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Abstract | In this paper we describe a new method to
extract structural informations from images. The loss of
spatial resolution and distortions from edges, as it occurs
with standard texture algorithms, are reduced to a mi-
nimum. Furthermore, we describe the inhomogeneity by
three di�erent structure types according to the structures
contained in SAR images. Finally we use a Neural Net-
work (RBF-Network) to get a more precise classi�cation
of urban areas from SAR-images.
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INTRODUCTION

The supervised classi�cation of multi-date ERS-1 im-
ages using smoothed grey level images usually causes a
considerably high degree of misclassi�cation within urban
areas. This is due to the similarity of the spectral signa-
tures of urban areas and some agricultural areas as well
as the resemblance of the signatures of forest areas and
loosely populated areas. To reduce the degree of misclas-
si�cation, additional information is needed. In the past,
this task was often solved by computing texture features
from the image. A main problem of texture features is
their sensibility to edges between homogeneous planes. In
addition, the extension of the measurement area results
in a loss of geometric resolution within the image.
The sensitivity of texture features relative to edges may

be reduced, if the planes de�ned by the edges are not too
small. This may be done by limiting the measurement area
to a sub-area around each pixel, where the corresponding
quantity has its minimum. Thus we avoid calculating the
quantity from an area containing an edge. In this manner
two features are extracted in order to describe the \pre-
sence" and the \intensity" of inhomogeneity, two more
features to describe the \kind of inhomogeneity", i.e. the
structure it results from.
There are mainly three di�erent kinds of structures

within SAR images, which may be characterized by the
spatial distribution of the dynamic peaks, namely 1) an
uniform spatial distribution, 2) an accumulation along an
edge and 3) a random spatial distribution caused by sin-
gle scattering targets. The �rst addresses areas of high
standard deviation without visible structures, the second
represents small, but not necessarily homogeneous pla-
nes as they occur in agricultural areas with small �elds,
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and the third one describes the phenomenon of urban are-
as imaged by SAR sensors, i.e. randomly arranged corner
re
ectors. Two more features are needed to determine the
kind of inhomogeneity, the �rst case of an uniform spatial
distribution is covered by the absence of the other ones.
Since the extracted features mostly show a complex dis-

tribution in the feature-space (they may even be constant
for some training areas), it is unfavourable to use them in
a Maximum-Likelihood classi�cation. One promising al-
ternative to handle such problems very well are Neural
Networks. Therefore a Radial-Basis-Function (RBF) net-
work was developed and implemented, which is generated
automatically from the training data. This RBF network
was successfully applied to the extracted features.

EDGE INSENSITIVE MEASUREMENTS

The extraction of structural features within a square
window around each pixel will result in distortions caused
by edges and in a loss of spatial resolution. On the other
hand it is necessary to extend the measurement area as
much as possible to achieve reliable results and not just
noise from textural features. Therefore, we limit the mea-
surement area to a sub-area around each pixel where the
corresponding quantity has its minimum; thus, edges re-
garding to the quantity measured are ignored. In practice,
we found a good compromise between loss of spatial reso-
lution and maximum sized measurement area by dividing
the square around the pixel in four sub-squares by a hori-
zontal and a vertical line. All extracted features described
in the remainder of this paper are derived from the image
in that manner. In addition, there is a problem when ed-
ges are close together of such a kind, that the size of the
respective planes is approximately the same or less than
the measurement area. This problem will be addressed by
two of the extracted structural features below.

INHOMOGENEITY IN SAR IMAGES

In SAR images the presence of speckle noise complica-
tes the estimation of inhomogeneity caused by objects on
the earth's surface. The most simple measurement|the
standard deviation �|leads to di�erent results for homo-
geneous areas at di�erent mean values �, since the speck-
le noise is of multiplicative nature. Therefore, we need to
calculate the \relative standard deviation"

RSD =
�

�
(1)

as a measure of inhomogeneity, which is independent from
the mean grey level in SAR images.



In the presence of small structures consisting of ho-
mogeneous planes we will mistakenly �nd inhomogeneity
with this feature. In order to avoid misclassi�cation we
use another quantity: the maximum size of a homogene-
ous plane found around each pixel, where the plane may
be one of eight triangles around the pixel. We derive this
value from the EPOS speckle �lter ([1]) where a homoge-
neous plane is need to calculate the mean in order to re-
duce standard deviation. The criterion used in the speckle
�lter is also the relative standard deviation. This second
feature, the \Size of Homogeneous Area" (SHA) is not
redundant. It is a measure for the statement \this pixel
contains inhomogeneity", while the RSD is a measure for
the degree of the inhomogeneity.

DESCRIBING STRUCTURES

Once we have detected inhomogeneity it would be use-
ful to describe the structure it is caused by. This may be
done by di�erent texture features as it for example Ha-
ralick ([2]) did. These measurements allow the description
of a lot of di�erent patterns, including ordered and disor-
dered textures. For remotely sensed data with a ground
resolution of about 25 meters, as in the case of ERS-1 or
Landsat-TM, this approach is not very suitable, because
there are only some simple textures distinguishable. In
addition, distortions from edges decrease the overall ac-
curacy of a classi�cation. Since most of the patterns we
found in ERS-1 SAR-images are irregular we call them
structures instead of textures. We found mainly the follo-
wing patterns in inhomogeneous areas:

Noise Pattern with an uniform spatial distribution of
dynamic peaks

Small Planes with an accumulation of dynamic peaks
at the edges, and

heaps of single scattering peaks with a random spa-
tial distribution of dynamic peaks.

In order to extract features adapted to SAR images we try
to describe these patterns by di�erent measurements. For
a distinction we need two features describing the inhomo-
geneity by edges and by single scattering peaks. The noise
pattern is then detected by the absence of the others.

