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Abstract

We investigate several kinds of regulated rewriting (programmed, matrix, with regular

control, ordered, and variants thereof) and of parallel rewriting mechanisms (Lindenmayer

systems, uniformly limited Lindenmayer systems, limited Lindenmayer systems and scat-

tered context grammars) as accepting devices, in contrast with the usual generating mode.

In some cases, accepting mode turns out to be just as powerful as generating mode, e.g.,

within the grammars of the Chomsky hierarchy, within random context, regular control, L

systems, uniformly limited L systems, scattered context. Most of these equivalences can be

proved using a metatheorem on so-called context condition grammars. In case of matrix

grammars and programmed grammars without appearance checking, a straightforward
construction leads to the desired equivalence result.

Interestingly, accepting devices are (strictly) more powerful than their generating coun-
terparts in case of ordered grammars, programmed and matrix grammars with appearance
checking (even programmed grammars with unconditional transfer), and 1lET0L systems.

More precisely, if we admit erasing productions, we arrive at new characterizations of the
recursivley enumerable languages, and if we do not admit them, we get new characteriza-
tions of the context-sensitive languages.

Moreover, we supplement [36, 5] in showing:

� The emptiness and membership problems are recursivley solvable for generating or-
dered grammars, even if we admit erasing productions.

� Uniformly limited propagating systems can be simulated by programmed grammars
without erasing and without appearance checking, hence the emptiness and member-

ship problems are recursively solvable for such systems.

� We brie
y discuss the degree of nondeterminism and the degree of synchronization

for devices with limited parallelism.
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Chapter 1

Introduction

As already Salomaa pointed out in [29], any device that generates words (hence describing

a formal language) can be interpreted as a system that accepts words. For the usually

considered type-n grammars of the Chomsky hierarchy, it does not matter whether we
consider these devices in generating or accepting mode, in the sense that the family of
languages generable by type-n grammars equals the family of languages acceptable by
type-n grammars, see [29, Theorem I.2.1].

For reasons unknown to us, other grammars have been studied only in the generating

mode. Especially, this is true for grammars with regulated rewriting [5] and for grammars
(systems) admitting some sort of parallelism. This is somewhat surprising since applica-
tions of formal languages (like compilers) use accepting, not generating devices. In this pa-
per, we investigate di�erent classes of accepting grammars and compare the such-obtained
classes of formal languages with the well-known generating ones.

It might be that, having observed the triviality of the equivalence proof between gener-
ating and accepting mode within type-n grammars, one gained the intuition that generating
and accepting devices are also equivalent in a trivial manner for other grammar types. In
general, this is not the case, as we will see in the following. Nevertheless, we should keep
the following catalogue of questions in mind, stemming from the above-sketched intuition:

� For which kind of grammar classes do we �nd a trivial equivalence between accepting
and generating mode, i.e. when do we observe x ) y in generating mode of a

grammar G i� y) x in accepting mode of some (dual) grammar G0?

� When do we get equivalence between accepting and generating mode via a more

complicated construction?

� Are there grammar classes for which accepting and generating mode yield di�erent

language classes? If yes, what is the relation between the language classes accepted

or generated by the investigated device: inclusion, incomparability?

We will �nd representatives for all of the above-listed cases.

Conventions: � denotes inclusion, � denotes strict inclusion, #M is the number of
elements in the set M . The empty word is denoted by �. We consider two languages
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L1; L2 to be equal i� L1 n f�g = L2 n f�g, and we simply write L1 = L2 in this case. We

term two devices describing languages equivalent if the two described languages are equal.

A bit deviating from this de�nition, the emptiness problem for a language (more pre-

cisely: grammar) family is the next: Is there a Turing machine such that, given a grammar

G from our family, decides whether there exists a word w with w 2 L(G) or not?

Let Sub(w), (Suf(w), Pref(w)) denote the set of subwords (su�xes, pre�xes) of w. dlx(L)

and drx(L) denote the left and right derivatives of L, respectively.1 The mirror image of

a language L is denoted by Mi(L). The length of a word x is denoted by jxj. If x 2 V �,

where V is some alphabet, and if W � V , then jxjW denotes the number of occurrences of

letters from W in x. If W is a singleton set fag, we simply write jxja instead of jxjfag.

If X is some device, Lgen(X) (Lacc(X)) denotes the language generated (accepted) by

the device X. If X is some family of devices, Lgen(X) (Lacc(X)) denotes the family of

languages each of which can be generated (accepted) by some device in X.

We denote the classes of the Chomsky hierarchy by L(FIN),2 Lgen(REG), Lgen(CF),

Lgen(CS), L(REC), Lgen(RE).
For each device X considered in this paper, we will de�ne separately what we mean by

generating and accepting mode for X. Generally, the idea is the next:

� Instead of a start symbol, or generally a set of start words, we have a goal symbol, or
generally a set of goal words. We use the notion `axiom(s)' both in generating and

in accepting case.

� Generally, we allow only productions of a special form in generative devices. Since
they turn out to be the most interesting case, mainly context-free productions of

the form a ! w, where a is some symbol and w is some (possibly empty) word,
are considered. In accepting mode, we turn these restrictions `around', coming to
productions of the form w ! a in the context-free case. Especially, accepting �-
productions are of the form �! a.

We call an accepting grammar Gd derived from a generating grammar G dual to G if Gd is
obtained from G interpreting start words as goal words and productions of the form v ! w

as productions w ! v. Similarly, one can consider the dual Hd of an accepting grammar

H. Obviously, (Gd)d = G and (Hd)d = H.

� The most important thing about grammars is their dynamic interpretation via the

yield relation ) (and its re
exive transitive closure
�
)). In this paper, we introduce

the corresponding yield relation (also denoted by )) of the accepting mode with
textually the same words as in the generating case.

Instead of this formal approach, it would also be possible to introduce the accepting
yield relation in order to mimic the generating one. At least, trying to do so might a�rm the

1With our notations, we mostly follow [5].
2It makes no sense to di�erentiate between generating and accepting devices in the case of �nite and

recursive languages, since their concept is di�erent.
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intuition on side of the reader that generating and accepting words is something di�erent,

indeed.

Our approach has a further advantage which can be stated in the following meta-

observation: In general, if Lgen(X) � Lgen(Y ), then Lacc(X) � Lacc(Y ). This follows

from the fact that Lgen(X) � Lgen(Y ) is generally proved by simulating one derivation

step u) v in mechnism X via a number of derivation steps u
�
) v in mechanism Y , and

due to our textual transfer of the notion of derivation to the accepting case, textually the

same simulation proves Lacc(X) � Lacc(Y ).

Observe that the paper is organized in such a way that ordered and conditional gram-

mars are treated before programmed and matrix grammars, since in our case the techniques

developped in ordered grammars turn out to be basic to, e.g., programmed grammars.
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Chapter 2

A Metatheorem, with Prerequisites

We already mentioned that, for type-n grammars, the descriptive power of the generating

and the accepting mode coincide. More precisely, if G is a generating type-n grammar,

then its dual Gd is an accepting type-n grammar such that Lgen(G) = Lacc(G
d), and vice

versa. In this case, we �nd x) y in G i� y) x in Gd.
For the sake of self-containment of this report, we �rst introduce type-n grammars

formally.

2.1 The Chomsky Hierarchy

A type-n grammar is given by a construct G = (VN ; VT ; P; S), where VN , VT , P , and
S 2 VN are the nonterminal alphabet, terminal alphabet,1 �nite set of productions, and

axiom, respectively.
In a type-0 grammar G (or phrase structure grammar), productions are of the form

v ! w with v;w 2 V �
G. If G is generating, we additionally require jvjVN > 0. In this case,

we call a production erasing if w = �. If G is accepting, we dually require jwjVN > 0. Now,
a production is erasing if v = �. G is called �-free i� G contains no erasing productions.

A type-1 grammar (or context-sensitive grammar) G is a type-0 grammar with produc-

tions v ! w of a special form. In the generating case, v = v1Av2 and w = v1w
0v2 with

v1; v2 2 V �
G, w

0 2 V �
G n fSg, and A 2 VN , where w

0 = � only if A = S. In the accepting

case, w = w1Aw2 and v = w1v
0w2 with v1; v2 2 V �

G, v
0 2 V �

G n fSg, A 2 VN , where v
0 = �

only if A = S.
A type-2 grammar (or context-free grammar) G is a type-0 grammar with productions

v ! w of a special form. In the generating case, v = A and w = w0 with A 2 VN and
w0 2 V �

G. In the accepting case, w = A and v = v0 with A 2 VN and v0 2 V �
G.

A type-3 grammar (or regular grammar)G is a type-2 grammar with productions v ! w

of a special form. In the generating case, v = A and w = w0 with A 2 VN , where w
0 = �

only if A = S. Additionally, w0 2 fA;�g � V �
T . In the accepting case, w = A and v = v0

with A 2 VN , where v
0 = � only if A = S. Additionally, v0 2 fA;�g � V �

T .

1Generally, we denote the total alphabet of G by VG = VT [ VN .
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A phrase structure grammar G = (VN ; VT ; P; S) induces a yield relation x ) y on V �
G

by x ) y i� there is a production v ! w 2 P such that x = x1vx2 and y = x1wx2 for

some x1; x2 2 V �
G. The re
exive transitive closure of ) is denoted by

�
).

The language generated by a generating phrase structure grammar G = (VN ; VT ; P; S)

is Lgen(G) = fw 2 V �
T jS

�
) wg.The language accepted by an accepting phrase structure

grammar G is Lacc(G) = fw 2 V �
T jw

�
) Sg.

As already mentioned, we denote the families of languages generated by type-0,. . . ,

type-3 grammars by Lgen(RE), Lgen(CS), Lgen(CF), Lgen(REG), and the families of

languages accepted by type-0,. . . , type-3 grammars by Lacc(RE), Lacc(CS), Lacc(CF),

Lacc(REG).

The following chain of strict inclusions called Chomsky hierarchy is well-known.

Lgen(REG) � Lgen(CF) � Lgen(CS) � Lgen(RE)

For our purposes, the following lemma is very important, see [5, Theorem 0.2.2].

Lemma 2.1 (Kuroda normal form) For each context-sensitive language L � V +
T , there

is a grammar G = (VN ; VT ; P; S) whose productions are of the following forms

A! BC; AB ! CD; A! a

where A;B;C;D 2 VN , a 2 VT such that Lgen(G) = L.

2.2 cc Grammars

In this section, we introduce a type of grammar called `grammar with context conditions'
(cc grammar for short) for which the trivial relation between say generating grammars
and their dual accepting counterparts is true, too.2 Since cc grammars generalize phrase

structure grammars, we show the well-known result once more.
A grammar with context conditions (cc grammar) is given by a construct G = (VN , VT ,

P , 
), where VN , VT , P , and 
 � V +
G are the nonterminal alphabet, terminal alphabet, set

of production tables, and �nite set of axioms, respectively (very similar to phrase structure
grammar de�nitions). The set P is a �nite set consisting of so-called tables P1; : : : ; Pt.

Each table consists of a �nite number of productions pij of the form (vij ! wij; gij) (with
1 � i � t and 1 � j � jPij), where vij; wij 2 V +

G
3 and gij � (VG[f#g)

��N (where # 62 VG
is a new limiting symbol). In addition, in generating mode, we may allow �-productions of

the form vij ! �, and, dually, in accepting mode, �-productions of the form �! wij may
occur. Sometimes, we call vij ! wij the core production of the production pij. A table Pi
is applied to a string x using the following steps:

1. x is partitioned into x = x1v1x2v2 � � �xnvnxn+1. De�ne x
# := x1#x2# � � �xn#xn+1.

2In this way, we generalize the so-called lrcc grammars introduced in [3].
3Observe that we do not exclude the further derivation of terminal symbols. Hence, we incorporate

pure rewriting, too, and also the usual conventions in parallel rewriting.
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2. Select n productions pij1 ; : : : ; pijn from Pi (possibly with pijr = pijs) such that for all

1 � k � n:

� vk = vijk and

� (x#; k) 2 gijk .

3. Replace x using the selected productions yielding y = x1wij1x2wij2 � � �xnwijnxn+1.

If we succeed going through these three steps, we write x ) y in this case. By
�
), we

denote the re
exive and transitive closure of the relation ). The language generated by

the cc grammar G is Lgen(G) = fw 2 V �
T j (9! 2 
)!

�
) wg. The language accepted by

the cc grammar G is Lacc(G) = fw 2 V �
T j (9! 2 
)w

�
) !g.

Observe that cc grammars are a very broad framework, maybe comparable to selective

substitution grammars [5].

Example 2.2 Every phrase structure grammar corresponds to an equivalent cc grammar
G with one table and one one-letter-axiom letting g = V �

Gf#gV
�
G�f1g for any production.

Conversely, to every cc grammar G = (VN ; VT ; fPg; f!g) with one table with productions
of the form (v ! w; V �

Gf#gV
�
G � f1g) with jvjVN > 0 in the generating or jwjVN > 0 in

the accepting case, respectively, and one one-letter axiom ! 2 VN , there corresponds an
equivalent type-0 grammar (VN ; VT ; P

0; !). This is also true if we restrict ourselves to so-
called left derivations, where we let g = V �

T f#gV
�
G � f1g for any production. For context-

sensitive grammars, it is possible to give another di�erent characterization. Let H =
(VN ; VT ; P; S) be a generating context-sensitive grammar. For each production y1Ay2 !

y1wy2, we put a production (A ! w; g) into the table P 0 of the equivalent cc grammar
(VN ; VT ; fP

0g; fSg), where (x1#x2; n) 2 g i� y1 2 Suf(x1) and y2 2 Pref(x2) and n = 1.
Dually, we may treat the case of accepting context-sensitive grammars.

In the following, we formulate the concept of dual grammar formally for cc grammars.

If G = (VN ; VT ; fP1; : : : ; Ptg;
) is a cc grammar, then Gd = (VN ; VT ; fP
d
1 ; : : : ; P

d
t g;
) is

called dual to G i� P d
i = f(w! v; g) j (v! w; g) 2 Pig. Obviously, (G

d)d = G.
Our simple metatheorem proved analogously to [29, Theorem I.2.1] is the next.

Theorem 2.3 (i) Lgen(G) = Lacc(G
d), for any generating cc grammar G.

(ii) Lacc(G) = Lgen(G
d), for any accepting cc grammar G. 2

Since we can interpret any type-n grammar as cc grammar G, and since we can re-
interpret the dual Gd as type-n grammar, we obtain Lgen(X) = Lacc(X) for X 2
fREG;CF;CS;REg as a simple corollary. But we can handle other devices in this set-

ting, too.
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2.3 Random Context Grammars

A random context grammar (RC grammar) is a system G = (VN ; VT ; P; S) where VN ; VT ; S

are de�ned as in a usual Chomsky grammar, and P is a �nite set of random context rules,

that is, triples of the form (� ! �;Q;R) where � ! � is a rewriting rule over VG and Q

and R are subsets of VN . For x; y 2 V �
G, we write x ) y i� x = x1�x2, y = x1�x2 for

some x1; x2 2 V �
G, (�! �;Q;R) is a triple in P , all symbols of Q appear in x1x2, and no

symbol of R appears in x1x2. (Q is called the permitting context of � ! � and R is the

forbidding context of this rule.)

The family of languages generated by RC grammars containing only context-free rules

� ! � is denoted by Lgen(RC;CF; ac). Considering only random context rules with

empty permitting context, we are led to the language family Lgen(fRC;CF). Symmetri-

cally, allowing only rules with empty forbidding context, we come to the language family

Lgen(RC;CF).
4 If we do not permit �-productions, we arrive at the language families

Lgen(RC;CF��; ac), Lgen(fRC;CF��), and Lgen(RC;CF��).
Similarly, the corresponding `accepting classes' Lacc(RC;CF; ac), Lacc(fRC;CF), : : :

are de�ned.
Each RC grammar G = (VN ; VT ; P; S) may be interpreted as a cc grammar G0 =

(VN ; VT ; fP
0g; fSg) where, for each random context rule (� ! �;Q;R), we have one pro-

duction (�! �; g) in P 0 such that (x1#x2; n) 2 g i�, for all v 2 Q, v 2 Sub(x1)[Sub(x2),
and, for all w 2 R, w 62 Sub(x1) [ Sub(x2) and n = 1.

Conversely, consider a cc grammar of the form G = (VN ; VT ; fPg; fSg) with S 2 VN
and productions (� ! �; g) such that � ! � is a context-free core production and there
are subsets Q and R of VN such that g may be characterized via (x1#x2; n) 2 g i�, for all
v 2 Q, v 2 Sub(x1) [ Sub(x2), and, for all w 2 R, w 62 Sub(x1) [ Sub(x2) and n = 1. To
G, there corresponds an equivalent RC grammar G0 de�ned in the obvious way. Hence, we

immediately obtain:

Corollary 2.4 Lgen(X;Y ) = Lacc(X;Y ), and Lgen(RC; Y; ac) = Lacc(RC; Y; ac), where
X 2 fRC; fRCg, Y 2 fCF;CF��g. 2

Other regulation mechanisms that may be treated similarly are:

� string random context grammars (also called semi-conditional grammars) [23, 5]

� random string context grammars (introduced below)

� a variant of conditional grammars introduced by Navr�atil [20, 22]

We will refer to the metatheorem at various places. Its application is always the same.

(1) Find a characterization of the grammars in question in terms of cc grammars. (2)

Consider the duals of the cc grammars in the opposite mode (either accepting if we start

4In this case, no `appearance checking' is possible. The letters `ac' in Lgen(RC;CF; ac) indicate possible

appearance checks.
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with a generating device or vice versa). (3) Re-interpret the dual cc grammars again in

terms of the original mechanism.

The table mechanism is of course only needed in case of parallel systems.
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Chapter 3

Ordered Grammars and Conditional

Grammars

3.1 Ordered Grammars

An ordered grammar (cf. [13, 5]) is a quintuple G = (VN ; VT ; P; S;�), where VN , VT , P ,

and S 2 VN are the nonterminal alphabet, terminal alphabet, set of productions, and
axiom, respectively. � is a partial order on P .

