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Abstract

The Besicovitch and Weyl pseudometrics on the space AZZ of biin�nite

sequences measure the density of di�erences in either the central or arbi�

trary segments of given sequences� The Besicovitch and Weyl spaces are

obtained from A
ZZ by factoring through the equivalence of zero distance�

We consider cellular automata as dynamical systems on the Besicovitch

and Weyl spaces and compare their topological and dynamical properties

with those they possess in the Cantor space�

� Introduction

A cellular automaton consists of a biin�nite array of cells containing letters
from a �nite alphabet� which are updated according to a local interaction rule�
Cellular automata have been of considerable interest both as models of physical
and biological phenomena and in Symbolic Dynamics as homomorphisms of the
shift �Hedlund ���	� They display a large spectrum of dynamical behaviours
ranging from stable to chaotic dynamics and they could also support universal
computation� For a survey� see Wolfram �
��� Culik II� Hurd and Yu ��� or
Blanchard� Maass and K
urka ����

When a cellular automaton is conceived as a dynamical system� the space of
biin�nite sequences is equipped with the product topology� which makes it home�
omorphic to the Cantor space� In this space the shift map has many chaoticity
properties like sensitivity to initial conditions and topological transitivity� How�
ever� the shift may be regarded as a shift of the observation point� in which case
the con�guration does not change at all� To distinguish the shift from chaotic
cellular automata which really change the structure of con�gurations� Cattaneo
et al� ��� consider the shift�invariant Besicovitch pseudometric� which has been
also used in the study of almost periodic functions �see e�g� Besicovitch �
�	�
The Besicovitch pseudometrics measures the density of di�erences in the central
part of two given sequences� One obtains the Besicovitch space by factoring the
space of biin�nite sequences by the equivalence of zero distance� A variant is
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the Weyl pseudometric� which measures the density of di�erences in arbitrary
segments of two given sequences�

Other heuristic reasons for considering the Weyl or Besicovitch space instead
of the Cantor space is that the Cantor metrics gives undue importance to the
coordinate �� and also that the notion of perturbation associated to this metric
cannot be interpreted physically�

Downarowicz and Iwanik ��� show that the Weyl space is pathwise connected
and incomplete� The Besicovitch space is also pathwise connected but complete�
Both spaces are in�nite�dimensional and neither separable nor locally compact�

Cellular automata are continuous with respect to both the Besicovitch and
the Weyl pseudometrics� so they de�ne dynamical systems in the corresponding
spaces� In the present paper we compare topological and dynamical properties of
cellular automata in these spaces with those in the Cantor space� When passing
from the Besicovitch or Weyl space to the Cantor space� cellular automata keep
chaoticity properties like topological transitivity and sensitivity �but in general
not equicontinuity or equicontinuous points	� Vice versa� when passing from the
Cantor space to one of the two others� cellular automata preserve chain tran�
sitivity and stability properties like equicontinuity� existence of equicontinuity
points and stability of periodic points �but not expansivity or even sensitiv�
ity	� Finally� Hedlund�s theorem states that for the Cantor topology the set of
all cellular automata coincides with that of continuous shift�commuting maps�
this is not true in the Weyl and Besicovitch spaces� there are indeed many
shift�commuting maps that are not given by any local rule�

� Dynamical systems

A dynamical system is a continuous map f � X � X of a nonempty metric
space X to itself� The n�th iteration fn � X � X of f is de�ned by f��x	 � x�
fn���x	 � f�fn�x		� A point x � X is �xed� if f�x	 � x� It is periodic� if
fn�x	 � x for some n � �� The least positive n with this property is called the
period of x� The orbit of x is the set o�x	 � ffn�x	 � n � �g� A set Y � X is
positively invariant� if f�Y 	 � Y � A point x � X is equicontinuous �x � E�f		
if the family of maps fn is equicontinuous at X� i�e� x � E�f	 i�

��� � �	��� � �	��y � B��x		��n � �	�d�fn�y	� fn�x		 � �	�

The map f is equicontinuous i�

��� � �	��� � �	��x � X	��y � B��x		��n � �	�d�fn�y	� fn�x		 � �	�

For an equicontinuous system E�f	 � X� Conversely if E�f	 � X and X is
compact� then f is equicontinuous� this need not be true in the non�compact
case� A system �X� f	 is sensitive �to initial conditions	� i�

��� � �	��x � X	��� � �	��y � B��x		��n � �	�d�fn�y	� fn�x		 � �	�
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A sensitive system has no equicontinuous point� however� there exist systems
with no equicontinuity points which are not sensitive� A system �X� f	 is �pos�
itively	 expansive i�

��� � �	��x �� y � X	��n � �	�d�fn�x	� fn�y		 � �	

A positively expansive system on a perfect space is sensitive�
A system �X� f	 is said to be �topologically	 transitive if for any nonempty

open sets U� V � X there exists n � � such that f�n�U 	�V �� 	� If X is perfect
and if the system has a dense orbit� then it is transitive� Conversely� if �X� f	
is topologically transitive and if X is compact� then �X� f	 has a dense orbit�
Indeed� the set fx � X � o�x	 � Xg is residual in this case� An ��chain �from
x� to xn	 is a sequence of points x�� � � � � xn � X such that d�f�xi	� xi��	 � � for
� 
 i � n� A system �X� f	 is chain transitive if for any � � � and any x� y � X
there exists an ��chain from x to y�

A �xed point x � X is stable if it is equicontinuous and there exists a
neighbourhood U � x such that for every y � U � lim

n��
fn�y	 � x� A periodic

point x with period n is stable if it is stable for fn�

� Cantor� Weyl and Besicovitch spaces

Let A be a �nite alphabet with at least two letters� The binary alphabet is
denoted by � � f�� 
g� For n � IN � denote by An the set of words over A of
length n� by A� � �n��An the set of �nite words over A� We also consider
words u � A�j�k� indexed by an interval of integers �j� k�� Denote by AZZ the set
of biin�nite sequences of letters of A� The i�th coordinate of a point x � AZZ is
denoted by xi� and x�j�k� � xj � � � xk � A�j�k� is the segment of x between indices

j and k� For u � A�j�k�� u� is the in�nite repetition of u� i�e� �u�	m�n�k�j��� �

um for n � ZZ and m � �j� k�� The cylinder of u � A�j�k� is the set

�u� � fx � AZZ � x�j�k� � ug�

The Cantor metric on AZZ is de�ned by

dC�x� y	 � ��k where k � minfjij � xi �� yig

so dC�x� y	 � ��k i� x��k�k� � y��k�k�� The cylinders are clopen sets for dC � It is
well known that all Cantor spaces �with di�erent alphabets	 are homeomorphic�
The Cantor space is compact� totally disconnected and perfect�

The Weyl pseudometric on AZZ is given by the formula

dW �x� y	 � lim sup
l��

max
k�ZZ

�fj � �k� 
� k� l� � xj �� yjg

l

�



Here � means the number of elements of a set� so dW �x� y	 � � if and only if

��l� � IN 	��l � l�	��k � ZZ	��fj � �k � 
� k � l� � xj �� yjg � l�	�

For x � AZZ denote by ex � fy � AZZ � dW �y� x	 � �g and denote by XW � fex �
x � AZZg the Weyl space over the alphabet A� Clearly every two Weyl spaces
�with di�erent alphabets	 are homeomorphic� The Weyl pseudometric could be
considered also on the set AIN of unilateral sequences� For x� y � AIN put

dW �x� y	 � lim sup
l��

max
k�IN

�fi � �k� 
� k� l� � xi �� yig

l

The map � � AZZ � AIN de�ned by ��x	 � x�x��x�x��x� � � � is a homeomor�
phism between the unilateral and bilateral Weyl spaces� In fact � is uniformly
continuous� so it preserves completeness�

The Besicovitch pseudometric on AZZ is de�ned as follows�

dB�x� y	 � lim sup
l��

�fj � �
l� l� � xj �� yjg

�l � 


so dB�x� y	 � � if and only if

��l�	��l � l�	��fj � �
l� l� � xj �� yjg � ��l � 
	�	�

For x � AZZ put again ex � fy � AZZ � dB�y� x	 � �g and XB � fex � x � AZZg
the Besicovitch space over the alphabet A� the notation is the same for the
Weyl and Besicovitch equivalence classes but they will always be easy to distin�
guish according to context� Clearly any two Besicovitch spaces �with di�erent
alphabets	 are homeomorphic and they are also homeomorphic to the unilateral
Besicovitch space obtained from the pseudometric

dB�x� y	 � lim sup
l��

�fi � ��� l
 
� � xi �� yig

l
� x� y � AIN

Since dB�x� y	 
 dW �x� y	� the identity on AZZ resolves into a continuous map
I � XW � XB �

Both pseudometrics are shift�invariant� for instance dW �	x� 	y	 � dW �x� y	�
In other words 	� considered as a continuous transformation on the Weyl or
Besicovitch space� is an isometry�

Both the Weyl and Besicovitch spaces are homogenous� For any u � �ZZ�
the map f � �ZZ � �ZZ de�ned by f�x	i � xi � ui mod � is a homeomorphism�
which sends �� to u� Using Toeplitz sequences� Downarowicz and Iwanik ���
show that the Weyl space is pathwise connected� In the same way we show this
also for the Besicovitch space and we show also that both spaces are in�nite
dimensional�
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A sequence x � AIN is Toeplitz if each of its subwords occurs periodically�
i�e� if

��n � IN 	��p � �	��j � IN 	�xn�jp � xn	�

Toeplitz sequences are constructed by �lling in periodic parts successively� For
an alphabet A put eA � A � f�g� For x� y � eAIN � T �x� y	 � eAZZ is the point
obtained by replacing the stars in x by y� Let ti be the increasing sequence of
all integers for which xti � �� Then put

T �x� y	i � xi if xi �� �

T �x� y	ti � yi otherwise

Consider a map f � f�� 
g�� eAZZ de�ned by induction� f�
	 � ��� then

f�x� � � � xn��	 � T �f�x� � � �xn	� ���	
�	 if xn � �

f�x� � � � xn��	 � T �f�x� � � �xn	� ��
	
�	 if xn � 
�

Thus

f��	 � � � � � � � � � � � � � � � �

f�
	 � �
 � 
 � 
 � 
 � 
 � 
 � � �

f���	 � ��� � ��� � ��� � � � �

f��
	 � � � �
� � �
� � �
 � � �

f�
�	 � �
 � 
�
 � 
�
 � 
 � � �

f�

	 � �


 � 


 � 


 � � �

For a real number x � ��� 
� with binary expansion x �
�X
i	�

xi�
�i put f�x	 �

lim
n��

f�x� � � � xn	� If �nx is never an integer for n � IN � then x has a unique

expansion and f�x	 � f�� 
gZZ� if �nx is an integer for some n� then x has two
binary expansions� and f�x	 is the same for both expansions� It contains exactly
one star� which can be �lled in so that f�x	 is periodic� If jx
 yj � ��m� then
x���m� � y���m�� therefore dW �x� y	 � ��m�� and f � ��� 
�� XW is continuous�

Proposition � The Weyl and Besicovitch spaces are pathwise connected and
in�nite dimensional�

Proof� Consider the continuous map f � ��� 
�� XW constructed above� Given
u � �ZZ the map g � ��� 
� � �ZZ de�ned by g�x	i � uif�x	i is continuous�
so XW and therefore also XB are pathwise connected� To show that XW is
in�nite dimensional� construct for any n an embedding g � ��� 
�n � XW of an
n�dimensional cube by

g�x�� � � � � xn	 � f�x�	� � � � f�xn	�f�x�	� � � � f�xn	� � � � �

The following proof is adapted from Marcinkiewicz �
���
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Proposition � The Besicovitch space is complete�

Proof� We prove this for the unilateral Besicovitch space� Let x�n� � AIN be a
Cauchy sequence� There exists a subsequence x�nj� such that dB�x�nj���� x�nj�	 �
��j��� Choose a sequence lj of positive integers such that lj�� � �lj and for
every l � lj

�fi � ��� l	 � x
�nj���
i �� x

�nj�
i g � l � ��j���

Then for k � j and l � lk

�fi � ��� l	 � x�nk�i �� x
�nj�
i g � l � ���j�� � � � �� ��k	 � l � ��j�

De�ne x � AIN by xt � x
�nj�
t if lj 
 t � lj�� and xt arbitrarily if t � l�� If

k � j and lk 
 l � lk��� then

�fi � ��� l	 � xi �� x
�nj�
i g 
 �fi � ��� lj	 � xi �� x

�nj�
i g�

�fi � �lj��� lj��	 � x
�nj���
i �� x

�nj�
i g� � � ��

�fi � �lk��� lk	 � x
�nk���
i �� x

�nj�
i g�

�fi � �lk� l	 � x
�nk�
i �� x

�nj�
i g


 lj � �lj�� � � � �� lk � l	��j 
 lj � �l � ��j

It follows that dB�x� x�nj�	 
 � � ��j� so x�nj� converges to x and since x�n� is a
Cauchy sequence� it converges to x as well� �

To show further properties of the Weyl and Besicovitch spaces� we use Sturmian
sequences �see e�g� de Luca �

� or Blanchard and K
urka ���	� For an irrational
x � ��� 
	 de�ne S�x	 � �IN by

S�x	n � � if � � nx
 k � 

 x for some k � IN �

S�x	n � 
 otherwise�

S�x	 is called a Sturmian sequence with density x�

Lemma � If x� y � ��� 
	 and x�y are all irrational� then

dW �S�x	� S�y		 � dB�S�x	� S�y		 � x�

 y	 � �

 x	y�

Proof� Consider the rotation

T �a� b	 � �a � x mod 
� b� y mod 
	

de�ned on the torus IR��ZZ�� T is uniquely ergodic and its invariant measure is
the Lebesgue measure� One has S�x	n �� S�y	n if and only if

Tn��� �	 � ��� 

 x�� �

 y� 
� � �

 x� 
�� ��� 

 y��

this set has Lebesgue measure x�

 y	 � y�
 
 x	� by unique ergodicity this is
exactly the density of the set of coordinates where S�x	n and S�y	n disagree�
�
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Proposition � The Weyl and Besicovitch spaces are neither separable nor lo�
cally compact�

Proof� For any � � a � b � 
 there exists an uncountable set Eab � �a� b	 such
that for all x� y � Eab� x� y and x�y are all irrationals� For every x� y � Ea�b

one has

a�

 b	 � dW �S�x	� S�y		 � dB�S�x	� S�y		 � b�

 a	�

It follows that neither XW nor XB is separable �i�e� they do not have countable
base	� Since b�

 a	 can be arbitrarily small� and since both XW and XB are
homogeneous� neither is locally compact� �

Let f � AZZ � AZZ be a W � or B�continuous map� Then f�ex	 � gf�x	� so
ef � XW � XW de�ned by ef �ex	 � gf�x	 is continuous and �XW � ef	 �or �XB � ef		
is a dynamical system� We refer to a dynamical property of a map f that
is continuous in at least one of the Cantor� Besicovitch and Weyl spaces by
pre�xing the letter C� B or W � for instance sensitivity in the Weyl space is
called W �sensitivity� Since dB�x� y	 
 dW �x� y	 the following statements are
true�

Proposition � Let f � AZZ � AZZ be both W � and B�continuous� Then
�� If f is W �transitive� then it is B�transitive�
�� If f is W �chain transitive� then it is B�chain transitive�
�� If f is B�expansive� then it is W �expansive�

Since the Besicovitch and Weyl spaces are not separable� no transformation can
have a dense orbit� Nevertheless there exist transitive transformations on them�

Example � The map f de�ned by f�x	i � x�i is W � and B�transitive�

This map is obviously continuous �but not shift�commuting	 on both spaces� To
check that it is transitive choose two points x and y� and de�ne z by putting
zk��n � yk and zi � xi for i �� k��n� thus z is at distance at most ��n from x�
and fn�z	 � y�

Proposition � Let �X� f	 be a dynamical system on a non�separable space X�
If �X� f	 is transitive� then it is sensitive�

Proof� By Proposition � there exist � � � and an uncountable set E � X such
that for every x� y � E� x �� y one has d�x� y	 � ��� We show that � is a
sensitivity constant for �X� f	� Let x � X� For every n � � there is at most one
z � E whose distance from fn�x	 is less than ��� Since E is uncountable there
exists z � E such that d�fn�x	� z	 � �� for all n � �� By transitivity� in every
neighbourhood U of x there exists y � U such that d�fn�y	� z	 � � for some n�
hence

d�fn�x	� fn�y		 � d�fn�x	� z	
 d�z� fn�y		 � ��
 � � �� �
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� Cellular automata

A cellular automaton is a C�continuous map f � AZZ � AZZ that commutes with
the shift 	 � AZZ � AZZ de�ned by 	�x	i � xi��� Every cellular automaton is
de�ned by some local rule F � A�r�� � A with radius r � � by

f�x	i � F �xi�r � � �xi�r	�

It follows that any cellular automaton is continuous for the Weyl and Besicovitch
pseudometrics� From now on we compare topological and dynamical properties
of cellular automata in the Cantor� Weyl and Besicovitch spaces�

Proposition � A cellular automaton f � AZZ � AZZ is surjective if and only if
it is W �surjective and if and only if it is B�surjective 	that is� if ef � XW � XW

or ef � XB � XB is surjective
�

Proof� Clearly if f is surjective so is ef � Suppose that ef � XW � XW is
surjective� By a theorem of Hedlund ���� f is surjective if and only if every
block u � A� has a preimage� Consider the periodic point x � u�� By the
assumption there exists y � AZZ such that dW �f�y	� x	 � �� It follows that in y
one can �nd blocks that are mapped to u� The proof for dB is identical� �

Proposition � If a cellular automaton f is C�equicontinuous� then it is both
W � and B�equicontinuous�

Proof� By the assumption for � � 
 there exists � � ��m such that for every
x� y � AZZ if x��m�m� � y��m�m� � then fn�x	� � fn�y	� for every n � �� There�
fore� if x�j�m�k�m� � y�j�m�k�m�� then fn�x	�j�k� � fn�y	�j�k� for every n � ��
Given � � � put � � �

�m�� and suppose that dW �x� y	 � �� so there exists l�
such that for all l � l� and all k � ZZ

�fi � �k� 
� k� l� � xi �� yig � l��

Thus in the interval �k�
� k� l�� fn�x	 may di�er from fn�y	 only in one of the
end intervals �k� 
� k�m�� �k� l 
m� 
� k� l� or in an interval �i
m� i�m�
for some i with xi �� yi� It follows that

cardfi � �k� 
� k� l� � fn�x	i �� fn�y	ig � l���m � 
	 � �m�

If l� � �m� then

�fi � �k� 
� k� l� � fn�x	i �� fn�y	ig

l
� ���m � �	 � �

so dW �fn�x	� fn�y		 � �� Thus f is W �equicontinuous� The proof of B�
equicontinuity is analogous� �


�



Proposition � If a cellular automaton f has a C�equicontinuity point� then it
has a W �equicontinuity point and a B�equicontinuity point�

Proof� Let r be the radius of f and z � AZZ be a C�equicontinuity point of f �
For � � ��r there exists � � ��m such that whenever y��m�m� � z��m�m� � u �
A�m��� then fn�y	��r�r� � fn�z	��r�r� for all n � �� We show that x � u� is
a W �equicontinuity point� For given � � � put � � �


m��r�� � If dW �x� y	 � ��
then there exists l� such that for all l � l� and all k � ZZ

�fi � �k� 
� k� l� � xi �� yig � l��

Every change in one of the blocks x�k���k��m��� � u with k � j��m � 
	 may
change only this block or m
 r positions in any of its two neighbouring blocks�
i�e� at most �m 
 �r � 
 positions� Thus

�fi � �k � 
� k � l� � fn�x	i �� fn�y	ig

l
� ���m 
 �r� 
	 � �

and dW �fn�x	� fn�y		 � �� The proof is practically the same in the Besicovitch
space� �

The following result is implicit in Hurley ����

Lemma � If x � AZZ is a C�stable periodic point of a cellular automaton f �
then 	�x	 � x and f�x	 � x�

Proof� Let p be the period of x� If �u� � x is an attracting neighbourhood of x�
then 	�x	 is a stable periodic point with attracting neighbourhood 	��u�	� For k
large enough �u��	k�u� and �u��	k���u� are both nonempty� For y � �u��	k�u�
and z � �u�� 	k���u� we get

	k�x	 � lim
n��

fnp�y	 � x � lim
n��

fnp�z	 � 	k���x	

so 	�x	 � x and x � a�� If f�x	 � b�� then a� � lim
n��

fnp�a�b�	 � b�� so

a � b and p � 
� �

Proposition 	 If x � AZZ is a C�stable periodic point of a cellular automaton
f � then ex is both W �stable and B�stable�

