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Abstract

Following an approach proposed by Hutchinson/Lo/Poggio[1994], Kelly[1994]
and Malliaris/Salchenberger[1993], we used neural networks to value derivatives. We
first examined the ability of the used neural networks to interpolate the Black & Sc-
holes formula and its derivatives. In a second step we trained neural networks on real
world data from the Deutsche Terminbérse (DTB). We used about 500,000 trading
prices of stock index options on the Deutscher Aktienindex (DAX) to approximate
the implied pricing formulas of the market. Looking at the partial derivatives of the
implied pricing formular allows us to get deeper insights into the pricing process.

It can be shown that the implied pricing formulas differ markable from the Black
& Scholes formula. The results suggest that the implied pricing formulas account for
the correlations between interest rates and the DAX and that increasing volatility
has a negative impact on in—the-money options. A ”crash—o—phobia” phenomenon
is observed, too.
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1 Introduction

The standard approach to value derivative securities is based on the explicit specifica-
tion of the stochastic price process of the underlying asset. Much research has been done
within this approach, beginning with the seminal articles of Black/Scholes[1973] and Mer-
ton[1973]. However, empirical observations, such as fat-tailed return distributions, the
smile effect or ”crash-o—phobia” can not be explained by standard option pricing models.
Furthermore, empirical results are casting doubt on popular parametric specifications.?
These shortcomings have increased the interest in implied approaches to option pricing.
The fundamental idea is to use observed market prices to get information about the be-
liefes of the market participants, the implied return distributions or the implied pricing
mechanism of the market.? Such information can be used to improve standard option pric-
ing models, to reveal arbitrage opportunities or to implement hedging strategies. The roots
of implied approaches are dating back to Latané/Rendleman[1976], which used market
prices of options to calculate implied volatilities. Rubinstein[1994] among others extended
this approach by using option prices to calculate implied state-price-densities.*

In our study, we followed an approach suggested by Hutchinson/Lo/Poggio[1994],
Kelly[1994] and Malliaris/Salchenberger[1993]: Estimating the implied pricing mechanism
of DAX-options traded at the Deutsche Termin Bérse (DTB) by ”training” neural net-
works on trading prices.

Due to their characteristics neural networks seem to be an appropriate statistical approx-
imation method if one or more of the following conditions are met:

e The patterns looked for, are subtle or deeply hidden in the data available for the
estimation.

o The relationship to be discovered exhibit significant unpredictable nonlinearity.

e The partial derivatives of the approximation function are of interest.

In our specific field of application all mentioned conditions are met. Existing evaluation
models show a highly nonlinear structure. The derivatives are necessary for the imple-
mentation of hedging strategies. Furthermore they allow to get deeper insights into the
pricing mechanism of the market and to prove the economic content of the formula.

In contrast to more traditional models, neural networks do not need restrictive assump-
tions about the function to be estimated, for example assumptions like log—normal dis-
tributed stock returns or sample path continuity. Since they do not rely on restrictive
assumptions they are very robust to specifications errors parametric valuation methods
often suffer from. Due to their adaptive nature they are able to handle structural changes
in the pricing process. Futhermore once "trained” they are easy to implement and easy
to handle. But they are highly data intensiv. A lot of historical data is necessary to get
sufficiently well-trained networks.

To summarize, neural networks provide a powerful nonparametric, data driven pricing
method which allows the data to determine the dynamics of the underlying asset and its

1” Crash—o—phobia” describes the fact that implied state—prices of index—options for low index levels
are higher than expected. This can be interpreted as as additional insurance premium against crashes.
For details see Rubinstein[1994].

2See for example Lo/MacKinlay[1988].

3A literatur overview is given by Mayhew[1995].

4Results for German stock index options can be found in Neumann/Schlag[1996].



relation to the prices of the derivatives. In contrast to the main part of empirical studies
on neural networks in Finance — we do not want to predict anything and in contrast
to such studies we know that a functional relationship between the input factors of our
network and the target value — the price of the derivative — definitely exists, but not
its specific form.

First examples of successful applications of neural networks for the valuation of derivative
securities were provided by earlier studies. Tabular 1 summarizes such studies:®

Table 1:
Empirical Studies

Author Period Derivative® Model? Network®

Boeck et al.[1995] 1993-1994 | AO SPI future option(a) BS ?
Hutchinson/Lo/Poggio[1994] | 1987-1991 | S&P 500 futures option(a) L,BS MLP,RBF,PPR
Kelly[1994] 1993-1994 | Stock-Options(a) CRR MLP
Lajbcygier et al. [1995] 1993-1994 | AO SPI future option(a) L,BS,BW MLP
Malliaris/Salchenberger[1993] 1990 S&P 100 OEX option(a) BS MLP
Qi/Maddala[1995] 1994-1995 | S&P 500 options(a) BS MLP
White[1995] 1994 S&P 100 OEX option(a) BS ENT

Our study extends the existing research in some directions: First our study is founded on
time-stamped intraday data® of all traded options, so not restricted to closing prices or to
a easy to manage part of the market. Second, we used call as well as put options to be able
to compare the formulas of both typs of options. Third, we show how well-suited neural
networks are for the interpolation of the derivatives of pricing formulas. Forth, we used the
obtained pricing formulas to get deeper insights into the implied pricing mechanism and
compared it to the B&S model. Fifth we derived the implied state-price-densities without
using any restrictive assumption — like positivity restrictions or the functional form of
the state—price—densities (SPD). So demonstrating a new approach for the derivation of

implied SPD’s .

The remainder ist organized as follows. The next section provides a brief introduction to
the theoretical background of our study. Section 3 describes the methodology and the data
used, while section 4 provides the empirical results. Section 5 contains a short summary
and concluding remarks. The appendix contains the derivation of the partial derivatives
of our networks and the estimated network parameters.

>Simultaneously and independent to our study Anders/Korn/Schmitt[1996] applied neural networks
to DAX options.

8american(a), european(e)

8Model used for comparison: Black/Scholes(BS)[1973], Barone-Adesi/Whaley(BW)[1987],
Cox/Ross/Rubinstein(CRR)[1979], Linear Approximation(L).