Both in generating and in accepting mode, a production w ! z is applicable to a
string x 2 V � if x = x1wx2 for some x1; x2 2 V �

G, and x contains no subword w0 such that
w0 ! z0 2 P for some z0 and w0 ! z0 � w ! z; the application of w ! z to x yields

y = x1zx2. As usual, the yield relation is denoted by ), and its re
exive and transitive
closure is denoted by

�
). The family of languages generated by ordered grammars with

productions of type X is denoted by Lgen(O,X). The family of languages accepted by
ordered grammars with productions of type X is denoted by Lacc(O,X).

In this section, as our main results, we are going to show that Lacc(O,CF) = Lgen(RE)

and Lacc(O,CF��) = Lgen(CS). These equalities imply Lgen(O,X) � Lacc(O,X) for
X 2 fCF,CF��g (these are the only cases we consider in detail).

We �rst show a direct proof of Lgen(O,X) � Lacc(O,X), because it is instructive. To
this end, we need the following trivial lemma.1

Lemma 3.1 For any generating ordered grammarG, there exists an equivalent generating

ordered grammar G0 containing no rules w! z, w! z0 with w! z � w! z0. 2

Proof. Leave the smaller rules out; they are never applicable. 2

Theorem 3.2 For any ordered grammar G with context-free rules in generating mode,
there is an equivalent ordered grammar G0 with context-free rules in accepting mode.

1This lemma also corrects a small mistake in the proof of [5, Theorem 2.3.4]. See also the correct proof

of [5, Theorem 6.2.3].
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Proof. Without loss of generality, let us assume that G = (VN ; VT ; P; S;�) does not

contain rules A! w, A! w0 with A! w � A! w0. For A! w 2 P , let XA!w be the

set of nonterminals A0 with A0 ! w0 � A! w for some w0.

We construct an accepting ordered grammar G0 = (V 0
N ; VT ; P

0; S;�0). To this end, let

V 0
N = VN [ f[w;A] jA! w 2 Pg [ fFg

(the union being disjoint, F is an extra failure symbol). For any production A! w 2 P ,

we introduce the following production(s) and relation(s) in P 0 (hence describing P 0 and �0

completely).

� w! [w;A] �0 [w;A]! F ;

� [w;A]! A with [w;A]! A �0 A0 ! F for any A0 2 XA!w;

� If u! V 2 P 0 with V 6= F and u 6= [w;A], add the relation u! V �0 [w;A]! F .

Firstly, we prove Lgen(G) � Lacc(G
0). To this end, we show that, if x) y in G, then

y
�
) x inG0. From this, the assertion follows by simple induction. Assume x) y, i.e. there

is a production A! w 2 P and there are words x1; x2, such that x = x1Ax2, y = x1wx2,
and A0 2 XA!w implies A0 62 Sub(x). Our construction provides a two-step-simulation of
this generating step in the accepting grammar G0. In the �rst step, w is selected from y

using w ! [w;A], yielding y0 = x1[w;A]x2. In the second step, [w;A] is replaced by A

(it is tested by G0 that (XA!w [ f[v;B] jB ! v 2 P;B ! v 6= A ! wg) \ Sub(y0) = ;),
yielding x1Ax2 = x.

Secondly, we prove Lgen(G) � Lacc(G
0). To this end, we show that, if y ) y0

�
) x in

G0 for y; x 2 V �
G, then x

�
) y in G. Obviously, we can assume without loss of generality,

that there is no `intermediate' z 2 V �
G, z 62 fx; yg with y0

�
) z

�
) x in the derivation

under consideration. By de�nition, there is a production v ! B 2 P 0 and there are
words y1; y2 such that y = y1vy2 and y0 = y1By2. By construction, either B = F or
B = [v;A] for some A ! v 2 P . Only the latter case may lead to some word in V �

G.

Namely, if [u;C] 62 Sub(y1[v;A]y2), [u;C] 6= [v;A] and if XA!v \Sub(y
0) = ;, we can apply

[v;A]! A, and this is the only derivation not introducing the failure symbol. These two
derivation steps in the accepting grammar correspond to one application of A! v to x in
the generating grammar G. 2

As an example violating the given construction, consider G = (fAg; fag; P;A;�), where
P contains the following productions and one order relation: A ! aa � A ! a. Hence,
Lgen(G) = faag. The accepting grammar G0 would contain the following productions and

order relations: aa ! [aa;A] �0 [aa;A] ! F ; [aa;A] ! A; a ! [a;A] �0 [a;A] ! F ;

[a;A] ! A �0 A ! F ; aa ! [aa;A] �0 [a;A] ! F ; a ! [a;A] �0 [aa;A] ! F . Now,

both aa ) [aa;A] ) A and a ) [a;A] ) A are possible derivations in G0. Hence,
Lacc(G

0) = fa; aag 6= Lgen(G).
In this paper, we see that, in some cases, accepting versions of regulated grammars

are as powerful as their generating counterparts. In ordered grammars, this is not the
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case. Intuitively, the reason behind this is the next: In generating ordered grammars, it

can be only (negatively) tested whether the string to be rewritten contains single symbols,

where in accepting mode, containment of whole strings can be tested. Especially, this can

be used to check the left and right context of subwords to be derived next by applying

some dummy rules. Similar devices have been introduced and investigated by Kelemen and

P�aun [23, 5] as `semi-conditional grammars' or `string random context grammars' for the

generating case. Under some conditions, this string testing turns out to be more powerful

than testing single symbols. It should be mentioned here that, in some sense, these `string

random context grammars' are not a straightforward generalization of random context

grammars, since only one string is allowed as a (forbidding) test-string for each production,

where testing �nite sets of test-strings seems to be a more direct generalization. In some

sense, this is exactly what we are doing when considering accepting ordered grammars, cf.

the RSC grammars introduced below. So, the below results are not too surprising keeping

the above remarks in mind. We also use similar simulation techniques as P�aun in our case.

We are now going to show our more general results. We �rst need two lemmas.

Lemma 3.3 Lacc(O,CF��) and Lacc(O,CF) are closed under (�nite) union.

Proof. In the case of two given grammars, make the two sets of nonterminals disjoint,
add an additional symbol S (the new goal symbol) and two productions S1 ! S, S2 ! S

(S1; S2 being the goal symbols of the original grammars). 2

By Theorem 3.2 and [31, Teorema 4.2], we immediately get the next assertion.

Lemma 3.4 Lgen(CF) � Lacc(O,CF��). 2

Theorem 3.5 Lacc(O,CF��) = Lgen(CS).

Proof. The inclusion � is easily seen by an lba-construction as follows. Given an ordered
grammar G with context-free �-free productions, a linear bounded automaton LBA ac-
cepting the same language would do the following step-by-step simulation: Firstly, LBA
selects a production w ! A whose application is going to be simulated; secondly, LBA
checks whether w is contained in the current string x written on a working tape of the

form x# � � �#, and whether, for any w0 ! A0 � w! A, w0 is not contained in x; thirdly, if
both tests succeed, LBA picks (nondeterministically) an occurrence of w in x and replaces

it by A#jwj�1; �nally, LBA moves all #-symbols to the right of the working tape, hence

regaining some tape of the form y# � � �#, y 2 V �
G.

The inclusion � is more involved. Let L 2 Lgen(CS), L � V +. Obviously,

L =
[

a;b2V

fagdla(d
r
b(L))fbg [ (L \ (V [ V 2)):

This identity proves that, by our lemmas, it is su�cient for the proof of the present

assertion to show that fagMfbg 2 Lacc(O,CF��) for M 2 Lgen(CS), � 62 M .2 Let G =

2Our proof parallels [5, page 87]. See also [23].

13



(VN ; VT ; P; S) be a context-sensitive grammar without �-productions in Kuroda normal

form generating M . Let us assume a unique label r being attached to any rule of the

form XU ! Y Z (the set of lables is denoted by Lab). We construct an ordered grammar

G0 = (V 0
N ; V

0
T ; P

0; S0;�) with context-free �-free rules accepting fagMfbg as follows. Let

V 0
N = VN [ fA;B; S

0; Fg [ f(A; r); [A; r]; (Y; r); [Z; r] jr : XU ! Y Z 2 Pg

(the unions being disjoint), V 0
T = VT [ fa; bg.

3 P 0 contains the following rules:

1. At �rst, we give some simple starting and terminating rules as well as the direct

simulation of the context-free rules.

(a) a! A � fy ! F j y 2 VG0 n V 0
Tg;

(b) b! B � fy ! F j y 2 VG0 n (V 0
T [ fAg)g;

(c) x! X � f(A; r)! F; [A; r]! F j r 2 Labg for context-free rules X ! x 2 P ;

(d) ASB ! S0;

2. For any `real' context-sensitive production of the form r : XU ! Y Z 2 P , we
introduce the following rules, simulating an application of r:

(a) A! [A; r] � f[A; s]! F; (A; s)! F j s 2 Labg;

(b) Y ! [Y; r] � fA ! F; (A; s) ! F; [A; s0] ! F; [T; s] ! F; (T; s) ! F j s 2
Lab; s0 2 Lab n frg; T 2 VNg;

(c) Z ! (Z; r) � fA ! F; (A; s) ! F; [A; s0] ! F; [T; s0] ! F; (T; s) ! F j
s 2 Lab; s0 2 Lab n frg; T 2 VNg;

(d) [A; r] ! (A; r) � fA ! F; (A; s) ! F; [A; s0] ! F; [T; s0] ! F; (T; s0) ! F;

z(Z; r) ! F; [Y; r]y ! F j s 2 Lab; s0 2 Lab n frg; T 2 VN ; z 2 VG0 n f[Y; r]g;
y 2 VG0 nf(Z; r)gg; (the left and right context checks cause the necessity to have
left and right markers)

(e) (A; r) ! A � (Z; r) ! U � [Y; r] ! X � fA ! F; [A; s] ! F; (A; s0) ! F;

[T; s0]! F; (T; s0)! F j s 2 Lab; s0 2 Lab n frg; T 2 VNg;

At �rst, the endmarker symbols a and b are replaced by A and B, respectively. The

presence of the symbol A indicates that a simulation of a production of G may take place
(or that the �nal rule ASB ! S0 may be applied). The case of context-free productions

is again trivial. In the case of `real' context-sensitive productions, the rules given under

number 2 must be applied subsequently. The application of A! [A; r] �xes the production
to be simulated. Afterwards, one occurrence of Y and one occurrence of Z is selected,

replacing it by [Y; r] and (Z; r), respectively. Note that the greater rules prevent that more
than one Y or more than one Z is replaced. The end of the selection process is signalled

by [A; r] ! (A; r). Moreover, this production checks (via the greater rules) whether two

3Note that the case a = b is possible.
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adjacent symbols Y Z have been replaced or not (this prevents shortcuts in the derivation

process, too). This crucial check is done by testing whether the symbol to the right of [Y; r]

is di�erent from (Z; r) (only negative checks are possible in ordered grammars); this test

is equivalent to checking whether (Z; r) is to the right of [Y; r], as long as it is guaranteed

that [Y; r] is not the right tail of the string we are going to transform. This is the reason

for introducing the right marker B.4 A similar argument is valid for the check of the left

context of (Z; r). Note that we need both tests in order to prevent shortcuts, only replacing

either Y by [Y; r] or Z by (Z; r). Note further that this is the only part of the simulation

where we really need to check for strings instead of single symbols. Finally, the rules from

the last part in number 2 serve for the actual simulation of an application of r : XU ! Y Z

in G. 2

Employing [31, Teorema 4.2], we immediately get the next assertion.

Corollary 3.6 Lgen(CF) � Lgen(O,CF��) � Lacc(O,CF��). 2

Corollary 3.7 Lgen(O,CF) � Lacc(O,CF) = Lgen(RE).

Proof. We have to show Lgen(RE) � Lacc(O,CF). By [29, Theorem I.9.10], any re-
cursively enumerable language L � �� is the homomorphic image of a context-sensitive
language L0 � V �. Hence, L = h(L0) for a morphism h : V � ! ��. Without loss of
generality, we may assume � \ V = ;. Now, let V 00 = fA00 jA 2 V g a set of new symbols.

Then, we can use the same construction as in the above theorem, only adding the following
rules:

� w! A00 � fB ! F jB 2 V g for h(A) = w; 5

� A00 ! A for A 2 V ;

� c ! F for c 2 � [ V 00 which are greater than any of the rules given by the con-
struction of the above theorem. 2

The last corollary from our theorem is the next normal form result:

Corollary 3.8 For any accepting ordered grammar (with or without �-rules), there exists
an equivalent one containing no productions w! A � w0 ! A0 with w 2 Sub(w0). 2

We are now going to show that the inclusion in Corollary 3.7 is strict. Note that the
following propositions also solve some problems marked as open in [5, pages 146,147].

Lemma 3.9 For Lgen(O,CF��) and Lgen(O,CF), the emptiness problem is recursively

solvable.

4Using the Penttonen normal form [24], we would not need the right marker B.
5Note that the case w = � is possible.
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Proof. In [31, Sledstvie 2 on page 98], the solvability of the emptiness problem

for ordered grammar without �-productions is stated. If G = (VN ; VT ; P; S;�) is an or-

dered grammar containing �-productions, we can introduce a new terminal letter � and

replace each �-production A ! � by A ! �, yielding an ordered grammar G0 without

�-productions, such that Lgen(G) = h(Lgen(G
0)), where the morphism h is given by b 7! b

for b 2 VT , and � 7! �. Obviously, Lgen(G) = ; i� Lgen(G
0) = ;, and the latter problem

is solvable by [31]. 2

Corollary 3.10 Lgen(O,CF) � L(REC)

Proof. By the above lemma, we know the solvability of the emptiness problem for

Lgen(O,CF). By a construction similar to Teorema 4.5 in [31], we know that Lgen(O,CF)

is e�ectively closed under intersection with regular languages. Applying the same idea as in

the proof of [18, Theorem 4], it can be shown that the membership problem is solvable for

ordered grammars. Since any recursively enumberable language is e�ectively the morphic
image of a context-sensitive language, by [18, Theorem 3(b)], there is a language in L(CS)n

Lgen(O,CF). 2

In the same way, we can show the existence of a language in Lgen(M,CF��; ac) n
Lgen(O,CF). From [18], we may conclude further that Lgen(O,CF) is closed neither

under intersection nor under complementation, since this class embraces all context-free
languages. Note that these results on ordered grammars supplement the ones listed on
page 147 in [5].

Obviously, we get as an easy corollary:

Corollary 3.11 Lgen(O,CF) � Lacc(O,CF) 2

As already noted by Fri�s, ordered grammars are a special case of `grammars with T3
restrictions', or `conditional grammars of type (2(��); 3)', as called by P�aun in [22].

3.2 Conditional Grammars

Following P�aun, we de�ne:6

A conditional grammar of type (i; j), or (i; j)-grammar for short, i 2 f0; 1; 2; 2 � �; 3g,

j 2 f0; 1; 2; 3g, is a pair (G; �), where G = (VN ; VT ; P; S) is a type-i grammar and � is

a mapping of P into the family of type-j languages over VG. Both in generating and in
accepting mode, for x; y 2 V �

G, we write x) y i� x = x1vx2, y = x1wx2, v ! w 2 P , and

x 2 �(v! w). The language generated by (G; �) is denoted by Lgen(G; �). The family of
languages generated by conditional grammars of type (i; j) is written Lgen(K; i; j). The

language accepted by (G; �) is denoted by Lacc(G; �). The family of languages accepted

by conditional grammars of type (i; j) is written Lacc(K; i; j).

6Conditional grammars as de�ned in [5] only comprise conditional grammars of type (i; 3).
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If G = (VN ; VT ; P; S;�) is a generating ordered grammar with context-free rules, the

conditional grammar ((VN ; VT ; P; S); �) of type (2; 3) (which is �-free i� G is �-free) gen-

erates L(G), if � is de�ned as follows: �(A ! w) = V �
G n V

�
GfA

0 jA ! w � A0 ! w0gV �
G

[13, p. 421]. Similarly, if G = (VN ; VT ; P; S;�) is an accepting ordered grammar, the

conditional grammar ((VN ; VT ; P; S); �) of type (2; 3) accepts L(G), de�ning � as follows:

�(w! A) = V �
G n V

�
Gfw

0 jw! A � w0 ! A0gV �
G.

In generating mode, the generalization from ordered grammars with context-free �-free

rules towards (2 � �; 3)-grammars enhances the power of generation [29, Theorem II.3.7].

This is not true any more in the accepting case, as we will see in the following. The key

to show this is the equivalence of generating and accepting mode for (i; j)-grammars.

Theorem 3.12 Lgen(K; i; j) = Lacc(K; i; j) for any i; j.

Proof. We want to apply our metatheorem. To any (i; j)-grammar G = (VN ; VT ; P; S; �),

there corresponds a cc grammar G0 = (VN ; VT ; fP
0g; fSg) with v ! w 2 P i� (v !

w; gsmv!#(�(v ! w)) � f1g) 2 P 0, where the gsm-mapping gsmv!# replaces exactly one
occurrence of v by #, and keeps the other symbols unchanged. Since type-j languages
are closed under non-erasing gsm-mappings, gsmv!#(�(v! w)) is a type-j language over
VG [ f#g with exactly one occurrence of #.

On the other hand, if G0 = (VN ; VT ; fP
0g; fSg) is a cc grammar with S 2 VN and

productions (v! w;L(v ! w)�f1g) 2 P 0 (where v! w is a type-i production), then the
(i; j)-grammar G = (VN ; VT ; P; S; �) with v ! w 2 P i� (v ! w;L(v ! w) � f1g) 2 P 0,
and �(v ! w) = gsm�1

v!#(L(v! w)) \ V �
G, is equivalent to G

0 and is indeed of type (i; j),
since type-j languages are closed under inverse gsm-mappings which means that �(v ! w)

is a type-j language over VG.
As sketched above, the claim is now a direct consequence of our metatheorem.
For clarity, we give a direct proof of the statement, too.
At �rst, let us show Lgen(K; i; j) � Lacc(K; i; j). Let G = (VN ; VT ; P; S) and � be

such that (G; �) is an (i; j)-grammar in generating mode. Without loss of generality, we

may assume that, for any v ! w 2 P , �(v ! w) � V �
GfvgV

�
G. We de�ne an equivalent

accepting (i; j)-grammar (G0; �0) with G0 = (V 0
N ; VT ; P

0; S) as follows: V 0
N = VN [ f[w; v] j

v ! w 2 Pg; for any v ! w 2 P , P 0 contains the following productions (which are the

only ones in P 0), and �0 is de�ned as follows:

� �0(w! [w; v]) = V �
G;

7

� if y1vy2 2 �(v! w), then y1[w; v]y2 2 �0([w; v]! v).