Proof� By Lemma �� x � a� for some a � A� By the proof of Proposition ��
ex is both W � and B�equicontinuous� Since x is C�stable� there is m � � such
that for a�m�� � A��m�m� � lim

n��
fn�y	 � x for every y � �a�m���� Then there is

s such that fs�a�m��� � �a�m��� with a�m�� � A��m���m���� so occurrences of
a spread at least one coordinate in both directions after s steps� For the Weyl
pseudometric consider a neighbourhood

U � fy � AZZ � dW �y� x	 � �
�m��g�







For y � U there exists l such that for every k

�fi � �k� 
� k� l��m � 
	� � yi �� ag � l�

so every subword of y of length l��m�
	 contains a�m�� as a subword� It follows
that for t � s�l 
 
	��m � 
	� f t�y	 � x� so x is W �stable� For the Besicovitch
pseudometric use the neighbourhood U � fy � AZZ � dB�y� x	 �

�
�m��g� �

Proposition �
 If a cellular automaton f is W or B�sensitive� it is also C�
sensitive�

Proof� If f is W or B�sensitive� it has no W � or B�equicontinuity point� so by
Proposition � it has no C�equicontinuity point and by Theorem � in K
urka �
��
it is C�sensitive� �

The existence of W � or B�transitive cellular automata is an open question�
so that the next statement may be empty� at least it tells us where not to look
for counterexamples�

Proposition �� If a cellular automaton f is W � or B�transitive� then it is
C�transitive�

Proof� Let f be B�transitive and u� v � A��m�m�� We show that �u��f�n�v� �� 	
for some n � �� Consider spatially periodic points u�� v�� By the assumption
for � � �

���m��� there exists x � AZZ and n � � with dB�x� u
�	 � � and

dB�y� v�	 � �� where y � fn�x	� It follows that there is l � � such that in the
interval �
m
��m�
	l�m���m�
	l� there are at most ��m�
	��l�
	� � �l��

�
di�erences� i�e�

�fi � �
m 
 ��m � 
	l�m � ��m � 
	l� � xi �� �u�	ig � �l��
�

�fi � �
m
 ��m� 
	l�m� ��m� 
	l� � yi �� �v�	ig � �l��
� �

Thus there exists at least one unperturbed block� i�e� there is jl�j 
 l such that
for j � ��m� 
	l� one has

x�j�m�j�m� � u� fn�x	�j�m�j�m� � v

and 	j�x	 � �u�� f�n��v�	� For W �transitivity apply Proposition �� �

Proposition �� If a cellular automaton f is C�chain transitive� then it is W �
and B�chain transitive�

Proof� Let F � A��r�r� � A be the local rule for f � A sequence x�i� � AZZ is a

��m�chain for dC if x
�n���
j � F �x

�n�
j�r� � � � � x

�n�
j�r	 for jjj 
 m� Since only the sites

jjj 
 m� r are involved� we identify ��m�chains with sequences x�i���m�r�m�r� �


�



A��m�r�m�r� � There exists a letter a � A such that a� is periodic� Denote
its period by p� Given � � � let m � IN be such that �r

�r��m�� � �� By the

assumption for every u � A��m�r�m�r� there exists a ��m�chain u���� � � � � u�n� �
A��m�r�m�r� such that u��� � a�m��r�� and u�n� � u� We can assume that
n � p� Let w � A��b�b� be a word containing all the words u�n�p���� � � �u�n�

as subwords� By the assumption again there is a ��b�r�chain from a�b�� to
w� Denote by q the length of this chain� If we restrict this chain to positions
where u�j� is located� we obtain a ��m�chain of length l from a�r��m�� to u�j��
It follows that there are ��m�chains of all lengths q� q � 
� � � � � q � p 
 
 from
a�m��r�� to u and since a� has period p there are chains from a�m��r�� to u
of all lengths greater than l� If we consider also chains from v to a�� we obtain
that there exists q such that for every pair u� v � A��m�r�m�r� there exists a
��m�chain from u to v� whose length is exactly q� Given x� y � AZZ we construct
now ��chain x���� � � � � x�q� leading from x to y for the Weyl pseudometric� In
every interval

�bj� cj� � �
m
 r � j��m � �r � 
	�m� r � j��m � �r � 
	�

where j � ZZ� we construct a ��m�chain x
�n�
�bj �cj �

from x�bj�cj � to y�bj �cj �� so x
��� � x

and x�q� � y� Moreover f�x�n�	k � x
�n���
k for every k � �bj �m� cj 
m�� so x�n�

is a ��chain for dW � �

Proposition �� No cellular automaton is B�positively expansive�

Proof� Let f � �ZZ � �ZZ be a cellular automaton and �x � � �� Choose an
integer q with �

q�� � � and consider points x� y � �ZZ that are symmetric �i�e�

x�i � xi and y�i � yi	 with nonnegative coordinates

x����� � �q
�


q
�

�q
�


q
�

�q
�

� � �

y����� � 
q
�

�q
�


q
�

�q
�


q
�

� � �

Then dB��
�� x	 � dB�


�� y	 � �
��q � Let F � A�r�� � A be the local rule of f �

Now there are four possible cases� in each of them one can �nd a pair of points
that contradicts expansivity�


� F �� � � ��	 � � and F �
 � � �
	 � �� in this case f�x	 � ��� thus for any
t � IN � dB�f t���	� f t�x		 � ��

�� F �� � � ��	 � � and F �
 � � �
	 � 
� in this case f�x	 � x� thus for any
t � IN � dB�f t���	� f t�x		 � �

��q � ��

�� F �� � � ��	 � 
 and F �
 � � �
	 � 
� in this case f�y	 � 
�� thus for any
t � IN � dB�f t�
�	� f t�y		 � ��

�� F �� � � ��	 � 
 and F �
 � � �
	 � �� in this case f���	 � 
�� f�
�	 � ���
f�x	 � y� f�y	 � x� hence �t � IN � d�f t���	� f t�x		 � �

��q � �� �


�



We do not know whether the same is true in the Weyl space�
The next set of observations partly account �together with Propositions �� �
and 
�	 for the fact that passing from the Cantor to the Besicovitch and Weyl
topologies considerably diminishes the set of sensitive CA�

Proposition �� Let f be a continuous shift�commuting map on the Weyl space�
Suppose f is W�equicontinuous� or W�sensitive� or that x is a W�equicontinuity
point for f � then 	n � f has the same property� The same statements are true
in the Besicovitch space�

Proof� These are immediate consequences of the facts that f commutes with
the shift and that 	 preserves the Weyl and Besicovitch pseudo�metrics� �

Now here are some examples showing that the converses of Propositions �� �� ��

� and 
� are false�

Example � The identity map f�x	 � x�

The identity is W �chain transitive �since the Weyl space is connected	� but not
C�chain transitive �since the Cantor space is totally disconnected	� Thus the
converse of Proposition 
� is false�

Example � The shift map 	�x	i � xi���

The shift map is a W �isometry� so it is W �equicontinuous� though it is C�
transitive and C�sensitive� Thus the converses of Propositions �� � and 
� are
not true� Observe that e	 � XW � XW has an in�nite number of �xed points�
Any sequence kn of positive integers growing fast enough yields a �xed point

x � � � �
k��k�
k��k�
k��k�
k� � � �

Example � The permutive cellular automaton f�x	i � xi�� � xi � xi��

isB�sensitive �see Cattaneo et al ���	� We do not know whether it is B�transitive�

Example � The multiplication cellular automaton f�x	i � xi��xixi���

The system has a C�stable �xed point ��� and a W �stable and B�stable �xed
point f��� In XB and XW

ef has many other �xed points like ��
�� 
����
and when the sequence kn grows fast enough the point

x � � � �
k��k�
k��k�
k��k�
k� � � �

�

Example � Gilman�s cellular automaton f�x	i � xi��xi���


�



Here the �xed point �� is W �stable but not C�stable� The converse of Propo�
sition � is false�

It is well known that in the Cantor topology any continuous shift�commuting
map on AZZ is a cellular automaton� This is not true for the Weyl pseudometric�

Example � Let the application f � AZZ � AZZ� where A � f�� 
� sg� be de�ned
as follows�

f�x	i � a� b� c if x�i�j���i�k��� � asjbskc
f�x	i � a� b if x�i�j����� � asjbs�

f�x	i � b� c if x����i�k��� � s�bskc
f�x	i � b if x������ � s�bs�� xi � b
f�x	i � s if xi � s

where a� b� c � ��

The restriction of this map to f�� 
gZZ is just the addition of the two nearest
neighbours� In AZZ the occurrences of s between letters of f�� 
g play a neutral
part� they stay unmodi�ed by f but let the information pass on between oc�
currences of � and 
� By de�nition f commutes with the shift� a coordinate of
f�x	 does not depend on any bounded set of neighbours� so f is not a CA� We
claim it is both W� and B�continuous� First let x � AZZ and suppose x�i � xi
except for i � �� then f�x�	i �� f�x	i for at most three values of i� �� the �rst
occurrence of a � or 
 to the left and the �rst one to the right� Now consider
y � AZZ and an integer n � �� for each interval of coordinates �k� k � n 
 
��
k � ZZ one has

�fj � �k � 
� k � l� � f�x	j �� f�y	jg 
 � ��fj � �k � 
� k� l� � xj �� yjg� ��

The �rst term of the right�hand sum is a very rough majoration of the di�erences
between f�x	 and f�y	 arising in this interval from di�erences between x and
y in the same interval� the term � majorates the number of di�erences arising
in the interval because of di�erences between x and y outside this interval�
Dividing by n and taking the limsup one obtains dW �f�x	� f�y		 
 �dW �x� y	�
and the same is obviously true for dB� since one has only to consider one value
of k for each odd n� so f is both W �continuous and B�continuous�

This example has an interesting dynamical property� there is a unique W �
equicontinuous point for f � One easily shows that the �xed point fs� has this
property� all other points in the Weyl space have not� because they inherit the
sensitivity property of their coordinates on f�� 
g�
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AbstractWhether there exists a time optimal solution of the two�dimensional

�ring squad synchronization problem ��FSSP� for short� or not is a long stand�

ing open problem
 We introduce a combinatorial problem which we call �the

path extension problem for the two�dimensional array� �PEP� for short�� and

show that if �FSSP has a time optimal solution then PEP has an O�n�� time

algorithm
 PEP seems to be a computationally hard problem and hence our

result suggests that �FSSP has no time optimal solution


� Introduction

The �ring squad synchronization problem �FSSP� for short� is a problem in automata

theory that has a long history
 In this paper we consider one of its variations� the two�

dimensional �ring squad synchronization problem ��FSSP� for short�


One of the most fundamental problems concerning �FSSP is whether it has a time

optimal solution or not� and the problem remains still open
 This paper is an attempt to

attack this open problem by a complexity theoretical approach
 We introduce a problem

which we call �the path extension problem for the two�dimensional array� �PEP� for

short�� and show that if �FSSP has a time optimal solution then PEP has an O�n�� time

algorithm


At present we do not know any lower bound for the time complexity of PEP
 However�

as we will show by an example later� the answer to PEP depends on the input in a subtle

way� and it is quite probable that PEP has no time e�cient algorithm such as an O�n��

time algorithm
 Our result implies that �FSSP has no time optimal solution under this

probable assumption
 It is easy to see that PEP is in NP
 If we can show in the future

that PEP is NP�complete� then our result implies the same under the more convincing

assumption �P ��NP�


Complexity theory and automata theory have had fruitful interactions
 However these

interactions have mainly concerned the complexity of solving problems in automata theory

such as deciding equivalence of regular expressions
 Our result gives an example that a

solution of a purely complexity theoretical problem might lead to a solution of a purely

automata theoretic problem


First we explain the original FSSP
 The problem was posed by J
 Myhill in �	��


See ��� for the origin of the problem and ��� for a survey
 The problem is to construct a

��



�deterministic� �nite automaton A that satis�es some conditions
 The automaton A has

two inputs� I� from the left and I� from the right� and two outputs� O� to the left and

O� to the right �Fig
 ��a��
 The values of the outputs O�� O� at a time t are the state of

A at the time t
 The state of A at a time t � � is a function f�s� r�� r�� of three values�

the state s of A at time t� the value r� of its left input I� at time t� and the value r�

of its right input I� at time t
 We place identical copies A�� A�� � � � � An of A in a linear

array� and connect their inputs and outputs as shown in Fig
 ��b�
 The value of the left

input I� of A� and the value of the right input I� of An are always a special value �


Among the states of A are three special states Q� G� F
 We call these three states Q� G�

�a�

� �

� �O�

I�

I�

O�

�b�

A� A� An�� An

� � � � � �

� � � � � �
�

�

Figure �� The original FSSP

F the quiescent state� the general state and the �ring state� respectively
 We require the

value f�Q� r�� r�� to be Q for r�� r� � fQ��g
 In other words� Ai in the quiescent state

cannot enter a non�quiescent state unless at least one of its neighbors Ai��� Ai�� enters

a non�quiescent state


At time 
� the state of A� is G and the states of all other A�� � � � � An are Q
 Then

the states of A�� � � � � An at times 
� �� � � � are completely determined
 Let st�A� n� p� t�

denotes the state of Ap �� � p � n� at time t�� 
�� where n is the number of the copies

of A in the array
 The problem is to construct a �nite automaton A such that� for any

n�� �� there exists a time tn such that

��� st�A� n� p� t� �� F for any t � tn and any p �� � p � n��

��� st�A� n� p� tn� � F for any p �� � p � n�


Intuitively� A� is a general and A�� � � � � An are soldiers
 At time 
 the general gives the

order to �re to the soldiers� but information can be exchanged only between two adjacent

soldiers at one time step
 The problem is to design a rule to exchange information so

that all the soldiers including the general will �re simultaneously at some time tn
 The

rule must be independent of n and the information exchanged between adjacent soldiers

must be from a �nite set that is independent of n


We call a �nite automaton A that satis�es the above mentioned conditions a solution

of the FSSP
 For each solution A� we call the time tn the �ring time of the solution for

an array of size n� and denote it by ft�A� n�
 To construct a solution is not di�cult� and

in ��� it is stated that usually it takes two to four hours for a person to �nd a solution


��



For each n� we de�ne the minimum �ring time of an array of size n as mft�n� �

minfft�A� n� j A is a solutiong� and call a solution A a time optimal solution if ft�A� n� �

mft�n� for any n�� ��
 We can easily show that mft�n� � �n � � for any n �� ��� and

hence a solution A will be time optimal if ft�A� n� � �n � � for any n �� ��
 Such a

solution was �rst found by E
 Goto in �	��
 The number of the states of Goto�s solution

was quite large but since then the number has been reduced considerably �see ����


Next we explain �FSSP
 By a position we mean an element p � �x� y� of the set Z�Z

of all pairs of integers
 We say that two positions p � �x� y�� p� � �x�� y�� are adjacent if

either jx� x�j � � and y � y� or x � x� and jy � y�j � �
 By a con�guration we mean a

pair C � �S� pg� of �i� a �nite set S of positions that is connected by the above de�nition

of adjacency� and �ii� an element pg �the general� of S
 �More precisely� we identify two

con�gurations that are transformed to each other by the shift of the origin� and hence a

con�guration is an equivalence class
� Fig
��b� shows an example of con�gurations
 Here�

each position is represented by a square and the general is marked with shadow lines


In the variation �FSSP� each �nite automaton A has four inputs� I�� � � � � I�� each

corresponding to one of the four directions� right� up� left� down� and also four outputs

O�� � � � � O� each corresponding to one of the four directions �Fig
 ��a��
 For a con�gura�

tion C � �S� pg�� we place a copy of A to each position in S
 The connection of inputs

and outputs of copies is similar to that in the original FSSP
 The value of an input that

has no corresponding output is always �
 At time 
� the state of the copy at the general

pg is G and the states of all other copies are Q


�a�

� �

� �

�

�

�

�

I� O�

O� I�

O�

I�

I�

O�

�b�

Figure �� The variation �FSSP

We can naturally de�ne the state st�A�C� p� t� of a copy of A at a position p in a

con�guration C at a time t
 Using this st�A�C� p� t� we can de�ne �a solution of �FSSP��

�the �ring time ft�A�C�� of a solution A for a con�guration C� �the minimum �ring time

mft�C�� of a con�guration C� and �a time optimal solution of �FSSP
� In the de�nition of

�a solution of FSSP�� we considered only linear arrays A�� � � � � An that have at least two

copies �that is� n � ��
 Similarly� in the de�nition of �a solution of �FSSP� we consider

only con�gurations that have at least two positions
 This is because of a technical reason

�	



that many of our results fail for the special case where the con�guration has only one

position


In ��� the author obtained some results on �FSSP
 We can de�ne a variation of �FSSP

where we allow in�nite state automata as solutions
 Let mftinf�C� denote the value that

corresponds to mft�C� for this variation of �FSSP
 Then the results in ��� are summarized

as follows�

��� mft�C� � mftinf�C� for any C�

��� there is a time optimal solution of this variation of �FSSP� that is� there is an

in�nite state solution A such that ft�A�C� � mftinf�C� for any C


Moreover� we explicitly showed the structure of a time optimal in�nite state solution A of

���� and this gave an algorithm to compute the value of mftinf�C� �� mft�C��
 However�

the most interesting problem� that is� the problem whether �FSSP has a time optimal

solution or not� has remained open


Finally we explain the path extension problem in the two�dimensional array� PEP


By a path we mean a nonempty �nite sequence p� � � � pn of di�erent positions such that

pi and pj are adjacent if and only if ji � jj � �
 We call the value n the length of the

path� and p� and pn the start position and the end position respectively
 Fig
 � shows

an example of paths
 The start position is shown with shadow lines
 When we regard a

path p� � � � pn as a con�guration� we assume that the start position p� is the general
 In

Figure �� Path Extension Problem �PEP�

the problem PEP we are given a path p� � � � pn of length n and we are required to decide

whether there exists a path of the form p� � � � pnq� � � � qn or not �that is� whether or not

we can extend the path p� � � � pn from its end position pn to a path of total length �n�


In Fig
 � �a�� �b� we show two paths
 They di�er only in the parts in the circles


However� the answer to PEP is �YES� for �a� �we show how to extend the path with

dotted lines� and �NO� for �b�
 This example shows that the answer to PEP depends

on the form of the path in a quite subtle way
 At present� the exhaustive search with

backtracking is the only algorithm we know for PEP
 The answers to the paths of Fig
 �

�a�� �b� were obtained with this algorithm� and the computation time was �� minutes for

Fig
 � �a� and �� minutes for Fig
 � �b� by a �

MHz Pentium II personal computer


In the remainder of the paper we show that if �FSSP has a time optimal solution then

PEP has an O�n�� time algorithm
 The machine model we are assuming is the standard

�




�a� �b�

Figure �� Examples of PEP

deterministic multitape Turing machines and the language to be decided is the set LPEP

of sequences x�x� � � � xn of four symbols R� U� L� D such that ��� the sequence of length

n�� of the positions traveled by proceeding to the directions x�� x�� � � � � xn starting from

a position is a path� and ��� the answer to PEP for the path is �YES
� Here the four

symbols R� U� L� D mean to proceed to the right� up� to the left� and down� respectively


� Minimum �ring time of paths

In this section we show an explicit formula for the minimum �ring time mft�p� � � � pn� of

con�gurations of the form of paths p� � � � pn


By the boundary condition of a position p in a con�guration C we mean the informa�

tion of whether the adjacent position p� of p is in the con�guration C or not for each of

the four directions


Let p� � � � pn be a path and i be a value such that � � i � n
 By e�p� � � � pn� i� we

denote the maximum value of m such that there exists a path of the form p� � � � piq� � � � qm

such that the boundary condition of pi in p� � � � pn and that in p� � � � piq� � � � qm are the

same
 If there is no upper bound for such m then we de�ne e�p� � � � pn� i� to be �


Equivalently� we may de�ne e�p� � � � pn� i� to be the maximum value of m such that there

exists a path of the form p� � � � pipi��q� � � � qm for � � i � n� �� and to be 
 for i � n
 We

have e�p� � � � pn� �� ��� p�p� � � � pn� n� � 
� and e�p� � � � pn� i� is a non�increasing function

of i


For a path p� � � � pn let i� be the value de�ned by

i� � minfi j � � i � n� i � e�p� � � � pn� i�g�

This value is well�de�ned because the left�hand side value i of the inequality increases

from � to n and the right�hand side value e�p� � � � pn� i� decreases from � to 

 We call

pi� the critical position of the path p� � � � pn
 The critical position completely determines

the minimum �ring time mft�p� � � � pn� of p� � � � pn


��



Theorem � Let p� � � � pn be a path �n � �� and pi� be its critical position� Then

mft�p� � � � pn� �

�
�i� � � if i� � e�p� � � � pn� i���

�i� � � if i� � � � e�p� � � � pn� i���

�Proof� We show the proof only for the case i� � e�p� � � � pn� i��
 The proof for the case

i� � � � e�p� � � � pn� i�� is similar


First we show mft�p� � � � pn� � �i� � �
 Let A be an arbitrary solution of �FSSP
 If

i� � n then we have a contradiction � � i� � e�p� � � � pn� i�� � e�p� � � � pn� n� � 

 Hence

we have i� � n� �� and there are positions q�� � � � � qi� such that p� � � � pi�pi���q� � � � qi� is

a path
 Let X� Y denote the paths p� � � � pn� p� � � � pi�pi���q� � � � qi� respectively
 Then we

can show the following by the mathematical induction on t�

��� For 
 � t � i� � ��

st�A�X� i� t� � st�A� Y� i� t� for � � i � t� ��

st�A�X� i� t� � Q for t� � � i � n�

st�A� Y� i� t� � Q for t � � � i � �i�


��� For i� � t � �i� � ��

st�A�X� i� t� � st�A� Y� i� t� for � � i � �i� � t�

st�A� Y� i� t� � Q for t � � � i � �i�


Especially we have st�A�X� �� t� � st�A� Y� �� t� and st�A� Y� �i�� t� � Q for any t � �i���


From st�A� Y� �i�� t� � Q and the fact that A is a solution we have st�A� Y� �� t� �� F


From this and st�A�X� �� t� � st�A� Y� �� t� we have st�A�X� �� t� �� F
 Hence� we have

st�A� p� � � � pn� �� t� �� F for any t � �i� � �� and hence ft�A� p� � � � pn� � �i� � �
 The

automation A was an arbitrary solution
 Hence we have mft�p� � � � pn� � �i� � �


Next we show mft�p� � � � pn� � �i� � �


For two positions p� q in a con�guration C� the distance between p� q in C is �the

length of the shortest path connecting p and q in C� minus one
 This is the shortest time

for a signal to travel from p to q in C


Let D be the class of all con�gurations C satisfying the following conditions


��� The path p� � � � pi� is included in C and p� is the general


��� For each i such that � � i � i�� the boundary condition of pi in C is the same as

its boundary condition in p� � � � pn


Note that the path p� � � � pn itself is in the class D


If C is a con�guration in D� then the distance between pi� and any position in C is at

most i�
 This is obviously true for positions in p� � � � pi� because the distance between pi�

and pi �� � i � i�� is i�� i � i��� � i�
 Positions on the other side of pi� in C might not

constitute a path
 However� if there is a position p in this part of C such that the distance

between pi� and p in C is at least i� � �� this means that there is a path of the form

��



pi���q� � � � qi��� in C that does not touch p� � � � pi���� and hence e�p� � � � pn� i�� � i� � �


This contradicts our assumption i� � e�p� � � � pn� i��


We construct a �nite automaton A�
 Although A� is not a solution of �FSSP� later it

will be used to construct a solution A such that ft�A� p� � � � pn� � �i� � �
 Suppose that

copies of A� are placed in positions of a con�guration C
 We construct A� so that A�

satis�es the following conditions


��� If C is not in the class D then no copies of A� in C enter the state F


��� If C is in the class D then all copies of A� in C enter the state F at time �i� � �


Especially� all copies of A� in C enter the state F at time �i� � � if the con�guration C

is the path p� � � � pn itself
 We explain the structure of A� by explaining how signals are

generated� propagate and vanish in copies of A� in the con�guration C


At time 
 a signal U is generated at the position of the general
 Its purpose is to see

whether the con�guration C is in the class D or not
 To see this� the signal U travels

from p� to pi� along the path p� � � � pi� in C supposing that the position of the general of

C is p�


If the signal U �nds some i �� � i � i�� such that either �i� the position pi is not in

C or �ii� the position pi is in C but its boundary condition in C is di�erent from that in

p� � � � pn� then the signal U has found that C is not in D
 In this case the signal Uvanishes

instantly and no copies of A� in C enter the state F
 Thus� A� satis�es the condition ���


Suppose that the signal U has veri�ed that for each i �� � i � i�� there is a position

pi in the con�guration C and its boundary condition in C is the same as that in p� � � � pn


Then the signal U has found that C is in D
 In this case the signal U arrives at pi� at

time i� � �
 As soon as U arrives at pi� � a new signal Vi� is generated at pi� at time

i�� �� and then the signal Vi� vanishes at the next time i�
 Moreover� when a signal Vi is

generated at a position p in C at a time t �� � i � i��� a signal Vi�� is generated at each

of the adjacent positions of p in C at the time t � �� and then the signal Vi�� vanishes

at the time t � �
 Intuitively a signal Vi is an order to ��re after i step time
� Finally�

when a signal Vi is generated at a position in C at a time t �
 � i � i��� the copy of A�

at the position counts i step time and enters the state F at time t� i


The signal Vi� is generated at pi� at time i�� �� and the distance between pi� and any

position in C is at most i�
 Hence at any position p in C a signal Vi��i is generated at

time �i� � �� � i for some i �
 � i � i��� and the copy of A� at the position enters the

state F at the time �i� � �� � i� �i� � i� � �i� � �
 Therefore� A� satis�es the condition

���


It is not di�cult to see that a �nite number of states is su�cient to simulate this

behavior of A�
 Hence� we can design A� as a �nite automaton
 �Of course A� essentially

depends on p� � � � pn
� Let A�� be an arbitrary solution of �FSSP and let A be the �nite

automaton that simulates both of A�� A�� and enters F if at least one of A�� A�� enters

F
 Then A is a solution of �FSSP such that ft�A� p� � � � pn� � �i� � �
 This shows that

��



mft�p� � � � pn� � �i� � �
 �

In Fig
 � we show three examples of the calculation of the value mft�p� � � � pn�
 Let s

denote the value such that e�p� � � � pn� s � �� � �� e�p� � � � pn� s� � �
 Fig
 � �a� is an

example such that s � i� � n� Fig
 � �b� is an example such that s � i� � n � �� and

Fig
 � �c� is an example such that s � i�


Corollary � Suppose that p� � � � pnr is a path �n � ��� Then mft�p� � � � pnr� � �n� � or

mft�p� � � � pnr� � �n� � according as there exists a path of the form p� � � � pnrq� � � � qn or

not�

�Proof� Suppose that there is a path of the form p� � � � pnrq� � � � qn� and hence e�p� � � � pnr�

n� � n
 We have e�p� � � � pnr� n��� � e�p� � � � pnr� n��� � n��
 Hence either ��� i� � n�

e�p� � � � pnr� i�� � i�� or ��� i� � n � �� where i� is the value minfi j � � i � n � �� i �

e�p� � � � pnr� i�g
 In the case ��� we have mft�p� � � � pnr� � �i��� � �n��� and in the case

��� we have mft�p� � � � pnr� � �i�� � � �n
 In any case we have mft�p� � � � pnr� � �n� �


Suppose that there is no path of the form p� � � � pnrq� � � � qn� and hence e�p� � � � pnr� n� �

n� �
 Then either ��� i� � n� e�p� � � � pnr� i�� � i� � �� or ��� i� � n� �
 In the case ���

we have mft�p� � � � pnr� � �i� � � � �n� �� and in the case ��� we have mft�p� � � � pnr� �

�i� � � � �n� �
 In any case we have mft�p� � � � pnr� � �n� �
 �

� Path extension problem for the two�dimensional

array

Now we are ready to state our main result on the relation between �FSSP and PEP


Theorem � The answer to PEP for a path p� � � � pn is �YES� if and only if there exists

a position r such that p� � � � pnr is a path and mft�p� � � � pnr� � �n� ��

�Proof� We have

The answer is �YES�

�	 
r�p� � � � pnr is a path � 
q� � � � qn �p� � � � pnrq� � � � qn is a path��

�	 
r�p� � � � pnr is a path � mft�p� � � � pnr� � �n� ��� �

Corollary � If �FSSP has a time optimal solution then the set LPEP is decidable within

O�n�� time with a deterministic multitape Turing machine�

�Proof� Assume that �FSSP has a time optimal solution A
 Suppose that we want to

decide whether a sequence x� � � � xn of four symbols R� U� L� D is in LPEP or not
 Let

p�� � � � � pn�� be the sequence of positions of length n � � determined by the sequence

x� � � � xn of symbols


First we must test whether p� � � � pn�� is a path or not� or equivalently whether or not

there exist no i� j �� � i� i � � � j � n � �� such that either pi � pj or pi and pj are

adjacent
 This can be checked within O�n�� time


��



The position where e�p� � � � pn� i� becomes �nite for the �rst time �the value s�


The position where i � e�p� � � � pn� i� holds true for the �rst time �the value i��
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Figure �� Examples of Calculation of mft�p� � � � pn�
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Suppose that p� � � � pn�� is a path
 Then it su�ces to check the condition�


r�p� � � � pn��r is a path � mft�p� � � � pn��r� � �n� ��

�	 
r�p� � � � pn��r is a path � ft�A� p� � � � pn��r� � �n� ���

There exists at most three r such that p� � � � pn��r is a path
 To test the condition

ft�A� p� � � � pn��r� � �n � � for a speci�c r� we simulate the behavior of n � � copies of

A placed at the n� � positions p�� � � � � pn��� r until time �n
 The simulation of one time

step can be carried out within O�n� time
 Hence the simulation of up to time �n can

be carried out within O�n�� time
 Hence� all the computation can be carried out within

O�n�� � �O�n�� � O�n�� time
 �
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Topological Mixing and Denseness of Periodic Orbits

for Linear Cellular Automata over Zm

Luciano Margara�

Abstract

We study two dynamical properties of linearD�dimensional cellular automata over Zm
namely� denseness of periodic points and topological mixing� For what concerns denseness
of periodic points� we complete the work initiated in ���� ���� and �	� by proving that a
linear cellular automata has dense periodic points over the entire space of con
gurations
if and only if it is surjective �as conjectured in �	��� For non�surjective linear CA we give
a complete characterization of the subspace where periodic points are dense� For what
concerns topological mixing� we prove that this property is equivalent to transitivity
and then easily checkable� Finally� we classify linear cellular automata according to the
de
nition of chaos given by Devaney in �
��

� Introduction

Cellular Automata �CA� are dynamical systems consisting of a regular lattice of variables
which can take a �nite number of discrete values� The global state of the CA� speci�ed by
the values of all the variables at a given time� evolves according to a global transition map F
based on a local rule f which acts on the value of each single cell in synchronous discrete time
steps� A CA can be viewed as a discrete time dynamical system �X�F � where F �X � X is
the CA global transition map de�ned over the con�guration space X� CA have been widely
studied in a number of disciplines �e�g�� computer science� physics� mathematics� biology�
chemistry� with di�erent purposes �e�g�� simulation of natural phenomena� pseudo	random
number generation� image processing� analysis of universal model of computations� cryptog	
raphy�� For an introduction to the CA theory see 
��� CA can display a rich and complex
temporal evolution whose exact determination is in general very hard� if not impossible� In
particular� some properties of the temporal evolution of general CA are undecidable 

� �� ����
Despite their simplicity that makes it possible a detailed algebraic analysis� linear CA over
Zm �CA based on a linear local rule� exhibit many of the complex features of general CA�
For a complete and up	to	date reference on applications of linear CA see 
���

Several important dynamical properties of linear CA� e�g�� ergodicity� transitivity� sensi	
tivity to initial conditions� and expansivity� have been studied during the last few years and in
many cases exact characterizations have been obtained �see for example 
��� ��� �� ��� �
� ����
In 
��� the authors investigate and completely characterize the structure of attractors for D	
dimensional linear CA over Zm� while in 
�� the authors gives a closed formula for computing
their Lyapunov exponents and their topological entropy�

�Dipartimento di Scienze dell�Informazione� Universit�a di Bologna� Email� margara�cs�unibo�it
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In this paper we study two important dynamical properties of CA� denseness of periodic points
and topological mixing� We �rst investigate the structure of the set of periodic points of linear
CA� In particular we focus our attention on a problem addressed in 
�� where the authors
prove that for �	dimensional linear CA surjectivity is equivalent to have dense periodic points
over the entire space of con�gurations leaving open the problem of characterizing this last
property in the D	dimensional case� Then� we completely characterize topological mixing for
linear CA in terms of the coe�cients of their local rule�

The main contribution of this paper can be summarized as follows�

� We prove �Theorem 
��� that for linear D	dimensional CA over Zm �D � �� m � ��
surjectivty is equivalent to have dense periodic points �implicitly characterizing this last
property��

� For non	surjective linear D	dimensional CA over Zm we explicitly characterize �Corol	
lary ���� the largest subspace where periodic points are dense taking advantage of the
results obtained in 
��� on the attractors of linear CA over Zm�

� We prove �Theorem ���� that for linear D	dimensional CA over Zm transitivity is equiv	
alent to topological mixing �implicitly characterizing this last property��

The rest of this paper is organized as follows� In Section � we give basic de�nitions and
notations� In Section � we prove some technical lemmas which will be useful for proving our
main results� In Section 
 we prove that for linear CA surjectivity is equivalent to denseness
of periodic points� In Section � we characterize the subspace where non	surjective linear CA
have dense periodic points� In Section � we characterize topologically mixing linear CA� In
Section � we provide an easy	to	check property on the coe�cients of the local rule of linear
CA which is equivalent to the Devaney�s de�nition of chaos� In Section � we state some open
problem�

� Basic de�nitions

��� Cellular automata

For m � �� let Zm � f�� �� � � � �m� �g� We consider the space of con�gurations

CDm �
n
c j c�ZD � Zm

o

which consists of all functions from ZD into Zm� Each element of CDm can be visualized as
an in�nite D	dimensional lattice in which each cell contains an element of Zm� Let s � �� A
neighborhood frame of size s is an ordered set of distinct vectors �u�� �u�� � � � � �us � ZD� Given
f �Zs

m � Zm� a D	dimensional CA based on the local rule f is the pair �CDm � F �� where
F � CDm � CDm� is the global transition map de�ned as follows�


F �c����v� � f �c��v � �u��� � � � � c��v � �us�� where c � CDm � �v � ZD� ���

In other words� the content of cell �v in the con�guration F �c� is a function of the content of
cells �v��u�� � � � � �v��us in the con�guration c� Note that the local rule f and the neighborhood
frame completely determine F �

��



In order to study the topological properties of D	dimensional CA� we introduce a distance
over the space of the con�gurations� Let ��Zm � Zm � f�� �g de�ned by

��i� j� �

�
�� if i � j�
�� if i �� j�

Given a� b � CDm the Tychono� distance d�a� b� is given by

d�a� b� �
X
�v�ZD

��a��v�� b��v��

�k�vk�
� ���

where� as usual� k�vk� denotes the maximum of the absolute value of the components of �v� It
is easy to verify that d is a metric on CDm and that the metric topology induced by d coincides
with the product topology induced by the discrete topology of Zm� With this topology� CDm
is a compact and totally disconnected space and F is a �uniformly� continuous map�

Throughout the paper� F �c� will denote the result of the application of the map F to the
con�guration c� and c��v� will denote the value assumed by c in �v� For n � �� we recursively
de�ne F n�c� by F n�c� � F �F n���c��� where F ��c� � c� Let �CDm � F � be a CA based on the
local rule f � We denote by f �n� the local rule associated to F n�

��� Linear CA over Zm

In the special case of linear CA the set Zm is endowed with the usual sum and product
operations that make it a commutative ring� In what follows we denote by 
x�m the integer x
taken modulo m� Linear CA have a local rule of the form f�x�� � � � � xs� � 


Ps
i�� �ixi�m with

��� � � � � �s � Zm� Hence� for a linear D	dimensional CA Equation ��� becomes


F �c����v� �

�
sX

i��

�ic��v � �ui�

�
m

where c � CDm � �v � ZD� ���

��� Topological properties

In this section we recall the de�nitions of some topological properties which determine the
qualitative behavior of any general discrete time dynamical systems� Here� we assume that
the space of con�gurations X is equipped with a distance d and that the map F is continuous
on X according to the topology induced by d�

De�nition ��� �Transitivity� A dynamical system �X�F � is �topologically� transitive if

and only if for all non empty open subsets U and V of X there exists a natural number

n such that F n�U� � V �� 	�

Intuitively� a transitive map F has points which eventually move under iteration of F from
one arbitrarily small neighborhood to any other� As a consequence� the dynamical system
cannot be decomposed into two disjoint open sets which are invariant under the iterations of
F �

De�nition ��� �Topological mixing� A dynamical system �X�F � is topologically mixing
if and only if for all non empty open subsets U and V of X there exists a natural number n�
such that for every n � n� we have F n�U� � V �� 	�

��



It is obvious that topological mixing implies transitivity�

De�nition ��� �Strongly transitivity� A dynamical system �X�F � is strongly transitive

if and only if for all nonempty open set U 
 X we have
S��
n�� F

n�U� � X�

A strongly transitive map F has points which eventually move under iteration of F from one
arbitrarily small neighborhood to any other point�

De�nition ��	 �Denseness of periodic points� Let

P �F � � fx � X j �n � N � F n�x� � xg

be the set of the periodic points of F � A dynamical system �X�F � has dense periodic orbits if

and only if P �F � is a dense subset of X� i�e�� for any x � X and � � �� there exists y � P �F �
such that d�x� y� � ��

Denseness of periodic orbits is often referred to as the element of regularity a chaotic dynamical
system must exhibit� The popular book by Devaney 
�� isolates three components as being
the essential features of chaos� transitivity� sensitivity to initial conditions and denseness of
periodic orbits�

� Properties of linear CA

A D	dimensional cylinder h��v�� a��� � � � � ��vl� al�i is a particular subset of CDm de�ned as

h��v�� a��� � � � � ��vl� al�i �
n
x � CDm j x��vi� � ai� i � �� � � � � l

o
�

where ai � Zm and �vi � ZD� Note that cylinders form a basis of closed and open subsets of
CDm according to the metric topology induced by the Tychono� distance�

We �rst recall a result proved in 
��� which holds for strongly transitive linear CA and
states that for every cylinder C � CDm it is possible to �nd a natural number tC such that�
with a little abuse of notation� F tC �C� � CDm � i�e�� every con�guration of CDm can be reached
after exactly tC iterations of the map F starting from one element of C�

Lemma ��� �
���� Let F be a strongly transitive linear D�dimensional CA over CDm� Then

for every cylinder C 
 CDm there exists a natural number tC such that

�x�CDm �c�C � F tC �c� � x�

�

Next lemma shows that any linear D	dimensional CA over CDpq with p and q relatively prime

is topologically conjugated to the map G �
�

F �p � 
F �q

�
�where� for every c � cmd we de�ne


F �p �c� � 
F �c��p�� We say that two dynamical systems �X�F � and �X �� F �� are topologically

conjugated if there exists a bijective function 	�X � X � such that 	�F �x�� � F ��	�x�� and
both 	 and 	�� are continuous �that is� 	 is a homeomorphism between X and X ��� If �X�F �
and �X �� F �� are topologically conjugated then they share the same topological properties� that
is� �X�F � satis�es a given topological property if and only if �X �� F �� satis�es it�

��



Lemma ��� Let F be a linear D�dimensional CA over CDm with m � pq and gcd�p� q� � ��
Then F is topologically conjugate to the map G � CDp � CDq � CDp � CDq de�ned by

G�x�� x�� �
�

F �p �x��� 
F �q �x��

�
where x� � CDp � x� � CDq �

Proof� We de�ne 	 � CDm � CDp � CDq and 	�� � CDp � CDq � CDm as follows�

	�x� � �
x�p � 
x�q�

	���x�� x�� � x� � q 
�x� � x���q�p �

where �q is such that 
q�q�p � �� Note that �q� the inverse of q modulo p� exists since p and q
are relatively prime� We now prove the following properties of the map 	�
�	 	���	�x�� � x and 	�	���x�� x��� � �x�� x���
�	 	 and 	�� are continuous� and
�	 G � 	 
 F 
 	���

To prove property � we proceed as follows�

	�	���x�� x��� �

�h
x� � q 
�x� � x���q�p

i
p
�
h
x� � q 
�x� � x���q�p

i
q

�
� �
x��p � 
x��p � 
x��p � 
x��q� � �x�� x���

To prove that 	���	�x�� � x we note that for every x � CDm there exist k � CDq and h � CDp
such that 
x�q � hq � x � 
x�p � kp and then 
x�p � 
x�q � hq � kp� We may write

	���	�x�� � 	���
x�p � 
x�q� � 
x�q � q
h
�
x�p � 
x�q��q

i
p

� 
x�q � q 
�hq � kp��q�p
� 
x�q � q 
h�p � x�

It is easy to verify that 	 and 	�� are continuous� To prove property � we proceed as follows�

	 
 F 
 	���x�� x�� � 	 
 F
�
x� � q 
�x� � x���q�p

�
�

�h
F
�
x� � q 
�x� � x���q�p

�i
p
�
h
F
�
x� � q 
�x� � x���q�p

�i
q

�
� �y�� y���

From the linearity of F we have

y� �
h
F �x�� � qF �
�x� � x���q�p�

i
p

� 
F �x�� � q�q�F �x��� F �x���p
� 
F �p �x���

Analogously� we have

y� �
h
F �x�� � qF �
�x�� x���q�p�

i
q
� 
F �q �x���

Then G � 	 
 F 
 	�� as claimed� �

��



Lemma ��� will be useful to prove both theorem 
�� and theorem ����

Lemma ��� �
��� Let F be a linear D�dimensional CA over CD
pk

with local rule

f�x�� � � � � xs� �

�
sX

i��

�ixi

�
pk

�

and neighborhood vectors �u�� � � � � �us� De�ne

I � fi j gcd��i� p� � �g� �f �

�X
i�I

�ixi

�
pk

�

and let �F the global map associated to �f � Then� there exists h � � such that for all c � CD
pk
�

we have F h�c� � �F h�c�� �

Let F be a surjective linear D	dimensional CA over CDm� We call F a shift�like CA of
radius r if and only if there exist � � Zm and �u � ZD with k�uk� � r such that


F �c����v� � 
� c��v � �u��m where c � CDm� �v � ZD�

Note that shift	like CA are surjective by de�nition and then from the characterization of
surjective linear CA given in 
��� we conclude that � and m are relatively prime� Sinceh
���m�

i
m
� � �where 
 is the Euler function�� we conclude that


F ��m��c����v� � ���m�c��v � 
�m��u� � c��v � 
�m��u�

and then F ��m� is a true shift CA if r � �� the identity CA if r � ��
In view of the above considerations� the dynamical behavior of shift	like CA can be easily

analyzed� In particular� shift	like CA with radius zero are equicontinuous and then not
topologically transitive� while shift	like CA with radius greater than zero are topologically
mixing and then transitive but not strongly transitive� Finally� all shift	like CA have dense
periodic points�

Lemma ��	 Let F be a surjective but not strongly transitive linear D�dimensional CA over

CD
pk

with local rule f�x�� � � � � xs� � 

Ps

i�� �ixi�pk � Then there exists a positive integer h such

that the map F h is a shift�like CA�

Proof� Since F is surjective then there exists at least one �i such that gcd��i� p� � �� Since F
is not strongly transitive then for every pair �i� �j of coe�cients we have that p divides at least
one of them� As a consequence of the above considerations� the set I � fi j gcd��i� p� � �g
contains exactly one element� The thesis follows from Lemma ���� �

� Periodic points for surjective linear CA

In this section we prove that for linear CA over Zm surjectivity implies denseness of periodic
points� Since the inverse implication was already proven to be true in 
�� �for general CA��
we conclude that surjectivity is equivalent to denseness of periodic points�

��



Theorem 	�� Let F be a linear D�dimensional CA over CDm� If F is strongly transitive then
it has dense periodic points�

Proof� It is easy to show that a CA has dense periodic points if and only if each cylinder
contains at least one periodic point� We now prove that strongly transitive CA satisfy this
property� Let C 
 CDm be any cylinder and tC be the positive integer de�ned in Lemma ����
From Lemma ��� we have that there exists a sequence ci � C� i � �� of con�gurations such
that�

�i � � � F tC �ci��� � ci�

Since C is compact� we can extract from ci a convergent subsequence cij with limit c � C� We
now prove that c is a periodic point of period tC � i�e�� F

tC �c� � c� Assume by contradiction
that F tC �c� �� c� Then there exists a vector �v � ZD such that 
F tC �c����v� �� c��v�� Since cij
converges to c we have that

�k�N �j � k � cij ��v� � cij����v� � c��v�

which is a contradiction� Since C can be arbitrarily chosen we have that periodic points are
dense� �

It remains to be proven that surjective but not strongly transitive linear CA have dense
periodic points�

Theorem 	�� Surjective linear D�dimensional CA over CDm have dense periodic points�

Proof� Let m � pq�� � � � pqnn be the prime factor decomposition of m� Let mi � pqii � � � i � n�
From �a repeated application of� Lemma ��� we have that F has dense periodic points if and
only if 
F �mi

has dense periodic points for every � � i � n� If 
F �mi
is strongly transitive

then in view of Lemma 
�� it has dense periodic points� Assume now that 
F �mi
is not

strongly transitive� Since F is surjective� 
F �mi
must be surjective and in view of Lemma ��


we conclude that there exists a positive integer h such that 
F �hmi
is a shift	like CA� Since

shift	like CA have dense periodic points we obtain the thesis� �

� Periodic points for non�surjective linear CA

In this section we study the distribution of periodic points of non	surjective linear CA with
the aim of understanding which points of CDm can be approximated with arbitrary precision
by periodic points� To this extent� we take advantage of the theory of attractors applied
to linear CA developed in 
���� In 
��� the authors prove that for any non	surjective linear
CA F � there exists a subspace YF such that� for any con�guration x� F k�x� � YF for all
k � blog�mc� That is� after a transient phase of length at most blog�mc� the evolution of the
system takes place completely within the subspace YF � This result indicates that� in order to
study periodic points of non	surjective linear CA� one should analyze the behavior of the map
F over the subspace YF � In addition� they prove that the behavior of F over YF is identical
to the behavior of a linear surjective map F � de�ned over a con�guration space isomorphic
to YF �

��



Let F denote the global transition map of a non	surjective linear D	dimensional CA over Zm

de�ned by


F �c����v� �

�
sX

i��

�ic��v � �ui�

�
m

� �
�

Let d � gcd�m���� � � � � �s�� Since F is not surjective we know that d � �� Let m �
pq�� p

q�
� � � � pqnn � Without loss of generality we can assume that d � pv�� p

v�
� � � � pvll with � � vi � qi

and l � n� Let
q � pq�� � � � pqll � ���

and de�ne
YF � fc � CDm j 
c��v��q � �� ��v � ZDg and m� �

m

q
� ���

We have the following theorem �which is the combination of Theorems ��� and ��� of 
�����

Theorem 
�� �
���� Let �CDm � F � denote a non�surjective linear CA� Let YF and m� be de�

�ned as in ���� Then

�a� for any c � CDm and k � blog�mc� we have F k�c� � YF and

�b� the subsystem �YF � F � is topologically conjugated to the surjective linear CA �CDm� � 
F �m���

�

Taking advantage of Theorem ��� we can prove the main result of this section�

Corollary 
�� Let �CDm� F � denote a non�surjective linear CA� Let YF be de�ned as in ����
Then

�c� the periodic points of F are dense over YF and

�d� YF is the largest subset of CDm where F has dense periodic points�

Proof� From Theorem ��� we know that after at most blog�mc steps the evolution of �C
D
m� F �

takes place completely within the subspace YF � This implies that all periodic points belong
to YF � In addition� the subsystem �YF � F � is topologically conjugated to a surjective linear
CA �CDm� � 
F �m�� which� in view of Theorem 
��� has dense periodic points over the entire CDm� �
Since topological conjugation preserves denseness of periodic orbits� we conclude that F has
dense periodic points over YF �

Let x � CDm be any con�guration which does not belong to YF � Then there exists a vector
�v � ZD such that for every y � YF we have x��v� �� y��v� and then d�x� y� � ���kvk� � We
conclude that YF is the largest subset of CDm where F has dense periodic points� �

� Topological Mixing for linear CA

In this section we prove that topological mixing and transitivity are equivalent properties as
far as linear CA are concerned�

Theorem ��� Let F be a linear D�dimensional CA over CDm� If F is strongly transitive then

it is topologically mixing�

�




Proof� Let C 
 CDm be any cylinder and tC be the positive integer de�ned in Lemma ����
We have that F tC �C� � CDm� Since F is surjective� we have

�n � tC � F n�C� � CDm �

that is� F is topologically mixing as claimed� �

Theorem ��� Transitive linear D�dimensional CA over CDm are topologically mixing�

Proof� Let m � pq�� � � � pqnn be the prime factor decomposition of m� Let mi � pqii � � � i � n�
From �a repeated application of� Lemma ��� we have that F is topologically mixing if and
only if 
F �mi

is topologically mixing for every � � i � n� If 
F �mi
is strongly transitive then

in view of Lemma 
�� it has dense periodic points� Assume now that 
F �mi
is not strongly

transitive� Since F is transitive� 
F �mi
must be transitive �and then surjective�� In view of

Lemma ��
 there exists a positive integer h such that 
F �hmi
is a shift	like CA with radius r�

Since 
F �mi
is transitive r must be greater than zero� The thesis follows from the fact that

shift	like CA with radius greater than zero are topologically mixing� �

Since topologically mixing CA are transitive by de�nition� we conclude that for linear CA
transitivity and topological mixing are equivalent properties�

	 Chaotic behavior of linear cellular automata

In this section we classify linear D	dimensional CA over Zm �D � �� m � �� according to
the Devaney�s de�nition of chaos�

De�nition ��� �Devaney�s Chaos� A dynamical system is chaotic according to the De�

vaney�s de�nition of chaos if and only if it is topologically transitive� it is sensitive to initial

conditions� and it has dense periodic points�

Let �CDm� F � be a D	dimensional linear CA over Zm de�ned by


F �c����v� �

�
sX

i��

�ic��v � �ui�

�
m

where c � CDm � �v � ZD� ���

where� as usual� we assume k�u�k� � � and k�uik� � � for every � � i � s� Let P be the set
of prime factors of m� We have the following results�

�a� �CDm� F � is topologically transitive if and only if gcd���� � � � � �s�m� � � �see 
����

�b� �CDm � F � is sensitive to initial conditions if and only if there exists p � P which does not
divide gcd���� � � � � �s� �see 
�����

�c� �CDm� F � is surjective if and only if gcd���� � � � � �s�m� � � �see 
�����

�d� �CDm� F � has dense periodic points if and only if it is surjective �this paper��

As a consequence of �a�� �d� we conclude that �CDm� F � is chaotic according to the Devaney�s
de�nition of chaos if and only if it is topologically transitive� i�e��

Chaos according to Devaney �� gcd���� � � � � �s�m� � ��

��




 Concluding remarks and open problems

This paper extends the topological classi�cation of linear CA over Zm given in 
��� 
��� and

��� by exactly characterizing topological mixing and denseness of periodic orbits� In the
following diagram we show inclusions among properties of D	dimensional linear CA over Zm

for m composite �left� and m prime �right�� All inclusions are proper� Note that the class of
expansive CA is empty in any dimension greater than ��

�
�
�
�

SUR � DPO

IN

EXP

T �M � E

ST

SENS

IN � SUR

� DPO

EQ

�
�
�
�

�
�
�
�	
 ��
�
�

�
�




�

�

�




�

�

�

	
 ����
�
�




�

�

�
	
 ��

IN � EQ SENS

ST

T �M � E

EXP

IN

SUR � DPO

�
�
�
�

where IN � Injectivity� T � Transitivity� ST � Strongly Transitivity� EXP � Expansivity�
E � Ergodicity� M � Topological Mixing� SENS � Sensitivity to Initial Conditions� SUR
� Surjectivity� DPO � Denseness of Periodic Orbits� EQ � Equicontinuity�

Some of the inclusions pictured in the above diagram hold also for general �i�e�� non	linear�
CA� For example� expansivity implies strong transitivity and transitivity implies sensitivity�
On the other hand� some of the properties which hold for linear CA do not hold for general CA�
For example there exist CA which are not equicontinuous nor sensitive to initial conditions�

The following questions have a positive answer in the case of linear CA but� to our knowledge�
are still unanswered in the case of general CA�
�	 Transitivity implies ergodicity �with respect to the Haar measure� �
�	 Strong transitivity inmplies topologicall mixing �
�	 Surjectivity implies denseness of periodic points �
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Abstract

Historically� cellular automata were de�ned on the lattices Zn� but the de�nition can be extended
to bounded degree graphs� Given a notion of simulation between cellular automata de�ned on di
erent
structures �namely graphs of automata�� we can deduce an order on graphs� In this paper� we link
this order to graph properties and explicit the order for most of the common graphs�

Introduction

Graphs of automata are extensions of cellular automata to connected bounded degree graphs� Their
formalism was �rst introduced by P� Rosenstiehl under the name of �intelligent graphs� ���	 and studied
in �
	� Graphs of automata consist in a connected bounded degree graph with a coding and decoding
neighbor vector and a state on each vertex� Each vertex state uniformly evolves in discrete time step
according to a de�nite rule involving the neighboring vertex states at previous time step ordered by the
neighbor vector� The vertex states are updated simultaneously�

Simulations between cellular automata �CA� working on di
erent architectures were studied in ���� ��	�
Other notions exist �for instance ��	�� but we will focus on this de�nition which can be very naturally
extended to graphs of automata� In fact� R�oka�s de�nition may be understood as a comparison between
Cayley graphs� when they are considered as graphs of automata �whatever the involved �nite automaton��
Then� this notion of simulation between Cayley graphs may be extended to connected bounded degree
graphs� We will here study the hierarchy induced by this simulation on the set of the connected bounded
degree graphs�

In ���� ��	� the notion of �simple� simulation between CA de�ned on Cayley graphs was linked to
properties of groups� Here �simple� simulation denotes unitary simulation and means that each vertex
state information is indivisible and that the simulation does not need complex operations like dispatching
the information of a vertex state into an in�nite number of vertices of the simulating graph� We will
�rst exhibit a more powerful su�cient condition of �simple� �unitary� simulation by linking this notion
to graph properties� But direct comparison between general graphs is not easy� so we will introduce an
external space and study how the graphs can be embedded in this space� This method enables to compare
most of the usual graphs and to specify the hierarchy�

In a �rst section� we will specify the notion of graph of automata and explain the simulations we will
consider� Some particular cases of simulation �elementary and unitary simulation� will be de�ned and
studied in the second section� we will give a graph intrinsic characterization of elementary and unitary
simulation� The third section describes a practical way to use this result and the consequences of these
theorems on our knowledge of the hierarchy will be studied in the fourth section� In our last section� we
will describe some open problems�

� Simulation De�nitions and Properties

��� De�nitions

We will �rst de�ne graphs of automata �GA�� that is cellular automata de�ned on connected bounded
degree graphs� In addition to a set of states and a transition function� we need to order the neighbors of
each vertex to know how to apply the transition function�
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De�nition ��� A graph of automata �or GA� on a connected bounded degree graph G � �V�E� is a
��tuple �S�G� d�N� �� where S is a �nite set called set of states� G is a graph whose degree is bounded by
d� N � V �� �f�� ���� dg �� V � gives for each vertex its neighbor vector� i�e� an order on its neighbors
and � � fS � �gd�� � S is the transition function where � is a special element used when the vertex has
less than d neighbors�

A state is associated to each vertex of the graph� All the states change simultaneously such that the
next state in v � V is given by the neighbor vector of v� N �v� and the local transition �� If v has n
neighbors �n � d� N �v����� ���� N �v��n�� the next state s� of v is given by�

s� � ��state�v�� state�N �v������ state�N �v������ ���� state�N �v��n��� �� ���� ��

This local condition naturally de�nes a global transition on the automaton con�gurations� A con�g�
uration is a function V �� S which associates to each vertex its state� Let us de�ne CA � SV the set of
all con�gurations of the automaton A� The GA transforms a con�guration c to its successor A�c� such
that�

�c � CA� �v � V�A�c��v� � ��c�v�� c�N �v������ c�N �v������ ���� c�N �v��n��� �� ���� ��

Now de�ne the notion of simulation used in ���� ��	� A GA A is simulated by B if we can encode the
con�gurations of A into con�gurations of B such that after T steps of B we obtain the code of the next
step of A� formally�

De�nition ��� Let A and B be two graphs of automata� B simulates A if there exists an injective function
f � CA �� CB from the set of con�gurations of A into the set of con�gurations of B and a constant T
such that for all the con�gurations c � CA

f�A�c�� � BT �f�c��

i�e� the following diagram commutes	

c
f
�� f�c�

A

www�
www�BT

A�c�
f
�� BT �f�c��

Remark that there is no condition over f � for instance f can burst the information of a state into
di
erent vertices �an unidimensional GA whose states are couples can be simulated by another unidi�
mensional GA with the function ����� �s�� s��� �s�� s��� ���� ��� ����� �s��� s��� �s�� s��� ������ In addition� some
states may appear on an in�nite number of vertices of the simulating graph �see the simulation of Z� by
F� in section ��� When this does not happen �i�e� when a vertex is simulated by only one vertex of the
simulating graph�� we will say that the simulation is unitary�

De�nition ��� A simulation is unitary if and only if

�v � GA ����v� � GB �c � CA �� � S �� � S f�cv��� � f�c�v� ��

where cv�� is the con�guration c in which the state of v is replaced by ��

An unitary simulation de�nes an implicit function GA �� GB which associates to each vertex the
only vertex of GB which simulates it� If this function is injective� the simulation is said to be elementary�

From this de�nition� we deduce an order on the connected bounded degree graphs in the following
de�nition�

De�nition ��� Let G and G� be two bounded degree graphs� we will denote G � G� and� loosely speaking�
say G� simulates G if and only if each graph of automata on G can be simulated by a graph of automata
on G�� This relation on graphs will be called simulation relation or simulation order�

In a very natural way� we de�ne the notions of elementary and unitary simulation when all the
simulations can be elementary or unitary� We will prove in the next section that these two simulations
de�ned on graphs through graphs of automata can be expressed intrinsically in graph theory�
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��� Necessary Condition of Simulation

Let us recall here an important theorem of ���� ��	� Given two graphs G and G�� if G� simulates G� then
there exists a constant C such that the graph growth of G is less than C times the graph growth of G�

where the graph growth is de�ned as follows�

De�nition ��� Let G be a graph and v a vertex of G� The graph growth is the function N �� N which
associates to n the number of vertices v� such that the distance between v and v� is less than n �i�e� such
that there is a path between v and v� of length lower than n��

Let us notice that on connected graphs the asymptotic behavior of the graph growth makes sense
because it is independent of the initial vertex�

Graph growth indicates the amount of information that a vertex can access to in n steps of the graph
of automata evolution� This theorem just means that if whatever the slowdown constant T and even
after a grouping operation� a graph cannot access in nT steps to the information that another graph can
access to in n steps� then the �rst graph cannot simulate the second one�

Let us specify here formally what we mean by a grouping operation� We can see a graph of automata
as a graph with a �nite automaton on each vertex� If it has enough states� a �nite automaton can
simulate a graph of automata de�ned on a �nite graph� So given a graph of automata on G� and a �nite
subgraph G� of G� the behavior of the graph of automata on G� can be simulated by a �nite automaton
linked to all the neighbors in G nG� of the vertices in G� without changing the behavior of the other
vertices of G� We denote this a grouping operation because the �nite automata on each vertex of G�

are grouped into one �nite automaton with more states� By de�nition� a grouping operation leads to
an unitary simulation� Of course� the composition of a �nite number of grouping operation remains a
grouping operation� In addition� we can perform simultaneously an in�nite number of grouping operation
if the number of grouped vertices is bounded� this leads to the following de�nition�

De�nition ��	 Let G be a connected bounded degree graph and �Gi�i�I a set of �nite subgraphs of G
whose number of elements is bounded by M and such that� �i 	� j� Gi 
Gj � ��� Let G� be the graph G
where all the subgraphs Gi are successively replaced by vertices vi linked to all the neighbors of the vertices
of Gi in G� Let A � �S�G� d�N� �� be a graph of automata on G and A� � �S�� G�� d�� N �� ��� a graph of
automata on G��

Let us suppose that there exists �fi�i�I a family of injective functions fi � S
Gi �� S� and an injection

� � S �� S�� A� is a grouped automaton of A if A is simulated without slowdown by A� with respect to
the function

f

������
CA �� C�

A

c ��� c� where

�
if v 	� �vi�i�I then c��v� � ��c�v��
else c��vi� � fi�c jGi �

For instance� we can simulate a graph of automata on Z by another one on Z by grouping the states
two by two� This simulation is done in real time� but let us notice that the simulating automaton has
enough information to compute the two next steps� This kind of regular grouping over Z with acceleration
is studied in ��	� But here we are not interested in any acceleration but in the possibility that each vertex
of a simulating graph can simulate a bounded number of vertices of the simulated one�

After this speci�cation about grouping operation� let us give two important corollaries of Zsuzsanna
R�oka�s theorem�

� Zp 	� Z
q if p 	 q because Zp growth behaves like np�

� �p F� 	� Z
p where F� is the free group with two generators because F� growth is �
 �n���

� Elementary and Unitary Simulations

Let A and B be two graphs of automata� If the simulation of A by B is unitary� then we can naturally
de�ne the function 
 from GA to GB which associates to each vertex of GA the only vertex of GB which
simulates it� If A is �complicated enough�� each vertex needs the states of all its neighbors to compute its
next state� But B simulates a step of A in T steps� so the distance in GB between vertices simulating two
neighbors of GA is less than T � This exactly means that T is a Lipschitz constant for 
 because connected
graphs are �discrete� metric spaces� the distance between two vertices is the length of the smallest path
between them and the Lipschitz condition de�nition is the following�

�This implies that I is countable because G is countable �it is a connected bounded degree graph��
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De�nition ��� Let �E � dE� and �F � dF� be two metric spaces� A function f � E �� F satis�es the
Lipschitz condition if and only if

�K � R ��x� y� � E� dF �f�x�� f�y�� � KdE�x� y�

We say that K is a Lipschitz constant for f �

In addition� only a �nite number of vertices may be sent by 
 on a given vertex because the simulating
GA has only a �nite number of states� So the existence of an injective �resp� with a bounded number
of antecedents� function from GA to GB which satis�es the Lipschitz condition is necessary to have GA

simulated by GB in an elementary �resp� unitary� way� In fact� this existence is also su�cient� as we will
see next� so we have the two following results�

Theorem ��� Let GA and GB be two bounded degree graphs� GB is elementarily simulated by GA if and
only if there exists an injective function f � GA �� GB which satis�es the Lipschitz condition�

Theorem ��� Let GA and GB be two bounded degree graphs� GB is unitarily simulated by GA if and
only if there exists a function f � GA �� GB with a bounded number of antecedents which satis�es the
Lipschitz condition�

To prove the su�cient parts of these theorems� the idea is to simulate each vertex by its image by the
application� The images of two neighbors are separated by at most M vertices where M is the Lipschitz
constant of f � so the graph of automata waitsM steps to propagate the information and then the calculus
is made thanks to a static information which indicates to each vertex the position of its neighbors in the
simulated graph�

Proof ��� of both theorems ��� and ���

� Necessary part�
Let us suppose that G� elementarily �resp� unitarily� simulates G and let us prove the existence of
an injective �resp� with a bounded number of antecedents� function f � G �� G� which satis�es
the Lipschitz condition� We consider the graph of automata on G with two states �� and �� that
only propagates � to all its neighbors� this is the �complicated enough� GA we need� This GA is
elementarily �resp� unitarily� simulated by a GA de�ned on G�� let f be the function from G into
G� which associates to each vertex v the only vertex of G� whose states depend of the state of v�
f has a bounded number of antecedents because of the �nite number of states of the simulating
automaton� If the simulation is elementary� by de�nition� f is injective�

Let T be the slowdown constant of the simulation� let us prove that T is a Lipschitz constant for
f � Let x and y be two neighbor vertices of G� Let us consider the initial con�guration where x
contains the state �� and all the other vertices contain the state �� In T steps of the simulating GA�
the state of f�y� has been changed� so there is a path between f�x� and f�y� whose length is less
than T �

� Su�cient part�
For short we will prove that for injective functions f which satisfy the Lipschitz condition �theorem
����� there is an elementary simulation� If f has a bounded number of antecedents �theorem ����� the
proof is exactly the same by a grouping operation �see de�nition ����� but of course� the simulation
is no more elementary but unitary�

Let f be an injective function satisfying the Lipschitz condition from GA into GB� a graph of au�
tomataA � �S�GA� d�N� �� and the neighbor vectors N � over GB� Let us buildB � �S�� GB� d

�� N �� ���
on GB which elementarily simulates A� With word� we will send the state of the vertex v of GA

into the state of the vertex f�v�� To simulate a step of A� if M is a Lipschitz constant for f � M
steps are enough to bring the states of the neighbors vertices� To calculate the next step of A�
the local transition function of B just needs to know which are the neighbors on GA among all the
vertices in the M radius ball on GB� The set of all possibilities is �nite� so this information can be
statically encoded in each vertex�

Hence the �nite set of states of B is�

S� � ��S � f�g� � �S � f�g�d � ���� �S � f�g�d
M

�
 �C � f�g�

where C represents the encoding of the neighbors in GA �it is the �nite set of functions �S �

f�g�d
M

� Sd which gives the neighbors in the simulated graph among the elements of the M
radius ball in the simulating graph��

��



Hence the function g � CA �� CB is de�ned as follows� if v 	� f�GA� then the state of v is ��� ��� If
v � f�v��� v� containing the state s� then its state will be �s� c�� where c � C encodes the neighbors
of v� in GA among the vertices in the M radius ball centered in v in GB�

�� never changes the encoding part of the states� It stores during M steps the states of all its
neighbors� Then� thanks to the encoding� it simulates the transition of A� ����s� c�� states of the
neighbors vertices� � ���c�s��� c�� So the slowdown constant is here M � �� but for simplicity the
last step does not depend of the neighbors states� It is possible to do the last two steps in only one�
the slowdown constant is in this case M �

�

Let us notice that there exist non unitary simulations� for example the simulation of Z� by the free
group with two generators F�� We will prove in our third section that Z� � F� �each vertex of Z� will
be simulated by an in�nite number of vertices of F��� and there is no unitary simulation because of the
following theorem�

Theorem ��� There exists no application satisfying the Lipschitz condition with a bounded number of
antecedents from Z

� into F��

Proof ��� Let us suppose by refutation that a function satisfying the Lipschitz condition f with a
bounded number of antecedents exists� F� is a tree and as Z

� is not simulated by Z �see the �rst section
for graph growth reasons�� there are two branches of F� with an in�nite number of vertices of f�Z���

So we can separate F� in two trees F� � T� � T� �see �gure �� with an in�nite number of vertices in
f�Z�� in each one such that T� is a subtree of F� �so T� � F� nT���

T� T�

Figure �� The partition of F�� involved in the proof ���

There are an in�nite number of couples �x� y� of neighbor vertices in Z� such that f�x� � T� and
f�y� � T�� To prove this� let us de�ne Bf�� �T��� the f

���T�� border �i�e� the set of all vertices of f���T��

having a neighbor in f���T���� Let us suppose by refutation that Bf�� �T�� is �nite� so it is included in a

ball B of F�� The vertices out of B are all either in f���T�� or in f���T�� because between each couple
of vertices out of B� there are a path which does not cross the border� Hence f���T�� or f

���T�� is
included in B and so is �nite which is impossible�

Now� as f satis�es the Lipschitz condition� all the elements of f�Ff���T��� are at a bounded distance
from T�� which is again impossible because of the bounded number of antecedents� �

� A Practical Way to Prove Unitary and Elementary Simula�
tions

Given two graphs� it is not easy to know whether there exists an injective function from one graph into
the other one which satis�es the Lipschitz condition� But let us try to �nd such an application from
Z
�� the two dimensional lattice into the hexagonal tiling of the plane �see �gure ��� We can associate

to each vertex of the lattice� the nearest vertex of the hexagonal tiling� Clearly this application satis�es
the Lipschitz condition and only a �nite number of vertices may have the same image� So the lattice is
unitarily simulated by the hexagonal tiling� This reasoning is true for any embedding of the lattice and
the hexagonal tiling into the plane� So by similarity� we can reduce the scale of the hexagonal tiling such
that the nearest point of two di
erent vertices of the lattice are always di
erent �like on the �gure ��� So
in fact� there exist elementary simulations of the lattice by the hexagonal tiling�
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Figure �� The lattice Z� can be simulated by the hexagonal tiling by simulating each vertex of the lattice
by the nearest vertex of the hexagonal tiling

In the same way� all the tilings of the plane R� are equivalent by the elementary simulation� and
furthermore for all n� all the tilings of Rn are equivalent to each other� We denote Cn the class of all
the graphs equivalent to the tilings of Rn �including the n�dimensional lattice Zn�� All these classes are
di
erent because Zn � Z

m i
 n � m for graph growth reasons� We will now specify and improve our
method to �nd functions between graphs which satisfy the Lipschitz condition�

To �nd an injective application from the lattice to the hexagonal tiling satisfying the Lipschitz condi�
tion� we use an external space� R�� To be able to de�ne the nearest vertex �or one of the nearest� because
when several vertices are the nearest� we shall chose arbitrarily one of them�� the external space needs to
be metric and with compact closed balls� This last condition makes sure that the distance from a point
to a closed set exists and is reached by a point of the set� so� given a point� we can de�ne the ��nite� set
of the nearest points and chose arbitrarily one among them�

In addition� the simulated and simulating graphs do not need to be tilings of the external space� In
fact� the simulated graph needs only to be embedded in this space with bounded edges and a minimum
distance between two vertices �so that only a �nite number of vertices may have the same nearest point
in the simulating graph�� Graphs satisfying these two properties will be called plungings�

De�nition ��� Let E be a metric space with compact closed balls and G � �V�E� be a graph� G can be
plunged into E if there is a function f � V � E such that	

� �� � R�� such that �x� y � V� dE�f�x�� f�y�� 	 � if dE represents the distance of E �i�e� there is a
minimal distance between two points of f�V ��


� f satis�es the Lipschitz condition� i�e� �M � R� such that for all �x� y� � E� dE�f�x�� f�y�� �M �

Remark ��� By misnomer� we will identify the vertices of the plunged graph with their image in E by f �

As for the simulated graph� the simulating one must satisfy the plunging properties and in addition
cover all the space �i�e� the distance from any point of the space to the embedding of the simulating
graph is bounded�� and the graph distance has to be equivalent to the one induced by the space distance
through embedding �to ensure the application will satisfy the Lipschitz condition�� Such graphs will be
said covering of the space� formally�

De�nition ��� Let E be a metric space with compact closed balls and G � �V�E� be a graph� G is a
covering of E if G can be plunged into E and if it satis�es the two following conditions	

� �M � � R� such that for all x � E � �v � V with dE�x� f�v�� �M � �i�e� the distance from a point of
E to f�V � is bounded�


� The distance on G induced by the distance on E is equivalent to the distance of the graph G� that is
there exists a constant k such that for all couples of vertices x and y� there exists a path from x to
y whose length is less than or equal to kdE�x� y��
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Let us remark that all the graphs that we intuitively want to call tilings of the space satisfy the
covering properties� for instance the Zn lattice is a covering of Rn�

The de�nitions of plunging and covering have been designed to ensure the existence of a function
satisfying the Lipschitz condition with a bounded number of antecedents� so we can express the following
theorem�

Theorem ��� Let E be a metric space with compact closed balls� if G is a plunging into E and G� is a
covering of E � then G � G� with a unitary simulation�

Proof ��� We embed G and G� in E such that the embeddings satisfy the plunging and covering prop�
erties� Let g be the function from G to G� which associates to each vertex of G the nearest vertex of G�

�if there are several nearest points� we chose one arbitrarily�� g is well de�ned because E has compact
closed balls� the embedding of G� in E is a closed set so the minimal distance between any point and this
set is reached� As the embedding of G� is discrete� only a �nite number of vertices may be at the smallest
distance�

Given a point of G�� the set of points of E which are nearer this point of G� than any other point of G�

is �by compactness of closed balls� included into the compact ball of radius M � by de�nition of covering�
As only a �nite number of balls with radius ��� may be put into this ball� only a �nite number of vertices
of G may be mapped into the same vertex of G� by g�

In addition� if l is a Lipschitz constant for the plunging of G into E � the distance in E of two images
by g of two neighbors in G is bounded by l � �M � But the distance in G� is equivalent to the distance
in E so the distance in G� of the image by g of two neighbors in G is bounded by k�l � �M �� so g is an
application from G into G� which satis�es the Lipschitz condition�

So by the last section theorem� G� unitarily simulates G� �

If similarities are possible on E � that means practically that E is a normed vectorial space with compact
closed balls� which is equivalent to E is a normed vectorial space with �nite dimension� i�e� if E � R

n�
then the simulations are elementary� For instance� here are some metric spaces which are not vectorial�
all the connected bounded degree graphs� the sphere� the cylinder� the cone� the parabolo��d of revolution
and the hyperbolic space H� �see below�� Let us notice that all the simulations deduced from the cylinder
or the cone may be proved thanks to R or R� and can also be elementary�

Corollary ��� If G is a plunging into Rn and G� is a covering of Rn then the simulation of G by G� is
elementary�

� Consequences on the Hierarchy

��� Main Features of the Hierarchy

The application of the last section theorems to the vectorial spaces Rn allows us to de�ne the Cn classes
�containing Zn�� In addition� the simulations we can deduce over Rn are elementary thanks to the
similarity possibility�

Figure �� A graph with a square growth between C� and C� and not comparable with C�

Many graphs are in none of the Cn like F� the free group with � generators �which has an exponential
growth�� and also graphs which can be plunged into Rn�� but not into Rn and which does not cover
R
n��� For instance the graph of the �gure � can be plunged into R�� but not into R� and does not cover
R
�� Each graph of automata de�ned on this graph can be simulated by a GA de�ned on Z�� In addition�

this graph simulates C� and is not comparable with C� although they have the same graph growth� The
same idea allows us to build a graph simulated by Zm� incomparable with Ci� n 
 i 
 m and simulating
Z
n� we link growing balls of Zm like on the previous �gure and connect it to the graph Zn�
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Szuzsanna R�oka proved in ���� ��	 that all the graphs Fi� i 	 � �i�e� the free groups with more than
two generators� were equivalent for the unitary simulation� We denote their class by F � The following
theorem proves that all the graphs can be simulated by a bounded degree �by d� tree and so by all the
Fi �i 	 �� because it is easy to inject this tree into Fd� Hence the F class is the maximum element for
the simulation order� As a corollary� it proves that for all n� Cn � F �

Theorem ��� Let G be a connected bounded degree �by d� graph� A developed graph of G is a tree with
bounded degree �by d� and it simulates G �the simulation is not necessarily unitary��

A developed graph is de�ned as follows�

De�nition ��� Let O be a generic vertex of G� the developed graph from O� DO�G� � �V �� E��� of G
is de�ned as follows	 V � is the set of all the �nite paths starting at O without going back �i�e� which
have no subpath of the form	 xyx�� There is an edge between a and b if and only if they are paths like
a � �s�� s�� ���� sn� and b � �s�� s�� ���� sn���� i�e� one is an initial segment of the other with exactly one
more vertex�

Let us remark that the developed graph of Z� is F�� and that more generally developed graphs of
Cayley graphs are the free groups� So the simulation of Z� by F� works exactly like in the following
proof� Each vertex of F� has the same neighborhood than the simulated vertex of Z� so each vertex is
simulated by an in�nite number of vertex of F��

Proof ��� Each developed graph is clearly a tree whose degree in x � �s�� ���� sn� is equal to sn degree
in G because x is linked to the vertex �s�� ���� sn��� and to each vertex �s�� ���� sn� s� where s is a neighbor
of sn and s 	� sn�� because going back is forbidden�

Let � be the canonical projection of DO�G� into G �which associates to each path its last vertex��
We will simulate the vertex v by all the vertices ����v� in DO�G�� This simulation is not necessarily
unitary if for some v ����v� is in�nite� The simulating automaton has exactly the same states and the
same transition function� The neighborhood of each vertex in G is preserved by � so the evolution of the
states in v and in each vertex of ����v� is the same� The simulation is done without lost of time� �

C�

C�

C�

Cn

�

F

C�

��nite graphs�

Figure �� The graph hierarchy with relation to graphs of automata simulation

The hierarchy of graphs w�r�t� the simulation order can be represented as on the �gure �� Except C��
the class of �nite graphs �which contains the �nite automata�� C� is smallest that all the other classes
because they all contain a connected in�nite graph and so an in�nite path �and N � C��� The class F is
the maximum element of our order� All the other classes are greater than C�� smaller than F and may
be incomparable with some Cn� There exist classes simulating Cj� simulated by Ck and incomparable
with the classes Ci� j 
 i 
 k and classes simulating Ck and incomparable with the classes Ci� i 	 k� At
last� between two classes Ci and Cj �except C� and C��� there are an in�nite number of classes�

��



��� Study of the Maximum Class

We will now study more precisely the class F � All the graphs in F have an exponential growth �else
they could not simulate F�� and so none can be plunged in any Rn� Hence we will consider an other
interesting metric space with compact closed balls� the ��dimensional hyperbolic space H�� Here is one
of the de�nitions of H��

De�nition ��� H� is the unitary radius opened disk with the Riemann�metric de�ned by its scalar product
at the point x by	

gx�v� w� �

 v�w 	

��� jjxjj���

In this space� the perimeter of a circle with radius r is�

P �
��e�r � ���e�r � ��

�e�r
�

�

�
e�r

and so grows exponentially with the radius� So this space seems interesting to study F � A �rst
application is to prove that F� can be plunged into H��

Theorem ��� F� can be plunged into H��

Proof ��� Let O be an arbitrary point ofH�� Let us consider all the points of F� whose distance to origin
is n� we will put them regularly on the circle centered in O with perimeter �
�n�� like on the �gure �� Let
rn be the radius of the circle of perimeter �
 �n��� rn��� rn is bounded �i�e� �n m � rn��� rn �M ��
So the distance between two neighbors is less than M � � and more than m� this is a plunging into H��
�
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Figure �� The plunging of F� into H�

So all the tilings of H� are of course equivalent �for the unitary simulation� and are also in F � Let us
now give some examples of tiling of H��

A regular polygon with k vertices is called a k�gon� Let  �k� d� �k� d � �� be the graph such as each
vertex is surrounded by d k�gons �see ��	�� These graphs are studied with relation to this simulation in
�!	� For instance  ��� �� is the cube �which is in C���  ��� �� is the hexagonal tiling of the plan �and is in
C��� If k � � and d � �� k � � and d � �� k � � and d � �� k � � and d � � or k � � then the graph
cannot be embedded in any Rn because the angle sum in each vertex is greater than ���

In fact all these graphs are tilings of H�� H� is the typical example of space with constant curvature
��� So the sum of a triangle angles is given by� "A� "B � "C � ��� �A���� where A is the triangle area�

the sum is also between � and its value in Euclidean spaces� �� So for a k�gon� we have "A� � ���� "Ak �
�k � ����� � A��k � ����� Hence� we can chose the scale of the k�gon such that its angles are ���d� so
we obtain a tiling�

Our theorem proves that all these  �k� d� which cannot be embedded in any Rn are in F and equivalent
for the unitary simulation�

��



� Discussion and Open Problems

The hierarchy of all the connected bounded degree graphs according to the intuitive notion of simulation
de�ned in ���� ��	 is not completely known� but we can classify most of the graphs because when we
imagine a graph we naturally embed it in a known space�

In particular� we do not know whether a class di
erent from F simulates all the classes Cn�

In addition� the link between graph growth and the hierarchy is enlightened because tilings of Rn

spaces have an asymptotic growth in xn and all the graphs in F have an exponential growth�
A graph cannot simulate another graph with a higher growth� but having a higher growth is not

enough to simulate a graph �see �gure ��� A natural question is to ask whether a �regular� graph can
simulate all the graphs of smaller growth� and a �rst step would be to consider Cayley graphs �for a
general introduction to Cayley graphs� see for instance ��	� and many questions are open�

Among �nitely generated Cayley graphs �but with an in�nite number of relations�� some have neither
polynomial� nor exponential growth �Grigorchuk ��	� reformed and applied to language recognition by
��	�� where are they in the hierarchy#

