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This paper explores cache models for a simultaneous multithreaded processor with multimedia
enhancements. We start with a wide-issue superscalar processor, enhance it by the simultaneous
multithreading (SMT) technique, by multimedia units, and by an additional on-chip RAM stor-
age. Our workload is a multithreaded MPEG-2 video decompression algorithm that extensively
uses multimedia units. Various cache models and cache line replacement strategies are simulated
to increase performance of the simulated SMT processor models.
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1 Introduction

Today’s superscalar processors are able to issue up to six instructions per cycle from a single se-
guential instruction stream [1]. VLSI technology will soon allow future microprocessors to issue
eight or more instructions per cycle. However, ILP found in a conventional instruction stream is
limited. Recent studies [2, 3, 4] show the limits of processor utilization even of today's supersca-
lar microprocessors reporting IPC values between 0.14 and 1.9. One solution to increase per-
formance is an additional utilization of more coarse-grained parallelism either by integrating two
or more complete processors on a single chip or by using a multithreaded approach. A multi-
threaded processor is able to pursue multiple threads of control in parallel within the processor
pipeline. The functional units are multiplexed between the thread contexts. Most approaches store
the thread contexts in different register sets on the processor chip. Latencies are masked by
switching to another thread. A simultaneous multithreaded (SMT) processor, in particular, issues
instructions from several threads simultaneously. It combines a wide-issue superscalar processor
with multithreading. SMT approaches (see e.g. [5-9]) are simulated and evaluated with Spec95
and with database OLTP benchmarks. Most of the simulations show that an 8-threaded SMT
reaches a two to threefold IPC increase over single-threaded superscalar processors due to SMT's
latency tolerance. In consequence, recent announcements by industry concern a 4-threaded SMT
Alpha processor of DEC/Compaq [10] and the MAJC-5200 processor of Sun which features two
4-threaded processors on a single die [11].

Our goal is to evaluate simultaneous multithreading with a multimedia workload. We reported
on optimizations for a maximum processor model with an abundance of resources in [12] and on
a more realistic processor model in [13]. Other approaches [14obKedat the application of
the SMT technique for signal processors, however without applying multimedia instructions. Still
compilers do not handle multimedia instructions efficiently. Handcoding is the state-of-the-art of
commercially successful video processing algorithms. Such a handcoding was done by our group
when transferring a commercial MPEG-2 video decompression algorithm to our SMT multimedia
processor model and programming the algorithm in multithreaded fashion. In the following we
present a study of cache optimizations for the SMT processor models with a multithreaded
MPEG-2 decompression algorithm as workload.
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2 The Multithreaded MPEG-2 Video Decompression Algorithm

The MPEG-2 video decompression is partitioned into the following six steps: header decode,
Huffman decode, inverse quantization, IDCT (inverse discrete cosine transform), motion com-
pensation, and display. The steps 1 and 2 have to be executed sequentially. The steps 3 to 6 can
be executed in parallel for all blocks (and macroblocks) of a single image. Our studies show that
the sequential part covers approximately 15.5 % of the executed instructions (depending on the
bit rate and size of the encoded material). This results in a theoretical speedup of at most 6.5
compared to the sequential algorithm. The MPEG-2 decompression is made multithreaded by
splitting the task into a single parser thread, eight threads for macro block decoding, and an addi-
tional display thread. The parser thread executes the first two steps of the decompression and
activates up to eight macro block decoding threads that perform steps three to five. The display
thread transfers the decompressed images for display into the frame buffer (step 6). The average
usage of the instructions assuming a local RAM storage for table look-up (see later) is given in
the following table:

Instruction type Average use (%)
Integer/Multimedia shift and add 54.0
Complex-Integer/Multimedia multiply 3.8
Local load/store 20.1
Global load/store 7.7
Branch 9.9

I/O 2.24
Thread control 1.76

The maximum performance of the decompression is bound by the sequential parser thread. In
case of a single local load/store unit, the 20.1% local load/store instructions further restrict the
maximum performance to an IPC of approximately five.

3 The Multimedia-enhanced SMT Processor Model

In our approach to combine simultaneous multithreading and multimedia processing we start with
a wide-issue superscalar general-purpose processor model based on the 6-stage pipeline of the
PowerPC 604, enhance it by simultaneous multithreading, further enhance it by combined
integer/multimedia units and by on-chip RAM memory.

