.2. 2

[Früh and Zakhor, 2002] C. Früh and A. Zakhor: “Data Processing Algorithms for
Generating Textured 3D Building Facade Meshes From Laser Scans and Camera
Images”, Proc. Int’l Symposium on 3D Processing, Visualization and Transmission
2002, Padua, Italy, 2002, p. 834 - 847

[Garland and Heckbert, 1997] M. Garland and P. Heckbert: “Surface Simplification
Using Quadric Error Metrics”, SIGGRAPH ‘97, Los Angeles, 1997, p. 209-216

[Gordon et al., 1993] N. J. Gordon, D. J. Salmond, and A. F. M. Smith: “Novel
approach to nonlinear/non-Gaussian Bayesian state estimation,” Proc. Inst. Elect.
Eng. F, vol. 140, pp. 107–113, 1993

[Gruen et al., 1995] A. Gruen, O. Kübler, and P. Agouris (Editors): Proceedings of the
Workshop Automatic extraction of man-made objects from aerial and space images.
Monte Verità/Switzerland, 1995

[Gutmann and Schlegel, 1996] J.-S. Gutmann and C. Schlegel: “Amos: Comparison of
scan matching approaches for self-localization in indoor environments”,
Proceedings of the 1 Euromicro Workshop on Advanced Mobile Robots, 1996 st

[Gutmann and K. Konolige, 1999] J.-S. Gutmann and K. Konolige: “Incremental
Mapping of Large Cyclic Environments”, International Symposium on
Computational Intelligence in Robotics and Automation (CIRA'99), Monterey,
1999

154 References

[Haala and Brenner, 1997] N. Haala and C. Brenner: “Generation of 3D city models
from airborne laser scanning data”, Proc. EARSEL workshop on LIDAR remote
sensing on land and sea, Tallin, Esonia, 1997, p.105-112

[Haala and Brenner, 1999] N. Haala and C. Brenner: “Extraction of buildings and trees
in urban environments”, ISPRS Journal of Photogrammetry and Remote Sensing
54(2-3), 1999, pp. 130–137

[Hähnel et al., 2001] D. Hähnel, W. Burgard, and S. Thrun: “Learning Compact 3D
Models of Indoor and Outdoor Environments with a Mobile Robot” Fourth
European workshop on advanced mobile robots (EUROBOT'01), 2001.

[Heller et. al., 1996] A. Heller, P. Fua, C. Connolly, and J. Sargent: “The Site-Model
Construction Component of the RADIUS Testbed System”, Proceedings of the
DARPA Image Understanding Workshop, Palm Springs, California, 1996, pp. 345-
355.

[Huertas et al., 1999] A. Huertas, R. Nevatia, and D. Landgrebe: “Use of hyperspectral
data with intensity images for automatic building modeling”, Proc. of the Second
International Conference on Information Fusion, Sunnyvale, 1999, p.680-7 vol.2. 2

[Jensfelt and Kristensen, 1999] P. Jensfelt and S. Kristensen: “Active global
localization for a mobile robot using multiple hypothesis tracking”, Proceedings of
the IJCAI Workshop on Reasoning with Uncertainty in Robot Navigation, pages
13–22, Stockholm, Sweden, 1999. IJCAI.

[Jiang and Neumann, 2001] B. Jiang and U. Neumann: "Extendible Tracking by Line
Auto-Calibration", Proc. International Symposium on Augmented Reality, pp.97-
103, New York, 2001.

[Kalman, 1960] R.E. Kalman: “A new approach to linear ltering and prediction
problems”, Trans. of the ASME, Journal of basic engineering, March 1960.

[Kanade and Morita, 1997] T. Kanade and T. Morita, "Three-Dimensional Shape and
Motion Recovery from Image Streams," Institute of Electronics, Information, and
Communication of Japan, Vol. 80, No. 5, 1997, pp. 479-487.