For �nite presentation Cayley graphs� the existence of such graphs is still an open problem� So maybe
all �nitely presented Cayley graphs are in F or a Cn� This raises the two following questions�

� The underlying groups of Cayley graphs with polynomial growth are exactly virtually nilpotent
groups ��	� These groups include commutative ones �Zn� and graphs like U��Z� �the unipotent
matrices like �

� a b
� � c
� � �

�

where a� b� c � Z� see �gure ��� which has � generators but its graph growth is equivalent to x�� Is
this graph equivalent to Z�#

x
y

z

Figure �� U��Z� group� 
 x� y� z j xy � yx� yz � zy� zx � xzy 	

� Are all exponential growth Cayley graphs in F#

A last interesting problem would be to �nd a more restrictive simulation to classify more precisely
the graphs of F �

Conclusion

The main structure of the hierarchy of the graphs with relation to the power of the graphs of automata
that can be de�ned on them is now well known� Anyway� many problems remain open� the power of
Cayley graphs like U��Z� or Grigorchuk examples are still unknown�
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Abstract

We introduce a new model of cellular automaton called a one�dimensional number�
conserving partitioned cellular automaton �NC�PCA�� An NC�PCA is a system such that a
state of a cell is represented by a triple of non�negative integers� and the total �i�e�� sum� of
integers over the con�guration is conserved throughout its evolving �computing� process� It
can be thought as a kind of modelization of the physical conservation law of mass �parti�
cles� or energy� We also de�ne a reversible version of NC�PCA� and prove that a reversible
NC�PCA is computation�universal� It is proved by showing that a reversible two�counter
machine� which has been known to be universal� can be simulated by a reversible NC�PCA�

� Introduction

Recently� various kinds of interesting computing models which directly re�ect laws of nature
have been proposed and investigated� Among others� quantum computing� DNA computing�
reversible computing� etc� have been extensively studied� A reversible computer is a system
such that its transition function of the whole state is a one�to�one mapping �injection�� hence�
roughly speaking� it is a backward deterministic system� It is a kind of model re�ecting physical
reversibility� and has been known to be very important when studying inevitable power dissipa�
tion in a computing process �	� 
�� In spite of the constraint of reversibility� such a system has
rich ability of computing� Bennett �rst showed computation�universality of a reversible Turing
machine �
�� A reversible cellular automaton �CA� has also been studied extensively� and several
versions of universality results have been shown ��� �� �� ��� ��� �	� �
��

Conservation of mass or energy is also an important physical law as well as reversibility�
Fredkin and To�oli �
� proposed Conservative Logic� a kind of logic circuit theory� that models
both reversibility and conservation law of physics� and showed its universality� In this system�
each primitive logic gate must satisfy the constraints of reversibility �i�e�� its logical function is
an injection�� and conservation of bits �i�e�� the total number of logical value ���s is conserved
between its input and output�� Also for cellular automata� several universal models that are
both reversible and bit�conserving have been known ��� �� ����

In this paper� we de�ne a new model of cellular automaton �CA� called a one�dimensional
number�conserving partitioned cellular automaton �NC�PCA�� which generalize the notion of
bit�conserving CA� In an NC�PCA� each cell is partitioned into three parts� i�e�� left� center� and
right parts� and the state of each part is represented by a non�negative integer �thus� the state of
a cell is represented by a triple of non�negative integers�� The next state of a cell is determined

�This work was supported in part by Grant�in�Aid for Scienti�c Research �C�� No� �	
�	�

� from Ministry of
Education� Science� Sports and Culture of Japan�

��



by the present states of the right part of the left�neighboring cell� the center part of this cell�
and the left part of the right�neighboring cell �not depending on the whole state of the three
cells�� The total number is conserved during the local transition� hence the total number over a
con�guration is also conserved throughout the evolving process�

Related to this model� a few other models in which each cell state is represented by a non�
negative integer have been known� a totalistic CA ��� and a sand pile model ��� ��� In ���� a
CA with a simple totalistic rule �but not necessarily number�conserving� has been shown to be
universal� In ��� ��� a kind of an automata system having a speci�c type of number�conserving
rules are studied�

Here� we investigate the computing ability of an NC�PCA� and its reversible version� We
show that an NP�PCA is computation universal even if it is reversible� This strengthens the
previous result that a one�dimensional reversible CA �not necessarily a number�conserving one�
is computation�universal ���� We prove it by showing that a reversible two�counter machine�
which has been known to be universal ��
�� can be simulated by a reversible NC�PCA�

� Number�Conserving Partitioned Cellular Automata

In order to de�ne a one�dimensional number�conserving partitioned cellular automaton �NC�
PCA�� we �rst give a de�nition of a partitioned cellular automaton �PCA� that has been intro�
duced to design a reversible cellular automaton ����

De�nition ��� A deterministic one�dimensional three�neighbor partitioned cellular automaton

�PCA� is a system de�ned by

A � �Z� �L�C�R�� g� ��qL� �qC � �qR���

where Z is the set of all integers at which cells are placed� L�C and R are non�empty �nite sets
of states of left� center� and right parts of a cell� g � R�C�L� L�C�R is a local function�
and ��qL� �qC � �qR� � L� C �R is a quiescent state that satis�es g��qR� �qC � �qL� � ��qL� �qC � �qR��

A con�guration over the set Q � L� C �R is a mapping � � Z� Q� Let Conf�Q� denote
the set of all con�gurations over Q� i�e�� Conf�Q� � f� j � � Z� Qg� A quiescent con�guration

is the one such that all the cells are in the quiescent states ��qL� �qC � �qR��
Let proL � Q � L is a projection function such that proL�l� c� r� � l for all �l� c� r� � Q�

Projection functions proC � Q � C� and proR � Q � R are also de�ned similarly� The global
function G � Conf�Q� � Conf�Q� of A is de�ned as follows�

�x � Z � G����x� � g�proR���x� ���� proC���x��� proL���x� ����

Fig� � shows how the local function g is applied to each cell� In the following� an equation
g�r� c� l� � �l�� c�� r�� is called a rule of A� and write it by

�r� c� l�� �l�� c�� r���

We regard the local function g as the set of such rules for convenience�

Next� we de�ne the notion of reversibility for PCAs�

De�nition ��� Let A � �Z� �L�C�R�� g� ��qL� �qC � �qR�� be a PCA� We sayA is globally reversible
i� its global function G is one�to�one� and locally reversible i� its local function g is one�to�one�

It is easy to prove the following proposition on PCA� which has been shown in ����

Proposition ��� Let A be a PCA� A is globally reversible i� it is locally reversible�

�
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Figure �� The local transition function g of a PCA A�

By Proposition 
��� a globally or locally reversible PCA is called simply �reversible� and
denoted by RPCA� By this� if we want to construct a reversible CA� it is su�cient to give a
PCA whose local function g is one�to�one� This makes it easy to design a reversible CA�

When we design a one�to�one local function g� it is su�cient to de�ne it only on a subset of
R � C � L that are needed to perform a given task� Because� we can always �nd a one�to�one
extension from a given partial function provided that the latter function is one�to�one on the
subset� This is assured by the following proposition �its proof is omitted since it is easy��

Proposition ��� Let A and B be �nite sets such that jAj � jBj� and let g be a mapping
A� � B for some A� �� A�� If g is one�to�one� then there is a one�to�one mapping g� � A � B

such that g��a� � g�a� for all a � A��

We now give a de�nition of a number�conserving PCA� As in the case of a reversible CA� it is
also convenient to use the framework of a PCA� Because� the the notion of number�conservation
can be expressed by a simple constraint on a local function of a PCA�

De�nition ��� Let A � �Z� �Nm�Nm�Nm�� g� ��� k� ��� be a PCA� where Nm denotes the
set of integers f�� �� � � � � m � �� mg� and k�� m� is a non�negative integer� A is called a one�
dimensional number�conserving partitioned cellular automaton �NC�PCA�� i� it satis�es the
following condition� For all �r� c� l�� �l�� c�� r�� � N�

m� if g�r� c� l� � �l�� c�� r��� then r � c � l �
l� � c� � r��

A reversible NC�PCA is also de�ned similarly� and denoted by NC�RPCA�

Example ��� A simple example of an NC�RPCA�

A� � �Z�N�
�� g�� ��� �� ����

The local function g� contains the following rules�

������� � �������
������� � �������
������� � �������
������� � �������

������� � �����
�
������� � �
�����
�
����� � �������
�����
� � �������

�
����� � �
�����
�����
� � �����
�

We can verify that each rule satis�es the constraint of number�conservation� It is also easy to
see that the right�hand side of each rule di�ers from those of the others� hence A� is reversible�
Fig� 
 shows an example of its transitions of con�gurations� where each number is represented
by this number of particles� We can observe that single ��ying particle� goes back and forth
between the �walls� made also of particles� Each time the �ying particle collides a wall� the
latter is shifted by one cell�
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Figure 
� Behavior of the NC�RPCA A��

� Universality of an NC�RPCA

In this section� we show that for any reversible two�counter machine there is an NC�RPCA
that simulates it� Since a reversible two�counter machines has been known to be computation�
universal ��
�� we can conclude that an NC�RPCA is also universal�

In ��
� a counter machine �CM� is de�ned as a kind of multi�tape Turing machine whose
heads are read�only ones and whose tapes are all blank except the leftmost squares as shown in
Fig� 	 �P is a blank symbol�� This de�nition is convenient for giving the notion of reversibility
on a CM�

De�nition ��� A k�counter machine �CM�k�� is a system

M � �k�Q� �� q�� qf��

where k is the number of tapes �or counters�� Q is a nonempty �nite set of internal states� q� � Q

is an initial state� and qf � Q is a �nal �halting� state� M uses fZ� Pg as a tape alphabet� � is
a move relation which is a subset of �Q� f�� �� � � � � k� �g � fZ� Pg �Q� 
 �Q� f�� �� � � � � k�
�g � f�� ���g � Q� �where ���� ���� and ��� denote left�shift� no�shift� and right�shift of a
head� respectively�� Tapes are one�way �rightward� in�nite� The leftmost squares of the tapes
contain the symbol �Z�s� and all the other squares contain �P�s �Z and P stand for �zero� and
�positive���

Each element of � is called a quadruple� and is either of the form

�q� i� s� q�� or �q� i� d� q���

where q� q� � Q� i � f�� �� � � � � k��g� s � fZ� Pg� d � f�� ���g� The quadruple �q� i� s� q�� means
that if M is in the state q and the i�th head is reading the symbol s then change the state into
q�� It is used to test whether the contents of a counter are zero or positive� On the other hand�
�q� i� d� q�� means that if M is in the state q then shift the i�th head to the direction d and change

�
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Figure 	� A k�counter machine �CM�k���

the state into q�� It is used to increment or decrement a counter by one �or make no change if
d � ���

De�nition ��� An instantaneous description �ID� of a CM�k� M � �k�Q� �� q�� qf � is a �k����
tuple

�q� n�� n�� � � � � nk��� � Q�Nk�

where N � f�� �� � � � g� It represents that M is in the state q and the counter i keeps ni �we
assume the position of the leftmost square of a tape is ��� The transition relation j��

M
over IDs

of M is de�ned as follows�

�q� n�� � � � � ni��� ni� ni��� � � � � nk���
j��
M

�q�� n�� � � � � ni��� n
�
i� ni��� � � � � nk���

holds i� one of the following conditions ������� is satis�ed�

��� �q� i� Z� q�� � � and ni � n�i � ��
�
� �q� i� P� q�� � � and ni � n�i � ��
�	� �q� i��� q�� � � and ni � � � n�i�
�
� �q� i� �� q�� � � and ni � n�i�
��� �q� i��� q�� � � and ni � � � n�i�

We denote re�exive and transitive closure of j��
M

by j��
M

� � and n�step transition by j��
M

n �n �
�� �� � � ���

De�nition ��� Let M � �k�Q� �� q�� qf� be a CM�k�� and

�� � �p�� i�� x�� p
�

�� and �� � �p�� i�� x�� p
�

��

be two distinct quadruples in �� We say �� and �� overlap in domain i� the following holds�
where D � f�� ���g�

p� � p� � �i� �� i� 
 x� � x� 
 x� � D 
 x� � D�

��



We say �� and �� overlap in range i� the following holds�

p�� � p�� � �i� �� i� 
 x� � x� 
 x� � D 
 x� � D�

A quadruple � is called deterministic �reversible� respectively� i� there is no other quadruple in
� which overlaps in domain �range� with �� M is called deterministic �reversible� respectively�
i� every quadruple in � is deterministic �reversible�� A reversible CM�k� is denoted by RCM�k��

For example� the following pair

�q�� 
� P� q�� and �q�� 
��� q��

overlaps in range� while the pair

�q�� 
� Z� q�� and �q�� 
� P� q��

does not� As seen from this de�nition� every ID of a deterministic �reversible� respectively�
CM�k� has at most one ID that immediately follows �precedes� it� Hereafter� we consider only
deterministic reversible and deterministic irreversible CM�k�s�

It has been known that an RCM�
� is computation�universal ��
��

Proposition ��� ��
� For any Turing machine T � there is a deterministic RCM�
� M that
simulates T �

We need the following Lemma to prove Theorem 	��

Lemma ��� For any deterministic CM�
� M � �
� Q� �� q�� qf�� there is a deterministic CM�
�
M � � �
� Q�� �� q��� q

�
f� that simulates M satisfying the following conditions� �i� The initial state

q�� never appears as the fourth element of a quadruple in �� �hence it appears only at time ���
�ii� If M is reversible then M � is also reversible�

Proof� In the case M is irreversible� it is very easy to construct such M � by adding a new initial
state to Q� So� we consider the reversible case� In ��
�� a construction method of a reversible
CM�
� M� that simulates a given CM�k� M� �k � �� 
� � � � � �that is not necessarily reversible�
has been shown� By checking the construction method shown in ��
�� we can verify that M�

satis�es the above condition �i�� provided that M� also satis�es it� Hence the Lemma holds� �

Theorem ��� For any deterministic CM�
� M � there is a deterministic NC�PCA A that sim�
ulates M satisfying the following condition� If M is reversible then A is also reversible�

Proof� Without loss of generality� we assume that the state set of M is Q � fq�� q�� � � � � qm��g�
and the initial and �nal states are q�� and qm��� respectively� Hence�

M � �
� fq�� q�� � � � � qm��g� �� q�� qm����

Further assume that q� never appears as the fourth element of a quadruple in � �by Lemma 	����
Let Incj � Decj � Nop� and Testj be the sets of states de�ned as follows �j � f�� �g��

Incj � fqi j �qi� j��� qk� � � for some qk � Qg
Decj � fqi j �qi� j��� qk� � � for some qk � Qg
Nop � fqi j �qi� j� �� qk� � � for some j � f�� �g� and qk � Qg
Testj � fqi j �qi� j� s� qk� � � for some s � fZ� Pg� and qk � Qg

��



These sets stand for instructions of �increment the counter j�� �decrement the counter j�� �no�
operation�� and �test if the counter j is zero or positive�� It is easy to see that Incj � Decj � Nop�
and Testj are pairwise disjoint �for example� Inc� � Inc� � �� Dec� � Nop � �� etc��� since M is
deterministic�

We now construct an NC�PCA A that simulates M � Each part of a cell of A keeps a number
at most m � ��� and the quiescent state is ��� �� ��� Thus�

A � �Z�N�
m���� g� ��� �� ����

Before de�ning the local function g� we �x a coding method of an ID of M by a con�guration of
A� First� we assign an �operation code� to each state of M by the following function � � Q �
f�� 
� 
� �� �g�

��qi� �

�������
������


 if qi � Inc�

 if qi � Dec�
� if qi � Inc�
� if qi � Dec�
� otherwise

Note that the states in Nop
Test� 
Test� and the halting states have the same operation code
�� We then de�ne a coding function � � Q�N� � Conf�N�

m����� which maps each ID of M to
a con�guration of A� Let I � �qi� n�� n�� be an ID of M � A con�guration ��I� is computed by
the following procedure�

begin

� �� the quiescent con�guration�
proL������ �� i � �� �
proC������ �� �m � ���� �i � ���� ��qi��
proR������ �� ��qi� �
for each j � f�� �g do
if nj � � and qi � Incj then proR������ �� proR������ � 
j

else proC���nj�� �� proC���nj�� � 
j �
��I� �� �

end�

For example� the con�guration ��qi� 
� �� such that qi � Inc� is shown in Fig� 
�

� � � i � ��
�m��
�

��i��	�

���qi�

��qi�

�
�
� � � � 
� � � � �

� � 


Figure 
� The con�guration ��qi� 
� �� such that qi � Inc��

Each con�guration ��I� has the number m��� in total� The number nj kept by the counter
j �j � f�� �g� is recorded by putting the number 
j at the center part of the cell nj �at the
right part of the cell �� if nj � � and the current state is in Incj�� The number 
j is called
a counter marker� The remaining m � �� particles are used to record the state of M � and to
execute operations on counters�

��



In what follows� each state in f�� 
� � � � � m� �g appearing in the left or the right part �not in
the center part� of a cell is called a signal� Signals in f��� ��� � � � � m� �g are called state signals�
and are used to record the current state of M � State signals are kept by the cells � and ��
�they go back and forth between these cells�� Signals in f
� 
� �� �g are called operation signals�
which are used to execute increment�decrement operations� Each of the four operation signals
sometimes carry a counter marker to move it to the right� or left�neighboring cell� At that time�
these signals �
�� �
�� ���� and ��� temporarily become �	�� ���� ���� and ���� respectively�
The signal ��� is a special one called an initial��nal signal �it will be explained later��

We now de�ne the local function g of A as follows�

�� Rules for the cases where no signal exists�
For each x � Nm���� include the following rule in g�

� �� x� � � � � �� x� � � ���


� Rules for state signals�
For each x � f��� ��� � � � � m� �g� include the following rule in g�

� �� �� x � � � �� �� x � �
�

	� Rules for the increment operation�
For each j � f�� �g and c � f�� �g� include the following rules in g �� denotes the addition in
mod 
��

� 
 � 
j� c � 
j��� � � � � �� c � 
j��� 
 � 
j � �	���
� 
 � 
j� 
j � c � 
j��� � � � � �� c � 
j��� 
 � 
j � 
j � �	�
�
� 
 � 
j � 
j � c � 
j��� � � � � 
 � 
j� 
j � c � 
j��� � � �	�	�
� �� c � 
j��� 
 � 
j � � � 
 � 
j� c � 
j��� � � �	�
�


� Rules for the decrement operation�
For each j � f�� �g and c � f�� �g� include the following rules in g�

� 
 � 	j� c � 
j��� � � � � �� c � 
j��� 
 � 	j � �
���
� 
 � 	j� 
j � c � 
j��� � � � � 
 � 	j � 
j � c � 
j��� � � �
�
�
� �� c � 
j��� 
 � 	j � 
j � � � 
 � 	j� 
j � c � 
j��� � � �
�	�
� �� c � 
j��� 
 � 	j � � � 
 � 	j� c � 
j��� � � �
�
�

�� Rules for waiting for the completion of the increment�decrement operation�
For each �qi� j� d� qk� � � such that d � f���g� and for each c � f�� �g� include the following
rule in g�

� i � ��� �m� ���� �i � ���� ��qi� � c � 
j��� � � �
� i � ��� �m � ���� �i � ���� ��qi� � c � 
j��� � � ���

�� Rules for simulating M  s state transition from a state in Incj �
For each �qi� j��� qk� � � and c � f�� �g� if qk �� Incj��� then include the following rule in g�

� i� ��� �m � ���� �i� ���� ��qi� � c � 
j��� ��qi� � �
� k � ��� �m � ���� �k � ���� ��qk� � c � 
j��� ��qk� � �����

For each �qi� j��� qk� � � and c � f�� �g� if qk � Incj��� then include the following rule in g�

� i� ��� �m � ���� �i� ���� ��qi� � c � 
j��� ��qi� � �
� k � ��� �m � ���� �k � ���� ��qk�� ��qk� � c � 
j�� � ���
�

��



�� Rules for simulating M  s state transition from a state in Decj �
For each �qi� j��� qk� � � and c� c� � f�� �g� if qk �� �Incj 
 Incj���� then include the following
rule in g�

� i� ��� �m� ���� �i� ���� ��qi� � c� � 
j��� ��qi� � c � 
j � �
� k � ��� �m � ���� �k � ���� ��qk� � c � 
j � c� � 
j��� ��qk� � �����

For each �qi� j��� qk� � � and c� c� � f�� �g� if qk � Incj � then include the following rule in g�

� i� ��� �m� ���� �i� ���� ��qi� � c� � 
j��� ��qi� � c � 
j � �
� k � ��� �m � ���� �k � ���� ��qk� � c� � 
j��� ��qk� � c � 
j � ���
�

For each �qi� j��� qk� � � and c� c� � f�� �g� if qk � Incj��� then include the following rule in g�

� i� ��� �m� ���� �i� ���� ��qi� � c� � 
j��� ��qi� � c � 
j � �
� k � ��� �m � ���� �k � ���� ��qk� � c � 
j � ��qk� � c� � 
j�� � ���	�

�� Rules for simulating M  s state transition from a state in Nop�
For each �qi� j� �� qk� � � and c� c� � f�� �g� if qk �� �Inc� 
 Inc��� then include the following rule
in g�

� i � ��� �m � ���� �i� ��� � c � 
� � c� � 
�� � � �
� k � ��� �m � ���� �k � ���� ��qk� � c � 
� � c� � 
�� ��qk� � �����

For each �qi� j� �� qk� � � and c� c� � f�� �g� if qk � Incj for some j� then include the following
rule in g�

� i� ��� �m� ���� �i� ��� � c � 
j � c� � 
j��� � � �
� k � ��� �m � ���� �k � ��� � ��qk� � c� � 
j��� ��qk� � c � 
j � ���
�

�� Rules for simulating M  s state transition from a state in Testj�
For each �qi� j� Z� qk� � � and c � f�� �g� if qk �� �Incj 
 Incj���� then include the following rule
in g�

� i� ��� �m� ���� �i� ��� � 
j � c � 
j��� � � �
� k � ��� �m� ���� �k � ���� ��qk� � 
j � c � 
j��� ��qk� � �����

For each �qi� j� Z� qk� � � such that and c � f�� �g� if qk � Incj � then include the following rule
in g�

� i� ��� �m� ���� �i� ��� � 
j � c � 
j��� � � �
� k � ��� �m� ���� �k � ���� ��qk� � c � 
j��� ��qk� � 
j � ���
�

For each �qi� j� Z� qk� � � and c � f�� �g� if qk � Incj��� then include the following rule in g�

� i� ��� �m� ���� �i� ��� � 
j � c � 
j��� � � �
� k � ��� �m� ���� �k � ���� ��qk� � 
j � ��qk� � c � 
j�� � ���	�

For each �qi� j� P� qk� � � and c � f�� �g� if qk �� Incj��� then include the following rule in g�

� i � ��� �m� ���� �i � ��� � c � 
j��� � � �
� k � ��� �m � ���� �k � ���� ��qk� � c � 
j��� ��qk� � ���
�

For each �qi� j� P� qk� � � and c � f�� �g� if qk � Incj��� then include the following rule in g�

� i � ��� �m� ���� �i � ��� � c � 
j��� � � �
� k � ��� �m � ���� �k � ���� ��qk�� ��qk� � c � 
j�� � �����

��
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Figure �� Performing an increment operation to the counter ��

��� Rules for the initial��nal signal�
Include the following rules in g�

� �� �� � � � � �� �� � � ������
� �� �� � � � � �� �� � � ����
�

For each c� c� � f�� �g� if q� �� �Inc� 
 Inc��� then include the following rule in g�

� �� �m � ��� � c � 
� � c� � 
�� � � �
� ��� �m� ���� ��� ��q�� � c � 
� � c� � 
�� ��q�� � ����	�

For each c� c� � f�� �g� if q� � Incj for some j� then include the following rule in g�

� �� �m � ��� � c � 
j � c� � 
j��� � � �
� ��� �m � ���� ��� ��q�� � c� � 
j��� ��q�� � c � 
j � ����
�

For each c� c� � f�� �g� include the following rule in g�

� �m � ��� �m � ���� �m � �� � c � 
� � c� � 
�� � � �
� �� �m � ��� � c � 
� � c� � 
�� � � ������

We now explain how each operation of M can be simulated by the rules of A� Although the
simulation method itself is a rather straight�forward one� the above rules are designed so that
the condition �if M is reversible� so is A� holds�

�a� Execution of an increment operation �qi� j��� qk��
The operation signals �
� and ��� are used for the increment of the counters � and �� respectively�
Such a signal is generated at the cell �� and travels rightward until it meets a corresponding
counter marker 
� or 
�� The signal shifts the counter marker to the right by one cell� and
then goes back to the cell �� This operation can be performed by the rules �	�����	�
� �strictly
speaking� they are �rule schemes��� Fig� � shows an example of this process�

When the operation signal returns to the cell �� the state transition from qi to qk in M is
simulated by the rule ����� or ���
� �depending on whether qk � Incj�� or not� in A� Fig� � �the
case nj � �� and Fig� � �the case nj � �� show examples of the whole execution processes� The
rules ���� �
�� and ��� are also used during this operation�

��
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Figure �� Performing a decrement operation to the counter ��

�b� Execution of a decrement operation �qi� j��� qk��
The operation signals �
� and ��� are used for the decrement of the counter � and �� respectively�
The shifting operation of a counter marker is similar to the case of the increment operation� and
is be performed by the rules �
�����
�
�� Fig� � shows an example of this process� An examples
of the whole execution process of �qi� j��� qk� is shown in Fig� �� The rules ���� �
�� ���� and
���������	� are also used besides �
�����
�
��

�c� Execution of a no�operation �qi� j� �� qk��
A no�operation simply changes the state of M � The rules ���� �
�� and ���������
� are used for
this operation� Fig� �� shows an example of the execution process of �qi� j� �� qk��

�d� Execution of a test�if�zero�positive operations �qi� j� Z� qk� and �qi� j� P� q���
The operations �qi� j� Z� qk� and �qi� j� P� q�� are performed by the rules ���������	�� and ���
��
������ respectively �the rules ��� and �
� are also used�� Fig� �� and Fig� �
 show examples of
the execution processes of �qi� j� Z� qk� and �qi� j� P� q��� respectively� Note that which rule group
���������	� or ���
������� is used is determined whether the center part of cell � contains the
term 
j �

�e� Rules for the initial��nal signal�
The rules ������������� are the ones for the initial��nal signal� When M halts in the �nal state�
the signal ��� is generated by the rule ������� and this signal travels leftward inde�nitely by the
rule ����
�� Note that these rules are not necessary for the simulation itself� But� by them� the
contents of the counters �i�e�� the �nal result� are kept unchanged even after the computation of
M terminates� Symmetrically to this� by the rules ������� ����	�� and ����
�� we can go backward
before the initial computational con�guration of M �

By above� we can see that A correctly simulates M step by step� It is easy to verify that each
rule conserves the total number between left� and right�hand sides� and hence A is an NC�PCA�

Now� we show that the following statement holds� If M is reversible� so is A� Assume M

is reversible� It su�ces to show that each of the above rules has a di�erent right�hand side
from those of the other rules� First� we can easily verify that rules ���� �
�� �	�x�� �
�x�� �������
����
�� and ������ satisfy this constraint by simply comparing their right�hand sides with other
rules� The rules ����	�� and ����
� are also so� Because the state q� does not appear as the forth
element of a quadruple in �� hence the right�hand sides of these rules never matches those of
���x�� ���x�� ���x�� and ���x�� as well as the others�

Next� we consider the rules ���� which correspond to the quadruple �qi� j� d� qk� � � such that
d � f���g� The state qi may appear as the fourth element of the other quadruples� But� since
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��qi� � � �because qi � �Inc� 
 Inc� 
 Dec� 
Dec���� the right�hand sides of the rules ��� never
match those of ���x�� ���x�� ���x�� and ���x��

We �nally verify that rules ���x�� ���x�� ���x�� and ���x� satisfy the reversibility constraint�
Let Inc�� Dec�� Nop�� and Test� be the sets of states of M de�ned as follows�

Inc� � fqk j �qi� j��� qk� � � for some j � f�� �g� and qi � Qg
Dec� � fqk j �qi� j��� qk� � � for some j � f�� �g� and qi � Qg
Nop� � fqk j �qi� j� �� qk� � � for some j � f�� �g� and qi � Qg
Test� � fqk j �qi� j� s� qk� � � for some j � f�� �g� s � fZ� Pg� and qi � Qg

For each qk � �Inc� 
 Dec� 
 Nop�� there is exactly one quadruple containing qk as the fourth
element� since M is reversible �thus the quadruple is of the form �qi� j� d� qk� �qi � Q� j � f�� �g�
d � f�� ���g��� Hence� the rules in ���x�� ���x�� and ���x� corresponding to this quadruple
have di�erent right�hand sides from the others� Next� for each qk � Test�� there are at most
two quadruples containing qk as the fourth element since M is reversible� They are of the form
�qi� j� s� qk� �qi � Q� j � f�� �g� s � fZ� Pg�� If there is only one� the rules in ���x� corresponding
to this quadruple satisfy the reversibility constraint as above� In the case there are two� they
must be of the forms �qi� j� Z� qk� and �q�i� j

�� P� qk�� because M is reversible� We can see the rules
in ���������	�� and ���
������� corresponding to the two rules have mutually di�erent right�hand
sides� because the center part of the cell � should be di�erent between two cases of the contents
of the counter j� They also di�ers from the other rules�

By above� each rule in g has di�erent right�hand side from the others� and thus we can
conclude that if M is reversible� A is also reversible� �

Example ��� Consider a deterministic RCM�
� M� � �
� Q� fZ� Pg� �� q�� q�� having the follow�
ing quadruples as ��

�q�� �� Z� q��
�q�� �� Z� q��
�q�� �� P� q��
�q�� �� �� q��

�q�� �� �� q��
�q�� �� �� q	�
�q	� �� P� q��

M� performs the computation �q�� n� �� j��
M�

� �q�� �� 
n� for any n�� �� �� � � ��� An NC�RPCA A�

constructed from M� by the method given in Theorem 	�� is as follows�

A� � �Z�N�
�	� g�� ��� �� ���

The local function g� is de�ned by the following set of rules� and a simulation process of
�q�� 
� �� j��

M�

�� �q�� �� 
� is shown in Fig� �	�

��
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Figure �	� A simulation process of an RCM�
� M� by an NC�RPCA A��
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From Lemma 	�� and Proposition 	��� universality of an NC�RPCA is concluded�

Corollary ��� An NC�RPCA is computation�universal�

� Concluding Remarks

In this paper� we proved that an NC�RPCA can simulate a reversible two�counter machine� hence
it is computation�universal� In ���� universality of an RCA �not necessarily number�conserving�
has been shown by simulating a one�tape reversible Turing machine by an RCA� It is also
possible to simulate a one�tape reversible Turing machine by an NC�RPCA� But� if we employ
a simulation method in which the contents of each tape square are stored in each cell� then the
quiescent state of the NC�RPCA should be ��� m� �� for some m � � rather than ��� �� ���
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Abstract

We state a de�nition of the simulation of graph automata� which are machines

built by putting copies of the same �nite�state automaton at the vertices of

a regular graph� reading the states of the neighbors� The graphs considered

here are planar� with the elementary circuits of the same length� and form

regular tilings of the hyperbolic plane� Thereafter� we present some results

of simulation between such graph automata� comparing them to the cellular

automata on Cayley graphs� and we conclude with a possible speed hierarchy�

� Introduction

Since the beginning of the electronic computer era� di�erent machine models have existed� but while the
classical sequential computer has been enormously developed� the intrinsic massive parallel models had a
harder time to get o�� maybe because it is more di�cult for us to understand the behavior of such tools
and to build and steer them correctly� However� several fundamental questions about the computing power
of these models have been successfully solved� showing that namely the cellular automata are at least as
powerful as the Turing machines� the classical sequential computer model�

A cellular automaton is a machine built by putting copies of the same �nite state automaton �FSA�
on the vertices of a �regular� graph� These FSA read their immediate neighbors� states� and switch their
state� all at the same moment� according to the state they were in� and according to what they have read�
Historically� cellular automata are built on what is called Cayley graphs �Garzon� ����� R�oka� ����� � we
slightly generalize this notion to what we call graph automata� still built on �regular� graphs�

What is a �regular� graph � We see below that other interpretations �than Cayley� can be given to
this term � for example� a special class of graphs� which are planar� forming regular tilings of a plane
�sphere� euclidean or hyperbolic� and which may not be �some of them� Cayley� When considering this class�
questions of computing power and speed naturally arise� Here we formalize these questions using the concept
of simulation� that is instead of building a machine A on a graph G� let us try to build a machine A� on a
graph G� such that by looking at its con�gurations� we can guess what the con�gurations of A would have
been� This is interesting� because when shown possible for A and A� both ways� this means that both are as
fast� but maybe with a linear time factor di�erence� and otherwise� if shown strictly only one way� then one
machine is strictly more powerful than the other�

Some of the �rst results appeared in �R�oka� ������ where R�oka proved that all the regular tilings of
the euclidean plane are equivalent� i�e� given two tilings� for each machine built on one tiling we can �nd
another one on the other tiling simulating it� that all the trees are also equivalent� and that trees simulate
the euclidean planes but the reverse is impossible� because of the di�erent growths of number of neighbors
with the distance from any given vertex �polynomial and respectively exponential�� Also� several kinds of
simulation can be de�ned� and Bruno Martin� in �Martin� ������ shows that all the tilings of the hyperbolic
plane are equivalent for simulations where a vertex of A is simulated by only one vertex of A�� even if one
vertex of A� can simulate several vertices of A� However� these simulations are not e�ective� that is we don�t
explicitely know which vertex simulates which one� nor how long it takes�

Here we give di�erent simulations� de�ning them in the section � and proving that we can only consider
the graph structure when studying the existence of simulations� In section 	 we present a simulation between
dual graphs� The result is quite natural� but the construction details have to be treated carefully� In section
� we give simulations in time �� using algebraic properties of group theory� our main tool being the notion
of Cayley graph� In section � we give some corollaries and thereafter we conclude with a possible hierarchy
of the �regular� graphs we have considered�
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� Notion of simulation

We note a�b� the remainder of the euclidean division of two positive integers a by b� and �nq �c� � cq where
c � �c�� c�� � � � � cn��

��� Graphs

A graph G is an ordered pair G � �X�E� where X is a set� and E � X � X� The elements of X are
called vertices and the elements of E arcs� A symmetrical graph is a graph G � �X�E� such that for each
�x� y� � E� it is true that also �y� x� � E� A planar graph is �informally� a graph which can be drawn on
a sphere so that no arcs cross each�other� and� moreover� it is locally �nite if there exists a drawing on the
plane such that no disc of �nite radius of the plane contains an in�nite number of vertices of the graph�

The outer and respectively inner neighborhoods of a vertex x � X are the sets  ��x� � fy j �y� x� � E g
and  ��x� � fy j �x� y� � E g� and the respective degrees are d��x� � j ��x�j and d��x� � j ��x�j�

In a symmetrical graph� for all x � X� d��x� � d��x� � d�x�� A regular symmetrical graph of degree d
is a graph such that for all x � X� d�x� � d�

A chain in a graph G � �X�E� is a sequence �x�� x�� � � � � xn�� with xi � X and �xi� xi��� � E� A circuit
in a graph G � �X�E� is a chain �x�� � � � � xn��� xn� such that xn � x��

An edge is a set of two opposed arcs � f�x� y�� �y� x�g� and a cycle is a sequence �x�� � � � � xn� x�� such that
f�xi� xi���� �xi��� xi�g are edges� In a symmetrical graph� from any arc we can form an edge� and from any
circuit we can form a cycle� by taking its respective opposite� An elementary cycle is a cycle such that there
is no edge between two non�consecutive vertices in the enumeration of the cycle�

We would like to build what we call graph automata� upon such symmetrical planar regular graphs� In
order to do that� we label the arcs of the graph� using a function VE � E � �� �� � � � � d� where d is the degree
of the graph� We call then a labeled graph an ordered pair H � ��X�E�� VE�� where �X�E� is a graph and
VE its labeling function�

An homogenous labeling function for a planar labeled graph G � ��X�E�� VE� is a function such that
given �informally speaking� a drawing of the graph on a plane� the drawn arcs �x� y� and �x� z� are circularly
consecutive in the trigonometric sense �around the drawn vertex x� if and only if VE�x� z� � VE�x� y��d� ! ��

We can canonically de�ne� from VE � in order to ease the notation� the neighborhood functions

VX � X � f�� �� � � � � dg � X
VR � X � f�� �� � � � � dg � f�� �� � � � � dg

with
�� VE�x� VX�x� i�� � i� for � � i � d and x � X
�� VR�x� VE�x� y�� � VE�y� x� for �x� y� � E

VX gives the vertex which is the i�th neighbor of a vertex� and VR of an arc �given by the origin and the
label� gives the label of the opposite arc�

��� Graph automata

A regular graph automaton �GA� is a triple �H�Q� �� where H � ��X�E�� VE� is a regular symmetrical
labeled graph of degree d� VE is a labeling function� Q � IN� � � Qd�� � Q is the transition function of the
FSA� A con�guration of the graph automata is a function c � X � Q� Given two con�gurations c� and c��
we note c� � ��c�� if

c��x� � ��c��x�� c��x��� c��x��� � � � � c��xd�� with xi �  ��x� such that VE�x� xi� � i

Remark � This actually means that we put copies of the same �nite�state automaton in all the vertices of such

a graph� having d�tuples of states as input letters�

��� Simulation

Given a positive integer constant T � we say that a
GA A� simulates a GA A in T time units� if there
exists a function � such that for each con�guration
c� of A there exists a con�guration c�� of A

� such that
the diagram from �gure � be respected�

�

�

c��

c�� c�

c�

���T

Fig��

�




Remark � We can immediately see that the relation �simulates� is re�exive and transitive� This de�nition is

more general than the one from 	R
oka� ���
� which is also used by B� Martin in 	Martin� ����� � if one GA simulates

another one in the sense of R
oka� then it simulates it in our sense� but not conversely�

One might think the behavior of a GA equally depends on the graph it is built on and on the labeling�
However� we prove �

Proposition � �
Consider a regular symmetrical graph G� For each pair of its di�erent labelings �VE � V

�

E�� for each GA
A � ��G� VE�� Q� �� there exists a GA A� � ��G� V �

E�� Q
�� ���� which simulates A in � time unit�

Proof

The only di�erence between two labelings is that for each vertex x there is a permutation tx� which as�
sociates the labels of VE to the ones of V �

E � locally � V
�

E�x� y� � tx�VE�x� y��� This permutation may not be the
same for all the vertices� but there is a �nite number �d"� of possible permutations �

tx � f�� �� � � � � dg � f�� �� � � � � dg� We construct Q� as a set of d ! ��tuples � Q� � Q � f�� �� � � � � dg
d
� The

permutation of the label i around the vertex x will then be tx�i� � �d��i�� �c
��x��� For � � i � d� let us

denote xi � VX�x� i�� and y � �d��� �y� if y is a d! ��tuple� Then �� is such that ���c��x�� c��x��� � � � � c��xd�� �
���c��x�� c��xtx����� c

��xtx����� � � � � c
��xtx�d���� tx���� � � � � tx�d�� and the simulation function � is such that

���c����x� � c��x� and partially de�ned� only on valid c� con�gurations�

This proposition allows us to extend the de�nition of simulation to classes of GA�s built on the same
graphs� We say that a graph G � �X�E� simulates a graph G� � �X �� E�� in T time units� if for each VE �
for each GA built on �G� VE�� there exists a V �

E and a GA built on �G�� V �

E� which simulates it in T time
units� We also see that� since all labelings are equivalent for a simulation� if we consider planar graphs� we
can then only consider homogenous labelings�

The graphs we will use to build GA�s are of a special type� having all the non�trivial� cycles of the same
length� and we will �rst present a simulation between graphs which are dual in the sense of the cycles�

� Simulations by duality
��� ��k� d�

We note with  �k� d� the �unique up to
isomorphism� planar regular symmetrical
graph of degree d and locally �nite� such
as all its non�trivial elementary cycles are
of length k� Figure � shows an example of
numbering of such a graph�
The  �k� d� graphs possess what we would
informally call �regularity�� There are
other classes of graphs showing types of
�regularity� as well� and we will see one
in the next section�
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VX�y� �� � x