The SMT multimedia processor model (see Fig.1) features single or multiple fetch (IF) and
decode (ID) units (one per thread), a single rename/issue (RI) unit, multiple, decoupled reserva-
tion stations, 10 execution units (four integer/multimedia units, a complex integer/multimedia
unit, a branch unit, a thread unit, a global and two local load/store units), a single retirement (RT)
and write back (WB) unit, rename registers, a branch target address cache (BTAC), separate |-
and D-caches that are shared by all active threads. The four integer/multimedia units share a sin-
gle reservation station which is able to dispatch four instructions per cycle, all other reservation
stations are separate per execution unit. We employ thread-specific instruction buffers (between
IF and ID), issue buffers (between ID and RI), and reorder buffers (in front of RT). Each thread
executes in a separate architectural register set. However, there is no fixed allocation between
threads and (execution) units. The pipeline performs an in-order instruction fetch, decode, re-
name/issue to reservation stations, out-of-order dispatch from the reservation stations to the exe-
cution units, out-of-order execution, and an in-order retirement and write-back.
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Fig. 1: The SMT Multimedia Processor Model

The renamel/issue stage simultaneously selects instructions from all issue buffers up to its
maximum issue bandwidth (SMT feature). The integer units are enhanced by MMX-style multi-
media processing capabilities (multimedia unit feature). We employ a thread control unit for
thread start, stop, synchronization, and for I/O operations. We also employ a 32 KB local on-chip
RAM memory (enough for constants and variables of the simulation workload) accessed by two
local load/store unit. We use the DLX instruction set enhanced by thread control and by multime-
dia instructions. We chose to fix the following parameters for all simulations: 32 32-bit general-
purpose registers (per thread), 4 MB main memory (enough to store the whole simulation work-
load), 64-bit system bus, 256 entry reservation stations, 32 entry issue and reorder buffers, D- and
I-caches with 32 byte cache lines. In the following we studied the performance impact of
different D-cache sizes, D-cache fill burst rates (6:2:2:2 and 32:4:4:4), D-cache preload, D-cache
associativity, and D-cache line replacement strategies. We varied the number of threads from 1 to
8 and the issue bandwidth from 1 to 8 in each simulation figure.

The simulator is an execution-based simulator that models all internal structures of the micro-
processor model. Two different videos are used as data stream workload for the MPEG-2 algo-
rithm. One to two seconds of video are decompressed by the simulator per simulator run. The
produced picture frames can be visually and digitally analyzed to evaluate the correct working of
the workload routine and the simulator.

4 Performance Results
4.1 Maximum Processor Models

Software simulation of various configurations of the SMT multimedia processor have been per-
formed to yield a maximum processor model (see [14] for more details). The simulation results of
the maximum processor models are shown in Fig. 2. In contrast to the simulations in [14] which
are based on static branch prediction, all current simulations apply a McFarling’s gshare branch
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predictor [16] (with 2 K 2-bit counters and an 8 bit history) which in general yields slightly better
results for all models. The misprediction penalty is 5 cycles. In this study we varied the memory
hierarchy. In Fig. 2 we present results with a cache fill burst rate of 6:2:2:2 processor cycles. We
see that multithreading is very effective if the issue bandwidth is at least four. In particular the
two and four-threaded models lead to a high performance increase in the multiple-issue models.
There is little improvement for the single-threaded (the contemporary superscalar case) and the
two-threaded models when issue bandwidth is increased from 4 to 8.

Parameter Value
Threads 1,2,4,6,8

7 Issue bandwidth 1,2,4,6,8

6 |- and D-caches 4 MB each

5 On-chip RAM 32KB

: IPC Local load-/store units 2

2 Issue and reorder buffer§ 32 entries each

8 1 Instruction fetch units 1-8, up to 8 instrs. each
0.05 - 0 Load-/store reservation | 256 entries each
Threads _ stations
5 D-cache fill burst rate 6:2:2:2
1 Issue

Fig. 2: Maximum processor models

4.2  Reduced D-Cache

The processor models in Fig. 2 use a 4 MB D-cache (and a 4 MB I-cache) able to host the full
workload. The first approach is to reduce the |- and D-cache sizes to realistic values. Because of
the small code size of only 24 KB, a reduction of the I-cache size down to 32 or 64 KB yields
only an insignificant performance decrease. The reduction of the D-cache size strongly affects
overall performance as can be seen in Fig. 3 for the 8-issue models.

Parameter Value
Threads 1,2,4,6,8
Issue bandwidth 8
I-cache 4 MB
D-cache 4-64 KB

3 IPC On-chip RAM 32 KB
Local load-/store units 2

8 AT Issue and reorder buffer§ 32 entries each
Threads -- Instruction fetch units 1-8, up to 8 instrs. each
Load-/store reservation | 256 entries each
4 8 stations
D-Cache in KB D-cache fill burst rate 6:2:2:2

Fig. 3 Reduced D-cache sizes for the 8-issue models
Increasing the data cache size yields better performance. Performance of the 4- and the 8-
threaded models exhibit only a small performance increase similar as in Fig. 1.