[Kawasaki et al., 1999] H. Kawasaki, T. Yatabe, K. Ikeuchi, and M. Sakauchi:
“Automatic modeling of a 3D city map from real-world video”, Proceedings ACM
Multimedia 1999, Orlando, USA, 1999, p. 11-18

[Kim et al, 2001] Z. Kim, A. Huertas, and R. Nevatia: “Automatic description of
Buildings with complex rooftops from multiple images”, Computer Vision and
Pattern Recognition, Kauai, 2001, p. 272-279

[Koenig and Simmons, 1998] S. Koenig and R. Simmons: “A robot navigation
architecture based on partially observable Markov decision process models”, In
Kortenkamp et al., 1998

[Leonard and Durrant-Whyte, 1991] J.J. Leonard and H.F. Durrant-Whyte: “Mobile
robot localization by tracking geometric beacons”, IEEE Transactions on Robotics
and Automation, 1991

[Leonard and Durrant-Whyte, 1992] J.J. Leonard and H.F. Durrant-Whyte: “Directed
sonar sensing for mobile robot navigation”, Kluwer Academic Publishers, Boston,
1992

References 155

[Lowe, 1991] D. G. Lowe, "Fitting parameterized three-dimensional models to images",
Trans. On pattern analysis and machine intelligence, vol. 13, No. 5, 1991, pp. 441-
450

[Lu and Milios, 1994] F. Lu and E. Milios: “Robot pose estimation in unknown
environments by matching 2D range scans”, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1994

[Lu and Milios, 1997a] F. Lu and E. Milios: “Globally consistent range scan alignment
for environment mapping”, Autonomous Robots, Vol. 4, p. 333-349, 1997.

[Lu and Milios, 1997b] F. Lu and E. Milios: “Robot pose estimation in unknown
environments by matching 2D range scans”, Journal of Intelligent and Robotic
Systems, 18, 1997

[Maas, 2001] H.-G. Maas: “The suitability of airborne laser scanner data for automatic
3D object reconstruction”, 3rd Int’l Workshop on Automatic Extraction of Man-
Made Objects, Ascona, Switzerland, 2001

[Maas and Vosselman, 1999] H.-G. Maas and G. Vosselman, “Two algorithms for
extracting building models from raw laser altimetry datas”, ISPRS Journal of
Photogrammetry and Remote Sensing 54, 1999, pp. 153–163

[McAllister et al., 1999] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, and C.
McCue: "Real-Time Rendering of Real World Environments", Rendering
Techniques '99, Proceedings of the Eurographics Workshop on Rendering,
Granada, Spain, 1999

[Moravec, 1988] H.P. Moravec: “Sensor fusion in certainty grids for mobile robots”, AI
Magazine, Summer 1988.

[Neumann and You, 1999] U. Neumann and S. You: " Natural Feature Tracking for
Augmented Reality", IEEE Transactions on Multimedia, Vol. 1, No. 1, pp. 53-64,
1999.

[Pulli et al., 1997] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W.
Stuetzle: “Robust Meshes from Range Maps", Proc. Int. Conf. on Recent Advances
in 3-D Digital Imaging and Modeling, Ottawa, Canada, 1997, pp. 205-211

[Ribarsky et al., 2002] W. Ribarsky, C. Shaw, Z. Wartell, and N. Faust: “Building the
Visual Earth,” to be published, SPIE 16th International Conference on
Aerospace/Defense Sensing, Simulation, and Controls, 2002

[Roumeliotis and Bekey, 2000] S.I. Roumeliotis and G.A. Bekey: “Bayesian estimation
and Kalman filtering: A unified framework for mobile robot localization”,
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2985–2992, San Francisco, CA, 2000

[Rusinkiewicz and Levoy, 2000] S. Rusinkiewicz and M. Levoy: “QSplat: A
Multiresolution Point Rendering System for Large Meshes”, Proceedings ACM
SIGGRAPH, 2000

[Rusinkiewicz and Levoy, 2001] S. Rusinkiewicz and M. Levoy: “Efficient Variants of
the ICP Algorithm”, Proc. 3DIM 2001

[Russell and Norvig, 1995] S. J. Russell and P. Norvig: “Articial Intelligence: A
Modern Approach”, Chapter 17, Series in Articial Intelligence, Prentice Hall, 1995

156 References

[Schiele and Crowley, 1994] B. Schiele and J.L. Crowley: “A comparison of position
estimation techniques using occupancy grids”, Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 1994

[Schroeder et al., 1992] W. Schroeder, J. Zarge, and W. Lorensen: “Decimation of
Triangle Meshes”, Computer Graphics, Volume 25, No. 3, (Proc. SIGGRAPH `92),
1992.