8Entropy Network(ENT), Multilayer Perceptron(MLP), Projection Pursuit Regression(PPR), Radial
Basis Functions(RBF).

“Especially we took a lot of care over the preparation of the database and the input parameters,
to avoid problems resulting from non-synchronous data or incomplete and small datasets some earlier
studies suffer from. Our database exceeds the databases of all earlier studies many times over.



2 Theoretical Background

Object of our investigation are financial derivatives, more specific index options. Options
give the holder the right to buy (call option) or to sell (put option) the underlying asset
for a certain price (exercise price) by a certain day (expiration day). Option which can be
exercised at any time up to expiration are called American options, options which only can
be exercised on the expiration itself are called European options. An index option is an
option where the underlying is an index. For the remainder of this article only European
options are considered. Option prices are generally denoted by O whereas call prices are
denoted by C and put prices by P.

2.1 Option—Pricing
It is possible to derive upper and lower bounds for European options without any particu-

lar assumption!® about the factors affecting the option price. In an arbitragefree market
the following conditions have to be met:

() < S(0)
Pt) < XeT
Ct) > max[S— Xe™7T 0] (1)
Pt) > max[Xe T - 5,0]
X . exercise price,
r : riskless interest rate,
T : time to expiry expressed as a fraction of a year and
S : underlying asset.

This bounds determine a range in which options price should stay, otherwise investors are
able to make riskless profits. The fundamental idea introduced by Black/Scholes[1973]
and Merton[1973] to get a explicit pricing formula was to replicate options by dynamic
hedging strategies. In an arbitrage-free environment such self-financing hedging strategies
have to have the same initial value as the replicated option. Although introduced in 1973
and often extended, the standard B&S formula is unquestionable one of the most relevant
pricing formula in practice.

Assuming arbitrage-free frictionless markets, continous trading, constant and same risk-
free interest rates for all maturities and a geometric Brownian motion with constant drift
and variance rate as the stochastic price process for the underlying, the following pricing
formulas can be derived!! for calls (CP%) and puts (PZ):

CBS = S@H)N(dy) — Xe "TN(dy)
PBS = Xe7TN(—dy) — SN(—dy)

10Fxcept # > 0, which in reality is no very restrictive assumption at all.
UThe correct derivation can be found in Merton[1973].



where

i - () + (4 2T
o/ T (3)
d2 = dl—oVT
and
N(.) : the standard cumulative normal distribution function and
o :  standard deviation of the instantaneous rate of return on S.

The local arbitrage argument used by Black/Scholes[1973] was extended by Rubin-
stein/Leland[1981] to create actually options.'? The key idea was instead of building
a risk-free portfolio by dynamically hedging an option with stock, to create the option by
a dynamic strategy which involved the underlying and a risk-free asset. Essential for such
a strategy is to know how the replicated option responds to changes in the underlying

option variables. Assuming a B&S world the partial derivatives'® are as follows!*:

Delta. = 9 = N (dy)
Delta, = o = N(dy) -1
Gamma, = 8]%372&0 - ;cgil/l)f
Gamma, = % — %
Vega, = L = Sn(dy)VT 1)
Vega, = a8 = Sn(dy)VT
Rho. = %&£ = TXe TN (dy)
Rho, = & = ~TXe"TN(—dy)
Theta, = < = Sn(dl) Q\C}T +rXe "TN(dy)
Theta, = 9L = Sn(dl);% - rXe "IN (—dy)

This functions show how the prices'® of calls and puts changes as one of the input pa-
rameter changes. Assuming'® furthermore the existence of state-price-densities (SPD’s)
and the dynamic completeness of the market we are able to derive the implied prices
of ” Arrow-Debreu” securities'”, which correspond to the second derivative of the pricing
functions with respect to the strike price X evaluated at St . This gives us the the price
for a security paying DM 1.— if the state falls between S and S + dS. In a B&S world the

SPD corresponds to the following log-normal distribution:'®

2
L 0*C ;0P 1 _ (w(sp/s0-=o2/2)7)

SPD =e 2027 . (5)

0X? ¢ 9XZ  Sovamell.

12The evolution of the approach is described in Leland/Rubinstein[1988].

13The derivation can be found for example in Stoll/Whaley[1993], p. 245ff.

1 (.) denotes the density of a standard normal distribution.

15Gamma shows how the delta of the option changes.

16Note:We do not need any assumption about the price process of the underlying.
17 Arrow[1964], Debreu[1959].

18Breeden/Litzenberger[1978], p. 630.




3 Data and Methodology

3.1 Data

Our study was founded on time-stamped transaction data on the DAX option traded
at the DTB, after the S&P 100 and S&P 500 options the most liquid index option
worldwide!®. All data used was provided by the Karlsruher Kapitalmarktdatenbank
(KKMDB).

The DAX option?® is an European style option on the DAX index. The DAX?! contains
the 30 biggest and most liquid German stocks, which together have a market capitalization
of over 60 percent on all German stocks listed at exchanges. Together they account for
over 75 percent of the total German stock trading volume. The option has a contract size
of DM 10 per index point of the DAX and is quoted in points with one decimal place.
Its minimum price move is 0.1 point which corresponds to DM 1. The maturity of the
contracts range up to 24 months?2. At least five exercise prices for each contract month
are introduced initially. New option series are introduced continuously if the DAX exceeds
the average of the third- and second-highest or falls below the average of the third- and
second-lowest currently existing strike price. The DAX-option is traded daily between
9:00 a.m. and 5:00 p.m. Because the DAX?? is a dividend adjusted performance index
and the DAX option traded at the DTB is of European type, there were no dividend and
early exercise problems. Hence the DAX option has ideal contract specification for the
application of the B&S formula.

To get synchronized datasets®* it was necessary to calculate simultaneous historical DAX
values for each trading day from 9:00 a.m. to 5:00 p.m.?® This was accomplished using
IBIS?® data.?” Since June 15, 1995 our index correponds with the IBIS-DAX provided by
the Deutsche Borse AG?,

The interest rates used are Frankfurt Interbank Offer (FIBOR) rates. For intermediate
times, interest rates were interpolated linear. We used the VDAX?? as an average weighted
volatility expectation of the market.