Any derivation step of G is simulated by two steps of G0. At �rst, G0 selects a w to

be replaced, and then the actual simulation takes place, accompanied by the appropriate

checks according to the original grammar (G; �).
The language �0([w; v]! v) can be also described in the following manner. Let Ev be

some generalized sequential machine replacing exactly one occurrence of v as substring of

7Note that words containing some [w0; v0] are not in V �

G
.
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x 2 �(v ! w) by [w; v]. Then, Ev(�(v ! w)) = �0([w; v] ! v). Since each of the type-j

languages is an AFL, �0 maps onto type-j languages (see [29, page 135]).

The other implication Lacc(K; i; j) � Lgen(K; i; j) is shown by a similar two-step-

simulation. Let G = (VN ; VT ; P; S) and � be such that (G; �) is an (i; j)-grammar in

accepting mode. We de�ne an equivalent generating (i; j)-grammar (G0; �0) with G0 =

(V 0
N ; VT ; P

0; S) as follows: V 0
N = VN [f[v;w] jw! v 2 Pg; for any w! v 2 P , P 0 contains

the following productions, and �0 is de�ned as follows:

� �0(v! [v;w]) = V �
G;

� if y1wy2 2 �(w! v), then y1[v;w]y2 2 �0([v;w]! w).

Similarly, if �(w ! v) is of type j, then �0([v;w]! w) is of type j, too. 2

Especially, we �nd:

Corollary 3.13 (i) Lgen(O,CF��) � Lgen(K; 2� �; 3) = Lgen(CS)

(ii) Lacc(O,CF��) = Lacc(K; 2� �; 3) = Lgen(K; 2� �; 3) = Lgen(CS)

(iii) Lgen(O,CF) � L(REC) � Lgen(K; 2; 3) = Lgen(RE)

(iv) Lacc(O,CF) = Lacc(K; 2; 3) = Lgen(K; 2; 3) = Lgen(RE) 2

Moreover, we state the following observation: Analyzing the transformation from ac-
cepting ordered grammars with context-free rules to (2; 3)-grammars, we see that we do

not need the full power of regular languages in order to accept all context-sensitive (and
even enumerable when permitting �-productions) languages. We can restrict ourselves to
local languages (sometimes also called locally testable languages, see [28]). We do not know
whether we loose generative power when imposing a similar restriction upon the generating
mode.

Finally, we want to turn to an appropriate natural generalization of random context
grammars which we call random string context grammars (not to be confused with string
random context grammars [5]).

3.3 Random String Context Grammars

A random string context grammar is a system G = (VN ; VT ; P; S), where VN ; VT ; S have
their usual meaning, and P is a �nite set of random string context rules, i.e. triples of

the form (� ! �;Q;R), where � ! � is a rewriting rule, and Q;R are �nite subsets of

V �
G. We write x ) y i� x = x1�x2, y = x1�x2 for some x1; x2 2 V �

G, (� ! �;Q;R) 2 P ,

Q � Sub(x1) [ Sub(x2), R \ (Sub(x1) [ Sub(x2)) = ;.

Lgen(RSC,CF[��]; ac) (Lacc(RSC,CF[��]; ac)) denotes the family of languages gener-
ated (accepted) by random string context grammars with [�-free] context-free productions.

If any permitting context Q is empty, we put an f (indicating we only consider forbidding
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context) in front of RSC. If any forbidding context R is empty, we call the corresponding

language families Lgen(RSC,CF[��]) (Lacc(RSC,CF[��])).

Applying our metatheorem 2.3, we obtain:

Corollary 3.14 Lgen(X;Y ) = Lacc(X;Y ), and Lgen(RSC; Y; ac) = Lacc(RSC; Y; ac),

where X 2 fRSC; fRSCg, Y 2 fCF;CF��g. 2

Note that random string context grammars with context-free rules are a restriction of

(i; 3)-grammars. For any production (A! w;Q;R) of a given RSC grammar, introduce a

production A! w into the simulating (i; 3)-grammar attached with the language

�(A! w) = (
\
B2Q

V �
GfBgV

�
G) n (

[
C2R

V �
GfCgV

�
G):

In some sense, RSC grammars are more closely related to 2-conditional grammars of

type (i; 3) as introduced by Navr�atil8, see [22, page 185], where the context left and right
to the letter/word to be replaced is considered separately.

It is known that context-free fRC grammars are equivalent to generating ordered gram-

mars regarding their descriptional power [5, Theorem 2.3.4]. We are going to prove a
similar characterization of context-free fRSC grammars via accepting ordered grammars.

Theorem 3.15 (i) Lgen(fRSC,CF��) = Lgen(CS) = Lacc(O,CF��);

(ii) Lgen(fRSC,CF) = Lgen(RE) = Lacc(O,CF).

Proof. In random context grammars, it is rather easy to show the equivalence of fRC
grammars and generating ordered grammars. Of course, by our above theorems, any
fRSC grammar can be simulated by an accepting ordered grammar, �rst constructing an
equivalent linear bounded automaton or an equivalent Turing machine.

On the other hand, a construction analogous to [5, Theorem 2.3.4] showing the above-
claimed equivalences of fRSC grammars and accepting ordered grammars is rather involved,
since in an ordered grammar a production w ! A might be blocked by a greater rule
w0 ! A0, with, e.g., wx = yw0 for some x; y with jyj < jwj. In fRSC grammars, we can
only check the context of w in the string to be rewritten, disregarding possible overlaps.

We already noticed that, from the construction given in the proof of Theorem 3.5, it
is possible to get a normal form representation for ordered grammars. Unfortunately, in

the construction given there, overlap occurs in point (2d) when testing the left context.

We may overcome this di�culty by introducing additional symbols of the form [B; r] into
the nonterminal alphabet of the simulating accepting ordered grammar.9 These symbols
should be introduced by a ruleB ! [B; r] between (2a) and (2b) and appropriately handled

by the other (test) productions. (2d) is replaced by

8Navr�atil called these grammars `context-free grammars with (regular) conditions' in [20]. Observe that

our metatheorem applies also to these grammars.
9This modi�cation cannot be done when starting with a grammar in Penttonen normal form.
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(2d1) [A; r]! (A; r) � fA! F;B ! F; (A; s)! F; [A; s0]! F; [T; s0]! F; [B; s0]! F;

(T; s0)! F; [Y; r]y! F j s 2 Lab; s0 2 Lab n frg; T 2 VN ; y 2 VG0 n f(Z; r)gg;

(2d2) [B; r] ! B � fB ! F; z(Z; r) ! F; [T; s0] ! F; [B; s0] ! F; j s0 2 Lab n frg;

T 2 VN ; z 2 VG0 n f[Y; r]gg

This overlapfree normal form enables us to apply the standard procedure from [5,

Theorem 2.3.4], delivering the claimed result.

The case including �-rules is treated as before. 2

Combining this with our previous results, we see that fRSC grammars are more powerful

than fRC grammars. More precisely, we �nd:

Corollary 3.16 (i) Lgen(fRC,CF��) = Lacc(fRC,CF��) � Lgen(fRSC,CF��) =

Lacc(fRSC,CF��) = Lgen(CS);

(ii) Lgen(fRC,CF) = Lacc(fRC,CF) � Lgen(fRSC,CF) = Lacc(fRSC,CF)
= Lgen(RE). 2

Furthermore, for RC grammars, it is known that the restriction to only forbidding (or

to only permitting) context restricts the descriptive power of the mechanism. For RSC
grammars, such a restriction cannot be observed. A similar remark is valid as regards
appearance checking.

We conclude this section comparing RC and RSC grammars with respect to the restric-
tion to only forbidding (or to only permitting) context.

Theorem 3.17 (i) � Lgen(fRC,CF��) � Lgen(RC,CF��; ac) � Lgen(CS);

� Lgen(RC,CF��) � Lgen(RC,CF��; ac) � Lgen(CS);

� Lgen(fRC,CF) � L(REC) � Lgen(RC,CF; ac) = Lgen(RE);

� Lgen(RC,CF) � L(REC) � Lgen(RC,CF; ac) = Lgen(RE);

(ii) � Lgen(fRSC,CF��) = Lgen(RSC,CF��; ac) = Lgen(CS);

� Lgen(RSC,CF��) � Lgen(RSC,CF��; ac) = Lgen(CS);

� Lgen(fRSC,CF) = Lgen(RSC,CF; ac) = Lgen(RE);

� Lgen(RSC,CF) � Lgen(RSC,CF; ac) = Lgen(RE);

Proof. Lgen(RSC,CF��; ac) � Lgen(CS) and Lgen(RSC,CF,ac) � Lgen(RE) can be

shown by standard constructions.
Lgen(RSC,CF��; ac) � Lgen(CS) is seen via a standard construction of a simulating

linear bounded automaton. Similarly, or by appealing to Church's thesis,
Lgen(RSC,CF,ac) � Lgen(RE) can be shown.
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For the strictness of the inclusion Lgen(fRC,CF��) � Lgen(RC,CF��; ac) see [31]

combined with [5, Theorem 1.2.4]. The strictness of the inclusions Lgen(RC,CF) �

L(REC) � Lgen(RC,CF,ac) follows combining [5, Theorem 1.2.4] and [18, Corollary 5]. 2

The only thing left open is whether the inclusions Lgen(CS) � Lgen(RSC,CF��) and

Lgen(RE) � Lgen(RSC,CF) are strict or not. basically because we did not see any way

to prevent multiple applications of the same rule. This situation contrasts a bit with

the one encountered with string random context grammars with left derivation (another

possible variant of random context grammars), whereas the forbidding context restriction

still poses problems, where the permitting context restriction is fairly easily solved, see

[5, page 89]. Another idea to prove the strictness of the inclusions Lgen(RSC,CF[��]) �

Lgen(RSC,CF[��]; ac) would be to use [18], but we were not able to show this either.
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Chapter 4

Matrix Grammars, Programmed

Grammars and Grammars with

Regular Control

4.1 Matrix Grammars

A matrix grammar ([1, 5]) is a quintuple G = (VN ; VT ;M; S; F ), where VN , VT , and S are
de�ned as in Chomsky grammars (the alphabet of nonterminals, the terminal alphabet,
and the axiom), M is a �nite set of matrices each of which is a �nite sequence m : (�1 !

�1; �2 ! �2; : : : ; �n ! �n), n � 1, of `usual' rewriting rules over VG, and F is a �nite
set of occurrences of such rules in M . For some words x and y in V �

G and a matrix
m : (�1 ! �1; �2 ! �2; : : : ; �n ! �n) in M , we write x =)

m

y (or simply x) y if there is

no danger of confusion) i� there are strings x0; x1; : : : ; xn such that x0 = x; xn = y, and
for 1 � i � n, either

xi�1 = zi�1�iz
0
i�1; xi = zi�1�iz

0
i�1 for some zi�1; z

0
i�1 2 V �

G

or xi�1 = xi, the rule �i ! �i is not applicable to xi�1, and this occurrence of �i ! �i
appears in F . One says that the rules whose occurrences appear in F are used in appearance

checking mode, and that a matrix grammar is de�ned with (without) appearance checking if

F 6= ; (F = ;). The language generated (accepted) by G is de�ned as Lgen(G) = fw 2 V �
T

jS
�
) wg (Lacc(G) = fw 2 V �

T jw
�
) Sg).

The family of languages generated (accepted) by matrix grammars with appearance
checking and with context-free rules �! � in their matrices shall be denoted by Lgen(M,

CF; ac) (Lacc(M,CF; ac)), and for the family of languages generated (accepted) by matrix
grammars without appearance checking and with context-free rules we shall use the no-

tation Lgen(M,CF) (Lacc(M,CF)). If �-rules are forbidden in the matrices we arrive at

the families Lgen(M,CF{�; ac) (Lacc(M,CF{�; ac)) or Lgen(M,CF{�) (Lacc(M,CF{�)),
respectively.
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Clearly, the concept of the matrix grammar Gd = (VN ; VT ;M
d; S; F d) dual to a matrix

grammar G = (VN ; VT ;M; S; F ) should be determined as follows:

� if a matrix m : (�1 ! �1; �2 ! �2; : : : ; �n ! �n) appears in M , then m0 : (�n !

�n; : : : ; �1 ! �1) is contained in Md,

� there are no further matrices in Md,

� the occurrence of some rule �i ! �i in some matrix m0 : (�n ! �n; : : : ; �1 ! �1) is

in F d i� the corresponding occurrence of this rule (i.e. �i ! �i in the corresponding

matrix m from which m0 is constructed as above) is in F .

By a proof analogous to the proof of [29, Theorem I.2.1], we �nd the following theorem.

Theorem 4.1 (i) Lgen(G) = Lacc(G
d), for any generating matrix grammar G with-

out appearance checking.

(ii) Lacc(G) = Lgen(G
d), for any accepting matrix grammar G without appearance

checking. 2

Even in case of matrix grammars, we might have argued with our metatheorem. We
show this construction in the following in case of matrix grammars with erasing core
productions. Contrary to the so-far applications of the metatheorem, this construction
does not carry over to the case of pure matrix grammars.

Let m1; : : : ;mt be the matrices of G = (VN ; VT ;M; S), and

(�i1 ! �i1; : : : ; �iki ! �iki)

be the production sequence of matrix mi. We introduce a unique label pij (1 � i � t,
1 � j � ki). In the equivalent cc grammar G0 = (V 0

N ; VT ; P; fS
0g) with V 0

N = VN [ fpij j
1 � i � t; 1 � j � kig [ fS

0g (the unions being disjoint), we have a start table containing
fS0 ! Spi1; f#g � f1g j 1 � i � tg, a termination table f(pi1 ! �; V �

T f#g � f1g) j
1 � i � tg, and, for each pij , j < ki, a table f(�ij ! �ij; V

�
Gf#gV

�
Gf#g � f1g); (pij !

pi;j+1; V
�
Gf#gV

�
Gf#g � f2g)g, and, for each piki , a table f(�iki ! �iki; V

�
Gf#gV

�
Gf#g �

f1g)g [ f(piki ! ps1; V
�
Gf#gV

�
Gf#g � f2g) j 1 � s � tg.

On the other hand, a cc grammar of the given form can be readily transformed into an
equivalent matrix grammar.

Observe that nearly the same construction is valid for matrix grammars with leftmost

restrictions of type left-3, see [5], showing that also in that case (without appearance
checking) generating and accepting grammars are equally powerful.

A similar but more awkward construction is possible in the non-erasing case.
Nevertheless, in this case we think that the direct proof given through the concept of

dual grammars is more lucid than the deviation via cc grammars.

We would like to add a caveat regarding transformations into cc grammars in this
place. Observe that we could also include appearance checking features in cc grammars
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which are not reversible, e.g., via a table f(pij ! pi;j+1; (V
�
G n (V

�
Gf�ijgV

�
G))f#g � f1g)g.

Taking the dual grammar, we would exclude �ij instead of �ij, which gives some feeling

why appearance checking really behaves di�erent, as it is shown below.

Considering matrix grammars with appearance checking, we �nd the assertion of The-

orem 4.1 to be violated by the following example: let G = (fAg; fag; f(A ! aa;A !

a)g; A; F ) be a generating matrix grammar, where F contains both A ! aa and A ! a,

then we have Lgen(G) = faag but Lacc(G
d) = fa; aag.

This di�culty cannot be overcome by some normal form result similar to Lemma 3.1.

This will be seen by Corollary 4.12 and can be illustrated by the next example.

Example 4.2 Let G = (fS; S0;X; Y g; fa; bg; M; S0; F ) be the generating matrix gram-

mar with appearance checking, where M contains the matrices

m0 : (S0 ! S) ;

m1 : (S0 ! X) ;

m2 : (X ! SX) ;

m3 : (X ! b) ;

m4 : (X ! Y; S ! a; S ! aS) ;

and F consists of all rules from matrix m4. Then Lgen(G) = fa; bg [ fa2n�1b j n � 1g.
This can be seen as follows. Starting with m0, we get the uniquely determined derivation
S0 =)

m0

S =)
m4

a. If we �rst apply the matrix m1, then either we can terminate to b by m3

or we can derive SX by m2. A string SnX can be rewritten by m2 yielding S
n+1X or by

m3 deriving S
nb. The application of m4 to S

nX can be disregarded since it introduces Y

which is a trap symbol. From Snb the derivation must be continued by m4, and we get

Snb =)
m4

x1b =)
m4

x2b =)
m4

: : : =)
m4

xnb ;

where jxijS = n � i and jxija = 2i, for 1 � i � n� 1, and xn = a2n�1.
On the other hand, by Gd the following derivation is possible: a2 =)

m
0

4

aS =)
m

0

4

S =)
m

0

0

S0.

Hence, a2 2 Lacc(G
d) and a2 62 Lgen(G).

4.2 Programmed Grammars

A programmed grammar ([25, 5]) is a construct G = (VN ; VT ; P; S), where VN , VT , and S

are de�ned as in Chomsky grammars, again, and P is a �nite set of productions of the

form (r : � ! �; �(r); �(r)), where r : � ! � is a rewriting rule labelled by r and �(r)

and �(r) are two sets of labels of such core rules in P . By Lab(P ), we denote the set of
all labels of the productions appearing in P .

A sequence of words over V �
G, y0; y1; : : : ; yn, is referred to as a derivation in G i�, for

1 � i � n, there are productions (ri : �i ! �i; �(ri); �(ri)) 2 P such that

yi�1 = zi�1�iz
0
i�1; yi = zi�1�iz

0
i�1; and, if 1 � i < n; ri+1 2 �(ri)
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or

�i =2 Sub(yi�1); yi�1 = yi; and, if 1 � i < n; ri+1 2 �(ri):

Note that { in terms of the concept of matrix grammars { in the latter case, the

derivation step is done in appearance checking mode. The set �(r1) is called success �eld

and the set �(r1) failure �eld of r1. The language generated by G is de�ned as

Lgen(G) = fw 2 V �
T j there is a derivation S = y0; y1; : : : ; yn = wg

if G is a generating programmed grammar and

Lacc(G) = fw 2 V �
T j there is a derivation w = y0; y1; : : : ; yn = Sg

if G is an accepting one.

