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Martingale Restrictions and

Implied Distributions for

German Stock Index Option Prices

Marco Neumann Christian Schlag1

Abstract

The paper investigates the pricing of stock index options on the Deutscher Ak-

tienindex (DAX) traded on the Deutsche Terminb�orse (DTB) as well as the

distributions of terminal index values implied by the market prices of these

options. As one main result we �nd that the martingale restriction is violated,

meaning that the index level implied by option prices is signi�cantly greater

than the observed index price. The pricing di�erences can partly be explained
by variables like the number of options available for the estimation, their aver-
age relative moneyness and their average relative bid-ask spread. Put options
are consistently underpriced by the Black and Scholes model whereas calls are
overpriced when both the volatility and the index price are estimated from op-

tion price data. Variables like moneyness and squared moneyness can explain
part of the variation in pricing errors. Finally, implied distributions are sys-
tematically di�erent from the lognormal or binomial distributions of the Black
and Scholes [2] or Cox, Ross, and Rubinstein [4] model. For puts we observe
an extra premium for Arrow-Debreu securities paying o� in states with a very

low index value.

1 Introduction

The idea to infer parameters of the underlying stock price distribution from market prices

of options was �rst introduced by Latan�e and Rendleman [8]. As an estimate for the

volatility of the stock they used the value �̂ which set the market price of the option equal

to its theoretical value given by the Black and Scholes [2] formula. Several empirical studies,

e.g. by Chiras and Manaster [3], showed that this implied volatility is not constant across
all the options for a given underlying stock. As a consequence weighting schemes were

developed to aggregate the di�erent estimates into one number which then represented the
volatility estimate for the stock. For example, Chiras and Manaster [3] suggested to use as

a weight the elasticity of the option price with respect to its volatility, whereas Beckers [1]
found that the best estimate was the implied volatlity of the option which was closest at the

money. Other possibilities are to give equal weights to the individual implied volatilities

or to use as weights the partial derivatives of the option prices with respect to volatility.

1 Institut f�ur Entscheidungstheorie und Unternehmensforschung, University of Karlsruhe, D-76128
Karlsruhe, Germany.
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A di�erent approach to this weighting problem was devoloped by Whaley [16] who used a

non-linear regression to obtain a common volatility estimate for all the options on a given

underlying.

While all these methods just infer one parameter (the volatility) from the market prices

of options Manaster and Rendleman [11] used pairs of prices to estimate volatilities and

implied underlying prices simultaneously. Taking a pair of prices both of which do not

violate basic no-arbitrage conditions there is always a solution for the implied parameters

which will set the observed prices equal to the theoretical values. When there are more than

two options there will in general be no perfect �t of theoretical to observed prices, so that

again a non-linear regression procedure can be used to estimate the implied underlying

value and volatility at the same time.

In a recent study Longsta� [9] used this approach to obtain estimates of the implied

S&P 100 value from options traded on this index. He then compared these implied values

to the observed index value to check what he calls the martingale restriction. If all the

options were priced according to the same no-arbitrage model implied and observed index

levels would have to be equal. In the absence of arbitrage any discrepancies between the
two index prices must be due to market frictions like transaction costs or short selling
restrictions. Longsta�'s main result is that the implied value for the S&P 100 index is

almost always larger than the observed index price so that the martingale restriction in
its pure theoretical form is violated. By means of a regression analysis Longsta� shows
that the di�erences are related to frictions in the options market (like the bid-ask spread)
as well as option characteristics like moneyness (percentage di�erence between underlying
price and strike price) and time to maturity. Furthermore, di�erences between theoretical
and observed option prices are at least partly explained by market frictions like the bid-ask

spread.

Finally, Rubinstein [12] proposed a technique that goes one step further and avoids an
inherent weakness of Longsta�'s approach, since a researcher cannot be sure that the
model used by market participants for valuing options is the one that he uses to infer im-
plied parameters and to test the martingale restricition. Instead of only estimating certain

moments of the underlying distribution from market data Rubinstein infers the complete

distribution for the underlying price from the prices of traded options.2 To do so he �rst
speci�es an a priori distribution (in his case the binomial discretization of a lognormal
distribution), and then an optimization is performed to obtain an implied distribution

which is as close as possible to the lognormal in the sense of squared distances between

state probabilities. The resulting distribution is constrained to exhibit positive probabilit-
ies for all terminal states and to yield theoretical option prices which fall between the bid

and the ask quote of the options used in the estimation.3 The basic idea behind Rubin-
stein's approach is the well-known fact that in a complete and frictionless market without

arbitrage opportunities there exists a unique probability measure Q called the forward

2 Strictly speaking also Longsta� [9] infers the complete distribution from market prices by choosing
a class of distributions that is completely speci�ed by just the mean (the forward price of the implied
index level) and the standard deviation (the implied volatility). The important di�erence between the two
approaches is that Rubinstein does not prespecify the type of implied distribution.

3 The resulting terminal stock price distribution can also be used as an input to compute an implied
binomial tree which could then be used to compute theoretical prices for American options. See also
Rubinstein [13] for a simpli�ed exposition of this approach.
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risk-adjusted measure which can be used to price all assets in the economy according to

the formula Pt = dt;T Ê
Q
t [PT ]. Here Pt (PT ) denotes the price of an asset at time t (T ), dt;T

is the discount factor from t to T , and Ê
Q
t denotes expectation under Q conditional on all

available information at time t.4 Given a su�cient number of option price observations the

pricing equation can be inverted to obtain an estimate of the market's assessment of state

probabilities. In subsequent papers, e.g. by Jackwerth and Rubinstein [6], this approach

was re�ned with respect to estimation techniques.

The purpose of this paper is to provide an empirical analysis of distributions implied by

the prices of German stock index options as well as to test the validity of the martingale

restriction for the pricing of these derivative contracts. European options on the most

important German stock index, the DAX (Deutscher Aktienindex), are actively traded

on the DTB (Deutsche Terminb�orse) since August 19, 1991. The DAX is an index of

thirty German blue chip stocks that is adjusted for dividends and capital changes of

the component stocks, so that an option on the DAX can be valued easily as one on

an underlying that does not pay dividends. Together with the fact that the options are

European there are basically ideal conditions to apply simple valuation models, e.g. the
Black and Scholes model or the binomial option pricing model developed by Cox, Ross,

and Rubinstein [4].

Up to this point there are only a few empirical studies on the pricing of stock index op-
tions traded on the DTB. The paper thus �lls a gap in empirical capital market research in
Germany, since the DAX options traded on the DTB are one of the most liquid derivative
contracts traded in Germany. Currently the typical daily volume for DAX options is well
above 100,000 contracts, making it the most liquid contract on the DTB as a whole. The

paper further integrates the approaches by Longsta� [9] and Rubinstein [12] by simultan-
eously testing the martingale restriction and calculating implied distributions based on the
same samples. The results are therefore very useful to determine the sources of violations
of the martingale restriction.