The period of observation was from January 1, 1995 to December 31, 1995. In the whole
period 514,192 trades in DAX options divided up into 266,300 trades in calls and 247,892

Y DBAG[1996], p. 26.

20See DBAG[1996].

*1For details see DBAG[1995b].

22Qptions with maturities of 18 and 24 months were introduced on March 18, 1996.

23See Deutsche Borse AG (1995b).

Z4For each transaction price the corresponding DAX value is needed.

25The weighting factors necessary for this calculation were provided by the Deutsche Borse AG.

Z6Integriertes Borsenhandels- und Informationssystem (Integrated Stock Exchange Trading and Infor-
mation System), an electronic trading system.

2TFor a description of the datasets used, see Liidecke[1996].

Z8Between December 15, 1993 and June 14, 1995 the IBIS-DAX was only calculated between 8:30 a.m.
—10:30 a.m. and 1:45 p.m. and 5:00 p.m..

2The VDAX is a daily calculated DAX-based implied volatility index, which serves as a proxy for
the expected stock market volatility. For technical details see DBAG[1995a]. Furthermore we used some
other volatility measures — historical 30/90 day volatility and different implied volatility measures based
on trading and calendar days as well as a mixed model. The results show that the different volatility
measures do not affect the approximation results strongly. Therefore we restrict our presentation on
results obtained for the VDAX.



trades in puts take place. Table 2 contains a short descriptive statistic®® of the initial
option data.?!

Table 2:
Descriptive Statistic of the Trading Data

S X % T r ot C
Mean | 2141.25 | 2171.16 | 0.987 | 46 | 0.0446 | 0.130 36.90
Std. 98.88 114.89 | 0.036 | 50 | 0.0036 | 0.031 43.39
Calls | Min | 1893.08 | 1800.00 | 0.825 | 3 | 0.0368 | 0.005 0.10
P 1917.53 | 1900.00 | 0.896 | 3 | 0.0386 | 0.060 0.60
Pyg | 2308.17 | 2450.00 | 1.101 | 238 | 0.0522 | 0.199 || 221.10
Max | 2373.18 | 2550.00 | 1.284 | 280 | 0.0540 | 1.640 | 844.40

S X LT r ol P

Mean | 2132.81 | 2097.62 | 1.018 | 47 | 0.0447 | 0.149 || 29.85
Std. | 99.78 | 117.53 | 0.039 | 49 | 0.0037 | 0.047 || 32.74
Puts | Min | 1893.08 | 1800.00 | 0.838 | 3 | 0.0368 | 0.006 || 0.10
Py | 1915.16 | 1825.00 | 0.927 | 3 | 0.0385 | 0.068 || 0.50
Pyo | 2304.72 | 2350.00 | 1.136 | 237 | 0.0521 | 0.237 || 162.00
Max | 2373.18 | 2550.00 | 1.284 | 280 | 0.0540 | 11.330 || 2111.50

However not all the data was used. But in contrast to other studies we do not exclude
options which were difficult to handle, to get a truth view of the total pricing mechanism
of the market and not only of a easy to handle part of it. For example if there exists
a tendency towards trades on integer prices, which is crucial point for options with low
prices, we feel that a neural network should be able to handle it. Hence we excluded only
data which we assumed to be errorneous®*: Options violating arbitrage boundaries® and
option prices resulting from mistrades.

To get a practicable criterium we excluded all options with an implied volatility higher
than 40 percent®!, which we assumed to be a indication of a mistrade.®® Only 762 trades
were excluded due to this criterium. Furthermore 11,257 call prices and 2,092 put prices
violating their lower arbitrage boundary®” were excluded. Hence 97.3 percent of all trading

307} denotes the number of trading days till maturity, o? the implied volatility and P, the a-percent
percentile.

31This is important to know for the standardization of the input parameters of the networks and the
restriction of the parameters for the interpolation of the B&S formula.

32Looking at table 2, examples for such data are easy to detect. Implied volatilities higher than 300
percent and option prices higher than DM 2,000 are a obvious sign for a mistrade.

33See (1).

34In table 3 the distribution of the implied volatilities is presented. Note: The VDAX as well as the
historical 30-day and 90-day volatilities were below 35 percent in the whole period.

35Looking more closely at such trades it is obvious that they could be traced back to typos.

36375 call and 387 put prices.

3"Note: Transaction costs are not taken into account.



prices were used in our study. Looking at table 2 and table 3 it is interesting to note that

Table 3:
Implied Volatility

ot Calls Puts
[0-0.1) 21,481 | 12,768
[0.1-0.2) | 231,041 | 225,611
[0.2-0.3) 1,748 6,430
[0.3-0.4) 398 604
[0.4-0.5) 187 214
[0.5-0.6) 80 90
[0.6-) 108 83

implied volatilities of call and puts differ notable®®. Furthermore the number of arbitrage
boundary violations differs strongly, whereas the number of mistrades is nearly the same
for calls and puts in the period under consideration. These numbers give first evidence
that the pricing formulas used by the market differ from the B&S formula.

3.2 Methodology

We first interpolated the Black & Scholes formula, using simulate option prices to get
insights into the ability of the networks to approximate valuation formulas and their
partial derivatives. We wanted to know if the choosen network typ is able to interpolate
the B&S formula for realistic parameters® precisely enough®°.

Proceeding from our results we trained networks on trading prices of DAX options sep-
arately for calls and puts. The trained networks are used in out-of-sample test to prove
if the networks are overparametrized. Therefore the option data is divided up into a
trainings-sample to learn and conduct in-sample tests and a test-sample which serves for
out-of-sample tests. The networks were trained within 10,000 iterations each using the
Backpropagation algorithm.

We compared the implied pricing formulas with the B&S formulas. Examining the implied
partial derivatives and implied state—price densities we are able to get deeper insights into
the pricing mechanism and to find out the reasons for differing prices between these two
models.

38This difference is significant at a 0.0001 level (Wilcoxon rank-sum test).