The family of languages generated (accepted) by programmed grammars of the form

G = (VN ; VT ; P; S) containing only context-free core rules is denoted by Lgen(P,CF; ac).
When no appearance checking features are involved, i.e. �(r) = ; for each rule in P , we
are led to the families Lgen(P,CF) (Lacc(P,CF)). The special variant of a programmed
grammar, where the success �eld and the failure �eld coincide for each rule in the set P of
productions, is said to be a programmed grammar with unconditional transfer . According

to the notation which has been introduced up to here, we shall denote the class of languages
generated (accepted) by programmed grammars with context-free productions and with
unconditional transfer by Lgen(P,CF,ut) (Lacc(P,CF,ut)). If erasing rules are forbidden,
we replace the component CF by CF{� in that notation.

Let G = (VN ; VT ; P; S) be a programmed grammar (in generating or in accepting mode).
Then the dual grammar Gd is the quadruple (VN ; VT ; P

d; S), where P d is constructed as

follows: with a production (r : � ! �; �(r); �(r)) we associate the production (rd :
� ! �; �d(r); �d(r)) with �d(r) = fs 2 Lab(P ) j r 2 �(s)g and �d(r) = fs 2 Lab(P ) j
r 2 �(s)g. Then we have (Gd)d = G, and Gd is of the same type as G.

Again, similar to [29, Theorem I.2.1], we �nd the next theorem. Also in this case, we
might have applied our metatheorem directly, but we did not do this, since as in matrix

grammars the required construction is much more complicated than the natural concept
of a dual grammar.

Theorem 4.3 (i) Lgen(G) = Lacc(G
d), for any generating programmed grammar G

without appearance checking.1

(ii) Lacc(G) = Lgen(G
d), for any accepting programmed grammarG without appear-

ance checking. 2

That this statement does not hold for programmed grammars in general can be illus-

trated by analogous arguments as given for the matrix case (e.g., see Example 4.2).

1Note that a programmed grammar with unconditional transfer is not a programmed grammar without

appearance checking.
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4.3 Grammars With Regular Control

Let G0 = (VN ; VT ; P; S) be a type-n grammar with labelled rules, i.e. P = fr1 : �1 !

�1; r2 : �2 ! �2; : : : ; rn : �n ! �ng, let Lab(P ) be the set of all labels fr1; r2; : : : ; rng,

F � Lab(P ), and let R be a regular language over the alphabet Lab(P ). Then G =

(VN ; VT ; P; S;R; F ) is refered to be a (type-n) grammar with regular control (cf. [15, 5, 29]).

The language generated by G consists of all words w for which there is a word ri1ri2 � � � rik
in R and there are strings x0; x1; : : : ; xk such that x0 = S and xk = w if G0 is generating,

and x0 = w, xk = S if G0 is accepting, respectively, and for 1 � j � k, either

xj�1 = zj�1�ijz
0
j�1; xj = zj�1�ijz

0
j�1 for some zj�1; z

0
j�1 2 V �

G ;

or xj�1 = xj, the rule with label rij is not applicable to xj�1, and rij 2 F . The rules with

a label in F are used in appearance checking mode, since, during a derivation according to

a word in R, they can be passed over if not applicable. Clearly, if F = ; then G is said to

be without appearance checking.
By Lgen(rC,CF; ac), the family of languages generated by context-free grammars with

regular control is denoted. In the same manner as, e.g., for matrix grammars, the classes
Lgen(rC,CF � �; ac), Lgen(rC,CF), Lgen(rC,CF � �), Lacc(rC,CF; ac), Lacc(rC,CF �
�; ac), Lacc(rC,CF), and Lacc(rC,CF� �) are introduced.

Given a grammar G = (VN ; VT ; P; S;R; F ) with regular control, its dual is determined
as Gd = (VN ; VT ; P

d; S;Mi(R); F ), where P d = fri : �i ! �i j ri : �i ! �i 2 Pg. Indeed,
Gd is a grammar with regular control, since the family of regular languages is closed under
mirror image2. Once more, by analogous arguments as in the proof of Theorem I.2.1 in
[29], we �nd a trivial equivalence between generating and accepting mode for grammars

with regular control if appearance checking is forbidden.

Theorem 4.4 (i) Lgen(G) = Lacc(G
d), for any generating grammar G with regular

control that is de�ned without appearance checking.

(ii) Lacc(G) = Lgen(G
d), for any accepting grammar G with regular control and

without appearance checking. 2

We summarize our previous results in the following.

Corollary 4.5 Lgen(X;Y ) = Lacc(X;Y ) ; where X 2 fM,P,rCg; Y 2 fCF,CF{�g. 2

Even in this case our metatheorem is directly applicable. Let G be a grammar with

regular control, G = (VN ; VT ; P; S;R; F ), where F = ;. Since R is a regular language, there
is a �nite automaton3 A which recognizes R, A = (Lab(P ); Z; z0; Q; �), where Lab(P ) is

the input alphabet, Z = fz0; z1; : : : ; zkg is the set of states, z0 is the initial state, Q � Z

2By this argument, the concept of the dual to a grammar with control, where the control language is

taken from any language family which is closed under mirror image, can be given in this way.
3For details concerning the notion of �nite automaton, confer to, e.g., [29] or [5].
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is the set of �nal states, and � is the transition function of A. We construct an equivalent

cc grammar G0 = (V 0
N ; VT ; P

0; fS0g) with V 0
N = VN [ f[r; z] j r 2 Lab(P ); z 2 Zg [ fS0g

(the unions being disjoint), P 0 containing a start table f(S0 ! S[r; z0]; f#g � f1g) j r 2

Lab(P )g, a terminating table f([r; q] ! �; V �
T f#g � f1g) j r 2 Lab(P ); q 2 Qg, and for

each production (r : � ! �) 2 P , a table f(� ! �; V �
Gf#gV

�
Gf#g � f1g)g [ f([r; z] !

[r0; z0]; V �
Gf#gV

�
Gf#g � f2g) j r

0 2 Lab(P ); z0 2 �(z; r)g.

Conversely, a cc grammar of the given form can be readily transformed into an equiv-

alent grammar with regular control.

4.4 Appearance Checking Features

Theorem 4.6 For Y 2 fCF{�;CFg, we have

(i) Lacc(M; Y ) = Lacc(P; Y ) = Lacc(rC; Y ) ,

(ii) Lacc(M; Y; ac) = Lacc(P; Y; ac) = Lacc(rC; Y; ac) :

Proof. (i) Because of Corollary 4.5 it is su�cient to refer to the following. In [5, Theorem
1.2.2] the equivalence of the classes Lgen(M; Y ) and Lgen(P; Y ), and in [29, Theorem V.6.1
and Theorem V.6.6] the equivalence of the language families Lgen(M; Y ) and Lgen(rC; Y )

has been proved.

(ii) (a) Lacc(M; Y; ac) � Lacc(P; Y; ac).
LetG = (VN ; VT ;M; S; F ) be an accepting matrix grammar (with appearance checking),

M = fm1;m2; : : : ;mrg, mi : (ri1; ri2; : : : ; riki), rij : vij ! Aij, 1 � i � r; 1 � j � ki. We
set

V 0
T = fa0 j a 2 VTg and VN = VN [ V

0
T [ fSg ;

(the unions being disjoint), and we de�ne a homomorphism h by

h(a) = a0 for a 2 VT ; h(A) = A for A 2 VN :

Now, we construct the accepting programmed grammar G = (VN ; VT ; P; S), where P con-
tains the following productions:

(1) ([a] : a! a0; f[b] j b 2 VTg; f[1; 1]; [2; 1]; : : : ; [r; 1]g) ;

(2) ([i; j] : h(vij)! Aij; f[i; j + 1]g; �(i; j))

if rij : vij ! Aij; 1 � i � r; 1 � j < ki ;

(3) ([i; ki] : h(viki)! Aiki ; f[1; 1]; [2; 1]; : : : ; [r; 1]; �g; �(i; ki))

if riki : viki ! Aiki; 1 � i � r ;

(4) (� : S ! S; f�g; ;) ;

where, for 1 � i � r; 1 � j � ki,

�(i; j) =

(
; rij =2 F

�([i; j]) rij 2 F
:

27



Obviously, any derivation by G has to start by application of a production of type (1)

and thus, all occurrences of terminal symbols have to be replaced by their primed versions.

Now, the productions of type (2) and (3) are used in order to simulate the application of

matrices in M . The goal symbol can be derived if and only if the sentential form S has

been obtained by application of a production of type (3). Hence, L(G) = L(G).

Clearly, if G is de�ned without erasing rules, G is an accepting programmed grammar

without erasing rules, too.

(ii) (b) Lacc(P; Y; ac) � Lacc(rC; Y; ac).

We omit this proof since the construction in the proof of [29, Theorem V.6.1] for the

corresponding generating devices can be used here.

(ii) (c) Lacc(rC; Y; ac) � Lacc(M; Y; ac).

Let G = (VN ; VT ; P; S;R) be an accepting context-free grammar with regular control,

VN = fA1; A2; : : : ; Ang, and P = fr1 : v1 ! Ai1; r2 : v2 ! Ai2; : : : ; rm : vm ! Aimg, and

let A be the �nite automaton which recognizes R, A = (Lab(P ); Z; z0; Q; �), where Lab(P)

is the input alphabet, Z = fz0; z1; : : : ; zkg is the set of states, z0 is the initial state, Q is
the set of �nal states, and � is the transition function of A. We construct an accepting
matrix grammar G0 = (V 0

N ; VT ;M; S 0; F 0), where

V 0
N = VN [ f[A; z] jA 2 VN ; z 2 Zg [ fEg ;

(the unions being disjoint), and M containing the following matrices:

(1) ([A1; z0]! E; : : : ; [An; z0]! E;

[A1; z1]! E; : : : ; [An; z1]! E;
...

[A1; zk]! E; : : : ; [An; zk]! E; vj ! [Aij ; �(z0; rj)]) for 1 � j � m;

(2) ([A; z]! A; vj ! [Aij ; �(z; rj)]) for each A 2 VN ; z 2 Z; 1 � j � m;

(3) ([S; q]! S0) for each q 2 Q :

Let F 0 contain all productions with the letter E on their right-hand sides as well as all
productions vj ! Aij in the matrices of type (2) whose label rj is an element of F . Any
derivation must start with a matrix of type (1) which simulates the application of one rule

rj : vj ! Aij 2 P with jvjjVN = 0 introducing the nonterminal [Aij ; z] such that z is the

state that is reached by A after reading rj as �rst input symbol. Since a further application
of a matrix of type (1) introduces the trap symbol, there is exactly one nonterminal of the
form [A; z]; A 2 VN ; z 2 Z, in every sentential form which is not a terminal word and

yields the goal symbol. The task of a matrix of type (2) is twice. At �rst it simulates the

application of a rule in P , and secondly a transition of the automaton A is calculated in the

following manner: if we have simulated a derivation according to r1r2 � � � ril 2(Lab(P ))
�

then the second component of the nonterminal of the form [A; z], A 2 VN ; z 2 Z, in
the derived sentential form equals the state that is reached by A after reading the input

ri1ri2 � � � ril . Thus, the goal symbol S0 can be reached (by an application of the matrix (3))

i� the iterated application of matrices of type (2) simulates a derivation according to G
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which yields S. Hence, Lacc(G
0) = Lacc(G). Clearly, if G is �-free then G0 is �-free, too.

2

If appearance checking features are permitted in the accepting case, like in ordered

grammars we can test both the containment and the noncontainment of a string. Indeed,

we are led to results corresponding to the statements of Theorem 3.5 and Corollary 3.7 for

accepting ordered grammars. First let us show the following.

Theorem 4.7 Lacc(O;X) � Lacc(P;X;ut) ; where X 2 fCF,CF� �g.

Proof. The proof of [31, Teorema 4.3] of our statement for the generating case is

transferable to the accepting case, cf. our meta-observation. 2

Corollary 4.8 (i) For any (generating) context-sensitive grammar, there is an equiv-

alent accepting nonerasing programmed grammar with unconditional transfer.

(ii) For any (generating) type-0 grammar, there is an equivalent accepting programmed
grammar with unconditional transfer.

Proof. The assertion follows from Theorem 4.7, if we take into consideration the results

presented in Theorem 3.5 and Corollary 3.7. 2

Theorem 4.9 (i) Lacc(P;CF; ac) � Lacc(RE),

(ii) Lacc(P,CF{�; ac) � Lacc(CS).

Proof. (i) Clearly, this statement follows from the Church's thesis, but it can also
be proved directly. Let G = (VN ; VT ; P; S) be an accepting programmed grammar with
appearance checking. First let us mention that, without loss of generality, we can assume

that �(r) = ; if (r : v ! A; �(r); �(r)) is a production with v = � (a rule � ! A is
applicable to any string over VG).

We consider an accepting type-0 grammar G0 = (V 0
N ; VT ; P

0; S0) constructed as follows4.
We set

V 0
N = VN [ fB;C; S

0g [
[

r2Lab(P )

fAr; Br; Cr;Drg ;

where the unions shall be disjoint. P 0 contains the following rules:

1. Here we introduce some starting and ending rules.

(1) a! Ba for a 2 VT

(2) a! aC for a 2 VT

(3) C ! ArC for r 2 Lab(P )

(4) BSArC ! S0 for r 2 Lab(P )

4Our construction is based on the proving idea of [5, Lemma 1.2.4].
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(Because of the last rule, a derivation is accepting if (and { by the following rules { only

if) each of the following conditions is satis�ed:

� B has been derived exactly once as left marker,

� C has been derived exactly once as right marker,

� there is exactly one application of a rule of type (3) during the derivation.)

2. For any production (r : v! A; �(r); �(r)) in P , v 6= �, we introduce the following rules

in P 0.

(5) wAr ! w0Arz for w;w0 2 (VN [ VT )
�; z 2 VN [ VT ; jwj = jvj; v 6= w = w0z

(6) vAr ! vBr

(7) zBr ! Brz for z 2 VN [ VT

(8) vBr ! ACr

(9) Crz ! zCr for z 2 VN [ VT

(10) CrC ! AsC for s 2 �(r)

(11) BwAr ! BwDr for w 2 (VN [ VT )
�; jwj � jvj � 1

(12) Drz! zDr for z 2 VN [ VT

(13) DrC ! AsC for s 2 �(r)

The nonterminal Ar checks whether the rule with label r is applicable. In the a�rmative
case it introduces Br which can be replaced only by simulating the core rule of the produc-
tion that is labeled by r. At this, Cr is introduced which moves to the right and derives

As such that s is in the success �eld of r. If the production with label r is not applicable
Dr is introduced which also moves to the right and derives As with s 2 �(r).

3. For any production (r : � ! A; �(r); ;) 2 P , we introduce a rule Ar ! Br, and we
add the rules (7) { (10) constructed above. (Clearly, the rule (8) is of the form Br ! ACr,
now.)

Obviously, the sentential forms contain at most one letter Ar; Br; Cr, or Dr for some

r 2 Lab(P ). Hence, L(G0) = L(G), and the proof is complete for the type-0 case.

(ii) Now, let G be length-increasing. By the proof of Theorem I.2.1 in [29], the con-

struction of G0 in (i) implies that there is an equivalent generating type-0 grammar to G

with

WS(x;G0) � jxj+ 3

for any x 2 L(G0). From the workspace theorem [29, Theorem III.10.1] we obtain L(G0) 2

Lgen(CS). In conclusion, L(G) 2 Lacc(CS), and the proof is �nished. 2

Because of the fact that any programmed grammar with unconditional transfer is an
arbitrary programmed grammar (with appearance checking) of the same type, we arrive

the expected corollary.
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Corollary 4.10 (i) Lacc(M;CF; ac) = Lacc(P;CF; ac) = Lacc(P;CF;ut) =

= Lacc(rC;CF; ac) = Lacc(RE) ,

(ii) Lacc(M,CF{�; ac) = Lacc(P,CF{�; ac) = Lacc(P,CF{�;ut) =

= Lacc(rC,CF{�; ac) = Lacc(CS). 2

In conclusion, we �nd a hierarchical result for programmed grammars in accepting mode

which is still open in the generating case.

Corollary 4.11 For Y 2 fCF,CF{�g, we have

Lacc(P; Y ) � Lacc(P; Y;ut) 2

The main result of this section is given in the next corollary.

Corollary 4.12 Let X;Y 2 fM;P; rCg. Then, we have

(i) Lgen(X;CF; ac) = Lacc(Y;CF; ac),

(ii) Lgen(X;CF{�; ac) � Lacc(Y;CF{�; ac).

Proof. By [5, Theorem 1.2.4 and Theorem 1.2.5], Lgen(M,CF{�; ac) � Lgen(CS) and
Lgen(M;CF; ac) = Lgen(RE) hold. By [29, Theorem V.6.1 and Theorem V.6.6], we have
Lgen(M;X; ac) = Lgen(rC;X; ac), X 2 fCF,CF{�g. Since the family of generated type-
n languages and the family of accepted type-n languages coincide for n 2 f0; 1g, the
statement is a direct consequence of Corollary 4.10. 2

Note that we could have proved, e.g., Lacc(CS) � Lacc(M, CF{�; ac) also directly,
using an argument similar to the one given for ordered grammars. To conclude this section,
we enclose such a proof below.

Let L 2 Lgen(CS), L � V +. Obviously,

L =
[

a;b2V

fagdla(d
r
b(L))fbg [ (L \ (V [ V 2)):

This identity proves that, since accepting matrix languages are easily seen to be closed

under �nite union, it is su�cient for the proof of the present assertion to show that

fagMfbg 2 Lacc(M,CF��,ac) for M 2 Lgen(CS), � 62 M .
We consider a generating context-sensitive grammar G = (VN ; VT ; P; S) without �-

productions in Kuroda normal form generating M . We construct an accepting matrix
grammar G = (VN ; VT [ fa; bg;M; S; F ) as follows. Let

VN = VN [ fA;B; S;Eg [ fY
0 jY 2 VNg
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(the unions beeing disjoint), (VN [ VT ) n fY
0 j Y 2 VNg = fC1; C2; : : : ; Cng, let M contain

the following matrices:

(a) (ASB ! S) ;

(b) (A! E; B ! E; a! A; b! B) ;

(c) (A! A; B ! B; x! X) for all context-free rules X ! x 2 P ;

(d) (A! A; B ! B; Y ! Y 0; Z ! Z 0;

Y 0C1 ! E; Y 0C2 ! E; : : : ; Y 0Cn ! E;

C1Z
0 ! E; C2Z

0 ! E; : : : ; CnZ
0 ! E;

Y 0 ! X; Z 0 ! U) for XU ! Y Z 2 P;

and let F contain exactly all rules with the symbol E on their right-hand sides. One can

easily prove that Lacc(G) = fagMfbg.