The main results of the analysis are as follows. The implied DAX value is almost always

larger than the observed index price which is the same phenomenon as the one observed

by Longsta� [9] for the U.S. market. A possible interpretation is that market participants
consider the implied price the true price they would have to pay for the DAX to be able

to duplicate a position in options, so that the di�erence to the observed index level could

be due to transaction costs.

The direction of the DAX pricing di�erences as well as their regularity is the same for
puts and calls with signi�cantly larger di�erences for puts. Regression analyses show that

for calls the average time to maturity of the options used in the estimation as well as

4 Longsta� [9] calls Q the risk-neutral measure instead of forward risk-adjusted measure. Under interest
rate certainty the two measures are identical. However, in the literature on valuation of interest rate
derivatives Q is usually termed the forward risk-adjusted measure (see, e.g., Jamshidian [7]), since under
Q the forward prices of all assets are martingales. Note that Q is horizon-speci�c, i.e. it dependes on T .
The risk-neutral measure ~Q has the property that under ~Q the futures prices of all assets are martingales.
The general pricing equation also shows the reason why Longsta� [9] calls his empirical analysis a test of
the martingale restriction. If we consider the underlying asset S of an option as an option with a zero strike
price then the general pricing equation also has to hold for S, i.e. St = dt;T Ê

Q [ST ] or, alternatively, after

dividing through by dt;T , Std
�1
t;T = Ê

Q
t [ST ]. This, however, is equivalent to writing Std

�1
t;T = Ê

Q
t

h
STd

�1
T;T

i
,

since dT;T = 1. The last equation shows that Std
�1
t;T is a martingale under Q.
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their average moneyness is an important determinant for the amount of the pricing error.

When index pricing errors from put estimations are analyzed we �nd that the DAX pricing

error decreases with the number of options used in the estimation process as well as with

the average relative spread of the options whereas it increases with time to maturity and

average moneyness.

Comparing volatilities implied from option prices when the observed index price is used

in the estimation to the case when also the DAX level is inferred from market prices for

options we again �nd systematic di�erences. For calls we obtain larger volatilities when the

observed index price is used in the estimation whereas just the opposite result is obtained

for puts.

Theoretical call prices are smaller than market prices when the observed index price is

used in the course of volatility estimation. The di�erences change sign when also the index

is implicitly estimated, whereas theoretical put prices are smaller than market prices in

both cases. Call pricing errors (theoretical minus observed prices) are negatively related

to time to maturity, relative spread, and moneyness, they increase with increasing option

prices. For puts the most important determinants of pricing errors are again the moneyness
of an option (with a negative impact) and its relative spread and time to maturity.

For implied distributions calculated according to Rubinstein's [12] method we �nd some
interesting di�erences between puts and calls. For calls the market assigns a larger prob-

abilitiy mass to states around the forward price of the index whereas in the market for
puts state prices are higher than in the lognormal case for states with either very high or
very low index prices. The average di�erences between implied and a priori distributions
are not driven by outliers, their behavior across the di�erent option series is remarkably
stable.

The rest of the paper is organized as follows. The next section will describe the data that
were used in the course of the study as well as some methodological items. In Section 3
the empirical results of the analysis are presented, and Section 4 contains a summary and
some concluding remarks.

2 Data and Methodology

The basic sample for this study consists of all best bid and best ask quotes for DAX

options traded on the DTB for the �rst six months of 1994. The quotes are time-stamped

to fractions of a second, and they were considered good until changed. This yields a time-
series of simultaneous best bid and best ask prices. The DTB is a fully computerized
exchange, and there are no trades inside the spread, so that all transactions occur at either

the bid or the ask. Therefore, we use the midpoint between bid and ask as an estimate of

the true value of the option. Besides the option data we also use DAX prices from KISS
(Kurs-Informations-Service-System) which are time-stamped to the nearest minute.

To be in the �nal sample for this study an option had to have a remaining time to maturity
of at least �ve days. After deleting all option observations with a shorter maturity we

selected the minute (or the minutes) with the highest aggregate quotation activity (in

terms of the number of bid and ask quotes) for puts and calls to make sure that the data
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we use did not su�er from insu�cient liquidity or stale quotes. In case there were several

minutes on a given day with equal market activity we kept all of them in the sample to

retain as many observations as possible.5 Since the DAX option is a very liquid contract

there may be several bid and ask quotes for a given option, i.e. a put or a call with a

certain strike price and a certain maturity date. Only the �rst of these observations was

kept in the sample. The option observations were then matched with the DAX prices for the

corresponding minute. The descriptive statistics for our �nal sample are given in Table 1.

There is a total of 7,263 observations for calls in 485 series6 and 6,955 observations for

puts in 499 series, yielding an average of 14.97 options per series for calls and 13.94 for

puts. There were always at least six individual options available for all the estimations

with a maximum of 30 for calls and 29 for puts. Time to maturity ranged from seven days

to about nine months for both option types. As expected the average moneyness of the

options de�ned as the di�erence of the observed index level and the strike price divided

by the strike price is close to zero for both puts (0.0176) and calls (0.0197). An interesting

result are the numbers for the relative spreads of the options de�ned as the di�erence

between ask and bid divided by the midpoint. With 7.7% and 10.8%, respectively, mean

spreads as a measure of transaction costs in the options market are relatively high for
both calls and puts, and relative spreads are sign�cantly larger for puts. The test for the

null hypothesis of equal mean spreads yields a highly signi�cant t-value. A similar result
in terms of average spreads was also obtained by L�udecke [10] for options on individual
stocks traded on the DTB.

To estimate implied parameters from an option pricing model a discount factor for the
maturity of the given option series is needed. Since there are no actively traded default risk-
free discount bonds in Germany the discount factor was estimated implicitly as suggested

by Shimko [14] together with an implied index value from the pair of the two closest
at-the-money puts and calls using the standard put-call parity relationship. With (Ci; Pi)
(i = 1; 2) denoting the two pairs of option prices with common maturity � and strike
prices Xi (i = 1; 2) the implied discount factor d̂� and the implied index level dDAX are
the solution to the following system of two equations:

C1 � P1 = dDAX �X1d̂�

C2 � P2 = dDAX �X2d̂� :

The solution is given by

d̂� =
(C1 � P1)� (C2 � P2)

X2 �X1

dDAX =
(C1 � P1)X2 � (C2 � P2)X1

X2 �X1

:

This implied discount factor d̂� is used for all further computations. The calculation of the

implied discount factor is the only case in this study when put and call prices are used

5 This means that there may be more than one estimation on a given day.
6 An option series is a collection of options of one type (calls or puts) with identical maturity dates

and di�erent strike prices. We do not use all the options observed in a given minute as one sample for
the estimation of implied volatilities and implied index levels, since a deterministically varying volatility
for di�erent maturity dates does not contradict the assumptions of the Black and Scholes [2] model.
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simultaneously. All the following estimations are performed separately for puts and calls

to be able to detect systematic di�erences between the two option types.

Individual implied volatilities are estimated in the standard fashion, i.e. given all the other

inputs the volatility is changed until the theoretical price of the option, given by the Black

and Scholes formula, is equal to its market price.