[Séquin et al, 1993] C. H. Séquin, T. A. Funkhouser, and S. J. Teller: "Interactive
Exploration of Building Models,'' MICRO Project Reports, University of California,
pp 126-129, Sept. 1993

[Sequira et al., 1996] V. Sequeira, J.G.M. Goncalves, and M.I. Ribeiro: ”3D
reconstruction of indoor environments“, Proc.. Int. Conf. on Image Processing,
Lausanne, 1996, p.405-8 vol.2. 3

[Simmons and Koenig, 1995] R. Simmons and S. Koenig: ”Probabilistic robot
navigation in partially observable environments”, Proc. of International Joint
Conference on Artificial Intelligence, Montreal, 1995. p.1080-7 vol.2

[Stamos and Allen, 2002] I. Stamos and P. K. Allen, “Geometry and Texture Recovery
of Scenes of Large Scale”, Computer Vision and Image Understanding (CVIU), V.
88, N. 2, Nov. 2002, pp. 94-118

 [Stulp et al., 2001] F. Stulp, F. Dell'Acqua, and R. B. Fisher: "Reconstruction of
surfaces behind occlusions in range images", Proc. 3rd Int. Conf. on 3-D Digital
Imaging and Modeling, Montreal, Canada, 2001, p. 232-239

[Teller, 1998] S. Teller: "Towards urban acquisition from geo-located images", 6.th
Pacific Conference on Computer Graphics and Applications, Pacific Graphics 1998,
pp. 45-51

[Thrun et al., 1998] S. Thrun, D. Fox, and W. Burgard: “A probabilistic approach to
concurrent mapping and localization for mobile robots”, Machine Learning, 1998,
(also in Autonomous Robots 5, pp. 253, joint issue)

[Thrun, 2000] Thrun, S: “Probabilistic algorithms in robotics”, AI Magazine, vol.21,
American Assoc. Artificial Intelligence, Winter 2000, p. 93-109

[Thrun et al., 2000] S. Thrun, W. Burgard, and D. Fox: “A real-time algorithm for
mobile robot mapping with applications to multi-robot and 3D mapping”, Proc. of
International Conference on Robotics and Automation, San Francisco, 2000, p..321-
8, vol. 1. 4

[Thrun et al., 2001] S. Thrun, D. Fox, W. Burgard, and F. Dellaert: "Robust Monte
Carlo Localization for Mobile Robots", Artificial Intelligence Journal, 2001

[Triggs et al., 2000] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon:
“Bundle adjustment - a modern synthesis”, Proc. International Workshop on Vision
Algorithms, Corfu, 2000. p.298-372.

[Tsai, 1987] R. Y. Tsai: "A versatile Camera Calibration Technique for High-Accuracy
3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses",
IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, August 1987, pages
323-344

[Turk and Levoy, 1994] G. Turk and M. Levoy, “Zippered Polygon Meshes from
Range Images”, SIGGRAPH '94, Orlando, Florida, 1994, pp. 311-318.

References 157

[Vestri and Devernay, 2001] C. Vestri and F. Devernay: “Using Robust Methods for
Automatic extraction of buildings”, Computer Vision and Pattern Recognition,
Hawaii, USA, 2001, p. I-133-8, vol.1. 2

[Vosselman, 1999] G. Vosselman: “Building reconstruction using planar faces in very
high density height data”, ISPRS Conference on Automatic Extraction of GIS
Objects from Digital Imagery, Munich, 1999

[Vosselman and Dijkman, 2001] G. Vosselman and S. Dijkman: “3D building model
reconstruction from point clouds and ground plans”, International Archives of
Photogrammetry and Remote Sensing, XXXIV-3/W4:37-43, 2001

[Weidner and Förstner, 1995] U. Weidner and W. Förstner: ”Towards automatic
building extraction from high-resolution digital elevation models”, ISPRS Journal
of Photogrammetry & Remote Sensing, 50(4), 1995, pp. 38-49