4.5 Comparison Results

Finally, we want to compare our results obtained so far in the accepting case with the
corresponding known results in the generating case, cf. [5, Theorem 1.2.4] as regards
matrix (or one of the equivalent regulation mechanisms) and random context grammars.

Theorem 4.13 � Lgen(RC,CF) = Lacc(RC,CF) � Lgen(M,CF) = Lacc(M,CF) �
L(REC).

� Lgen(RC,CF � �) = Lacc(RC,CF � �) � Lgen(M,CF � �) = Lacc(M,CF � �) �
L(CS).

� Lgen(RC,CF,ac) = Lacc(RC,CF,ac) = Lgen(M,CF,ac) = Lacc(M,CF,ac) = L(RE).

� Lgen(RC,CF��; ac) = Lacc(RC,CF��; ac) = Lgen(M,CF��; ac) � Lacc(M,CF�
�; ac) = L(CS). 2

Now, we turn our attention to devices who are parallel in nature.
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Chapter 5

Lindenmayer Systems

An ET0L system is a quadruple G = (V; V 0; fP1; : : : ; Prg; !), where V 0 is a non-empty

subset of the alphabet V , ! 2 V +, and each so-called table Pi is a �nite subset of V � V �

which satis�es the condition that, for each a 2 V , there is a word wa 2 V � such that
(a;wa) 2 Pi (again, the elements of Pi are written as a! wa in the generating case), such
that each Pi de�nes a �nite substitution �i : V

� ! 2V
�

. In the generating case, x) y i�
y 2 �i(x) for some i, and Lgen(G) = fv 2 V 0� j!

�
) vg. If no table Pi contains a �-rule,

i.e. Pi � V � V + for each i, the system is called propagating; in this case, we add the

letter P to the notation of the system. If for any table Pi, a ! w 2 Pi and a ! w0 2 Pi
imply w = w0, the system is called deterministic; in this case, we add the letter D to the
notation of the system.

The basic properties of the derivation in L systems (in contrast to the sequential rewrit-
ing mechanisms considered above) may be summarized as follows.

� Any symbol [subword] in the word under consideration has to be rewritten in one
derivation step (in parallel).

� In the derivation, terminal symbols may be replaced.

Coming to accepting L systems, one necessary change in the formulation of the rewriting
rule is that we must replace subwords instead of symbols, as indicated in square brackets

above. But, this ad hoc approach is not sound for several reasons.

� In contrast to the generating process (where the now discussed item is trivial), we
are forced to consider the partition of the word to be derived into non-overlapping [!]

subwords separately as the �rst step inside a derivation step. Where in L systems,
it is still easy to rule out segmentations which leave out some subwords underived,

and are, hence, not partitions observed in the derivation process of L systems, we get

into trouble within systems which are only partially parallel. We discuss this item in
detail at the appropriate places.
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� �-productions cannot meaningfully be interpreted within the above intuition: Re-

place every � occurring as some subword : : : This problem is circumvented if we

interpret the set of productions de�ning some inverse substitution.

� The intuition of the `deterministic'-restriction in L systems is twofold:

{ in a static interpretation, we say an L system is deterministic if the left-hand

sides of the productions are distinct in each table, or formally: each table Pi
satis�es the condition: if a! w 2 Pi and a! w0 2 Pi, then w = w0;

{ in a dynamic interpretation, a substitution �i is deterministic i�, for any w 2 V �,

there is at most (and hence, exactly one) v 2 �i(w).

In the generating mode, these two intuitions lead to the same notion of determinism,

which is not the case in accepting mode. We will discuss this item in connection with

pure grammars and systems. Here, we restrict ourselves to the static interpretation.

In the accepting mode, this would mean that we require the left-hand sides of the
productions of one table to be di�erent.

We now formally introduce accepting L systems: Each table Pi is a �nite subset of

V � � V which satis�es the condition1 that, for each a 2 V , there is a word wa 2 V � such
that (wa; a) 2 Pi (the elements of Pi are written as wa ! a again), such that each Pi
de�nes a �nite substitution �i : V

� ! 2V
�

, �i(a) = fw jw ! a 2 Pig. In the accepting
case, y ) x i� x 2 ��1i (y) for some i, and Lacc(G) = fv 2 V 0� j v

�
) !g. If no table Pi

contains a �-rule, i.e. Pi � V +�V for each i, we call the system propagating; in this case,
we add the letter P to the notation of the system. If for any table Pi, w ! a 2 Pi and

w! a0 2 Pi imply a = a0, we call the system deterministic; in this case, we add the letter
D to the notation of the system.

If G = (V; V 0; fP1; : : : ; Prg; !) is an ET0L system, then the number r of tables is
denoted by Syn(G). For L 2 Lgen(ET0L),

Syngen(L;ET0L) = minfSyn(G) jG is a generating ET0L system, and Lgen(G) = Lg:

Analogously, for L 2 Lacc(ET0L),

Synacc(L;ET0L) = minfSyn(G) jG is an accepting ET0L system, and Lacc(G) = Lg:

If G = (V; V 0; fP1; : : : ; Prg; !) is a generating ET0L system, for 1 � j � r and a 2 V ,
we de�ne Det(G;Pj ; a) = #fa ! y j a ! y 2 Pjg. The degree of nondeterminism of

1This so-called `completeness condition' for L systems cannot be transferred to the accepting case

requiring that for any possible left-hand side, there is at least one rule in Pi, since the speci�cation of Pi
should remain �nite. One might wish to abolish the completeness condition totally, and, at least in the

generating case of systems with extensions [21], this modi�cation does not alter the descriptive power. But

we do not investigate this item in the accepting case in this paper.
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the system G is de�ned as Det(G) = maxfDet(G;Pj ; a) j 1 � j � r; a 2 V g. For L 2

Lgen(ET0L),

Detgen(L;ET0L) = minfDet(G) jG is a generating ET0L system, and Lgen(G) = Lg:

Analogously, if G = (V; V 0; fP1; : : : ; Prg; !) is an accepting ET0L system, for 1 � j � r and

y 2 V �, we de�ne Det(G;Pj ; y) = #fy! a j y ! a 2 Pjg. The degree of nondeterminism

of the system G is de�ned as Det(G) = maxfDet(G;Pj ; y) j1 � j � r; y 2 V �g. For

L 2 Lacc(ET0L),

Detacc(L;ET0L) = minfDet(G) jG is an accepting ET0L system, and Lacc(G) = Lg:

As regards the comparison of the descriptive power, L systems are quite trivial, since any

application of a �nite substitution in generating mode can be simulated by an application

of the inverse of a �nite substitution in accepting mode and vice versa. More speci�cally,

if P is a table of a generating ET0L system, we call P d = fv ! w jw ! v 2 Pg
dual to P . If G = (V; V 0; fP1; : : : ; Prg; !) is a generating ET0L system, its dual Gd =
(V; V 0; fP d

1 ; : : : ; P
d
r g; !) is an accepting ET0L system with Lacc(G

d) = Lgen(G). Similarly,
one can de�ne the dual of an accepting ET0L system with an analogous property.

Theorem 5.1 Lgen(E[P][T]0L) = Lacc(E[P][T]0L) 2

This result is equally easily seen using cc grammars: For any ET0L-table t, we introduce

in the simulating cc grammar a table t consisting exactly of the productions (v! w; f#g��
N) whenever v! w 2 t.

The notation (consistently used throughout this paper) should mean that you may omit
the same letters occurring in brackets on both sides of the equation.

Obviously, our theorem allows also to carry over results on the synchronization degree

from generating systems [26] to accepting ones.
In the following, we consider (syntactically) deterministic systems. It is clear that the

trivial equivalence of the above theorem does not hold for these systems. In fact, we will
prove inequivalence of generating and accepting mode in the following. First of all, we
de�ne some sort of normal form.

Let G be some ET0L system (be it generating or accepting). G is called symmetrically

deterministic or ESDT0L system i� for any table P and any two productions v1 ! w1; v2 !
w2 2 P , v1 = v2 is equivalent to w1 = w2.

Lemma 5.2 Lgen(EDT0L) = Lgen(ESDT0L)

Proof. Since the inclusion `�' of the claim is trivial, the other direction `�' remains to be

shown. Let G = (V; V 0; fP1; : : : ; Prg; !) be a generating deterministic ET0L system with

V = fa1; : : : ; atg, V
0 = fas+1; : : : ; atg. Let F;�1; : : : ;�t be new symbols. We de�ne a new

total alphabet V = V [ fF;�1; : : : ;�tg.
For each table P in G, de�ne

con
ict(P ) = fai ! x 2 P j (9j 6= i)(aj ! x 2 P )g and
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no-con
ict(P ) = P n con
ict(P )

De�ne

SD(P ) = no-con
ict(P ) [ fai ! �ix j ai ! x 2 con
ict(P )g

[ f�i ! F i+1 j ai 2 V g [ fF ! Fg; and

Tj = f�j ! �g [ fb! b j b 2 V n f�jgg:

Consider the symmetrically deterministic system

G = (V ; V 0; fSD(P1); : : : ; SD(Pr); T1; : : : ; Ttg; !):

It is easily seen that Lgen(G) = Lgen(G). 2

Lemma 5.3 Lacc(ET0L) = Lacc(EDT0L)

Proof. We have to show the inclusion �. The proof is very much alike the previous one.

Let G = (V; V 0; fP1; : : : ; Prg; !) be an accepting ET0L system.
For each table P in G, de�ne

con
ict(P ) = fx! y 2 P j (9z 6= y)(x! z 2 P )g and

no-con
ict(P ) = P n con
ict(P )

We introduce new symbols �x!y if there is a table P such that x ! y 2 con
ict(P ).
We assume a suitable enumeration of these symbols, i.e. f�x!y j (91 � j � r)(x ! y 2
con
ict(Pj))g = f�i j 1 � i � Ig.

We de�ne a new total alphabet V = V [ fF;�1; : : : ;�Ig.
De�ne

DET (P ) = no-con
ict(P ) [ f�x!yx! y jx! y 2 con
ict(P )g

[ fF i+1 ! �i j 1 � i � Ig [ fF ! Fg; and

Tj = f�! �jg [ fb! b j b 2 V n f�jgg:

Consider the deterministic system

G = (V ; V 0; fDET (P1); : : : ;DET (Pr); T1; : : : ; TIg; !):

It is easily seen that Lacc(G) = Lacc(G). 2

In other words, the degree of nondeterminism Detacc(L;ET0L) = 1 for any ET0L
language L. This contrasts the situation found within generating ET0L systems, since

there is an ET0L language L with Detgen(L;ET0L) = 2. Since the dual of say an accepting

ESDT0L system is again an ESDT0L system generating the same language, we may state
the following corollary.

Corollary 5.4 Lacc(ESDT0L) = Lgen(ESDT0L) = Lgen(EDT0L) �

� Lacc(EDT0L) = Lacc(ET0L) = Lgen(ET0L) 2

We do not know what happens if we restrict our attention to propagating systems.
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Chapter 6

Uniformly Limited Systems

Before turning to accepting version of uniformly limited (ul) systems, we will improve some

known results in the generating case.

A k-uniformly-limited ET0L system (abbreviated as kulET0L system) is a quintuple
G = (V; V 0; fP1; : : : ; Prg; !; k) such that k 2 N and (V; V 0; fP1; : : : ; Prg; !) is an ET0L
system.1 The notions of propagating and pure systems are inherited from L systems.
Basically, the idea of one derivation step in kul systems is the next: Choose one table
Pi and k symbols in the string x to be derived and replace each of this selected symbols

a according to some rule a ! w 2 Pi yielding a new string y. One seemingly technical
problem remains: What should one do with strings x shorter than k? We consider two
di�erent modes:

� In W�atjen's mode, each symbol in a word shorter than k is replaced. The family of
languages generable in such a manner is denoted by Lgen(kulET0L).

� In Salomaa's mode [30] or in the exact mode, words shorter than k do not yield
further words except from the �rst derivation step, where, starting from the start
symbol S (instead of the axiom !), any word w with S ! w 2 Pi is obtainable. The
family of languages generable in such a manner is denoted by Lgen(kulET0L,ex).

Finally, we de�ne both for the generating and the accepting case

L(ulE[P]T0L[,ex]) =
[
k�1

L(kulE[P]T0L[,ex]):

W�atjen and Unruh [36] called a generating kulET0L system G = (�;�; fP1; : : : ; Prg,

S, k) pseudo-synchronized i� for every a 2 � and w 2 ��, if w is derivable from a

after a positive number of non-parallel context-free derivation steps (considering G as a
E0S system, i.e. a context-free grammar with rewriting rules for terminal symbols), then
w 62 ��.

1We inherited our denotations for ET0L systems from above, hence we deviate from the usual denota-

tions in the literature of kulET0L systems [36].
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We prefer the following formulation of pseudo-synchronization in the generating case:

we call a generating (exact) kulET0L system G = (�;�; fP1; : : : ; Prg; S; k) with failure

symbol F pseudo-synchronized i� for every a 2 � and w 2 ��, if S
�
) a ) u ) w with

jwjF = 0 implies juj�n� � k.

Theorem 6.1 Let k 2 N. For every kulET0L system G = (�;�; fP1; : : : ; Prg; !; k) (ei-

ther in W�atjen's or in Salomaa's mode), there exists an equivalent pseudo-synchronized

kulET0L systemG0 (either in W�atjen's or in Salomaa's mode) containing the same number

of tables. If G is propagating, G0 is propagating, too.

Proof. De�ne G0 = (�0;�; fP 0
1; : : : ; P

0
rg; S; k) by �0 = � [ �0 [ fS;Fg (disjoint union)

where �0 = fa0 j a 2 �g. By x 7! x for x 2 � and a0 7! a for a 2 �, we de�ne a morphism

g : (� [�0)� ! ��.

Let 
 denote the set of sentential forms of length < 2lk (where l is the length of the

longest right-hand side of a production in G) derivable in G.2 If the 
 obtained in this way

is empty, we set 
 = f!g. Now let 
0 = fx j 9w 2 
(g(x) = w ^ (w 2 �� _ jwj�n� � k))g.
Finally, we set P 0

i = fy ! x j y 2 � n � ^ y ! w 2 Pi ^ g(x) = wg [ fa0 ! x j

a 2 � ^ a! w 2 Pi ^ g(x) = wg [ fa! F j a 2 �g [ fS ! w jw 2 
0g [ fF ! Fg. 2

As already said in the section on Lindenmayer systems, we consider determinism as
a purely syntactical concept. This means, a kulET0L system G (be it generating or ac-

cepting) is called deterministic if G is deterministic, taken as an ordinary Lindenmayer
system.

The construction given in the proof of the preceding theorem unfortunately destroys
determinism for two reasons.

1. If 
0 contains more than one word, there is more than one production with left-hand

side S in each table.

2. Since we include all productions of the form y! x (or a0 ! x) if there is a production
of the form y ! w (or a ! w) such that g(x) = w, and since g is not injective, we
introduce nondeterminism.

The �rst item can be overcome introducing a separate start table initw = fS ! wg [
fy ! F jy 6= Sg for each w 2 
0 instead of including the start productions into the

simulating tables.

The second item is solved similarly: since, for any table Pi, there is only a �nite number
of possible combinations

fy! x j y 2 � n�^ y! w 2 Pi ^ g(x) = wg [ fa0 ! x j a 2 �^ a! w 2 Pi ^ g(x) = wg;

we may introduce one table Pi;j for any such combination labelled j, 1 � j � ji, such that

G0 = (�0;�; finitw jw 2 
0g [ fP1;1; : : : ; P1;j1 ; : : : ; Pr;1; : : : ; Pr;jrg; S; k) is a deterministic

pseudo-synchronized system simulating G if G is deterministic.
The following fact is now clear. Compare with [36, page 296f.].

2We do not care about e�ectivity issues in this place.
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Corollary 6.2 For every k 2 N, we have

Lgen(kulE[P][D][T]0L) = Lgen(kulE[P][D][T]0L,ex) 2

We want to improve [36, Theorem 4.1], where the relation

Lgen(kulEPT0L) � Lgen(P,CF��,ac)

was shown.

Theorem 6.3 For every k 2 N, we have

(i) Lgen(kulEPT0L,ex) � Lgen(P,CF��)

(ii) Lgen(kulET0L,ex) � Lgen(P,CF)

Proof. Our construction is very similar to [36, Theorem 4.1], hence we give the construc-

tion without proof.
For any exact kulET0L system G = (V; V 0; fP1; : : : ; Prg; an; k), k 2 N, we construct an

equivalent context-free programmed grammarG0 such that G0 is �-free i�G is a propagating
system. Let V = fa1; : : : ; ang, V

0 = fa1; : : : ; amg with m < n. Let W = fA1; : : : ; Ang
be a new alphabet, and g : W � ! V � be the bijective morphism given by g(Ai) = ai for
i = 1; : : : ; n.

We de�ne a context-free programmed grammar G0 = (VN ; VT ; P; S) where

VN =W [ fAi;j j 1 � i � n; 1 � j � rg [ fSg

and VT = V 0 with new symbols Ai;j and S.
The following productions are contained in P :

(initw : S ! g�1(w); fterm� j 1 � � � mg [ ff�;�;1 j 1 � � � n; 1 � � � rg; ;)

where an ! w 2 Pi for some Pi;

(term� : A� ! a�; fterm1; : : : ; term�g; ;)

for 1 � � � m;

(fi;j;� : Ai ! Ai;j; ff1;j;�+1; : : : ; fn;j;�+1g; ;)

for 1 � i � n, 1 � j � r, 1 � � < k;

(fi;j;k : Ai ! Ai;j; fP�;j;1;v j 1 � � � n; a� ! v 2 Pjg; ;)

for 1 � i � n, 1 � j � r;

(Pi;j;�;w : Ai;j ! g�1(w); fP�;j;�+1;v j 1 � � � n; a� ! v 2 Pjg; ;)
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for 1 � i � n, 1 � j � r, 1 � � < k, ai ! w 2 Pj ;

(Pi;j;k;w : Ai;j ! g�1(w); fterm� j 1 � � � mg [ ff�;�;1 j 1 � � � n; 1 � � � rg; ;)

for 1 � i � n, 1 � j � r, ai ! w 2 Pj .