To obtain a single implied volatility number for a given option series we used the procedure

suggested by Whaley [16], i.e. a non-linear regression was run of observed option prices

on the theoretical values given by the Black and Scholes formula [2]. More formally, given

a set of N observed option prices in one series we search for an estimate �̂I minimizing

the expression
NX
i=1

h
Pi � P̂I;i(�̂I)

i2

with Pi and P̂I;i(�̂I) as the observed and theoretical price for option i (i = 1; : : : ; N). We

will refer to this method as the Longsta� I method.

To test the martingale restriction we use the Longsta� II (�rst suggested by Manaster
and Rendleman [11]) method to estimate both the implied volatility and the implied DAX
price, again via a non-linear regression minimizing the sum of squared distances between

observed and theoretical option prices. The volatility and price estimates are denoted
by �̂II and P̂II , and dDAX II represents an estimate of the implied index level. Formally,
(�̂II ; dDAX II) is the two-dimensional vector which minimizes the sum of squares

NX
i=1

h
Pi � P̂II;i(�̂II ; dDAX II)

i
2

:

over all possible pairs of implied volatilities and index levels. The formal test of the mar-
tingale restriction will then be performed by comparing the observed and implied index
prices DAX and dDAX II as well as the two volatility estimates �̂I and �̂II .

To compute implied distributions the implied volatility of the option closest at the money
was used to construct a binomial tree with �fty ending nodes, irrespective of the time to

maturity of the options.7 The tree was set up in the standard fashion according to Cox,

Ross, and Rubinstein [4], i.e. in each step the risk-neutral probability q for an up move
was given by

q =
er�t � e��̂

p
�t

e�̂
p
�t � e��̂

p
�t

with r as the estimated risk-free rate p.a. of interest derived from the implied discount
factor d̂ for the corresponding maturity, �t as the length of a time step, and �̂ as the

estimate of implied volatility.With n steps the a priori probability for state i (i = 1; : : : ; 50)

is denoted by qi and given by

qi =

 
n

i� 1

!
(1 � q)i�1qn�i�1;

7 Alternatively, trees with 100 ending nodes were tried, but the main di�erence between the two
approaches was the larger number of nodes with a zero implied probability when 100 nodes were used.
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i.e. the nodes are numbered such that node 1 represents the highest terminal index price,

followed by node 2, and so on. The associated terminal index values DAXi were later used

to compute option payo�s in the di�erent states.

Implied state probabilities q̂i were then estimated by minimizing the sum of squared de-

viations between implied and a priori probabilities:

50X
i=1

(qi � q̂i)
2
: (1)

The constraints under which (1) was minimized were the same as those used by Rubin-

stein [12]:

1. All implied state probabilities had to be non-negative, i.e. q̂i � 0 (i = 1; : : : ; 50).8

2. All the resulting theoretical option prices, i.e. the discounted expected payo�s, had

to fall between the observed bid and ask prices of the options. Formally this means

P a
i � P̂i � P b

i with P a
i (P b

i ) as the observed ask (bid) price and P̂i as the theoretical

price of the option. The theoretical price in turn is given by the standard binomial
option pricing formula (Cox, Ross, and Rubinstein [4]). The terminal payo� in state
i is given as maxfDAXi �X; 0g for a call and maxfX �DAXi; 0g for a put.

3. The theoretical current index level when computed as the discounted expectation of

terminal index values9 had to fall within a band with a width of 1 percent of the
observed index level, i.e. we assumed an 0.5% half spread for the index.

3 Empirical results

3.1 Testing the martingale restriction: implied index prices, im-

plied volatilities, and theoretical option prices

Tables 2 and 3 show summary statistics for the estimation results for the call and put

samples. The variables of interest are observed and implied index values as well as implied
volatilities for di�erent estimation methods and option pricing errors for the two Longsta�

methods described in section 2.

The martingale restriction for option pricing does not hold if implied and observed under-
lying price are signi�cantly di�erent and if these di�erences are not due to market frictions
like transaction costs or short selling restrictions. Looking at the �rst panel in Table 2 we

�nd that the implied index value from the Longsta� II method dDAX II is on average larger

than the observed index price denoted by DAX. The mean di�erence is around twelve
index points which corresponds to just 0.57 percent given an average index level of more

8 Earlier computations using a simpler approach without the non-negativity constraint showed that
negative probabilities occurred rather frequently. In a frictionless market this would already indicate an
arbitrage opportunity, since the forward risk-adjusted measure does not exist in this case. A qualitatively
similar result with some negative state probabilities was obtained by Rubinstein [12].

9 This just means that the index is also priced according to the binomial model. It can be interpreted
as an option with a strike price of zero.
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than 2,100 points. Even the maximummispricing is only around 2.5 percent of the average

index value for negative mispricing and 3.5 percent for positive mispricing. However, the

di�erence between implied and observed index level is statistically sign�cant, a t-test for

the null hypothesis of a zero mean di�erence yields a test statistic of 24.7, which is far

beyond conventional critical values. Furthermore, for 479 out of a total of 485 option series

(98.76 percent) the implied index level is greater than the observed DAX price (see also

Figure 2). This shows that the average mispricing is not caused by outliers in the data. The

systematic pattern seems to support the hypothesis that market participants implicitly add

transaction costs to the observed index value since this number would represent the true

cost of setting up a duplicating portfolio for a DAX call option.10 Of course, in frictionless

markets the two index prices would have to be equal in the absence of arbitrage.

Table 3 shows similar tendencies for estimations done with put options. Here the implied

index price is also on average higher than the observed DAX price. With an average of

30 index points the di�erences are larger than for call options, and the di�erence in DAX

pricing quality between calls and puts is also statistically signi�cant. A t-test for equal

mean DAX pricing errors for puts and calls yielded a statistic with an absolute value of

24.6 which is highly signi�cant. Again the signs of the di�erences are not random. 489
out of 499 observations (98 percent) exhibit a positive sign. This also becomes clear from

Figure 3. As for calls the data points are heavily concentrated below the 45 degree line,
i.e. in the area where the implied index level is greater than the observed price. For puts
we also observe that the horizontal distance of the data points gets larger for larger index
values, i.e. for larger observed DAX prices we also observe larger pricing errors.

Taken together these results suggests that similar to the �ndings by Longsta� [9] the
martingale restriction seems to be violated. Table 6 shows the results of multiple regressions

with (relative) DAX pricing errors as dependent variables. Explanatory variables are the
number of options in a given series that were used for the estimation procedure (N), the
average relative spread of the options in the series (SPREAD), the time to maturity (T )
of the options (identical for all options of a given series and measured in years), and the
average relative moneyness of the options (MONEY ) in the given series.

The results are di�erent for calls and puts. Whereas for calls pricing errors and relative

pricing errors tend to become larger with an increasing number of observations, we ob-
serve the opposite tendency for puts. The coe�cient of N for pricing errors is, however,
insigni�cant for calls, so we can not conclude that there is indeed a relationship between

these two variables. Since the vast number of pricing errors is positive this means that the

quality of implied DAX pricing improves for puts with an increasing number of options
that are available for the estimation.