[Werner and Zisserman, 2002] T. Werner and A. Zisserman: “New Techniques for
Automated Architecture Reconstruction from Photographs”, Proc. 7th European
Conference on Computer Vision, Copenhagen, Denmark, 2002

[Whitaker, 1999] R.T. Whitaker: “Indoor scene reconstruction from sets of noisy range
images“ Second International Conference on 3-D Digital Imaging and Modeling,
Ottawa 1999. p.348-57

[Weiss et al., 1994] G. Weiss, C. Wetzler, and E. von Puttkamer: “Keeping track of
position and orientation of moving indoor systems by correlation of range-finder
scans”, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 1994

[Yamauchi, 1996] B. Yamauchi: “Mobile robot localization in dynamic environments
using dead reckoning and evidence grids”, Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 1996

[Yang and Allen, 1998] R. Yang and P.K. Allen, “Registering, Integrating, and Building
CAD Models from Range Data'', IEEE Int. Conf. on Robotics and Automation, May
18-20, 1998, Leuven, Belgium, pp. 3115-3120

[Yu et al., 2001] Y. Yu, A. Ferencz, J. Malik: “Extracting Objects from Range and
Radiance Images”, IEEE Transactions on Visualization and Computer Graphics
7(4), pp. 351-364, 2001

[Zhang, 2000] Z. Zhang: “A flexible new technique for camera calibration”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334,
2000

[Zhao and Shibasaki, 1999] H. Zhao, R. Shibasaki: "A System for Reconstructing
Urban 3D Objects using Ground-Based Range and CCD Images", Proc. of
International Workshop on Urban Multi-Media/3D Mapping, Tokyo, 1999

[Zhao and Shibasaki, 2001] H. Zhao, R. Shibasaki: “Reconstructing Urban 3D Model
using Vehicle-borne Laser Range Scanners”, Proc. of the third International
Conference on 3D Digital Imaging and Modeling, 2001, Quebec, Canada

[Zisserman et al., 1999] A. Zisserman, A.W. Fitzgibbon, and G. Cross: “VHS to
VRML: 3D Graphical Models from Video Sequences”, IEEE International
Conference on Multimedia and Systems, Florence, 1999

	Introduction
	Contributions of this Dissertation
	Organization of this Dissertation

	Background and Related Work
	3D Model Representation and Rendering
	Acquisition of 3D Models
	Cameras and Stereo Vision
	Laser Scanners
	Model Generation from Airborne View
	Model Generation from Ground-Based View

	Ground Based Model Acquisition
	Drive-by Scanning - A New Acquisition Approach
	Data Acquisition System

	Tracking the Acquisition System
	Relative Pose Estimates
	Path Computation

	Global Localization
	Background and Related Work
	Global Maps from Aerial Images or Airborne Laser Scans
	Edge Map from Aerial Photo
	Edge Map from DSM

	Congruence Coefficient between Ground Based Laser Scans and Airborne Edge Maps
	Global Map Position by Maximizing Congruence
	Adjustment Using Digital Roadmaps
	Pose Refinement Based on Maximizing the Congruence Coefficient

	Global Map Position Based on Monte Carlo Localization
	Probabilistic Robotics – Background
	Monte-Carlo-Localization

	Automated Facade Model Generation
	Segmentation of the Driving Path Into Quasi-Linear Segments
	Converting Path Segments To Depth Images
	Properties of City Laser Scans
	Multi-Layer Representation
	Background Layer Postprocessing and Mesh Generation
	Automated Texture Mapping
	Model Optimization for Interactive Rendering

	Airborne Model Generation and Model Fusion
	Resampling and DSM Generation from Airborne Laser Scans
	Airborne Model from the DSM
	Processing the DSM
	Textured Mesh Generation

	Merging Ground-Based Models and Airborne Surface Mesh

	Results
	Ground-Based Data Acquisition
	Tracking
	Global Localization Based on Aerial Images
	Edge Map Computation
	Localization by Maximizing Congruence
	Monte Carlo Localization

	MCL Based on Airborne Laser Scans
	Facade Model Generation
	Airborne Modeling
	Model Merging
	Performance and Complexity

	Summary and Conclusion