39We used randomized uniform distributed values within the relevant parameter range (see table 2).
Because such simulated data are noise-free, out-of-sample tests do not make sense. We were primarily
interested to get a feeling how adding more hidden nodes increases the accuracy of the interpolation and
how many learning steps are necessary.

“UIn contradiction to some ealier studies, we trained our networks directly on option prices O and not
on the function O/X which would assume a return distribution of the underlying of the option which
does not depend on the stock price level (see Merton[1973] theorem 9 and Hutchinson/Lo/Poggio[1994],
p. 862). This is a type of assumption we just wished to avoid by using nonparametric valuation methods.



3.2.1 Neural Network

Looking from a statisticans point of view the used neural networks are analogous to
nonlinear nonparametric regression models. Due to their inductive nature they are able
to infer complex nonlinear relationships between option prices and its determinants. More
precisely, they have the ability to approximate any continuous function and its partial
derivatives to any degree of accuracy.*!

The primary goal of our article was to approximate the implied pricing mechanism of the
market and to get deeper insights into the implied pricing formula. We did not want to
compare the suitability of different network types*?, learning algorithms or methods to
find the best network structure®® for our particular problem.

Hence the results presented were obtained using standard networks. The network of our
choice was a multilayer perceptron (MLP) with five inputs units, one hidden layer includ-
ing five up to eleven neurons and one output neuron. This has got three reasons: First of
all, the universal approximation property of MLP’s for most classes of linear and nonlinear
functions**, second its proven ability to estimate simultaneously the unknown derivatives
of the output function®® which is essential to get deeper reliable insights into the pricing
process of the market. Third, the possibility to compare our results to the results of some

earlier studies. As input parameters we used:
e the price of the underlying (5),
e the strike price of the option (X),

e time to maturity (T),

the riskless interest rate (r) and
e the expected volatility (o)

Our network is fully connected and has the structure shown in figure 1. Such a MLP has
the following functional form:

el = 1| e[ Yoentis ) +0103) + 020 )

j:

whereas
f :  smooth monotonically increasing transfer function,

wi(i,7) + weight between unit i of input layer and unit j of hidden layer,

wo(j) ¢ weight between unit j of hidden layer and the output unit,
f(z) . parameter i of input vector I,

61(j) : bias of unit j of hidden layer and

62(k) : bias of the output unit.

HProofs of

the universal approximation ability of MLP’s are presented in Hornik/Stinchcombe/White[1989] and
Hornik/Stinchcombe/White[1990].

42Hutchinson/Lo/Poggio[1994] used three different network types and could not observe any type
dominating the others.

43For example Anders/Korn/Schmitt[1996] used a model selection strategy to to get some insights into
the statistical significance of the input fed into the network.

“Hornik/Stinchcombe/White[1989].

“SHornik/Stinchcombe/White[1990].



Figure 1:
Structure of the Neural Network

Optionprice (O)

We used a logistic transfer function® because there exists a rather simple relationship
between the function and its derivatives?”. To simplify the notation the following functions
are introduced:

U) = Yelis)ii) + i) M
% = L))+ (8)

Using (7) and (8), the first and second partial derivatives of our neural network with

respect to the i-th input parameter have the following form:*®

—

62555” - aéﬁ?j]@wlu,mwggﬂ) o)
aznet(f) O[] Ly o O[]\ 2
af(@'f - a(Qz)Q (]Z:;un(l,])wz(ﬁ aﬂl) (1())
Of10] [ & N Ay A1)
- o (Lenti i) G 0)

To learn the implied pricing function and its derivatives the networks are "trained”
on market prices. Each training set consisted of examples with five input parameters

f(x) = m. Friedman[1994] confirms that this is the most popular choice and remarks that

the particular choice of the transfer function is seldom crucial.
) 3° )
TR = () (1~ f(r)) and S = 2HEL(1 - 21 ().
*8The derivation of the formulas and the adjustements necessary for standardized data are presented
in Appendix B.

10



[= (X, S,0,t,r) and the corresponding option price O — either the theoretical B&S value
or the trading price.*® We do not use any statistical inference method to test the statistical
significance of the input parameters, because looking at the price bounds of options we
know that there must be a functional relationship between the used input parameters®
and the option prices.

To find the network parameters the following cost—function is minimized using the
Backpropagation-Algorithm®'.

minz(netf(f) —0')? (11)

"Training” and ”learning” means nothing more then improving the estimates of the w’s
and #’s with respect to this cost—function. To increase the effectiveness of the learning
algorithm and minimize the effect of different dimensions of the input parameters we
standardized the input parameters and the corresponding option price using the following

formula
¢ —min(1)

g(i) =

All connection weights were initially randomized and during the training process deter-
mined. We trained our networks in batch mode. To implement the networks we used the
Stuttgart Neural Network Simulator (SNNS).52

(12)

max(¢) — min(z)

3.2.2 Performance Measures

Commonly used measures® for the approximation quality of neural networks are the mean
error (ME), the mean percentage error (MPE), the residual mean squared error (RMSE),
the mean absolute error (MAE), the mean absolute percentage error (MAPE) and R?

19Besides we trained networks on the time value of options and furthermore only on that part of the
time-value which differs from the corresponding B&S value. So we tried out a new stepwise approach.
The 1dea was to reduce the complexity of the problem by putting the linear part of the evaluation formula
out of consideration rsp. that part which is explained by the B&S formula (see Boeck et al.[1995]). But
the results for DAX options were not very encouraging (see Appendix C) The best fit was obtained for
option prices.

50This does not hold for o, but looking at the asymmetric pay-off pattern of calls and puts it is easy
to motivate a potential influence of the volatility of the underlying on option prices, too.

>1The
algorithm is based on a simple gradient descend. For an introduction see Hertz/Krogh/Palmer[1991],
p. 115ft.

2Gee Zell et al.[1995].

>3Note: All performance measures used in our study are founded on the difference between the non-
standardized option prices of the network and the observed market price or the theoretical B&S price! The
efficiency of neural networks can be increased by standardizing input and target values. It is important to
note that there is quite a difference between using the standardized values or the origin data to measure
the performance of the networks. Reliable information is only provided by origin data because otherwise
the error measured also depends on the method used to standardize the data. Using neural networks to
evaluate derivatives the error of interest ist the difference between the estimated prices and the target
prices. Using instead a function like O/X changes the error term considerable. Using O/X instead of O
leads in the case of the DAX option to ME’s, MSE’s and RMSE’s which are about 2000 times lower than
the real error of interest.