For the average spread we obtain coe�cients that are similar for calls and puts. Again, the
estimates in the regressions for calls are not statistically signi�cant, and the impact is also

numerically larger for puts. The general result is that for a series with a larger average
relative spread we obtain a smaller pricing error.

The variable MONEY has a postive sign for puts and a negative sign for calls, and it is

statistically signi�cant in all four regressions. For an interpretation of this result we have to

10 Since the DAX contains thirty stocks a natural assumption is that a recorded DAX price contains a
roughly equal number of most recent transactions at the bid and at the ask so that the price rather reects
a midpoint and not the bid or the ask.
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keep in mind that the variable MONEY is de�ned identically for puts and calls. Whereas

a call is far in the money for a large positive value of MONEY the opposite is true for a

put. Thus the implied DAX price is in general closer to the observed index level if we use

options that are 'far in the money' (calls with a large positive value for MONEY , puts

with a large negative value for this variable) to estimate the implied index price. Option

pricing theory provides a reasoning which may help to explain the better index pricing

quality of in the money options. Since DAX options are European the value of an option

that is far in the money approaches a boundary which is independent of the pricing model

and allows for a static replication of the option. This static duplication is possible with

much lower transaction costs than those accumulated in a dynamic strategy.11 Finally, the

average time to maturity also has a signi�cant impact on the amount of the pricing error.

For both types of options we �nd that with an increasing time to maturity of the options

we also obtain larger DAX pricing errors.

Figure 1 shows a typical smile pattern for DAX options. We �nd a negative slope of the

implied volatility curve with respect to the strike price of the options. This pattern is pretty

stable for calls across the option series in our sample, for puts there are also cases when

the curve is upward sloping. The general tendency is, however, that individual implied
volatilities within a given series are not constant across strike prices which they should

be for the Black and Scholes model to be valid. The second panel in Table 2 and Table 3
contains the average of the mean individual implied volatility per series denoted by ��.
This makes it possible to compare the single value estimated by the Longsta� methods to
an estimate giving equal weight to each of the options in a given series.12

Comparing �rst the two implied volatilities from the Longsta� I and II methods we again
�nd a systematic di�erence between the two estimates. Figures 4 and 5 show plots of �̂I
versus �̂II for calls and puts. Whereas for puts �̂II is consistently greater than �̂I (489
out of 499 cases) the di�erences have the opposite sign for calls (479 out of 485 cases).
This may seem surprising at a �rst glance, but the result is perfectly consistent with the
�ndings for the implied estimation of the index level. For both calls and puts we observe
that the implied index level is systematically larger than the observed DAX price. For the

squared di�erence between theoretical and market prices to be as small as possible this

means that in the Longsta� II procedure the implied volatility �̂II has to be lower for calls,
since this reduces the theoretical price which increases due to a higher implied index level.
For puts the argument works exactly in the opposite direction: the theoretical option value

decreases with an increasing implied index price so that there is a tendency for �̂II to

increase to compensate the decrease in the put price. The results for implied index levels
and implied volatilities are therefore not independent of each other, they are a more or

less direct consequence of the estimation procedure.

Table 7 shows the results of some regressions with the di�erences between �̂II and �̂I as

the dependent variable. The set of regressors was the same as for the analysis of DAX
pricing errors above. For calls the average relative moneyness as well as time to maturity

are signi�cant sources of variation in (absolute) volatility di�erences. With an increasing
average moneyness the di�erence �̂II� �̂I tends to become numerically larger which means

11 In the case of a call option with maturity � this boundary is given by DAX � Xd� , and for a put
the limiting value is Xd� �DAX.

12 In a recent paper Dumas, Fleming and Whaley [5] estimate a linear function relating the implied
volatility of S&P 500 index options to the strike price and time to maturity of these options.
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that due to the systematic sign it will be closer to zero. The oppostie e�ect is observed

for time to maturity. The negative coe�cient in the call regression means that the two

volatility estimates will be further apart for longer term options.

For the implied volatilities from put estimations we obtain a more systematic result. The

coe�cients for all the four variables are signi�cant in both regressions. The di�erence

�̂II � �̂I increases with time to maturity and average relative moneyness and decreases

with an increasing number of options available for estimation and a larger average relative

spread. Note that the interpretation of the coe�cients here is opposite to the case of call

options, since the di�erences �̂II � �̂I are positive in most cases.

The grand mean of individual implied volatilities denoted by �� is the highest of all implied

volatility estimates for calls whereas for puts its value is located between the two Longsta�

estimators. Overall the common implied volatilities are pretty similar to the average of

individual implied volatilities, so that the use of the arithmetic average of individual implied

volatilities seems justi�ed as a �rst approximation to a joint volatility estimate for all

options of a given series.

Finally, one can look at the theoretical option prices generated by the estimation proced-
ures. A number of descriptive statistics on the di�erences between these theoretical prices
and the observed market prices (midpoints) are given in the third panel of Table 2 and
Table 3. It is interesting to note that put options are underpriced by both the Longsta�

I and II method (negative average di�erence between theoretical price and market price)
whereas calls are underpriced by Longsta� I and overpriced by Longsta� II. The pricing
errors for calls are statistically di�erent from zero for both methods, standard t-tests for a
zero mean error yield statistics of �10:127 for Longsta� I and 4.300 for Longsta� II. For
puts we obtain t-statistics of �9:662 and �9:245, respectively. As expected the average

pricing error is larger for the Longsta� I method than for Longsta� II, since with the im-
plied index price there is additional free parameter so that a better �t should be obtained.
The pricing quality of the Black and Scholes model is furthermore signi�cantly better for
calls than for puts. Except for the raw pricing error of the Longsta� I estimation raw and
relative pricing errors are always sign�cantly larger for puts than for calls.13

The amount of the pricing di�erence can be considerable: the largest negative relative

mispricing was around �83 percent of the observed price for calls and right around �100
percent for puts. These numbers may be at least partly caused by some market frictions

like the tick size for option prices which do not exist in the theoretical model.14 On the other

hand these extreme value statistics are furthermore heavily inuenced by a few outliers,
since the 5 percent and 95 percent quantiles of call pricing errors are �6:357 and 5.597

for Longsta� I and �2:666 and 2.967 for Longsta� II, respectively. For relative call pricing
errors these quantiles are also far away from the minimum and the maximum given in

Table 2.15

Similar results are found for puts where only �ve percent of the Longsta� I pricing errors

13 The t-statistics of the tests are sign�cant at levels much smaller than 1 percent.
14 The e�ect of price discreteness may be expected to be especially severe for options far out of the

money with a very low price. To take this into account the observed option price is included in the
regression equations for option pricing di�erences.