4.3  Longer Memory Latencies
The pressure on the memory system is increased by simulating longer memory latencies. Instead

of a burst rate of 6:2:2:2 processor cycles applied in the simulations in Fig 3, we now apply a
burst rate of 32:4:4:4 which is also more realistic for contemporary and near future processors.



Parameter Value

Threads 1,2,4,6,8
4 Issue bandwidth 8
3 I-cache 4 MB
D-cache 4-64 KB
2 IPC On-chip RAM 32 KB
1 Local load-/store units 2

Issue and reorder buffer§ 32 entries each

Threads Instruction fetch units 1-8, up to 8 instrs. each

Load-/store reservation | 256 entries each
stations
D-cache fill burst rate 32:4:4:4

D-Cache in KB

Fig. 4 Reduced D-cache sizes and longer memory latencies

The results in Fig. 4 show a significant performance decrease if compared to Fig. 3. The cache hit
ratio of 76% for the 64 KB D-cache for all 8-issue models is relatively low. On the other hand the
inspection of the integer/multimedia reservation station shows a high utilization with 69% to 70%
for the 8- to 4-threaded models when assuming a 64 KB D-cache (with even higher utilization for
smaller D-cache sizes). With 4 integer/multimedia units available, this means that integer/multi-
media instructions are blocked within the reservation station because of missing data operands
that are not yet loaded from memory.

4.4  Reduced D-cache and Speculative Data Preload

Next we applied the technique of speculative data preload. The motivation behind the preload ap-
proach is the regular cache access pattern the can be seen in the cache footprint in Fig. 5 (time
scale of memory accesses in horizontal scale, accessed memory addresses in vertical scale). The
technique is further motivated by the stream buffer technique [17] which is designed for a stride-
based prefetch utilizing long two-dimensional data streams which are commonly used in
scientific computing algorithms. Unfortunately, stream buffers cannot be applied in our case. The
high initialization overhead of stream buffers is prohibitive for MPEG-2 streams, which are
numerous and limited to 16 by 16 bytes only.
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Fig. 5 D-cache footprint
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In our approach, the stride and direction of accessed addresses are stored with each D-cache line
and an automatic preload of the next cache line is performed. In our implementation each cache
line is enhanced by an index storing the last accessed address within the cache line and a
speculation state that supports the states “undirected access”, “likely forward”, “forward”, “likely
backward”, and “backward”. Figure 6 shows nearly no performance change, despite the fact that
an increase of the cache hit percentage can be observed for the speculative preloadTinizdels

is due to the frequent mispredicted preloads, that cause the already busy system data bus to be
even more overutilized. This is another indication that speculation can hurt a multithreaded
processors performance [13]. Therefore the simulations shown in Figs. 7 to 9 are performed
without the preload strategy.

Parameter Value
Threads 1,2,4,6,8
4 Issue bandwidth 8
3 I-cache 4 MB
D-cache 4-64 KB
2 IPC On-chip RAM 32 KB
1 Local load-/store units 2

Issue and reorder buffer§ 32 entries each

Instruction fetch units 1-8, up to 8 instrs. each

Threads
Load-/store reservation | 256 entries each
4 8 ) stations
D-Cache in KB D-cache fill burst rate 32:4:4:4
Cache strategy preload

Fig. 6 Reduced D-cache sizes and speculative preload

4.5  D-cache Associativity

We analyzed the impact of cache associativity next. Up to now we applied 4-way set associative
caches. Fig. 7 shows the 2-way set associative D-cache and Fig. 8 the 8-way set associative case.

Parameter Value
Threads 1,2,4,6,8
Issue bandwidth 8

I-cache 4 MB
D-cache 4-64 KB
On-chip RAM 32 KB
Local load-/store units 2

Issue and reorder buffer§ 32 entries each

Instruction fetch units 1-8, up to 8 instrs. each
Threads P

Load-/store  reservation256 entries each
stations
D-cache fill burst rate 32:4:4:4

Datacache in KB

Fig. 7 2-way set associative D-cache



Parameter Value

Threads 1,2,4,6,8
Issue bandwidth 8

I-cache 4 MB
D-cache 4-64 KB
On-chip RAM 32 KB
Local load-/store units 2

Issue and reorder buffer§ 32 entries each

Instruction fetch units 1-8, up to 8 instrs. each

Threads i i
Load-/store  reservation256 entries each

stations
D-cache fill burst rate 32:4:4:4

Datacache in KB

Fig. 8 8-way set associative D-cache

Comparing Figs. 7 and 8, we see a small performance decrease despite the increase of
associativity for the 64 KB D-cache sizes and only a small decrease for D-cache sizes with less
than 32 KB. Here we assume that the LRU strategy used as replacement strategy for cache lines
is not optimal.