11



defined as:

ME = £¥L(0 Ot)
MPE = Ayl O
MAE = £3L,[0:— 04
|Ot O] (13)
MAPE = iyl o
RMSE = /£, (0~ 0,2
|2 - M
> iy (00

ME, MAE and RMSE measure the absolute difference between the output and the target
value while MPE and MAPE standardize this error. R? measures the closeness of variation
between the output function of network and target values. ME and the MPE are able to
detect a pricing bias whereas MAE, RMSE, MAPFE measure the dispersion of the output
values around the target values.

4 Empirical Results

4.1 Learning the Black & Scholes Formular

We trained the networks on theoretical B&S values on an uniform distributed parame-
ter region separately for calls and puts. Table 4 summarizes the interpolation results of
networks with five and eleven nodes.

Table 4:
Results B&S Interpolation
Option-Prices

Nodes Calls Puts

ME MAE RMSE R? ME MAE RMSE R?
5 0.458 3.484 4.93 0.998 | -0.012  2.469 3.66  0.999
11 -0.051  1.340 2.02  0.999 | -0.028 1.051 1.62  0.999

The average mean error of a MLP with eleven nodes is DM -0.051 for Calls and DM
-0.028 for Puts. The MAE is about DM 1.00 for both options and reveals that no bias
is observable. Increasing the number of nodes from 5 to 11 more than halves the RMSE.
This is also visible in figure 2. It is interesting to note that the pricing error is already
the same for the whole parameter range and puts are better interpolated.

The improved results for networks with 11 nodes are also reflected by the partial deriva-
tives. Looking at table 5 we can observe similar results for put and call options. For
networks with 11 nodes the error terms are clearly lower. For all first derivatives the
mean error of such networks is only about 1 percent of its average value. Looking at
rho the results visualized in figure 3 are even more impressive.’* Comparable results are

*The results presented are obtained for options with a strike price of 2100 furthermore assuming a
volatility of 0.125 and interest rates of 4.5 percent.
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Table 5:
Results B&S Interpolation
Partial Derivatives

Derivative  Nodes Calls Puts
ME MAE RMSE R? ME MAE RMSE R?
Delta 5 -0.00067  0.042 0.065 0.963 | 0.00370  0.027 0.048 0.980
11 -0.00151  0.018 0.031 0.992 | 0.00107 0.013 0.026 0.994
Vega 5 15.29  56.37 80.47 0.854 4.36  43.18 62.40 0.906
11 3.16  29.31 44.69 0.954 0.81 2291 34.98 0971
Theta 5 0.0212  0.079 0.154 0.617 | -0.0019  0.061 0.140  0.669
11 0.0072  0.043 0.118 0.763 0.0020  0.035 0.110 0.794
Rho 5 10.12  85.45 124.06 0.820 5.0 75.56 11451 0.874
11 5.50  30.69 44.98 0.975 -4.18  35.16 35.16 0.988
Gamma 5 -0.00002 0.0012 0.0016 0.566 | 0.00012 0.0012 0.0021 0.581
11 -0.00043 0.0008 0.0012 0.894 | -0.00022 0.0009 0.0013 0.885
SPD 5 -0.00042 0.0016 0.0020 0.243 | -0.00039 0.0014 0.0026 0.252
11 -0.00084 0.0011 0.0015 0.492 | -0.00074 0.0011 0.0015 0.531

observed for the other derivatives, too. Especially in a parameter region for S/X between
0.9 and 1.1 the derivatives are interpolated very well by MLP’s with 11 nodes.
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Figure 2:

B&S Interpolation-Error
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Figure 3:
B&S Interpolation Rho-Error
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4.2 The Market Formulars
4.2.1 The Implied Valuation Formulars

Assuming a market pricing formula with a complexity similar to the B&S model the used
networks should be able to approximate the pricing formula and its derivatives sufficienly
well. Looking at the error terms this can be confirmed (see table 6).

Table 6 compares the ability to "explain” market prices between our ANN’s and the Black
& Scholes formula. Before training the network we divided up the trading prices into two
equal subsamples. The first subsample (denoted as in) we used to train our networks, the
second (denoted as out) served for testing the pricing formular.

The table shows that the networks are able to explain the market prices far better than
the Black & Scholes model.?® This applies for in-sample tests as well as out-of-sample
tests. The results of the out—of-sample tests are sometimes even slightly better than the
in—sample results. This shows that there are no signs of overfitting even for networks with
eleven nodes.?®

The average error of a network with eleven nodes is about 15 Pfennige for calls compared
to nearly 3.00 DEM for the Black & Scholes formula and about 4 Pfennige for puts
compared to 66 Pfennige in the case of the Black & Scholes formula. It is interesting to
note that the networks as well as the Black & Scholes formula are better in explaining
put prices than call prices.

The implied pricing function of calls (figure 4) is an increasing function of moneyness
and time to expiration but shows higher prices®” compared to the B&S model on nearly
the whole parameter range. Only prices of in-the-money calls are below the B&S prices.
Strongest deviations are observable for out-of the money option with a long time to
maturity. This may be explained by the crash—o—phobia phenomenon shifting the state—
price—densities of states near the money to out—of-the-money states. We will come back

to this point later.

The price deviation is a monotonous decreasing function of time to maturity (T) and
an increasing function of moneyness (S/X). The same is valid for the percentage price
difference (figure 4). The strong increase for short term out-of the money options may be
explained by the very low theoretical B&S prices and due to the fact that the networks
are able to learn the minimum tick size which

S5Restricting our out-of-sample tests to options meeting the following often used conditions:
e 0.85< £ < 1.15.
e Maturities > 10 days.
e O > DM 10.

improves the results furthermore. For example for 11 nodes for calls the ME reduces to -0.015, the MAPE
to 0.080 and the MPE to -0.001, whereas for puts the ME reduces to 0.116, the MAPE to 0.059 and the
MPE to 0.003. This is interesting to note for the interpretation of the implied pricing functions.