15 The exact values for the 5 percent and 95 percent quantiles are �3:64 percent and 21.75 percent for
Longsta� I, and �2:30 percent and 9.55 percent for Longsta� II, respectively.
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are smaller than �7:110 and only �ve percent greater than 6.631. Again the �ndings are

similar for relative errors and for the Longsta� II method.16

Tables 4 and 5 show the results of an analysis concerned with the location of theoretical

option prices generated by the Longsta� methods relative to bid and ask. Even a large

di�erence between theoretical and observable prices does not necessarily imply that the

model misprices options. Especially in the case when quote data are explicitly available we

can check if the theoretical prices are still within the band created by the currently best bid

ans ask prices. The observations have been classi�ed according to moneyness and time to

maturity. The options with the lowest moneyness are in the group identi�ed byM = 1, and

MAT equals one for the options with the shortest maturity. N denotes the total number

of options in a given cell, and the following four lines indicate how many theoretical prices

are larger than the ask (P̂j > Pa; j = I; II) or less than the bid (P̂j < Pb; j = I; II).

Looking at calls �rst we �nd that in total the number of mispricings outside the spread are

lower for Longsta� II than for Longsta� I (1058 vs. 2949), which is expected due to the

additional degree of freedom in the �tting procedure. Note, however, that for a test of the

Black and Scholes model it is the Longsta� I method which is relevant, since pricing has to
be done relative to the current observable index level. For options with low moneyness we
mainly �nd that theoretical prices tend to be too large, since the number of observations

above the ask clearly execeeds the number of observations with theoretical prices lower
than the bid. For example, for M = 1 and Longsta� I there are 545 cases with overpricing
as opposed to only 6 observations for underpricing. An even stronger tendency is found
for M = 2 with (again for Longsta� I) 1,077 overpriced and only 17 underpriced options.
ForM = 3 overpricing and underpricing occurs with roughly similar frequencies, although
overpricing is still found more often.

The picture is completely di�erent for options with high moneyness. Here we �nd no
overpricing at all by Longsta� I, but many cases of underpricing. So we can conclude
that moneyness is a very important variable for predicting substantial deviations between
theoretical Black and Scholes prices and market prices. The mispricing behavior also shows
some variation with respect to time to maturity in that mispricing occurs more frequently

for options with longer maturity, but the e�ect is not as pronounced as for moneyness.

Looking at the results of this analysis for puts we �nd exactly the same tendencies as for
calls. This is somehow surprising, since a low value for M means that the current index
level is much lower than the strike price which means that puts are 'deep in the money'.

Nevertheless, there is not a single case of a theoretical price being less than the bid for

Longsta� I in groups M = 1 andM = 2. Again, forM = 3 the probability of underpricing

is about the same as that for overpricing, but for M = 4 and M = 5 options are almost

always underpriced by the model. Again, also time to maturity is an explanatory factor
with more frequent mispricing for options with longer maturity, although again with less

predictive power than moneyness.

Figures 6 to 9 show plots of relative pricing errors against relative moneyness. For both

calls and puts we observe that pricing errors decline the further the option is in the money,

16 The exact values for the 5 percent and 95 percent quantiles of relative pricing errors are �55:71 percent
and 5.02 percent for Longsta� I, and �34:07 percent and 2.91 percent for Longsta� II, respectively. This
provides some more evidence for the hypothesis that the pricing quality of the Black and Scholes model
is worse for puts than for calls.
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i.e. for a negative value of MONEY for puts and a positive one for calls. The reason

for this may be that the further an option is in the money the closer its value gets to a

model-independent boundary, so that the pricing error is likely to decrease even if there are

discrepancies between the assumed model and the true pricing mechanism used by market

participants. It is interesting to note that options which are slightly out of the money tend

to be overpriced by the model in the case of calls whereas we observe just the opposite for

puts. Furthermore, calls that are not too far in the money seem to be underpriced, so that

there seems to be a quadratic relationship between relative moneyness and relative pricing

error. For this reason the regression model for pricing errors includes both the variables

MONEY and MONSQR, the squared value of MONEY .

The regression results are presented in Table 8. Except for four cases all the coe�cients

are signi�cant at the 5 percent level. The explained portion of the pricing error variance

is in general larger for the Longsta� I method as can be seen from the adjusted R2 values

for the individual regressions.

Pricing errors usually decrease with the variable MONEY , except for (absolute) pricing

errors for calls although the coe�cients are not signi�cant at the 5% level. For squared
moneyness MONSQR the coe�cient usually has a positive sign and is highly sign�cant
with the only exception relative put pricing di�erences generated by Longsta� II. This

supports the hypothesis presented above that it is rather the distance from zero than the
actual location of moneyness that has an impact on pricing errors. A positive impact of
MONSQR on pricing errors is, however, o�set by a negative coe�cient for MONEY

for small values of this variable, since in this case jMONEY j > jMONSQRj so that the
impact of moneyness in linear form is dominant. Pricing errors exhhibit the tendency to
increase with time to maturity for puts in general, whereas we obtain a negative coe�cient

for T for relative call pricing error regressions. We obtain negative coe�cients (except for
one put regression) for the relative spread of an option which means that options with a
lower spread are better priced by the model. This result has an intuitive explanation: our
'observed' price is taken to be the midpoint between the bid and the ask which is merely
an assumption. If the true price is not exactly half way between bid and ask chances are

that the perceived mispricing will be larger the wider the band between the best quotes

even if the model hits the (unknown) true price exactly.

Finally, the observed option price P has a negative coe�cient in six of the eight regressions,
the two exceptions being the relative pricing errors for calls. This means that for more

expensive options model prices tend to be closer to market prices which is consistent with

the impact of moneyness on pricing quality.

3.2 Implied distributions for DAX options

The algorithm to estimate implied state probabilities always converged rapidly without

any numerical problems. The results are presented graphically in Figures 10 to 13. The
graphs in Figures 10 and 12 show the average di�erence for each of the 50 nodes between

the implied probability and the a priori speci�ed lognormal (or binomial) distribution. Of

course, the sum of these di�erences across all nodes has to be equal to zero. Figures 11
and 13 show the share of positive di�erences q̂i � qi for the 50 nodes. As described above

the numbering of the terminal states along the horizontal axis is from the lowest terminal
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DAX price (node 1) to the highest (node 50).

Taking a look at implied distributions for calls �rst we �nd that the market obviously puts

more probability mass on events where the terminal index price is close to the forward price

(which is the mean of the distribution under the forward risk-adjusted measure). Arrow-

Debreu securities which have a payo� in one of these states of the world are therefore

more expensive than predicted by the standard binomial (or the Black and Scholes) option

pricing model. Note that this does not necessarily mean that certain types of calls are

overpriced. Since the call price is the sum of the state dependent payo�s multiplied by the

price of the associated Arrow-Debreu security, the positive pricing error induced by state

prices which are too high may be (more than) o�set by other state prices which are too low

compared to standard option pricing models. Looking at the graph in Figure 10 we �nd that

the implied state prices for relatively high terminal index values are lower than indicated

by the binomial model. For example, a call with a strike price that generates positive

payo�s in states 26 through 50 may well have a market price that is very similar to its

theoretical Black and Scholes price, since there are some overpriced and some underpriced

states in this range. However, we can deduce that if we are able to construct a portfolio

of DAX call options yielding positive payo�s in states 26 to 31 then this portfolio will
have a higher market price than predicted by the binomial model. Accordingly, portfolios

of call options with payo�s only in states 32 through 50 or 1 through 25 are likely to be
cheaper than predicted by the binomial model.17 Around the forward price of the index
the probability di�erences show a very systematic behavior which becomes obvious from
the graph in Figure 11. In the center of the distribution the implied probability is greater
than the a priori probability for more than 90 percent of the 485 series whereas for other

areas this share is well below 50 percent, i.e. the majority of di�erences is negative. It is
�nally interesting to note that the average probability di�erence in states of high terminal
index values is close to zero, although the share of positive di�erences is only around ten
percent. This may seem strange, but the reason is that only the share of strictly positive
di�erences is plotted. For calls more than 90 percent of the di�erences for nodes 48 through