The crucial thing is that the k parallel replacements of G are simulated sequentially

by fi;j;� and Pi;j;�;w, where the intermediate words due to that sequentialization cannot

contribute to the language. 2

From [18], we get as a corollary:

Corollary 6.4 For every k 2 N, we have

(i) Lgen(kulEPT0L) = Lgen(kulEPT0L; ex) � Lgen(P,CF��;ac) � Lgen(CS)

(ii) Lgen(kulET0L) = Lgen(kulET0L; ex) � L(REC) � Lgen(P,CF; ac) = Lgen(RE)

Proof. We only have to show the second case. By [18], we know that for Lgen(M,CF) =
Lgen(P,CF), the membership problem is decidable. Since every recursively enumerable
language is the morphic image of a recursive language, we obtain by [18, Theorem 3],
applied to the language class Lgen(M,CF), the strictness of the inclusion Lgen(M,CF) �

L(REC). 2

Let us turn to the discussion of accepting versus generating mode. First, we consider

the exact mode.
Since the exact modes di�ers between the �rst and all other derivation steps, we may

have a discussion \which should be the appropriate de�nition for the accepting mode?".
To circumvent this, we take the next de�nition of generating/accepting exact kulET0L
systems which is obviously equivalent to the one considered up to now.

An exact kulET0L system is a quintuple G = (�;�; fP1; : : : ; Prg; f!1; : : : ; !sg; k),

where � is the total alphabet, � � � is the terminal alphabet, each Pj is a table as
in ET0L systems, and f!1; : : : ; !sg � �+ is a �nite set of axioms. The yield relation ) is
de�ned as follows: x ) y i� there is a table Pj and productions a� ! w� 2 Pj for each

1 � � � k and words x0; : : : ; xk such that x = x0a1x1 � � � akxk and y = x0w1x1 � � �wkxk.
The language generated by G is Lgen(G) = fw 2 �� j (9� 2 f1; : : : ; sg)(!�

�
) w)g.

Likewise, accepting exact kulET0L systems are de�ned.

Theorem 6.5 For every k 2 N, we have

Lgen(kul[E][P][T]0L,ex) = Lacc(kul[E][P][T]0L,ex)

Proof. Nearly, the concept of duality introduced for L systems above su�ces to show the

theorem. More precisely, if G = (�;�; fP1; : : : ; Prg; f!1; : : : ; !sg; k) is an exact generating

kulET0L system, its dual can be described as

Gd = (�;�; fP d
1 ; : : : ; P

d
r g; f!1; : : : ; !sg; k);
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where, as general, P d = fv! w jw ! v 2 Pg. Then, Lgen(G) = Lacc(G
d).

Namely, assume that x ) y in the generating system G. Then, jxj � k. Since some

table Pi must have been applied successfully deriving y out of x, y contains (at least)

k non-overlapping subwords which are right-hand sides of productions of Pi. Therefore,

within the accepting system Gd, we �nd y ) x, using table P d
i .

Now, consider some direct derivation y ) x in the accepting dual system Gd. By

de�nition, there is a table P d
j and there are (at least) k non-overlapping subwords in y

which are left-hand sides of productions of P d
j . Hence, jxj � k, and employing table Pj ,

we �nd x) y within the original system G.

On the other hand, if G = (�;�; fP1; : : : ; Prg; f!1; : : : ; !sg; k) is an exact accepting

kulET0L system, its dual may be described as

Gd = (�;�; fP d
1 ; : : : ; P

d
r g; f!1; : : : ; !sg; k)

and Lacc(G) = Lgen(G
d). 2

An alternative proof uses our metatheorem: Each production v ! w in a table Pi of

an exact kul-system corresponds to a production (v ! w; (V �
Gf#g)

kV �
G � f1; : : : ; kg) in a

simulating table P 0
i of the corresponding cc grammar.

Note that this theorem allows also to carry over results on the synchronization degree
from generating systems to accepting ones.

As regards W�atjen's mode, it depends on the precise de�nition of generating systems

how to de�ne accepting ul systems, since the original de�nition \replace exactly minfk; jxjg
symbols of the word x to be rewritten" is not an appropriate one to be interpreted in
accepting mode.

We discuss a few possible interpretations of the derivation x) y in the following.

1. Select k symbols of the word x and replace them. If this is not possible, replace k�1
symbols of x. If this is not possible, replace k � 2 symbols of x : : :

2. Select k symbols of the word x and replace them. If this is not possible, interpret
the tables as �nite substitutions �j as in L systems and de�ne x ) y i� y 2 �j(x)
for some table �j.

3. Let x be the string to be rewritten. Denote by Lk(x) the set of strings derived directly

from x via G, where G is interpreted as an exact kulET0L system. If Lk(x) 6= ;, then
x ) y i� y 2 Lk(x). If Lk(x) = ;, then x ) y i� there is a partition x = x1 � � � xl
with l < k and there is a table in G containing productions x1 ! y1, : : :, xl ! yl
such that y = y1 � � � yl. Note that this de�nition is equally valid for generating and

accepting mode. In generating mode, it coincides with W�atjen's de�nition.

The �rst reformulation does not lead to a unique interpretation in accepting mode.
Taking as rules aa! z and aaa! y and k = 3, is a6 ) azy allowed or not? If we select
the subwords as indicated, especially applying aaa ! y, we do not �nd 3 subwords as

required. But selecting other subwords, this is possible, namely in the derivation a6 ) zzz.
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But also the second reformulation causes problems in accepting mode. Taking our

example again, we �nd a6 ) yy because of the interpretation via inverse substitutions as

in L systems. Is this our intention? Maybe. But taking additionally a rule of the form

a! b, we may fail applying aaa! y as before, but then the L interpretation would yield

a6 ) b6, actually replacing 6 symbols.

Unfortunately, even the third de�nition does not lead to a situation where the gener-

ating and accepting mode are dual as in lrcc grammars. For example, in the generating

system dual to the above example, yy ) a6, but yy 62 L3(a
6), hence a6 ) yy is not valid

in accepting mode.

Of course, one could try to consider the above variants separately as language descrip-

tion mechanisms and discuss them in detail. This is beyond the scope of this paper. We

only mention that the third way of de�ning accepting ulET0L systems is at least as pow-

erful as their generating counterparts, but we do not know whether or when the converse

assertion holds.

Instead, and because of these di�culties, we de�ne the yield relation given by a kulET0L
system G as follows:

Let x be the string to be rewritten. Again, denote by Lk(x) the set of strings derived

directly from x via G, where G is interpreted as an exact kulET0L system. Now de�ne
x ) y i� y 2 Lk(x) or there is a partition x = x1 � � � xl with l � k and there is a table
in G containing productions x1 ! y1, : : :, xl ! yl such that y = y1 � � � yl. Note that
this de�nition is equally valid for generating and accepting mode. In generating mode, it
coincides with W�atjen's de�nition.

Using this de�nition and the usual concept of dual systems (again, the employment of
our metatheorem is possible), we �nd:

Theorem 6.6 For every k 2 N, we have Lgen(kul[E][P][T]0L) = Lacc(kul[E][P][T]0L) 2

By our above considerations, we see that W�atjen's mode and exact mode do coin-
cide within systems with extensions regarding their descriptive power when considering
accepting systems, too.

Finally, we turn to deterministic ulET0L systems. De�ning symmetrically deterministic
systems as above, we can use nearly the same constructions as within Lindenmayer systems.

Nevertheless, the results obtained for uniformly limited systems di�er remarkably from our

previous results. Since the dual of say an accepting ulESDT0L system is again a ulESDT0L
system generating the same language, we now show that for any generating (accepting)
ulEDT0L system, there is an equivalent generating (accepting) ulESDT0L system in order

to prove the desired relation Lgen(kulEDT0L) = Lacc(kulEDT0L).

Lemma 6.7 For every k 2 N, we have

Lgen(kulEDT0L) = Lgen(kulESDT0L) and

Lgen(kulEDT0L,ex) = Lgen(kulESDT0L,ex) 2
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Instead of a proof, we only remark that | in comparison with Lemma 5.2 | in the

exact mode within kulET0L systems, one should introduce ai ! �k
i x in table SD(P )

instead of ai ! �ix in order to guarantee the termination of the simulation.

Lemma 6.8 For every k 2 N, we have Lacc(kulE[P]DT0L) = Lacc(kulE[P]SDT0L)

Proof. Since the inclusion `�' of the claim is trivial, the other direction `�' remains to

be shown. This proof is very similar to the one showing Lemma 5.2, but is also valid

in the propagating case. Let G = (V; V 0; fP1; : : : ; Prg; !) be an accepting deterministic

k-uniformly-limited ET0L system with V = fa1; : : : ; atg, V
0 = fas+1; : : : ; atg. For each

table P in G, de�ne

con
ict(P ) = fx! ai 2 P j (9y 6= x)(y! ai 2 P )g and

no-con
ict(P ) = P n con
ict(P )

Let L be the maximal number of con
icts in G, i.e. L(i; �) = #fx ! ai 2 P�g, and
L = maxfmaxfL(i; �) j 1 � i � tg j 1 � � � rg. Introduce an indexing scheme in the set of

con
icting productions, e.g., fx! ai 2 P�g = fxi;1 ! ai; : : : ; xi;L(i;�) ! aig. Let

F; b1;1; : : : ; b1;L; b2;1; : : : ; b2;L; : : : ; bt;1; : : : ; bt;L; F1;1; : : : ; F1;L; F2;1; : : : ; F2;L; : : : ; Ft;1; : : : ; Ft;L

be new symbols. Let V contain all these symbols, together with the symbols of V . De�ne

SD(P�) = no-con
ict(P�) [ fxi;j ! bi;j jxi;j ! ai 2 con
ict(P�); 1 � j � L(i; �)g

[ fF i+1 ! ai j ai 2 V g

[ fF t+1+i ! bi;L(i;�)+1; F
2t+1+i ! bi;L(i;�)+2; : : : ; F

(L�L(i;�))t+1+i ! bi;L j ai 2 V g

[ fbi;j ! Fi;j j 1 � i � t; 1 � j � Lg [ fF ! Fg; and

T = fbi;1 ! ai; bi;2 ! bi;1; : : : ; bi;L ! bi;L�1 j 1 � i � tg [ fF ! Fg

[ fFi;j ! Fi;j j 1 � i � t; 1 � j � Lg [ fF i+1 ! bi;L j 1 � i � tg:

Consider the symmetrically deterministic system

G = (V ; V 0; fSD(P1); : : : ; SD(Pr); Tg; !):

It is easily seen that Lacc(G) = Lacc(G). One application of say table P� in G is
simulated by one application of SD(P�) in G, followed by at most L applications of T . 2

In the preceding proof, observe that even if, in the derivation v ) w according to P�,
actually k subwords have been replaced, this is not the case any more for the applications of
T in the simulating grammar, since symbols ai | once introduced via T | do not change

by subsequent applications of T . Hence, the above argument is only valid in W�atjen's

mode.

By Corollary 6.2, we obtain:
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Theorem 6.9 For every k 2 N, we have Lacc(kulEDT0L,ex) = Lgen(kulEDT0L,ex) =

= Lgen(kulEDT0L) = Lacc(kulEDT0L) 2

Since Lemma 6.7 is only valid for the non-propagating case, we obtain:

Corollary 6.10 For every k 2 N, we have Lgen(kulEPDT0L) � Lacc(kulEPDT0L) 2

We do not know whether the inclusion in the last corollary is strict.

Analyzing the proof of Lemma 5.3, we see that an analogue holds for uniformly limited

systems. Note that in W�atjen's mode, we must add a failure symbol F 0 and, in DET (P ),

the following productions f�i ! F 0 j 1 � i � Ig [ fF 0 ! F 0g [ fx ! F 0 j (9y)(x !

y 2 con
ict(P ))g. Otherwise, there might be for example `shortcuts' in the simulating

derivation process.

Lemma 6.11 For every k 2 N, we have

Lacc(kulET0L) = Lacc(kulEDT0L) = Lacc(kulEDT0L,ex) 2

Corollary 6.12 For any kulET0L language L,
Detacc(L; kulET0L) = Detgen(L; kulET0L) = 1 2
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Chapter 7

Uniformly Limited ET0L Systems

With Unique Interpretation

7.1 Introduction

The content of this section is accepted for publication [10]. We repeat some de�nitions

already introduced in the preceding section for reasons of some subtle formal di�erences.
kulET0L systems have been introduced by W�atjen and Unruh [36] in order to further

the study of the in
uence of restricted forms of parallelism in the derivation process of
systems (grammars) de�ning formal languages. As in klET0L systems [32, 4], they found
interesting relations with programmed grammars which are another form of varying the

idea of context-free parallel generation (acceptance) of words.
Unfortunately, W�atjen and Unruh did only show that kulE(P)T0L systems are at

most as powerful as programmed grammars (without erasing productions) with appearance
checking, leaving the other possible inclusion open. In the previous section, we showed that
kulE(P)T0L systems are at most as powerful as programmed grammars (without erasing

productions) without appearance checking, hence proving that the inclusion shown by
W�atjen and Unruh is strict indeed (by [18, 9]). This leaves us with the natural question
whether kulE(P)T0L systems are at least as powerful as programmed grammars (without
erasing productions) without appearance checking. Up to now, we were not able to solve

this problem.

In this section, we introduce another class of limited parallel systems which look quite
similar to kulET0L systems in their de�nition. For this modi�cation, we show that the

above stated and other problems open for kulET0L systems can be settled. We hope
that this variation sheds some light on the still open problems for kulET0L systems and

supports the interrelation of restricted parallel and regulated rewriting.
For the convenience of the reader, below we repeat the de�nition of kulET0L systems

and unordered scattered context grammars without appearance checking.
G = (�;�;H; !; k) is a k-uniformly-limited ET0L system (abbreviated as kulET0L

system) if k 2 N and (�;�;H; !) is (formally) an ET0L system with alphabet �, terminal

45



alphabet � � �, �nite set of tables H (where a table is a �nite substitution on �), and

axiom ! 2 �+. In a derivation of a kulET0L system, at each step of the rewriting process,

exactly minfk; jwjg symbols of the word w considered have to be rewritten, where jwj is

the length of w. As in ET0L systems, a system is called propagating if no table contains

an erasing production a! �. We abbreviate such systems by kulEPT0L.

An interesting variant of the above de�nition was introduced by K. Salomaa in [30]

under the name of \k-context-free grammars" in the case of systems with just one table.

In our setting, this variant reads as follows: formally, an exact k-uniformly-limited ET0L

system G = (�;�;H;
; k) is de�ned as a kulET0L system (except 
 which is now a �nite

set of axioms !i 2 �+), but in each derivation step of an exact kulET0L system, exactly

k occurrences of left-hand sides of productions of some table selected before are replaced

by the corresponding right-hand sides within the string w to be rewritten.

As usual, we write w) v if there is a one-step-derivation in some sense1. The re
exive

transitive closure of) is written
�
). If G = (�;�;H; !; k) is a generating kulET0L system

(with an underlying generating ET0L system (�;�;H; !)), then Lgen(G) = fw 2 �� j!
�
)

wg, and the family of languages generated in such a way is denoted by Lgen(kulET0L).

Similarly, for exact systems, we write Lgen(G) = fw 2 �� j 9! 2 
(!
�
) w)g and

Lgen(kulET0L,ex). For exact systems, it is quite natural to consider them as language
acceptors as well, supposing that the underlying ET0L system is accepting, too. In this
case we de�ne Lacc(G) = fw 2 �� j 9! 2 
(w

�
) !)g and write Lacc(kulET0L,ex). If the

underlying ET0L system is propagating, we replace `ET0L' by `EPT0L' in our notation.
Syntactically, our modi�cation looks like the just de�ned systems: G = (�;�;H;
; k)

is a k-unique uniformly-limited ET0L system (abbreviated as ku2lET0L system) if G can
be interpreted as an exact kulET0L system.2 In each derivation step of G, exactly k

pairwise di�erent productions of a chosen table are applied to the string to be rewritten.
This means that exactly k occurrences of left-hand sides of pairwise di�erent productions

are replaced by the corresponding right-hand sides according to the selected productions.
The generated/accepted language of a given ku2lET0L system is de�ned as above, leading
us to the language classes Lgen(ku

2lET0L) and Lacc(ku
2lET0L) and their propagating

counterparts.
Observe that, due to our modi�ed de�nition, any table within a ku2lET0L system which

contains less than k productions is never applicable.

Instead of proving the equivalence of programmed grammars and ku2lET0L systems di-
rectly, we use unordered scattered context grammars instead, because they are also rewrit-
ing systems with restricted parallelism in a certain sense known to be equivalent to pro-

grammed grammars without appearance checking [5, Lemma 2.4.5 and Lemma 2.4.6] with

or without erasing productions.
An unordered scattered context grammar is a quadruple G = (�;�; P; S), where �

and � denote the total alphabet and the terminal alphabet, respectively, and S 2 � n�

1It will be clear from the context which mechansism we choose.
2It is obviously possible to introduce this modi�cation in the non-exact case, too, but this is not needed

here.
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is a start/goal symbol. P is a �nite set of �nite sequences of context-free productions,

P = fp1; : : : ; png, written as

pi : (vi;1; vi;2; : : : ; vi;ri)! (wi;1; wi;2; : : : ; wi;ri); 1 � i � n:

The application of such a rule pi to some x 2 �+ yields y 2 �� (written as x) y), if there

is a permutation � : f1; : : : ; rig ! f1; : : : ; rig such that

x = x1v�(1)x2v�(2) � � �xriv�(ri)xri+1; and

y = x1w�(1)x2w�(2) � � �xriw�(ri)xri+1:

Note that we have covered both the generating and the accepting case, since these notions

are inherited via the underlying context-free productions. Denoting the re
exive transitive

closure of ) by
�
), we de�ne in the generating (accepting) case Lgen(G) = fw 2 �� j

S
�
) wg (Lacc(G) = fw 2 �� jw

�
) Sg) and denote the language families by Lgen(uSC)

(Lacc(uSC)). Following [5], we attach �� to these denotations if we want to restrict
ourselves to nonerasing productions. A uSC-grammar G = (�;�; P; S) is in 2-normal
form if, for any pi 2 P , ri � 2, where ri denotes the length of the sequence of productions
pi as above.