4.7

D-cache Line Replacement Strategies

The next investigation concerned the cache line replacement strategy within the D-cache. We de-
signed and simulated several alternative cache line replacement strategies with the aim to prevent
replacement of the parser tables from the D-cache (see Fig. 9):

Strategies 0, 1, and 2: The conventional round-robin, pseudo-random, and LRU strategies.
Strategy 3: An instruction address based strategy that allows all threads to access the whole
D-cache, but restricts access to cache locations for specific instructions. The lower order bits
of the instruction address are used for data cache line selection. The idea is to prevent single
instructions from covering large data cache areas which may lead to increased thrashing.
Strategy 4: A thread-ID based strategy aimed to avoid thrashing when different threads access
cache-lines that mapped to the same cache location. The lower order bits of the thread ID are
used for D-cache line selection.

Strategy 5 combines strategies 3 and 4.

Priority: Strategy 6 preferably replaces cache lines of threads with low priority. A cache line
of a high priority thread is replaced only if no cache line of a lower priority thread is present

in the cache set. We selected the parser thread as high priority thread to avoid dislocation of
the parser tables by data of other threads.

Priority and Random: Strategy 7 implements a less restrictive priority-based strategy. Cache
lines of low priority threads are replaced with a probability twice as high as for the high pri-
ority thread. A random strategy is used to select cache lines with the same priority for re-
placement.

Priority and LRU: Strategy 8 combines Strategy 7 with an extended LRU instead of a random
strategy. Cache lines of lower priority threads age twice as fast as cache lines of higher
priority threads. Cache lines with the same LRU counter value are selected based on the
priority.



Parameter Value

Threads 1-8
Issue bandwidth 8
I-cache 4 MB
D-cache 64 KB
On-chip RAM 32 KB
Local load-/store units 2

Issue and reorder buffer§ 32 entries each

Instruction fetch units 1-8, up to 8 instrs. each
Load-/store reservation | 256 entries each
Associativity stations
1 D-cache fill burst rate 32:4:4:4
0 D-cache miss queue 8 entries
Strategy associativity 1-16

Fig. 9: IPC of various cache line replacement strategies

Simulations of these strategies (Fig. 9) assuming different associativities for the D-cache show
that the importance of the strategy selection rises with the associativity. In particular strategies 4
and 6 show a significant performance degradation, whereas the LRU-based strategies 2 and 8
profit from a higher associativity. The potential disadvantage of the thread priority based strate-
gies 6, 7 and 8 is that the D-cache fills with cache lines of the high priority thread thus limiting
cache space for the other threads. The basic thread priority based strategy 6 suffers most. How-
ever, strategy 8 which combines a thread priority based strategy with LRU performs best. A look
at the cache hit rate shows that the overall hit rate of the best strategy—strategy 8 (Priority and
LRU)—is smaller than the hit rate of strategy 2 (LRU). The higher IPC rating of strategy 8 results
from the high hit rate of the priority thread—the parser thread—yielding a more balanced parallel
execution. A 4-way set-associative D-cache reaches a near optimal result, a further increase of the
associativity yields only a small performance increase for the good strategies. Simulations with
the lower D-cache fill burst rate of 6-2-2-2 show similar patterns for all strategies, however with
less difference in the IPC values of different associativities within each strategy.

5 Conclusions

We simulated various SMT multimedia processor models using a hand-coded multithreaded
MPEG-2 video decompression algorithm as workload. Our architectural optimizations targeted
D-cache models. Results show a high IPC increase of the SMT models over single-threaded mod-
els caused by the latency hiding capability of SMT, but also the sensitiveness of SMT processor
performance with respect to memory bandwidth. The simulations with our benchmark program
showed that an 8-threaded 8-issue processor model with a 64 KB D-cache size reaches an IPC of
5.46 in case of a 6:2:2:2 D-cache fill burst rate and a IPC of 3.41 in case of 32:4:4:4. The latter
IPC value is improved to 3.64 by a combined LRU and priority-based cache line replacement
strategy. The cache line replacement strategy becomes more important when memory bandwidth
is more restricted. The combined LRU and priority-based replacement strategy that gives highest
priority to the parser thread shows the best performance. Our processor models are specifically
tailored to the characteristics of our multithreaded MPEG-2 algorithm. Other workloads might
favor different configuration, in particular, if the workload consists of unrelated threads of control
that do not share any data.
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