56The different results compared to the study of Anders/Korn/Schmitt[1996] can be explained by three
factors. First by the larger data samples, Ssecond by the inclusion of options with short time to maturity
as well as deep-in and deep-out-of-the-money options which are difficult to handle and third by the
different target values.

®TRecognizable by negative differences in the of figure 4.
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Results Market Price Approximation

Option Prices 1995

¥86°0  96'€¢ 6600 ¥9¢°0 G8'¢c G990-| G660 €T'¥  LIEO 0£€0 06'¢  ¥I6'C e Swd
¥66°0  6¢¢  C¢¥00  G0G0 TLT  T1€0°0-|¢66'0 66°€ 9600 9610 ¢e'c 091°0- no
¥66°0  6¢¢  ¥r00  G0G0 GL'T GEOO0- | c660  T1€€E 9600 L1610 ¢E'c  C410- ut 1T
¥66°0  €¥'e  L¥00  ¥0G0 vL'T  0€0°0 | ¢66°0  L¥E  LEOO  60G°0 Ve 86g0- no
¥66'0 ¢v'e  Sv00  ¥0G0 GL'T 8200 | 6660 L¥E  8E00 0T¢0 Ve 96¢0- ut 8
€660 ¥9¢ 1900 610 P8T 6620 | 1660 €L'¢  ¢e00 €180 €9¢  0v9°0- no
€66'0 ¢9¢ 1900 61¢0 ¥8T 1660 | 1660  ¥L'€ 9200 VIGO0 €9'¢  9¢9°0- ut 9
¥66°0  L&¢ €400 01¢0 0L T €600 | T66°0 ¥9°¢  8¥00 610 8¢'¢ L0V 0- no
¥66°0  L&¢ €400 01¢0 0LT 6¥00 | T66°0 ¥9°¢  6¥0°0 0¢c0 8¢'¢  €0¥0- ut G
4 USIWH HUdIN dIdVIN HVIN HIN 4 USWY ddIW HdVIN dVIN  HIN
sing 18] ojdureg | sopoN

17



Figure 4:
Call-Options
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Figure 5:
Put-Options

Implied Pricing-Function

T
=X
=
S
s
T
Anavertubdl
SntLA
Wy lf
S
...n. "y_
I°
.,,
|

PRICE

300 -

240 -

180 7
120 7
60

Difference to B&S

DIFF.

20

0.905 270

Percentage Difference to B&S

1.000
S/X

% — DIFF.

—0.5 1

19



results in a very high percentage price difference. The same effect is observable for out-of
the money put options (lower graph on the right-hand side of figure 5).

The implied pricing function of puts (figure 5) is an increasing function of moneyness
but not always an increasing function of time to expiration. In-the-money puts show a
slightly negative relationship®®. On the whole parameter range the implied pricing function
provides higher prices. Short term in-the money options account for the highest deviation.
The percentage error is an increasing function of moneyness and seems to be independent
to time to maturity®®.

4.3 The Implied Partial Derivatives

Looking at the partial derivatives of the pricing formulas we are able to obtain insights
into the pricing process and to search for the reasons of differing option prices. The results
are presented for average parameter values®.

Deltas of call options show a similar structure but are lower compared to the B&S deltas.
This yields for gamma which is lower with the exception of short-term out-of-the money
options, too.

Vega also has a similar shape but shows negative values for short term in-the-money
options. The shape of theta is also very similar but seems to have a weaker impact on
in-the-money options whereas the impact on out-of-the money options is stronger. Rho
instead differs strongly from the B&S model. Only for short term in the money options
their seems to be an impact at all. Within this region the impact is strongly negative.

The delta of puts has also the same shape as B&S delta but is also lower on the whole
parameter range. Strongest deviations are observable for short-term in-the-money options.
This is reflected by gamma, too. Gamma only shows for short-term in-the money markable
deviations from the B&S gamma.

Vega also has a similar shape compared to the corresponding function of the B&S model
but shows negative values for short term in-the-money options. The same is valid for
theta. The market rho seems to have a weaker impact on put prices. The difference is a
decreasing function of time to maturity and a decreasing function of moneyness.

To sum up, for both kinds of options delta has nearly the same shape as the correspond-
ing function of the B&S model but is lower on nearly the whole parameter range. Vega
is negative for in-the-money calls and in-the-money puts. Hence the market values an
expected volatility increase negative for in-the money options. For in-the money options
with a short time to maturity strong positiv deviations from the B&S model are observ-
able. This yields also for market theta. The most interesting results are obtained for rho.
The implied partial derivative for both types of options differ strongly from the B&S
model. Rho is markable lower for calls (for short-term in-the-money options even nega-
tive) whereas rho for puts is less negative (except for short term in-the-money puts). On

%8In this context it is interesting to mention that the payoff of a put option is bounded whereas the
payoff of a call is unbounded.

>9The increase for out-of-the-money options is due to the ability of the networks to learn the minimum
ticksize.

50We used average parameter values for X, o and r to ensure that the fit of the network is best.
Visualized are the derivatives of calls and puts with a strike price of 2100. The volatility is assumed to be
0.125 (which corresponds to the annualized daily return volatility of the DAX in 1995) and the interest
rate 4.5 percent (average interest rate in 1995 see table 2).
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possible explanation of this effect is that the implied pricing formula takes into account
the negative correlation between interest rates and the DAX .
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Figure 6:
Delta — Call Options
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Figure 7:
Vega — Call Options
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Figure 8:
Rho — Call Options
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Figure 9:
Theta — Call Options
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Figure 10:
Gamma — Call Options
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Figure 11:

Delta — Put Options
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Figure 12:
Vega — Put Options

Implied Vega
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Figure 13:
Rho — Put Options
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Figure 14:
Theta — Put Options
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Figure 15:
Gamma — Put Options
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4.4 Implied State Price Density

Assuming the existence of a SPD and the dynamic completeness of the markets we are
able to derive the implied prices of 7 Arrow-Debreu” securities. It is important to note
that:

e We did not put any restriction, like positivity restrictions or the parametric form of
the SPD. on our network.

e Puts only contain information on states below their strike price and calls only on
states exceeding their strike price. Hence the networks trained on puts can not
contain any information about states above the highest strike price and networks
trained on calls about states below the lowest strike price.%!.