Identi�cation of Small Planes

The identi�cation of small planes may be done by a
measurement within the frequency spectrum of the image.
Only structures containing planes at di�erent grey levels
will have portions at low frequencies (except zero). To
avoid the expense of calculating a Fourier transform we
apply a simple low pass �lter to the image by averaging
four values within a square window and interpret the stan-
dard deviation as a measure of the frequency spectrum
amplitudes within the according band. The standard devi-
ation � of the original image represents the amplitudes of

all frequencies, the standard deviation �low of the low pass
�ltered image represents those of the low frequencies. Ave-
raging is done within the sub-window around each pixel
where the standard deviation has its minimum, in order
to preserve edges. The \low frequencies portion" (LFP)
may then be approximated by the fraction

LFP =
�low

�
: (2)

If we assume the pixels within the measurement area to
be independent samples of the same event (i.e. the same
ground coverage and uncorrelated pixels), averaging of N
values will reduce the standard deviation within the area
by a factor 1=

p
N . If there are di�erent events the stan-

dard deviation will be reduced less than the given factor
and hence we may detect small planes within the struc-
ture by analyzing the relation given by the LFP above.
The correlation of neighbouring pixels does not matter,
because we need no absolute measurement of the amount,
the standard deviation will be reduced.
Notice that the extracted feature is independent of the

local standard deviation, if no structure is present. It is
determined just by the structural property of the area and
of course, by a constant obtained from the correlation of
neighbouring pixels. Therefore, its information is di�erent
from the \Size of Homogeneous Area" described above in
order to detect small planes of homogeneous areas.

Identi�cation of Single Scattering Peaks

Urban areas in SAR images are typically characteri-
zed by randomly distributed scattering peaks. Therefore,
a measurement to identify such structures has to ignore
the spatial distribution and just evaluate the local histo-
gram. Typically, the histogram consists of a Gaussian dis-
tributed majority and some outliers at higher grey levels
caused by corner re
ectors. To characterize such histo-
grams we use the number of outliers and the amount of
grey levels they di�er from the majority distribution. To
ensure independence from the local standard deviation
we use the proportion of the outliers at the top and the
bottom of the histogram to characterize the \Local Dis-
tribution Asymmetry" (LDA):

LDA =

NP
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. To limit the measurement to the outliers the sum con-
tains only pixels outside an interval of f standard devia-
tions from the local mean �. In practice we use f = 1:5.

CLASSIFICATION WITH CBF-NETWORK

Data showing no special distribution in feature space
require an universal classi�cation scheme. Nonlinear sta-



tistical regression models, like Polynom Classi�ers, have
been successfully applied to this problem. Also, certain
Neural Networks, like the Multilayer-Perceptron (MLP)
[3] or the Radial-Basis-Funktions (RBF) [4] belong to this
group of universal function approximators. The learning
procedure of a MLP is based on a nonlinear optimization
of an errorfunction, which may be a critical point. Besi-
des this the RBF shows a more robust behavior, as this
problem is reduced to a linear optimization by using lo-
cal receptive �elds in the transferfunction of the hidden
neurons. However, this requires an initialization of these
neurons by a cluster analysis of the input data.
Our proposed Network is a RBF-Network, using con�-

dences as the response of a neuron derived from the �2-
distribution of the Mahalanobis Distance (CBF), instead
of the commonly used gaussian function:

(x� �j)
TCj(x � �j) = �2n;1��: (4)

�j : mean of basisfunction j
Cj : covariance matrix of basisfunction j
n : dimension of data
� : con�dence output of basisfunction j

This Network expresses some interesting properities, e.g.
the mean �j and the covariance matrix Cj can be taken
directly from the cluster analysis. A standardization of
this function is not neccessary to de�ne the �eld size, as
it is common for Gaussian Networks [5].
A new cluster algorithm was developed to generate the

CBF-Network automatically. The algorithm is mainly ba-
sed on the multivariate Friedman-Rafsky-Test [6] using
the assumption of gaussian distributed data. The strategy
is to successively divide the cluster until all sub-clusters
show good gaussian properties. Besides this uncritical va-
luation, the test is mainly used to guide the cluster algo-
rithm through the feature space, selecting the most un-
likely sub-cluster to be split next.

EXPERIMENTAL RESULTS

All the extracted features are shown in Fig.1 for a sam-
ple of SAR data to demonstrate the e�ciency and ne-
cessity of the extracted features. The �rst row shows the
original data followed by rows showing the extracted fea-
tures RSD, SHA, LFP and LDA (extracted within a 13
x 13 square). The �rst two columns show di�erent ho-
mogeneous areas in a SAR image to demonstrate the in-
dependence of the features from the local mean in SAR
images, the third column contains an area with a synthe-
tically increased relative standard deviation which causes
a change of the RSD and SHA. The features LFP and
LDA show no signi�cant di�erence, i.e. they are struc-
tural features and therefore independent from the local
standard deviation. The fourth and �fth column contain
structural elements: an urban area and an area with small

�elds. The corresponding features LDA / LFP are high-
lighted to indicate the structure type. In the last column
small �elds with an increased relative standard deviation
are shown to demonstrate the di�erence between SHA|
which is highlighted only in the presence of homogeneous
small planes|and the LFP which indicates the type of
structure and therefore shows no di�erence in both cases.

Figure 1: Extracted features from di�erent patterns.

Within our test data set of the size 500 by 500 pixels
we had a signi�cant improvement by using the extracted
features. Urban areas are classi�ed much better and the
confusion of loosely populated urban areas with agricul-
tural areas is nearly eliminated.
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