Similarly, a scattered context grammar is a quadruple G = (�;�; P; S), where � and
� denote the total alphabet and the terminal alphabet, respectively, and S 2 � n � is
a start/goal symbol.3 P is a �nite set of �nite sequences of context-free productions,
P = fp1; : : : ; png, written as

pi : (vi;1; vi;2; : : : ; vi;ri)! (wi;1; wi;2; : : : ; wi;ri); 1 � i � n:

The application of such a rule pi to some x 2 �+ yields y 2 �� (written as x) y), if

x = x1v1x2v2 � � � xrivrixri+1; and

y = x1w1x2w2 � � �xriwrixri+1:

Note that we have covered both the generating and the accepting case, since these notions
are inherited via the underlying context-free productions. Denoting the re
exive transitive

closure of ) by
�
), we de�ne in the generating (accepting) case Lgen(G) = fw 2 �� j

S
�
) wg (Lacc(G) = fw 2 �� jw

�
) Sg) and denote the language families by Lgen(SC)

(Lacc(SC)). Again, we attach �� to these denotations if we want to restrict ourselves to

nonerasing productions.

7.2 Results

We �rst want to state a normal form result for unordered scattered context grammars

which immediately follows from the proof of Lemma 2.4.6 in [5]. In the following lem-
mas 7.1,7.2,7.3, we exploit the fact that the proofs of Lemma 2.4.5 and Lemma 2.4.6 in [5]

work for the accepting case as well.

3The general case of scattered context grammars is not considered in the paper [10].
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Lemma 7.1 There is a Turing machine which, given a uSC-grammar G0, constructs an

equivalent uSC-grammar G in 2-normal form. If G0 is non-erasing, G inherits this prop-

erty. 2

A further analysis of the proof of Lemma 2.4.6 shows that, in addition, one can restrict

one's attention to uSC-grammars G = (�;�; P; S) in 2-normal form with the following

separation property:

There is a partition �1[�2 = �, �1 \�2 = ; of the total alphabet � of G such that, if

pi : (v1; v2)! (w1; w2) is an arbitrary sequence of two context-free productions in P , then

v1; w1 2 ��
1 and v2; w2 2 ��

2.

With the help of this observation, we can show the following normal form result.

Lemma 7.2 There is a Turing machine which, given a uSC-grammar G, constructs an

equivalent uSC-grammar Ĝ = (�̂;�; P̂ ; Ŝ) such that

1. Ĝ in 2-normal form.

2. Ĝ has separation property.

3. None of the context-free productions in any of the sequences p 2 P has the form
A! A.

If G is non-erasing, Ĝ inherits this property.

Proof. Let G = (�;�; P; S) be given by the preceding lemma. If P does not contain a

sequence p containing a production A! A, we are done. Sequences of the form (A)! (A)
can simply be left out. Otherwise, we introduce a new symbol A0, replace the disturbing
A ! A by A ! A0, and introduce for every sequence q 2 P; q 6= p containing A a new
sequence q0, where each occurrence of A is replaced by A0. In this way, we obtain a grammar
G0 equivalent to G which satis�es (1) and (2) and in which the number of `irking symbols'

has been reduced by 1. Since � is �nite, repeating this algorithm, we �nally arrive at a
grammar Ĝ with the desired properties. 2

From the e�ective equivalences Lgen(P,CF) = Lacc(P,CF) and Lgen(P,CF � �) =

Lacc(P,CF� �), we immediately get:

Lemma 7.3 There is a Turing machine which, given an accepting (generating) uSC-

grammar G0, constructs an equivalent generating (accepting) uSC-grammar G. If G0 is

non-erasing, G inherits this property. 2

Note that the last lemma can also be proved directly, using independence arguments

developped in the case of so-called lrcc grammars [3] and L systems [11].
Now, we compare ku2lE(P)T0L systems with unordered scattered context grammars in

regard to their descriptional power.
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Lemma 7.4 There is a Turing machine which, given an accepting (generating) ku2lET0L

system G0, produces an equivalent accepting (generating) uSC-grammar G. If G0 is prop-

agating, then G is non-erasing.

Proof. Let G0 = f�0;�;H;
; kg be a ku2lET0L system. For any table h 2 H, there are

(h; k) :=

 
#h

k

!
possible selections of productions in h which can be applied in parallel

during one derivation step of G0. Choose (h; k) sequences ph;i, 1 � i � (h; k) of productions

of length k from h such that any of the (h; k) possible selections is uniquely identi�ed. We

write such a sequence as uSC-productions:

ph;i : (vh;i;1; vh;i;2; : : : ; vh;i;k)! (wh;i;1; wh;i;2; : : : ; wh;i;k)

denotes such a possible selection fvh;i;j ! wh;i;j j 1 � j � kg � h.

Let S be a new symbol. In the accepting (generating) case, we de�ne goal (start)

productions r! : (! ! S) (r! : (S ! !)). Now, the simulating uSC-grammar is de�ned as

G = (�0 [ fSg;�; fph;i jh 2 H; 1 � i � (h; k)g [ fr! j! 2 
g; S). 2

First of all, let us mention two consequences of [18, 9] and [5, 31] due to the e�ective
equivalence of uSC-grammars and matrix grammars without appearance checking [5]:

Lemma 7.5 There is a Turing machine which, given an accepting (generating) uSC-
grammar G and some word w, decides whether w 2 Lacc(G) (w 2 Lgen(G)). 2

Lemma 7.6 There is a Turing machine which, given an accepting (generating) uSC-
grammarG, decides whether there exists some word w with w 2 Lacc(G) (w 2 Lgen(G)).2

Lemma 7.7 There is a Turing machine TM which, given an accepting (generating) uSC-
grammar G0 and a natural number k � 2, produces an equivalent ku2lET0L system G. If

G0 is non-erasing, then G is propagating.

Proof. In order to avoid clumsy formulations, we restrict ourselves to the generating
case. W.l.o.g, we can assume that the language described by G0 = (�0;�; P; S) is not
empty. Furthermore, assume G0 to be in the normal form of Lemma 7.2. First, by the

decidability of the word problem for uSC-grammars, TM can collect all words (sentential

forms) over �0 of length � maxf2 � k; 2 � lg (where l denotes the length of the longest
right-hand-side of context-free productions contained in G0) described by G0 into a set 
.

Hence, 
 contains all possible `starting points' of simulations of the simulating ku2lET0L

system G = (�;�;H;
; k) which TM wants to construct. Let � = �0 [ fFg, where F is
a special failure symbol.

The set of production strings P can be split into P1 = f(A) ! (w) jA 2 � n�; w 2
��g \ P and P2 = P n P1. For every production string of the form (A) ! (w) 2 P1, we

introduce a table fA ! wg [ fa ! a j a 2 �g, yielding a set of tables H1. For every

production string of the form (A1; A2) ! (w1; w2) 2 P2 and every (k � 2)-element subset
�̂ of �0,4 we introduce a table fA1 ! w1; A2 ! w2g [ fA ! F jA 2 � n �̂g [ fa ! a j

4Here, we need k � 2.
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a 2 �̂g. Hence, from P2 we get a set of tables H2. Let H = H1 [H2. It is obvious how a

derivation step in G0 is simulated by G. Note that the normal form assumption is needed

in order to show that any `successful' derivation in G0 can be simulated by G. 2

We clarify our construction with the help of the following example. Consider the uSC-

grammar G0 = (�0; fa; b; cg; f(S) ! (AX); (A;X) ! (Aa; bXc); (A;X) ! (a; bc)g) with

�0 = fA;X;S; a; b; cg. Let � = fA;X;S; F; a; b; cg. Obviously, Lgen(G
0) = fanbncn j

n 2 Ng. Let k = 3. We have, using the abbreviations from the above proof, 
 =

fS;AX;AabXc; abc; aabbccg, H1 = ffS ! AXg [ fY ! Y jY 2 �gg, and H2 = ffA !

Aa;X ! bXc; Y ! Y g [ fZ ! F jZ 2 � n fY gg; fA! a;X ! bc; Y ! Y g [ fZ ! F j

Z 2 � n fY gg j Y 2 �0g. Now, we have G = (�; fa; b; cg;H1 [ H2;
; 3). A possible

derivation is AabXc ) AaabbXcc ) aaabbbccc; where in the �rst derivation step we

use one of the tables fA ! Aa;X ! bXc; Y ! Y g [ fZ ! F jZ 2 � n fY gg and

in the second one we use one of the tables fA ! a;X ! bc; Y ! Y g [ fZ ! F j

Z 2 � n fY gg (with Y 2 fa; b; cg in both cases). Note that because of the particular

structure of sentential forms derivable in G0, most of the tables in H1 [ H2 are never
applicable, and in addition, some of them are super
uous and harmless.

Combining our lemmas with other known results proved above or contained in [5], we
obtain:

Theorem 7.8 For each k � 2:
Lgen(2u

2lET0L) = Lacc(2u
2lET0L) = Lgen(ku

2lET0L) = Lacc(ku
2lET0L) =

Lgen(uSC) = Lacc(uSC) = Lgen(P,CF) = Lacc(P,CF).
All these language families properly include the family of context-free languages (which in

turn equals Lgen(1u
2lET0L) = Lacc(1u

2lET0L)), evenmore, they includeLgen(kulET0L).
The class of recursive languages properly contains all these language families.
There is a Turing machine which, given an arbitrary generating (accepting) k0u2lET0L

system G with k0 � 1, decides whether Lgen(G) (Lacc(G)) is empty or not.
Moreover, each ku2lETOL-language can be described by a 2u2lET0L-system with a

special failure symbol F satisfying the following normal form for each table h

� #fu! v 2 h j u 6= v ^ (u 6= F _ v 6= F )g � 2

� u! v 2 h implies juj; jvj � 2

� If u1 ! v1 and u2 ! v2 are two distinct productions in h such that ui 6= vi (i = 1; 2)

and F 62 fu1; v1; u2; v2g, then neither u1 = u2 nor v1 = v2. 2

The second requirement of the normal form can be readily established, the other two
follow directly from the uSC-normal forms used in our above constructions. Note that this

normal form resembles the ones encountered in regulated rewriting (cf. [5, p. 49]) and
limited ET0L systems [19].

Theorem 7.9 For each k � 2:

Lgen(2u
2lEPT0L) = Lacc(2u

2lEPT0L) = Lgen(ku
2lEPT0L) = Lacc(ku

2lEPT0L) =

Lgen(uSC� �) = Lacc(uSC � �) = Lgen(P,CF� �) = Lacc(P,CF� �).
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All these language families properly include the family of �-free context-free languages

(which in turn equals Lgen(1u
2lEPT0L) = Lacc(1u

2lEPT0L)), even more, they include

Lgen(kulEPT0L).

The class of �-free context-sensitive languages properly and e�ectively contains all these

language families.

Moreover, each ku2lEPTOL-language can be described by a 2u2lEPT0L-system satis-

fying the normal form described in the preceding theorem. 2

Observe that we could prove Lemma 7.3 also directly using our metatheorem. We show

this technique in the following for scattered context grammars in general. For any produc-

tion (vi1; : : : ; viri)! (wi1; : : : ; wiri) of a scattered context grammar, we introduce a table ti
in the simulating cc grammar consisting of the productions (vij ! wij; (V

�
Gf#g)

riV �
G�fjg)

for each 1 � j � ri.

Theorem 7.10 � Lgen(SC) = Lacc(SC) = L(RE)

� Lgen(SC� �) = Lacc(SC� �)

Proof. We still have to show Lgen(SC) = L(RE).5 By [16, Corollary on page 245], the
enumerable languages can be characterized as homomorphic images of Lgen(SC��). This

result yields the claim almost immediately. 2

7.3 Conclusions

From previous works [2, 11, 32], we know that

Lgen(kulET0L) = Lgen(kulET0L,ex) = Lacc(kulET0L,ex);

hence we can say that this language family is somewhat robust as far as small changes
within its de�ning mechanism are concerned.

This is probably not true for the modi�cation of ku2lET0L systems discussed in this

note. Via the established connections of our mechanism with well-known families from
the theory of regulated rewriting, one might get a better insight in the subtle di�culties

encountered within uniformly limited systems.

Below, we list some properties of ku2E(P)T0L languages inherited from the work on pro-
grammed grammars whose state is presently unknown for kulE(P)T0L languages. Hence,

this list might help to settle the conjectured strictness of the inclusionLgen(kulE(P)T0L) �
Lgen(ku

2lE(P)T0L).

� The language class Lgen(ku
2lE(P)T0L) is closed under the following operations:

{ concatenation

5Note that this also supplements [5, page 147].
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{ intersection with regular languages

{ substitution by context-free languages

{ (�-free) gsm and inverse gsm mappings

{ permutations

{ quasiintersection

� The language class Lgen(ku
2lE(P)T0L) is not closed under the following operations:

{ intersection

{ complementation

In [30], Salomaa only considered systems with one table in the exact mode. In that case,

`T' is omitted in our abbreviations. (The fact that Salomaa's (k-)context-free grammars

start from only one string does not matter, since it is possible to `blow' this string up
with a symbol � immediately deriving to � such that we can replace an exact kulE0L
system (�;�; fhg;
; k) by an equivalent k-context-free grammar (�[fS;�g;�; h[f� !

�g[fS ! ! j! 2 
g; S�k�1). Moreover, W�atjen and Unruh showed in [36] the equivalence
of k-context-free grammars and kulE0L systems.) Salomaa showed that one obtains an
in�nite strict hierarchy

Lgen(1ulE0L) ( Lgen(2ulE0L) ( Lgen(3ulE0L) ( : : :

The corresponding relations are unclear in the case of an arbitrary number of tables or
when restricting to propagating systems. On the contrary, the same situation is clear for
k-uniquely uniformly limited systems, where the hierarchy nearly collapses:

Lgen(1u
2lE(P)T0L) ( Lgen(2u

2lE(P)T0L) = Lgen(3u
2lE(P)T0L) = : : :

Finally, observe that the systems introduced in the present paper may be also seen as

a variation of so-called 1lET0L systems [32] (see below). In a 1lET0L system, a derivation
step according to some chosen table h is de�ned as follows:

� Replace one occurrence of each symbol according to h, if this is possible!6

We may see a derivation step according to the table h of a 2u2lET0L system as follows:

� Replace one occurrence of each symbol according to h, such that exactly 2 characters
are replaced in total!7

6i.e. if the string to be rewritten contains at least one occurrence of the symbol under question; if it

does not contain that particular symbol, this does not a�ect the rewriting of the other symbols
7Again, by inspecting the proof of Lemma2.4.6 in [5], one sees that the system constructed in Lemma7.7

has the property desired by these new restrictions also in the case of tables of type H1.
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So, this note may also help to get a better understanding of the relationship between

limited and uniformly limited rewriting. This would probably add to the comprehension

of programmed grammars, too. Whilst it is clear from [31] that in the non-erasing case

the class Lgen(P,CF � �;ut) of languages generable by so-called programmed grammars

with unconditional transfer does not coincide with the class Lgen(P,CF � �) (which in

turn equals Lgen(uSC� �)), it is still unknown whether there holds an inclusion relation,

and if there is such a relation, which direction is true. Even more, literally nothing seems

to be known in the corresponding case with erasing productions.8 Now, Lgen(P,CF �

�;ut) � Lgen(1lEPT0L), and Lgen(P,CF;ut) = Lgen(1lET0L) [4], whilst on the other

hand Lgen(P,CF� �) � Lgen(kulEPT0L) and Lgen(P,CF) � Lgen(kulET0L).

8New results are contained in [8].
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Chapter 8

Limited L Systems

In [32], another similar type of parallel derivation was examined, so-called limited L sys-

tems. In such systems, say klE0L systems with a �xed k, in each derivation step, k

occurrences of each symbol have to be rewritten, if possible. In this paper, we examine
corresponding accepting systems. But what should this mean for klE0L systems? \Re-
place k occurrences of non-overlapping subwords for each left-hand side of a production"
would lead to the same problems as discussed above within the uniformly limited systems
if there are not k subwords of the required form. Furthermore, there are di�erent ideas

how to handle situations like in the string abba to be derived and productions abb! a and
ba! b, where there is some kind of mutual exclusion of the application of those produc-
tions. Similar problems are encountered within variants of limited L systems as considered
in [6, 14].

Since it is the easiest case, we restrict ourselves to 1lET0L systems in the following as

�rst introduced by Frings in [12]. At �rst, we give precise de�nitions of such systems [32].
A 1-limited ET0L system (abbreviated as 1lET0L system) is a quintuple G = (V; V 0,

fP1; : : : ; Prg, !, 1) such that (V; V 0; fP1; : : : ; Prg; !) is an ET0L system (either generating
or accepting). The notion of propagating and that of deterministic systems is inherited
from L systems. According to G, x) y (for x; y 2 V �) i� there is a table Pi and partitions

x = x0�1x1 � � ��nxn, y = x0�1x1 � � � �nxn such that �� ! �� 2 Pi for each 1 � � � n,

�� 6= �� for � 6= �, and each left-hand side z of a production of Pi is either equal to some
�� or not contained in Sub(x0) [ Sub(x1) [ � � � [ Sub(xn).

The language generated by a generating 1lET0L system G is Lgen(G) = fw 2 V 0� j

!
�
) wg. The language accepted by an accepting 1lET0L system G is Lacc(G) = fw 2 V 0�

jw
�
) !g.

Theorem 8.1 Lacc(1lEPT0L) = Lgen(CS)

Proof. We transfer the proof of Theorem 3.5, taking into account the modi�cations

indicated in the proof of Theorem 3.15. The simulation of an accepting 1lEPT0L system
by a linear bounded automaton should be clear and is therefore omitted.