50 are equal to zero and thus not strictly positive. The same phenomenon is observable for
nodes 1 through 3, where the share of zero di�erences is around 82 percent. At the lower

and upper tails of the distribution the binomial probabilities are so small that they are not

di�erent from zero with eight signi�cant digits. If the optimization procedure also assigns
a zero probability for these states we will obtain an observation with a zero di�erence.

Except for the tails of the distribution there are no other cases when the two distributions
assign numerically identical probabilities to a given state. In general we may conclude from

the results obtained for calls that investors in the market for DAX calls seem to consider

medium range changes in the index less likely than predicted by the binomial option pricing
model. On the other hand there is stronger belief in the market that the terminal index
value will be somewhere around the forward price. There is only slight evidence for a

phenomenon which Rubinstein [12] calls 'crash-o-phobia', i.e. a larger implied probability

for states with a very low index value, since for nodes 1 to 11 the di�erences between
implied and a priori probabilities are positive but very small in absolute value.

17 Shimko [15] uses this fact to design trading strategies based on an investor's subjective probability
assessment. The investor should sell Arrow-Debreu securities for states for which his subjective probability
is lower than the market estimate and vice versa. In the situation described above the investor should sell
short a buttery spread if he believes that the binomial model is the correct description for stock price
movements.
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The result for puts is di�erent. Looking at the di�erences q̂i� qi for small i, i.e. for states

with a low DAX price we �nd that investors are willing to pay more for state contingent

payo�s in this range of index prices. This may be evidence for an extra premium for the

insurance function of a put with a rather low strike price so that it has a positive payo�

only in these states. Whereas we do not �nd such a pronounced tendency in the market

for calls this �nding represents a 'crash-o-phobia'. Figure 13 also supports this hypothesis,

since for the vast number of option series we obtain indeed implied probabilities which are

larger than their binomial counterparts. Another di�erence between implied distributions

for calls and puts is obvious for nodes 32 through 50, i.e. for states with high index values.

Whereas in the market for calls there is a tendency for these Arrow-Debreu securities

to be cheaper than in the binomial model the opposite is observable for puts. All the

states have a higher implied than a priori probability, i.e. a portfolio of puts with positive

payo�s in the states and zero payo� in others is more expensive in the market than we

would expect from the binomial model. If an investor has the binomial as his subjective

probability distribution he would be willing to sell this portfolio short, since he considers

it overpriced by the market. Note, however, that this is not an arbitrage transaction, it is

based solely on speculative arguments (di�erences in expectations). As for calls we also

observe negative average di�erences for nodes 14 to 25 which represent states in which
the index has declined but they certainly do not represent a crash. The absolute values
of the di�erences are much larger than for calls, and the shares of positive di�erences are
close to zero in this range of states. Portfolios of put options with postive payo� in only
these states are thus cheaper than predicted by our a priori distribution.

4 Summary and Conclusions

The two major purposes of this study were to conduct an empirical investigation into the

pricing of DAX options on the DTB, the German �nancial futures and options exchange

and to take a look at index price distributions implied by option prices. DAX options
are of the European type and the underlying index DAX is a performance index, i.e. it is
basically a non-dividend paying asset. These features would allow to use simple valuation

models based on a lognormal or binomial distribution of terminal values of the underlying

asset. The basic idea behind a test of the martingale restriction is to infer the implied

current underlying price from option prices and to compare it to the contemporaneously
observable market price. If there are signi�cant di�erences then the conclusion is that
there are either market frictions preventing strict no-arbitrage relationships from holding

or that investors are using a valuation model that is di�erent from the one assumed by

the researcher. The results of a recent study by Longsta� [9] indicate that for S&P 100
options the implied index level is systematically higher than the observed price, meaning

that the martingale restriction in its pure form is violated. Performing a similar test for
DAX options on the DTB we �nd that also in the German market the implied cost of the

index is systematically higher than the observed market price. In contrast to Longsta�

we are also able to use put options to infer implied parameters, and the results for the
implied DAX price are fully consistent with those for calls. Regression analyses show that

the number of options used in the estimation process as well as the time to maturity and
the average relative moneyness are signi�cant determinants for the amount of the pricing

14



error. Volatility di�erences between the two Longsta� approaches are perfectly consistent

with the behavior of index pricing errors.

The second variable of interest is the pricing error of the options in the sample when

the implied paramters are estimated. Using the observed DAX price to estimate implied

volatilities yields theoretical call prices which are lower than market prices. Whereas the

sign of the average di�erence changes when also the index price is estimated implicitly

puts are consistently underpriced. Important determinants for the amount of the pricing

error are the relative moneyness and its squared value, the relative bid-ask spread and the

observed option price.

Given a su�cient number of option prices one can infer the distribution of the terminal

underlying price that is implied by the market prices of these contracts. For our sample of

DAX options we obtain di�erent results for puts and calls. The prices of DAX calls imply

that on average the market assigns a higher probability than predicted by the lognormal

model to events close to the mean of the distribution of terminal index prices. On the

other hand states a little further away from the mean are considered less likely by market

participants. The �ndings for puts suggest that in this market there is something similar
to a 'crash-o-phobia' e�ect, since the implied probability mass for states with a very low
terminal index level is much higher than under the lognormal distribution.

It is interesting to compare the approaches by Longsta� [9] and by Rubinstein [12] with

respect to their estimation approaches. Whereas Longsta� prespeci�es the type of distri-
bution for the terminal underlying price to infer only certain moments of it from market
prices Rubinstein does not put any restricitions on the shape of the distribution. The cost
for this extra degree of freedom is that Rubinstein uses the observed index price as one
additional call option with a zero strike price in the estimation process whereas Long-

sta� focuses exactly on the relationship between observed and implied distribution. Given
the empirical results of this paper we �nd that there are certainly pricing errors associ-
ated with the use of the Black and Scholes model (and thus the lognormal distribution).
The shape of the implied distribution is sign�cantly di�erent. Besides the implementation
of alternative objective functions for the optimization procedure (as suggested already

by Rubinstein [12]) one could design tests of trading strategies based on the di�erences

between implied and assumed distributions. Furthermore using the algorithm described
by Rubinstein [12] implied binomial trees can be constructed from the implied binomial
distributions. These implied trees may then be used to price American options, e.g. the

stock options traded on the DTB. All these tasks will be left for further research.
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Table 1:

Descriptive Statistics

Calls (485 series)

Variable Mean Std Dev Minimum Maximum

Na 14.97 5.39 6.00 30.00

Tb 93.26 66.12 7.00 260.00
MONEYc 0.0197 0.0819 -0.1649 0.3904
SPREADd 0.0772 0.0898 0.0036 1.7113

Puts (499 series)

Variable Mean Std Dev Minimum Maximum

Na 13.94 4.75 6.00 29.00
Tb 97.03 69.32 7.00 262.00
MONEYc 0.0176 0.0690 -0.1716 0.3736
SPREADd 0.1083 0.1616 0.0367 1.9683

a Number of observations per series. The total number of call (put) price observations is 7263 (6955).
b Time to maturity in days.
c Relative moneyness calculated for each individual option as

(DAX�X)

X
with X as the exercise price

and DAX as the observed DAX price.
d Mean relative spread calculated for each individual option as 2 (BAP-BBP)/(BAP+BBP) with BAP

(BBP ) as the best ask (bid) price .
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Table 2:

Estimation Results for Calls

Variable Mean Std Dev Minimum Maximum

Index values (485 observations)

DAXa 2152.56 67.5592 1967.36 2274.00dDAXII
b 2165.33 65.8756 1988.69 2299.86dDAXII �DAX 12.7695 11.3916 -52.5922 71.6258

( dDAXII �DAX)=DAX 0.0060 0.0054 -0.0245 0.0336

Implied volatilities (485 observations)

�̂I
c 0.1983 0.0182 0.1532 0.2478

�̂II
d 0.1807 0.0223 0.1281 0.2393

��e 0.2065 0.0259 0.1649 0.3773

�̂I � �� -0.0082 0.0190 -0.1618 0.0057
(�̂I � ��)=�� -0.0340 0.0690 -0.4821 0.0271
�̂II � �� -0.0258 0.0195 -0.1736 0.0472

(�̂II � ��)=�� -0.1219 0.0740 -0.5146 0.2601
�̂II � �̂I -0.0176 0.0109 -0.0620 0.0451
(�̂II � �̂I)=�̂I -0.0900 0.0571 -0.3126 0.2454

Option prices (7263 observations)

P̂I � P f -0.4702 3.9566 -77.6279 37.2392

(P̂I � P )=P 0.0317 0.1061 -0.8326 1.2786

P̂II � P g 0.1112 2.2038 -61.2940 34.5313

(P̂II � P )=P 0.0092 0.0613 -0.9472 0.6716

a Observed DAX price.
b Implied DAX price from Longsta� II method using the Black and Scholes formula.
c Implied volatility from Longsta� I method using the Black and Scholes formula.
d Implied volatility from Longsta� II method using the Black and Scholes formula.
e Mean of average individual implied volatilities per series.
f Di�erence between implied price from Longsta� I method and observed option price (midpoint

between bid and ask).
g Di�erence between implied price from Longsta� II method and observed option price (midpoint

between bid and ask).
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Table 3:

Estimation Results for Puts

Variable Mean Std Dev Minimum Maximum

Index values (499 observations)

DAXa 2140.63 45.5523 2030.06 2259.36dDAXII
b 2170.60 57.4345 2034.84 2418.04dDAXII �DAX 29.9752 27.6484 -29.7046 217.1555

( dDAXII �DAX)=DAX 0.0140 0.0128 -0.0140 0.1008

Implied volatilities (499 observations)

�̂I
c 0.1988 0.0182 0.1558 0.2486

�̂II
d 0.2340 0.0223 0.1580 0.3038

��e 0.2035 0.0192 0.1623 0.2598

�̂I � �� -0.0047 0.0080 -0.0688 0.0163
(�̂I � ��)=�� -0.0220 0.0374 -0.2921 0.0912
�̂II � �� 0.0305 0.0211 -0.0775 0.1145
(�̂II � ��)=�� 0.1551 0.1086 -0.3289 0.6046

�̂II � �̂I 0.0352 0.0188 -0.0400 0.1173
(�̂II � �̂I)=�̂I 0.1810 0.1017 -0.1786 0.6291

Option prices (6955 observations)

P̂I � P f -0.5162 4.4560 -67.2018 42.5642

(P̂I � P )=P -0.1008 0.2060 -0.9999 1.2462

P̂II � P g -0.2294 2.0699 -49.6477 50.0770

(P̂II � P )=P -0.0486 0.1549 -0.9999 0.8183

a Observed DAX price.
b Implied DAX price from Longsta� II method using the Black and Scholes formula.
c Implied volatility from Longsta� I method using the Black and Scholes formula.
d Implied volatility from Longsta� II method using the Black and Scholes formula.
e Mean of average individual implied volatilities per series.
f Di�erence between implied price from Longsta� I method and observed option price (midpoint

between bid and ask).
g Di�erence between implied price from Longsta� II method and observed option price (midpoint

between bid and ask).
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Table 4:
Location of Theoretical Call Prices

Relative to Observed Bid and Ask Prices

by Moneynessa and Maturityb

MAT = 1 MAT = 2 MAT = 3 MAT = 4 Total

N c 39 97 86 457 679

P̂I > Pa
d 12 83 84 366 545

M = 1 P̂I < Pb
e 6 0 0 0 6

P̂II > Pa
f 0 30 41 147 218

P̂II < Pb
g 15 7 1 10 33

N 211 398 272 809 1690

P̂I > Pa 163 317 208 389 1077

M = 2 P̂I < Pb 5 0 0 12 17

P̂II > Pa 91 151 88 134 464

P̂II < Pb 17 9 1 18 45

N 327 504 392 712 1935

P̂I > Pa 91 109 61 66 327

M = 3 P̂I < Pb 19 42 30 108 199

P̂II > Pa 40 48 9 12 109

P̂II < Pb 23 29 10 24 86

N 281 374 245 454 1354

P̂I > Pa 0 0 0 0 0

M = 4 P̂I < Pb 42 58 64 211 375

P̂II > Pa 5 3 0 3 11

P̂II < Pb 8 16 8 32 64

N 316 533 293 463 1605

P̂I > Pa 0 0 0 0 0

M = 5 P̂I < Pb 33 80 52 238 403

P̂II > Pa 2 8 5 8 23

P̂II < Pb 1 2 1 1 5

N 1174 1906 1288 2895 7263

P̂I > Pa 266 509 353 821 1949

Total P̂I < Pb 105 180 146 569 1000

P̂II > Pa 138 240 143 304 825

P̂II < Pb 64 63 21 85 233

a Moneyness classi�cation: M = 1: �0:075 �MONEY , M = 2: 0:075 < MONEY � �0:025,
M = 3: �0:025 < MONEY � 0:025, M = 4: 0:025 < MONEY � 0:075,M = 4: 0:075 < MONEY .

b Maturity classi�cation: MAT = 1: time to maturity at most 30 days, MAT = 2: time to maturity
between 31 and 60 days,MAT = 3: time to maturity between 61 and 90 days,MAT = 4: time to maturity
more than 90 days.