The graphs in figure 16 show implied state—price—densities with respect to time to maturity
and the future state measured as the future index level divided by the current index level.
The value 1 describes the state that will occur if the index level at expiration corresponds
to the current index level. The graphs show at least two things:

o First — within the trained parameter region all state prices were positive — not
revealing any obvious arbitrage opportunity.

e Second — It is visible how the uncertainty about future states decreases with de-
creasing time to maturity. This is reflected in the increasing state—prices or in other
words the more concentrated density.

That seems to demonstrate the rationality of the pricing mechanism of the market. Further
interesting results can be obtained by comparing the implied state—price—density with the
theoretical Black & Scholes values. To get a more clearly presentation in figure 18 the
SPD’s for different maturities are plotted separately. The dashed line corresponds to the
theoretical Black & Scholes state prices. Figure 20 the shows the difference to the B&S
state prices.

Looking at the used trading data we see that 99 percent of the call options have a mon-
eyness above 0.90 and 99 percent of the puts a moneyness below 1.14.5% This is clearly
reflected by the state prices. Only state prices outside this region show negative values,
which results — like mentioned before — out of the fact that the available put and call
prices do not contain any information about this states.

The implied state price densities differ markable from the state—price-density of the B&S
world (dashed graphs). Furthermore implied distributions of calls and puts differ for short-
term options. Whereas the distribution of calls has a symmetric shape for short- and
medium-term options (up to 90 days) the implied distributions of puts are shifted to the
right. For long—term options the implied distributions of calls are also shifted to the right.
What means that the implied function shows lower prices for states around the current
index level and higher prices for states with high index levels.

Furthermore in the state prices of puts we observe a phenomenon Rubinstein[1994] calls
”crash—o—phobia” which could be explained as a additional insurance premium against
strong negative price movements. This premium is observable for medium-term options
and seems to increase with increasing time to maturity®.

61 A European put option only has a pay off if the price of the underlying at the expiration day is below
its strike price and a European call option only if the price is above its strike price.

%2For short-term options the trained parameter region is even smaller.

53Look at the implied distributions of puts with 90 and 180 days to expiration in figure 20.
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Figure 16:

State—Price Density
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Figure 17:
Implied State—Price-Density
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Figure 18:
Implied State—Price-Density
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Figure 19:
State-Price-Density Differences to B&S
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Figure 20:
State-Price-Density Differences to B&S
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5 Conclusions

We demonstrated how to extract implied pricing formulas from market data by applying
ANN. So getting deeper insights into the pricing mechanism used by the market partici-
pants. Looking at the empirical results we see that:

e The used ANN’s are able to interpolate the Black & Scholes formula and its partial
derivatives very well.

e ANN’s are able to explain market prices far better than the Black & Scholes model.

e The implied pricing formula differs significantly from the Black & Scholes formula
— even in the case of the DAX options which meet ideal requirements for the
application of the Black & Scholes formula.

o Especially the partial derivatives — Rho and Vega — differ significantly from the
corresponding derivatives of the Black & Scholes model. This differences may be
explained by correlations between the input parameters, which the Black & Scholes
model does not account for. Increasing volatility seems to have a negative impact
on in-the-money options.

e The other partial derivatives have a similar shape compared to the corresponding
B&S derivatives but differ through the strength of their impact.

e The DAX options traded at the DTB exhibit a ”crash-o—phobia” phenomenon.

The most interesting question for ongoing research is if we can learn something from the
market or looking from a somewhat other point of view if the implied market formulas
are really better then the B&S model. Looking at the resulting hedging strategies of well—
trained neural networks should give insights if the market prices are fair and the markets
efficient.

Once trained, such networks are a very fast and easily handled valuation tool. Hence
ongoing research is going to focus on the valuation of derivatives which are hardly, for
example only with time-costly methods, valuable. Another interesting field of application
are derivatives for which no closed—form valuation formula is available.

The application and the comparison of different network types as well as "learning” algo-
rithms should allow to improve our results. Furthermore in the training process additional
input factors could be incorporated to account for example for market mikro structure
issues or liquidity. All these tasks will be left for further research.
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A Network Derivatives

In this chapter the partial derivatives of a MLP with one hidden layer and k output units
is derived. To simplify the notation the following functions® are introduced:

Iy
M) = dwili, )IE) + 0u()) (14)
=1
Lo
Mo(k) = ZWZ(jvk)f{Ql(j)} + 02(k) (15)
7=1
whereas
Ly :  number of input units,
Lo :  number of hidden units,
wi(i,7) :  weight between unit i of input layer
and unit j of hidden layer,
wo(j, k) : weight between unit j of hidden layer
and output unit k,
T(z) . parameter i of input vector I,
61(j) : bias of unit j of hidden layer and
62(k) : bias of unit k of output layer.

The output function of the output unit k of a MLP network with one hidden layer looks
using (14) and (15) as follows:

=

nety(I) = f[Qa(k)] (16)

The partial derivatives of the output unit k with regard to input parameter i is:

Onctll) DML 2y 2RO (17)

o)y (k) ‘o N (j)
omer(l) 0% 2f ()
olNoT(h)  Alh) (Z“”“’? UK =50, )
o1 (2 (")
L (it i)

(18)

Using a sigmoid or logistic transfer function® f which

U s - s (19)
yields
onety(I) B
oy SIQ(R)I(1 = f[Q2(K)])

(3 earlis a1 = 1) (20)

54The function can be interpreted as input of the different units.
65Using instead the tangens hyperbolicus function %[xx] =1- f(x)%
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and

OPnet(I) 82f af(h)
761,@)6_,(}0 = o0, (Zuﬂ (1, 7)wa(g, k) 90, )
X (i}MMwammagﬁ”) (21)

+ M(iwl(iaj)wl(hvj)(ﬂ?(]?k) zaJ;(Ql ))

To take the standardization of the input data and the output data into account we have
to modify the formula to get the correct derivatives. The output function of a network
with standardized input and target values is given by

I0) = g(It)) (22)

— _1 —
neti(l) = g7 (netr(l)) (23)
whereas
g :  function used for standardization,
f(z)* : non-standardized input parameter i,
T(z) : standardized input parameter i,
netz(I) : non-standardized network output and
neti(l) : standardized network output.