It is easily seen that Lacc(1lEPT0L) is closed with respect to �nite union and con-

tains all �nite languages. Therefore, for the proof of Lacc(1lEPT0L) � Lgen(CS), it is

54



su�cient to show that fagMfbg 2 Lacc(1lEPT0L) for M 2 Lgen(CS), � 62 M . Let

G = (VN ; VT ; P; S) be a context-sensitive grammar without �-productions in Kuroda nor-

mal form generating M . Let us assume a unique label r being attached to any rule of the

form XU ! Y Z (the set of lables is denoted by Lab). We construct a 1lEPT0L system

G0 = (V; V 0; finita; initb; termg [ fsimul-cfX!x jX ! x 2 Pg [ fsimul-csr;i j r 2 Lab; 1 �

i � 6g; S0; 1) accepting fagMfbg as follows. Let

V = VN [ fA;B; S
0; Fl; Frg [ f(A; r); [A; r]; [B; r]; (Y; r); [Z; r] jr : XU ! Y Z 2 Pg [ V 0

(the unions being disjoint), where V 0 = VT [ fa; bg.

For brevity, we leave out productions of the form Fl ! x which have to be added for

right-hand sides x not present in the table speci�cations listed above in order to ful�ll the

completeness restriction for tables inherited from L systems.

1. start/termination/context-free rules:

(a) inita = fa! Ag [ fx! Fr jx 2 V n V 0g

(b) initb = fb! Bg [ fx! Fr jx 2 V n (V 0 [ fAg)g

(c) simul-cfX!x = fx! Xg [ f(A; r)! Fr; [A; r]! Fr j r 2 Labg for context-free
rules X ! x 2 P ;

(d) term = fASB ! S0g [ fx! Fr jx 2 V g

2. For each context-sensitive rule r : XU ! Y Z 2 P , we introduce the next tables:

(a) simul-csr;1 = fA! [A; r]; B! [B; r]g [ f[A; s]! Fr; (A; s)! Fr; [B; s]! Fr j
s 2 Labg;

(b) simul-csr;2 = fY ! [Y; r]g [ fA! Fr; B ! Fr; (A; s)! Fr; [A; s
0]! Fr; [B; s

0]
! Fr; [T; s]! Fr; (T; s)! Fr j s 2 Lab; s0 2 Lab n frg; T 2 VNg;

(c) simul-csr;3 = fZ ! (Z; r)g [ fA! Fr; B ! Fr; (A; s)! Fr; [A; s
0]! Fr; [B; s

0]
! Fr; [T; s

0]! Fr; (T; s)! Fr j s 2 Lab; s0 2 Lab n frg; T 2 VNg;

(d) simul-csr;4 = f[A; r] ! (A; r)g [ fA ! Fr; B ! Fr; (A; s) ! Fr, [A; s
0] ! Fr,

[B; s0] ! Fr, [T; s
0] ! Fr, (T; s

0) ! Fr, [Y; r]y ! Fr j s 2 Lab, s0 2 Lab n frg,

T 2 VN , z 2 V n f[Y; r]g, y 2 V n f(Z; r)gg;

(e) simul-csr;5 = f[B; r] ! Bg [ fA ! Fr; B ! Fr; (A; s
0) ! Fr, [A; s] ! Fr,

[B; r] ! Fr, [T; s
0] ! Fr; (T; s

0) ! Fr, z(Z; r) ! Fr j s 2 Lab; s0 2 Lab n frg;
T 2 VN ; z 2 V n f[Y; r]g; y 2 V n f(Z; r)gg;

(f) simul-csr;6 = f(A; r)! Ag [ f(Z; r)! Ug [ f[Y; r]! Xg [ fA! Fr, [A; s]!
Fr, [B; s]! Fr, (A; s

0)! Fr, [T; s
0]! Fr; (T; s

0)! Fr j s 2 Lab, s0 2 Labnfrg,
T 2 VNg. 2
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Alternatively, we could have given a proof parallelling [4]. Note that in this case, some

technical subtleties must be circumvented.

A third proof alternative is, using our meta-observation, to notice that the proof given

in [7, Lemma 3.10] showing that Lgen(O,CF��) � Lgen(1lEPT0L) is valid in the erasing

and accepting cases, too, which allows us to apply Theorem 3.5 and Corollary 3.7 directly.

Hence, we can derive the following.

Corollary 8.2 Lacc(1lET0L) = Lgen(RE) 2

Our theorem largely solves the relation between generating and accepting mode in

1lET0L systems.

Corollary 8.3 (i) Lgen(1lEPT0L) � Lacc(1lEPT0L)

(ii) Lgen(1lET0L) � Lacc(1lET0L)

Proof. Dassow showed in [4] the inclusion Lgen(1lEPT0L) � Lgen(P,CF��,ut). In [31],

the strictness of the inclusion Lgen(P,CF��,ut) � Lgen(CS) is proved. Hence, by our
above Theorem 8.1, we know the �rst inclusion to be strict. 2

We remark on point (ii) that, in spite of the solvability of the emptiness problem for

1lET0L systems,1 it may be that the inclusion (ii) is not strict, but the method turn-
ing a, say type-0-grammar, into a generating 1lET0L system is not e�ective. Similarly,
Lgen(1lET0L) may be closed under intersection with regular languages, but not e�ectively
closed.2 These questions are thoroughly discussed in [9].

Observe that the simulation of generating 1lET0L systems via accepting ones is quite

indirect in the preceding corollary: Firstly, we sequentialize 1lET0L systems using, e.g.,
type-0-grammars, secondly, we use parallelism and accepting mode in order to mimic the
context checks possible in phrase structure grammars. It is instructive to try a direct proof
of the corresponding inclusions. The main problems are the following three: (1) if you
employ the dual Gd of a generating 1lET0L system G in order to simulate G's derivations,

1By [4], we can e�ectively turn a 1lET0L system into a programmed grammar with unconditional

transfer. For generating (P,CF��,ut)-grammars, the emptiness problem is decidable by [31]. This implies,

by the construction given in Lemma 3.9, the solvability of the emptiness problem for generating 1lET0L

systems and generating (P,CF,ut)-grammars.
2This e�ectivity should have been added into the formulation of [18, Theorem 3], since otherwise we

would have the following interesting `proof' for the strictness of the inclusion in question: Assume to the

contrary Lgen(1lET0L) = Lacc(1lET0L). Then, Lgen(1lET0L) is closed under intersection with regular

languages, since Lacc(1lET0L) = Lacc(RE) is so. Applying [18, Theorem 3(b)], we can �nd a language in

Lacc(1lET0L)nLgen(1lET0L), contradicting our assumption. Hence, Lgen(1lET0L) � Lacc(1lET0L), but

we cannot show up with a concrete example as in [18]. But note that the construction given above proves

the following rather strange situation for generating 1lET0L systems: Either the inclusion in question is

strict, i.e. 1lET0L systems are not computationally universal, or, in case Lgen(1lET0L) = Lacc(1lET0L),

the family of 1lET0L systems is not e�ectively closed under intersection with regular languages, i.e. either

the family of languages Lgen(1lET0L) is not closed under intersection with regular languages or there

is no algorithm that, given a 1lET0L system G and say a �nite automaton A, delivers another 1lET0L

system G0 such that L(G0) = L(G) \ L(A).
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because there might be applicable productions a! a; b! a in G, not any derivation of G

may be simulated by Gd; (2) there are also problems with derivations possible in Gd but

not in G (consider the `dual' example of two productions a! a, a! b in G); (3) instead

of employing additional productions, Gd might also `forget' productions to be simulated,

e.g., with the set of productions fa ! aa; b! abg in G and the axiom ab, the word aab

would be accepted by Gd even in two di�erent ways. (1) and (2) can be circumvented

enhancing the alphabet. Di�culty (3) might be overcome using regulation of k-limited

systems as introduced in [34] for the generating case. Of course, one might use additional

tables in order to check whether a simulation step has been correct or not (like in the proof

of the last theorem). It is instructive that case (3) also prevents the application of the idea

of symmetrically deterministic systems, although a corresponding normal form does exist

both in the generating and in the accepting mode. The problem is again that the simple

idea of duality does not apply in the case of limited Lindenmayer systems.

Nevertheless, it is easily seen by a direct argument that

Lacc(1lEDT0L) = Lacc(1lET0L);

hence showing again that the syntactical concept of determinism does not decrease the
descriptive power of accepting parallel systems with extension mechanism.

We were not able to do the necessary simulations without the help of additional
tables; hence, we do not know whether Lgen(1lE0L) � Lacc(1lE0L) is true or not.

Nonetheless, using arguments similar to [33], one can convince oneself that the inclusion
Lacc(1lE(P)0L) � Lacc(1lE(P)T0L) is strict.

Note that it is possible to reason about the degree of synchronization in accepting
1lET0L systems using the same ideas as in [35], therefore, the degree of synchronization of
an arbitrary accepting 1lET0L language equals two.

In the case of generating systems, the exact relation between the generative power of
klE[P]T0L and kulE[P]T0L systems is still open [36]. In the case of accepting systems, we
readily infer the next theorem.

Theorem 8.4
S
k2N Lacc(kulE[P]T0L) � Lacc(1lE[P]T0L). 2

In [8], we recently showed that Lgen(ulET0L) and Lgen(1lET0L) cannot coincide, since

Lgen(1lE[P]T0L) contains non-recursive languages. Moreover, for L = Lgen(ulET0L), the
following predicate is true.

� For each homomorphism h and language L 2 L, L � ��, there is a Turing machine

Th;L such that Th;L computes the function

fh;L : �� ! f0; 1g; w 7! 1 i� w 2 h(L)

On the other hand, we showed in [8] that there is a homomorphism h and a language

L 2 Lgen(1lEPT0L) such that the above predicate is false, i.e. the corresponding fh;L

57



is uncomputable. Hence, Lgen(ulEPT0L) and Lgen(1lEPT0L) cannot coincide, and, fur-

thermore, there is a language L 2 Lgen(1lEPT0L) n Lgen(ulEPT0L).

Further note that our results on accepting limited Lindenmayer systems underline the

relationship of this parallel language class with the regulated language class of programmed

grammars with unconditional transfer, a relationship already observed by Dassow [4, 6] in

the generating case. We summarize these relations in the following corollary. In the

generating case, the strictness of one inclusion is still open.

Corollary 8.5 (i)
S
k2N Lgen(klEPT0L) � Lgen(P,CF��,ut)

(ii)
S
k2N Lgen(klET0L) = Lgen(1lET0L) = Lgen(P,CF,ut)

(iii) Lacc(1lEPT0L) = Lacc(P,CF��,ut)

(iv) Lacc(1lET0L) = Lacc(P,CF,ut) 2
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Chapter 9

Summary

In this section, we want to summarize the results obtained in this report and in other

papers. In some sense, the following diagrams supplement the diagram on page 146 in

[5]. In the diagrams, solid lines indicate strict inclusion, where the larger language class
is near the arrow-tip, dashed lines indicate an inclusion relation where the strictness is
unknown, and dotted lines mean that the inclusion relation which is indicated by the
arrow tip cannot hold. Incomparability of language classes is indicated by a dotted line
without arrows between them. In order to shorten the diagrams, we simply write L if

the language accepting capacity equals the language generating capacity of the grammar
families. As usual, we de�ne

Lacc/gen([u]lE[P]T0L) =
[
k�1

Lacc/gen(k[u]lE[P]T0L):

We try to refer to proofs of any claim which is not proved in [5, 27] or is one of the
many results comparing generating and accepting devices in this paper.

This section can also be understood as an invitation to the reader to help to clarify the
yet unsolved and open relationships between the listed families of languages.

9.1 The Non-Erasing Case

Reference of claims:

� Lgen(ulEPT0L) � Lgen(P,CF� �) see Theorem 6.3

� In [17], it is shown that fa2
n

jn 2 Ng 62 Lgen(P,CF). Hence, there are EP0L lan-

guages which are not in Lgen(P,CF). This naturally applies also to superfamilies of

Lgen(EPT0L) and to subfamilies of Lgen(P,CF). Especially, this partially answers
a question raised in [36] concerning the relationship of uniformly limited L systems

and L systems.

� The same example shows the strictness of the inclusion between Lgen(P,CF��) and

Lgen(P,CF� �; ac). Confer also to [18].
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� Currently, we do not trust the proof given in [31] showing the strictness of the inclu-

sion Lgen(P,CF� �;ut) � Lgen(P,CF� �; ac).

� In [8, Theorem 5.2], we showed Lgen(O,CF� �) ( Lgen(1lEPT0L).

� The strictness of the inclusion Lgen(CF��) � Lgen(ulEP0L) can be seen by Exam-

ple 2.1 in [36], where also the incomparability results concerning EP0L are proved.

� In [32, Theorem 4.4] together with [33], it is especially shown that Lgen(lEP0L)

does not contain Lgen(EP0L). Similarly, [33] shows the strictness of the inclusion

Lgen(lEP0L) � Lgen(lEPT0L).

� The inclusion Lgen(lEPT0L) � Lgen(P,CF� �;ut) is proved in [4, 6].

� The strictness of the inclusion L(uSC��) � L(SC��) is seen as follows: any recur-

sively enumerable language is the homomorphic image of some L(SC � �)-language

(see the proof of Theorem 7.10), but homomorphic images of L(uSC � �)-languages
are always recursive by [18].

L(CS)

L(SC� �)

33ffffffffffffff

Lgen(P,CF� �; ac)

OO

L(P,CF� �) = L(uSC� �)

OO 33gggggggggggggggggggggg
Lgen(P,CF� �; ut)

OO�
�

�

L(u2lEPT0L) Lgen(lEPT0L)

OO�
�

�

L(ulEPT0L)

OO�
�

�

Lgen(O,CF� �) = L(fRC,CF� �)

OO

L(ulEPT0L,ex) L(EPT0L)

OO

L(ulEP0L,ex) //

OO�
�

�

L(EP0L)

OO

``

// Lgen(lEP0L)

aaC
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

L(CF)

kkXXXXXXXXXXXXXXXXXXXXXXXXXX

OO 44hhhhhhhhhhhhhhhhhhhh

Furthermore, we know that
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L(CS) = Lacc(P,CF� �; ac) = Lacc(P,CF� �;ut) = Lacc(1lEPT0L) = Lacc(O,CF� �):

Finally, the problem remains where to place the chain

L(CF) // L(RC,CF� �) //___ L(P,CF� �)

within the sketched diagram.

9.2 The Erasing Case

With the references given in the preceding subsection, most of the connections given in the

following diagram should be clear.

We add only two references:

� The strictness of the inclusion Lgen(lE0L) � Lgen(lET0L) was shown in [33].

� We showed in 3.10 that ordered grammars have a solvable membership problem.
Furthermore, Lgen(O,CF) is closed under homomorphism. If each context-sensitive
language were generable by an ordered grammar, then also any homomorphic image
of a context-sensitive language were generable by an ordered grammar, which would
�nally imply the recursiveness of any enumerable language.

We know that the following language classes characterize L(RE) = L(P,CF; ac):

� Lacc(O,CF)

� Lacc(P,CF;ut) = Lgen(P,CF,ac) = Lacc(P,CF,ac)

� Lacc(1lET0L)

� L(SC)

� L(u2lET0L)

Moreover,
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L(RE)

L(REC)

OO

Lgen(lET0L) = Lgen(P,CF; ut)oo

jjU
U
U
U
U
U
U
U
U

L(P,CF) = L(uSC)

66mmmmmmmmmmmmm
L(CS) //

OO

Lgen(O,CF) = L(fRC,CF)

jjTTTTTTTTTTTTTTTTT

OO

��

L(ulET0L,ex)

OO�
�

�

L(ET0L)

OO 44iiiiiiiiiiiiiiii

L(ulE0L,ex) //

OO�
�

�

L(E0L)

OO

aa

// Lgen(lE0L)

OO

L(CF)

hhQQQQQQQQQQQQQ

OO 44iiiiiiiiiiiiiiiiii

Let us point the reader to the following interesting observation [8, Theorem 5.5]:

Lgen(CS) � Lgen(1lET0L) i� Lgen(1lET0L) = Lgen(P;CF;ut) = Lgen(RE).
Finally, the problem remains where to place the chain

L(CF) // L(RC,CF) //___ L(P,CF)

within the sketched diagram.
Note that we did not list the classical equivalences of various types of regulated rewriting

which also transfer to the accepting case, as shown in the paper. As one representative,
we refer to programmed grammars in this section.
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Chapter 10

Conclusions

In our introductory section, we listed three cases of possible relations between the language

families generated and the language families accepted by some device X. Indeed, we found

representatives for all these cases. We list these cases in detail in the case of parallel
rewriting below.

� In the case of Lindenmayer and uniformly limited systems with extension mechanism,
we found a trivial equivalence between accepting and generating mode.

� In the case of uniformly limited systems in W�atjen's mode (together with the exten-
sion mechanism), this equivalence was proved using a more involved technique.

� In the case of 1-limited systems with extension mechanism, the accepting mode is
strictly more powerful than the generating one.

In the case of Lgen(X) � Lacc(X), we mostly found this by proving that Lacc(X) =
Lgen(CS), whereas the class Lgen(X) is known to be a proper subset of Lgen(CS). Besides
verifying the relationship between the families Lacc(X) and Lgen(X), these results give an
interesting, somewhat practical characterization of the class of context-sensitive languages:
the family Lgen(CS) consists exactly of all languages which can be parsed (accepted) by

a nonerasing context-free matrix grammar with appearance checking, or by a nonerasing

context-free programmed grammar with unconditional transfer, or by an ordered grammar
with �-free context-free rules, etc. In this connection, it might also be interesting to
investigate programmed, matrix, : : : grammars with, e.g., linear or right-linear �-free rules

as accepting devices, examining in more detail the reason why context-free productions

give such a descriptive power when considered in accepting mode.
We did not �nd examples for the following two cases:

� Is there a grammar family such that the generating mode is strictly more powerful

than the accepting mode?

� Is there a grammar family such that the language families corresponding to generating

and accepting mode are incomparable?
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As regards the �rst case, we found a possible candidate, namely deterministic k-

uniformly-limited EPT0L systems in W�atjen's mode, but we could not prove the strictness

of the corresponding inclusion. For the second case, we will �nd examples when considering

pure grammars. We present these results in another paper.
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