c Number of observations.
d Theoretical price from Longsta� I method greater than observed ask price; absolute frequency.
e Theoretical price from Longsta� I method less than observed bid price; absolute frequency.
f Theoretical price from Longsta� II method greater than observed ask price; absolute frequency.
g Theoretical price from Longsta� II method less than observed bid price; absolute frequency.
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Table 5:
Location of Theoretical Put Prices

Relative to Observed Bid and Ask Prices

by Moneynessa and Maturityb

MAT = 1 MAT = 2 MAT = 3 MAT = 4 Total

N c 79 92 87 144 402

P̂I > Pa
d 1 14 64 115 194

M = 1 P̂I < Pb
e 0 0 0 0 0

P̂II > Pa
f 0 0 0 2 2

P̂II < Pb
g 0 0 2 3 5

N 267 403 270 683 1623

P̂I > Pa 37 145 117 371 670

M = 2 P̂I < Pb 0 0 0 0 0

P̂II > Pa 10 6 13 12 41

P̂II < Pb 1 6 1 14 22

N 337 511 387 861 2096

P̂I > Pa 43 85 67 147 342

M = 3 P̂I < Pb 72 103 69 134 378

P̂II > Pa 48 53 50 98 249

P̂II < Pb 24 8 12 16 60

N 238 394 263 647 1542

P̂I > Pa 1 0 0 2 3

M = 4 P̂I < Pb 222 379 226 548 1375

P̂II > Pa 3 16 10 43 72

P̂II < Pb 167 131 43 47 388

N 96 357 240 599 1292

P̂I > Pa 0 0 0 0 0

M = 5 P̂I < Pb 95 356 240 595 1286

P̂II > Pa 0 0 1 10 11

P̂II < Pb 89 315 194 337 1292

N 1017 1757 1247 2934 6955

P̂I > Pa 82 244 248 635 1209

Total P̂I < Pb 389 838 535 1277 3039

P̂II > Pa 61 75 74 165 375

P̂II < Pb 281 460 252 417 1410

a Moneyness classi�cation: M = 1: �0:075 �MONEY , M = 2: 0:075 < MONEY � �0:025,
M = 3: �0:025 < MONEY � 0:025, M = 4: 0:025 < MONEY � 0:075,M = 4: 0:075 < MONEY .

b Maturity classi�cation: MAT = 1: time to maturity at most 30 days, MAT = 2: time to maturity
between 31 and 60 days,MAT = 3: time to maturity between 61 and 90 days,MAT = 4: time to maturity
more than 90 days.

c Number of observations.
d Theoretical price from Longsta� I method greater than observed ask price; absolute frequency.
e Theoretical price from Longsta� I method less than observed bid price; absolute frequency.
f Theoretical price from Longsta� II method greater than observed ask price; absolute frequency.
g Theoretical price from Longsta� II method less than observed bid price; absolute frequency.

21



Table 6:
Regression Analysis for DAX Pricing Errorsa

Dep. Variable Constant N b ARSc T d MONEY e Adj. R2

Calls (485 observations)dDAXII �DAX 8.8658 0.2082f -8.1552f 30.1289 -62.1085 0.4886

( dDAXII �DAX)=DAX 0.0040 0:0001 -0.0032f 0.0136 -0.0327 0.4849

Puts (499 observations)dDAXII �DAX 26.3637 -3.4741 -23.1028 120.3212 330.0830 0.6103

( dDAXII �DAX)=DAX 0.0122 -0.0016 -0.0104 0.0553 0.1466 0.6189

a Coe�cients are sign�cant at the 5% level unless otherwise indicated.
b Number of options used for estimation.
c Average relative spread.
d Time to maturity in years.
e Average relative moneyness.
f Coe�cient not signi�cant at the 5% level.

Table 7:

Regression Analysis for Implied Volatility Di�erencesa

Dep. Variable Constant N b ARSc T d MONEY e Adj. R2

Calls (485 observations)

�̂II � �̂I -0.0214 < 0:0001f 0.0001f -0.0069 0.0529 0.2003

(�̂II � �̂I)=�̂I -0.1115 0.0009f 0.0233f -0.0604 0.2164 0.2182

Puts (499 observations)

�̂II � �̂I 0.0416 -0.0026 -0.0218 0.0358 0.2523 0.3859

(�̂II � �̂I)=�̂I 0.2085 -0.0137 -0.1000 0.2138 1.2691 0.3769

a Coe�cients signifcant at the 5% level unless otherwise indicated.
b Number of options used for estimation.
c Average relative spread.
d Time to maturity.
e Average realtive moneyness.
f Coe�cient not signi�cant at the 5% level.
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Table 8:

Regression Analysis of Option Pricing Errorsa

Dep. Variable Constant T b RSc MONEY d MONSQRe P f Adj. R2

Calls (7263 observations)

P̂I � P 3.5252 0.0095 -6.8560 2.2561g 219.6087 -0.0454 0.5096

(P̂I � P )=P 0.0127 -0.0008 -0.0405 -2.2382 2.8711 0.0009 0.3897

P̂II � P 0.7274 0.0024 -2.2152 2.1353g 72.1417 -0.0093 0.0764

(P̂II � P )=P 0.0327 -0.0002 -0.1767 -0.4401 1.1988 < 0:0001g 0.1100

Puts (6955 observations)

P̂I � P 3.5234 0.0192 3.8091 -138.8813 404.3095 -0.0783 0.6108

(P̂I � P )=P 0.0893 0.0010 -0.3409 -4.1603 3.8914 -0.0025 0.8412

P̂II � P 2.9836 0.0141 -0.1650g -58.4012 142.9362 -0.0564 0.1774

(P̂II � P )=P 0.0585 0.0005 -0.4872 -1.2929 -1.3629 -0.0009 0.7307

a Coe�cients are signi�cant at the 5% level using standard t-statistics unless otherwise indicated.
b Time to maturity.
c Relative spread.
d Relative moneyness.
e Relative moneyness squared.
f Observed price.
g Coe�cient not sign�cant at the 5% level.
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1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0

Figure 1:

Typical smile pattern for DAX options
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1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0

Figure 2:

Observed vs. implied DAX prices for calls
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1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 2 5 0 0

Figure 3:

Observed vs. implied DAX prices for puts
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0 . 1 2 0 . 1 4 0 . 1 6 0 . 1 8 0 . 2 0 0 . 2 2 0 . 2 4

Figure 4:

Implied volatilities from Longsta� methods for calls
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Figure 5:

Implied volatilities from Longsta� methods for puts
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 6:

Relative call pricing errors Longsta� I versus moneyness
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 7:

Relative call pricing errors Longsta� II versus moneyness
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 8:

Relative put pricing errors Longsta� I versus moneyness
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 9:

Relative put pricing errors Longsta� II versus moneyness
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Figure 10:

Di�erences between implied and a priori probabilities for calls
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Figure 11:

Share of positive di�erences
between implied and a priori distribution for calls
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Figure 12:

Di�erences between implied and a priori probabilities for puts
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Figure 13:

Share of positive di�erences
between implied and a priori distribution for puts
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