— — —

onet; (1) dnet; (1) dnety, (1) O1(i)

= = == = (24)
ol1(7)* dnety (1) 0l(z) Ol(:)*
_ 995" (nety (D)) Onety (1) dgi(1(7)") (25)
onety () 01())  O1(i)*
and
OPnetp (D) 995" (neti (1) Ineti (T) 9g:(1(0)*) (26)
A(i)*dT(h)* Onet,(DOL(h)* d1(:)  dI(i)*
095 (nety (I ))( O*neti(l) 9gi(1(1)7) | Inetr(D) 8%g:(I(1)") )
onetp(I)  \OL(1)dL(h)* OI(i)* o1(i) O1(i)*dL(h)*
whereas
g; . function used to standardize input parameter i and
go : function used to standardize the target value.

More precisely, using ¢ (see (12)) for standardizing the input as well as the target parameters
leads to:

8716?;.(1‘7‘(]) _ ma_)‘((.O) — mln(?) y anitk(f) (27)
al(2)* max(L(7)*) — min(I(¢)*) a1(z)
and
d*net, g, 9) _ _ mziX(O) — min (_‘O) _
oMoty (max((0)) — min(T0)7)) (max((0h)7) — min(1(0)7)
b 9
o1(z)0L(h)



B Network Parameters

Bias (Calls 11 Nodes)

6, (1) -0.58840
61(2) 0.37417
61 (3) -0.57864
61 (4) -0.17316
61 (5) 1.85720
6, (6) -1.02409
6, (7) 0.65206
61 (3) -0.97508
61 (9) -0.61033
6, (10) -0.56625
6, (11) -2.01742
6(1) 0.22074

Network Weights (Calls 11 Nodes)

i: Weight
wy (i, 1) 1: 0.57201, 2:-0.27432, 3:0.24589, 4: 0.23492,  5: -1.12052
w(4,2) 1: -3.54813, 2: 0.41835, 3:-0.67894, 4: -1.34480, 5: 0.53523
w1 (4, 3) 1: 3.05922, 2:-0.31798, 3:-0.28761, 4: 0.59460, 5: -3.04590
w(2,4) 1: -6.53084, 2:-2.32410, 3:1.25593, 4: 3.58300, 5: -4.49372
w(,5) 1:-16.00039, 2:-4.05903, 3:-1.31691, 4: -3.96295, 5: 5.29610
wi (2, 6) 1: -3.60152, 2:-3.68240, 3:0.62852, 4: -7.11775, 5: 8.73238
wy(4,7) 1: -1.16820, 2:-0.11216, 3:-0.13322, 4: -0.72364, 5: 1.30841
w (2, 8) 1: 1.86945, 2:0.21300, 3:-0.01270, 4: -3.42379, 5: 3.30959
w1(¢,9) 1: -0.34539, 2:-0.03479, 3:-0.10101, 4: 0.15602, 5: 0.38350
wy(e,10) | 1: -6.75212, 2:-0.27145, 3:-1.22901, 4: 0.68794, 5: 1.50068
wy (e, 11) | 1:-20.44959, 2:-1.27682, 3:-0.51192, 4:-15.64235,  5: 20.11668
j: Weight
wa (4, 1) 1: 0.96314, 2:-3.30625, 3:2.35614, 4: 2.25166, 5: 5.40473,
6: -7.92366, 7:-1.40035, 8:-4.27809, 9: -0.09130, 10: -3.74646
11:-19.82512
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Bias (Puts 11 Nodes)

6, (1) -0.45779
6, (2) 1.19295
61 (3) 3.08627
61 (4) 0.20418
61 (5) -0.74546
6, (6) 0.59314
6, (7) 0.45674
61 (3) 0.29647
61 (9) -0.82837
6, (10) 0.63285
6, (11) 0.23007
6,(1) 2.47536

Network Weights (Puts 11 Nodes)

i: Weight
wy (i, 1) 1: 0.63880, 2:-0.85715, 3:-0.66344, 4: 0.89275, 5: -2.91488
w(4,2) 1: -0.89603, 2:-3.10441, 3:-0.86908, 4: 3.18183, 5: -4.94099
w1 (4, 3) 1:-17.40225, 2:-7.42688, 3:-0.05951, 4: 2.80797, 5: -4.55926
w(2,4) 1: -0.17517, 2:-0.41435, 3:-0.67073, 4:-0.00452, 5: -0.94608
w(,5) 1: 6.00794, 2:2.50173, 3:-0.34262, 4: 6.17425, 5: -7.24374
wi (2, 6) 1: -2.15197, 2: 0.95174, 3:0.93012, 4: 0.67700, 5: -1.14964
wy(4,7) 1: 2.52420, 2:-1.12030, 3:-0.99898, 4: 3.76600, 5: -4.76535
w (2, 8) 1: 2.89889, 2:-1.17473, 3:0.32146, 4:-0.45313, 5: -1.15220
w1(¢,9) 1: -0.28404, 2:-0.52024, 3:-0.78772, 4: 1.25748, 5: -2.11221
wy(2,10) | 1:-18.31992, 2:-3.88896, 3:-0.15585, 4:11.90996,  5:-15.27501
w (e, 11) | 1: -5.82130, 2:-2.08686, 3:0.04722, 4: 3.18518, 5: -3.86175

j: Weight
wa (4, 1) 1: -2.55937, 2:-5.60405, 3:5.94110, 4:-0.26057,  5: -2.12908,
6: -2.35366, 7:-3.44292, 8:2.43090, 9:-1.90645, 10:-23.76661,

11: -5.29603

C Some more Results
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Results Market Price Approximation 1995

Time-Value
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Table 8:
Results Market Price Approximation 1995

Price Difference to B&S
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