VX�x� �� � y

VX�y� �� � z

VE�x� y� � �

VE�y� x� � �

VR�x� �� � �

VR�y� �� � �

Fig�� Example �  ��� ��

��� Simulation

The graphs�  �k� d� and  �d� k� are dual in the sense of the elementary cycles �faces� � if in one of the
graphs we replace every face by a vertex� and we put an edge between two such new vertices if the two
corresponding cycles share an edge� we obtain the other graph� We could ask if there is a simulation between
GA�s built on these two graphs� The answer is positive �

Theorem � �of duality��
For all k� d � IN�  �k� d� simulates  �d� k� in k ! � time units�

�a trivial cycle in a symmetrical graph is �x� y� x� if �x� y�� �y� x� � E
�k and d are actually such that the graphs are in�nite� tiling the euclidean or hyperbolic plane �
��� ��� 
�
� 
� and 
��� ��

are euclidean� and 
���� 
�� 
�
�� ��� 
���� 
�� 
���� 
� and 
�� ��� �� hyperbolic

��



Proof

Let A � ��X�E�� VE� and A� � ��X �� E��� V �

E�� with �X�E� �  �k� d� and �X �� E�� �  �d� k��
From a vertex of one of the graphs we would like to obtain the dual cycle� in the other graph� Suppose

we number in anti�trigonometric sense and starting from an arbitrary point� the vertices of this dual cycle�
One can then consider the families of functions

�s����X � f�� �� � � � � dg � X � and �sx�x�X� � f�� �� � � � � kg � X

such that �s����� s����� � � � � s��d�� s����� is the dual cycle of �� in A
�� �sx���� sx���� � � � � sx�k�� sx���� is the dual

cycle of x� in A� and the arc �s��j�� s��j�d� ! ��� of E� is crossed� by duality� by the arc of E labeled by j�
that is ��� VX��� j�� �see also �Cori� �������

These functions allow us to name the dual cycles for each vertex� Let M � a GA built on A�� and let us
construct a GA M on A which simulates M ��

Simulation of M � by M We propose a local and �nite repartition of the vertices of A� on the ones of A �
a vertex � of A simulates exactly the d vertices s��i� of the dual cycle in A��

Remark � This way� a vertex x of A� will be simulated by k vertices of A� because x belongs 	in A� � ���d� k�� V �

E��

to k cycles� to which respectively correspond by duality the k vertices sx���� � � � �sx�k� in A�

A possibility to realize this simulation consists in the application by M of the same transition of M �

���c��x�� c��V �

X�x� ��� V �

X�x� ��� � � � � V �

X�x� k��� by the vertices of A�
Let us �rst walk through an example� with k � �� Each vertex simulating x has a stack� Suppose at the

initialisation step� these vertices put at the bottom of the stack the state of the central vertex x� and above�
the state of the neighboring vertex �on the �left��� Afterwards� at each step the vertices will copy the top of
the stack of their neighbor� and at the end of the period they will know all the necessary states to apply ���
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Fig�� Evolution of k � � vertices simulating x� one of their dual vertices

Therefore in general� since each x in A� receives the informations of k neighbors� to simulate it in A� the
vertices have to store the k! ��tuples of the form �ct�x�� ct�VX�x� ���� � � � � ct�VX�x� k��� �the stacks�� On the
other hand� a vertex � of A has to simulate d vertices of A� �its dual cycle�� therefore it has d such stacks�
and the states of the vertices of A will be the elements of Qd�k���� This algorithm is then performed in
parallel inside each cycle of A�

However� the implementation of this idea brings up three problems� The �rst has to do with the initia�
lisation of the stack � how does a vertex � know not only the center x� but also its �left� neighbor y � Let
us remark that this �left� neighbor belongs to the dual cycle of �� therefore it is actually simulated as well�
Consequently� its state is at the bottom of a another stack of the same �� Which stack � These stacks are
all numbered � the stack j simulates the vertex x if s��j� � x� Then there is also a j� such that the stack j�

simulates y� that is s��j
�� � y� Moreover� y is consecutive to x in the s numbering� and then j� � j�d� ! �

�by construction of s�� Thus we have solved this problem�

��



The second problem has to do with the �lling of the stacks � since each vertex � has d stacks� how
does such a vertex simulating x know the number of the stack of its neighbor which it takes the top from �
Let i such that � � sx�i�� Then this neighbor of � is
�� � sx�i�k�!�� and the problem is to know the j� such that
x � s���j

��� i�e� the rank of the stack for x of the neighbor of
�� By de�nition� s� is such that the arc �s��j�� s��j�d�!���
is crossed� by duality� by the arc ��� VX��� j��� labeled
by j � also� VE��� �

�� � j�d� ! � because VE is homoge�
nous� Then� the arc ���� �� labeled by j� � VE��

�� �� also
crosses� by duality� the arc �s���j

��� s���j
��d� ! ���� Thus

j� � VR��� j�d� ! ��� because VR gives the opposite arc la�
bel�

�

A

��
x � s��j�

s��j�d� � �� j

j�d� � �

VR��� j�d� � ��

A�

s���j
��d� � ��

� s���j
��

Fig�� Dual labeling
Finally� the third problem appears at the last step� when applying ��� The stacks are �lled with the states

of all the neighbors of the vertices to simulate� in the good order� but maybe not starting with the right one
�i�e� we would need a circulary permutation to rearrange the content of the stack� see �gure ���
We wish to have the state of the
vertex V �

X�x� �� at the bottom of
the stack �right above the state
of the central vertex� of course��
Who is at the bottom � Let us say
the state of V �

X�x� ri� is there� at
the bottom of the stack of � �
sx�i�� Then it is enough to roll
the stack upwards ri � � times�
to be able to apply �� correctly�
We need to �nd this ri� This ver�
tex V �

X�x� ri� has also been cal�
led the �left� neighbor of �� being
actually� for x � s��j�� its suc�
cessor �in the dual cycle of �� �
the vertex s��j�d�!��� Here is an
example ��g� ��� for i � � �

c�V �

X
�x� ���

here ri � �

c�V �

X
�x� ���

c�V �

X
�x� ���

c�V �

X
�x� ���

c�V �

X
�x� ���
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X
�x� ���

c�V �

X
�x� 
��

c�x�
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sx�k�

x � ssx������
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sx���

sx���

� � sx���

ssx����
�

V �

X
�x� r��

V �

X
�x� r��k� � ��

A�

s���� � ssx������ � V �

X
�x� r��

V �

X
�x� �r� � ���k� � ��

sx�k � ��

� times roll

Fig�� Simulation of A� �continuous line� by A �dashed line�
Now� if we replace � by sx�i� in the equality s��j� � x� we obtain x � ssx�i��j� and then ri is given

by the equality V �

X�x� ri� � ssx�i��j�d� ! ��� This way� we have related the numbering of the neighbors of x
with that of the dual cycle of �� The ri�th neighbor of x is the element which follows x in the dual cycle of
� � sx�i�� The algorithm thus says that right before the � � sx�i� apply �

�� they roll the arguments ri � �
times� However� these ri must be given as input � therefore the states of M will be d�k ! ���tuples � d stacks
of k elements plus the bottom� and d shifts ri�

The � function is then a projection extracting the bottom of the stacks � for each x � A�� let � � A such
that there exists an integer j with s��j� � x� Then

c��x� � ���c���x� � bottom of the j�th stack of ��more precisely �
d�k���
�j����k������c�����

We have said that there are other classes of �regular� graphs� one of them being the class of Cayley
graphs� When studying this class� we can bene�t from algebraical tools to �nd conditions for simulations�

� Simulations induced by morphisms

��� Cayley graphs

We see below that there is a non�void intersection of the classes  �k� d� and Cayley� but that neither
is included in the other� In order to de�ne what a Cayley graph is� we need to introduce the notion of
presentation�

�	



A presentation of a group G is an ordered pair of two sets hAjBi� A � G� B � A�� such that

# for any � � G� there exists a word with letters ai � A �called generators� equal to �

# all the words of B �called relators� are equal to the identity element of the group ��G�

# any � � G such that � � �G can be written as � �
nY
i��

uiwiu
��
i with ui � G� wi � B�

A symmetrical presentation is a presentation in which for each ai � A there exists aj � A with aiaj � B�
Here we only consider symmetrical presentations� which we call presentations� A homogenous presentation
is a presentation which induces a homogenous VE �

A symmetrical Cayley graph of a group G � ha�� � � � � adjBi is a regular labeled symmetrical graph H �
��G�E�� VE� of degree d such that �u�w� � E if and only if there exists an integer i with � � i � d such that
w � uai� The label VE�u�w� of �u�w� is therefore i�

Remark � The circuits of H are labeled with elements of A� according to their order of occurence in the words

of B� The function VR gives� for a vertex x and a generator ai� the generator labeling the opposite arc� and since if

w � uai� u � wa��
i

and for ai � A 	as in G� a��
i

is unique� it follows that for a symmetrical Cayley graph� VR does

not depend on the vertex�

This remark allows us to call VR�x� i� � �d�i� � therefore for any arc �x� y� of a symmetrical Cayley graph�
VE�x� y� � ��VE�y� x��� and ����i�� � i�

For example� � ��� ��� VE� is the symmetrical Cayley graph ofG � ha� b� c� djac� bd� abcdi� with VE�u� uai� �
i� for u � G�

��� ��k� d� and symmetrical Cayley graphs

We have said that there is a non�void intersection of the two classes � symmetrical Cayley graphs and
 �k� d� graphs� This problem has been exhaustively studied by T� Chaboud� in �Chaboud� ����b�� and we
recall in this subsection his results we need to study the simulations�

Theorem � ��Chaboud� ���	b�� p
 	�� �

� �k� d�� VE� is the symmetrical Cayley graph of a group presentation �with the appropriate VE� if and
only if k is divisible by at least an i from f�� � � � � dg�

We recall now the way  �k� d� homogenous presentations look �Chaboud� ����b�� The relators from the
presentation encode the circuits of the graph� Here all the elementary non�trivial circuits are of length k� so
we have as relators words of k generators� Also� to express the couples aia

��
i � there are also two�letter words�

We have noted with �d the permutation such that ai � a��
�d�i�

� Let pd�i� � i�d� ! ��

If the label of an arc of a face of � �k� d�� VE� is 	� then the
next arc to continue the border of the face is the inverse
of the generator consecutive to 	� i�e� �d�pd�	��� Then� in
order to close the border of the face �in anti�trigonometric
sense�� we have to walk on k such arcs� which gives the other
relators of the presentation� under the form of products

	 � ��d � pd��	� � ��d � pd�
��	� � � � � � ��d � pd�

�k����	�

all this for each generator 	�

�

�d�pd����

pd���

Fig�� Border of a face 	 relators �d � pd
T� Chaboud shows by induction in that for each Cayley  �k� d� there exists such a homogenous presentation

with d generators � G � ha�� � � � � adjaia�d�i��
k��Y
j��

a��d�pd�j�i�i�

An interesting tool used to represent these presentations is a diagram with d points� a circuit going once
through each point �that is pd� and arcs linking points according to �d�

��



A relator corresponds then to a cycle alternating the
arcs � one of pd� and then one of �d� for instance�
��� d� �� d! �� 	� �� �� for the �gure ��
Moreover� T� Chaboud shows again by induction
that for each Cayley  �k� d�� k 	� d or k not prime�
among its homogenous presentations there is one
having what Chaboud calls a handle � that is �
d � �d�d� �� � pd�d� ���

�

�

�
d � �

d � �

d

Fig�	 �d
pd diagram with a handle

Also� if we have two homogenous presentations with handles for  �k� d�� and respectively  �k� d��� then� by
a fusion operation �  �k� d��
 �k� d�� �  �k� d�!d���� we can easily �nd another homogenous presentation
for  �k� d� ! d� � ���

This operation identi�es the vertices of a handle
thus creating a new diagram� For example� for
the �gure �� if we make the fusion of that diagram
with a copy of itself� the new diagram would have
�d generators� with d inverse of �d� and all the
circuits �twice�� in the two �compartments� of
the new diagram�

�

d

d � �

�d
�d� �

�d� �

�d� ��

�
d � �

Fig�
 � � p diagram obtained by fusion

��� Simulations

For a symmetrical Cayley graph C� let us denote with GC the group presented such that its symmetrical
Cayley graph is C�

Based upon a result of R�oka from �R�oka� ������ we have found a similar su�cient condition for a
simulation to exist between two GA�s�

Proposition � �

If there exists a �surjective� group morphism 
 from GH � hP jQi to G�

H� � hP �jQ�i� such that P � � 
�P ��
then H simulates H � in � time unit�

Proof

Let the GA A� be �H �� Q�� ���� We try to build a GA called A � �H�Q� ��� simulating A�� We set Q� � Q�
For each con�guration c of A such that for any ��� �� � H� 
���� � 
���� �� c���� � c����� we de�ne
��c� � c� such that for each � � H� c��
���� � c���� c� is well�de�ned since 
 is surjective�

Let d � jP j� d� � jP �j�

Since 
 is surjective� there exists an injective function t � f�� � � � � d�g � f�� � � � � dg such that 
�at�i�� � a�i�
This actually tells us� for an i from � to d�� which generator of P we must consider so that its image by 
 be
the i�th generator of P �� We then de�ne ��c���� c��a��� � � � � c��ad�� � ���c���� c�
��at������ � � � � c�
��at�d������

The reason this proof works is the condition P � � 
�P �� which informally insures that the neighborhood
of the image 
��� of a vertex � be included in the image by 
 of the neighborhood of ��

Now we shall look for such morphisms between di�erent  �k� d� which are symmetrical Cayley graphs�
i�e� with k divisible by a number between � and d�

We have �rst

Theorem � �

Let k� d � IN� If k is divisible by an integer i with � � i � d �i�e� C � � �k� d�� VE� is a symmetrical
Cayley graph�� then for each positive integer n�  �nk� d� simulates  �k� d� in � time unit�

Proof

Let A � � �k� d�� VE�� and A� � � �nk� d�� V �

E�� Based upon the presentation of GA� we can �nd a

��



presentation for GA� �

GA� � ha��� � � � � a
�

djaia�d�i��

�
�
k��Y
j��

a���d�pd�j�i�

�
A
n

i

because this way the circuits become n times longer� while keeping the same number of generators�
Then the function 
 � GA� � GA 
�a�i� � ai 
�a�ia

�

j� � fB�a
�

i�fB�a
�

j� de�nes very well a morphism�
which is surjective� because the relators of the presentations of GB are very well transported on GA and we
conclude with proposition ��

What does the theorem amount to� actually � There
is a �natural� way of mapping the vertices of A to
the ones of A� � each circuit ��� �� � � � � k� of A is co�
pied n times on a �� corresponding �� circuit of A� �
��� �� � � � � k� �� �� � � � � k� � � � � �� �� � � � � k�� Figure � shows an
example� for k � �� d � �� n � �� The idea works� be�
cause indeed each vertex� when mapped to a vertex in the
other graph� sees its neighborhood mapped to the one of its
image� The drawback of this simulation is� however� that an
in�nite number of vertices of A� simulate the same vertex
of A�
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Fig�� Simulation by copying the circuits
Now we would like to modify only d� that is the number of generators� Using a formalism and a lemma

from �Chaboud� ����b�� this is made possible�

Theorem � �of degree��
Let k� d � IN� If k is divisible by an integer i with � � i � d �i�e� C � � �k� d�� VE� is a symmetrical

Cayley graph�� then  �k� d! �� simulates  �k� d� in � time unit�

Proof

Let A � � �k� d�� VE�� and A� � � �k� d ! ��� V �

E�� For the group GA� � keeping the same circuits as the

ones of A� we can give as a presentation GA� � ha��� � � � � a
�

d��ja
�

ia
�

�d���i�
�
k��Y
j��

a���d���pd���j�i�i�

Let us apply the handle property to  �k� d ! ��� �nding a pre�
sentation with a handle� for A� � � �k� d ! ��� V �

E�� Then we can
construct a new one for  �k� d�� namely a permutation ��d� which
superposes the generators i and j �i�e� d and d! ��� We obtain in
this way a symmetrical Cayley graph A�� � � �k� d�� V ��

E �� We have
then a morphism 
 � GA� � GA such that 
�a�i� � ai for � � i � d
and 
�a�d��� � ad� Therefore� for each GA built on A�� there is one
built on A which simulates it� according to proposition ��

�

�

�
d � �

i � d

��d��� � d� �

��d�d� � d

��d��� � 	

Fig��� � � p diagram of A��

We conclude using the proposition �� because the only di�erence between A and A�� is the labeling� so for
each GA built on A there is one built on A�� simulating it� and there is another one� built on A� simulating
the one on A���

Remark � Geometrically speaking� the presence of a handle in a � � p diagram amounts to the presence of

circuits labeled with the same generator a in the symmetrical Cayley graph� Therefore� the theorem simply contracts

all these circuits� and manages to conserve the structure�

We might wish to apply this last idea� maybe slightly modi�ed� to increase k by �� and not d� We would
therefore have for each GA built on A � � �k� d�� VE� a GA built on A� � � �k ! �� d! c�� V �

E� simulating it�
with c � 
� thus improving the �rst theorem about  �k� d��  �nk� d��

Thinking in terms of relators and graphs� this means we would like to lengthen by one the circuit
represented by the words aia��p�i�� � � � a���p�k���i�� inserting� for example� a new generator 	� which would
be its own opposite� This way� the morphism would be well de�ned� because it would send the a�i of GA� on
the ai respectively of GA� and 	 on ��
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The last problem is �how big is c ��� the answer is here �

Theorem 	 �

Let k� d � IN� k � d� If k is divisible by an integer i with � � i � d �i�e� C � � �k� d�� VE� is a symmetrical

Cayley graph�� then there exists c� with � � c �
d

k
� such that  �k ! �� d! c� simulates  �k� d� in � time unit�

Proof

Let A � � �k� d�� VE� and A� � � �k ! �� d ! c�� V �

E�� We will once again use the Chaboud diagrams
representing � and p� Lengthening a circuit of the diagram �which corresponds to a relator� means� as we
said� inserting a loop 	 � ��	�� splitting one of the arcs of p� if there are exactly k taken in the circuit�
However� it might be possible that some �� p alternating cycles in the diagrams be of e�ective length equal
to a divisor r of k� and then the insertion of such a loop would increase k by k�r� If r � � �i�e� for the
handles�� the problem is solved� because there is no need to insert any loop� Otherwise� we can make sure
that r � k �

Lemma � �

For each  �k� d� with k � d there exists a presentation whose � � p diagram has all its elementary � � p
circuits of length k ou ��

Proof

By induction on the degree d� let d � IN and suppose the lemma is true for all d� � d� Then we can �nd
d� � d 
 d� with d� ! d� � � � d � the lemma is true for  �k� d�� and respectively for  �k� d��� and �nally the
lemma is also true for  �k� d�! d�� �� �  �k� d�� because the set of all the circuits of the diagram of this last
one� obtained by fusion as said in the previous subsection� is simply the union of the sets of circuits of the
two combined diagrams�

We have also to make sure that the circuits are disjoint in the sense of the arcs of p �the ones with
arrows�� so that the insertion of a loop modi�es a well�determined set of circuits� Indeed

Lemma � �

For a � � p diagram� if two � � p circuits share the same p arc� then they are identical�

Proof

If x belongs to two circuits and the shared arrow arc starts from x� then ��p�x�� also belongs to the
two circuits t� and ��p���p�x���� too� because they are uniquely determined� We prove as well that all the
vertices �� � p�i�x� are common to the two circuits� with � � i � k� therefore the circuits are identical�

Thus� c is equal to the number of such circuits of length k� There is at least one �because  �k� k� has it� and
these circuits are conserved by the fusion operation� and at most d�k because they are disjoint in the sense
of the p arcs� which of number d� Finally� the morphism de�ned as above �the �copied� generators mapped
to their copies� and the �added� generators� opposite of themselves� mapped to �� insures the simulation�

� Corollaries

As an immediate consequence of this last theorem� we can extend the theorem on  �k� d� simulated by
 �k ! �� d! c� to the case where k 
 d� but with  �k� d� still symmetrical Cayley graph �

Theorem 
 �

If k 
 d� but k is divisible by a number between � and d �i�e� C � � �k� d�� VE� is a symmetrical Cayley
graph�� then  �k ! �� d� simulates  �k� d��

Proof

Let M be a GA built on � �k� d�� VE�� According to the theorem of duality� M can be simulated by a GA
M�� built on � �d� k�� V �

E�� Since d � k� � �d� k�� V �

E� is a symmetrical Cayley graph� therefore we can apply
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the theorem of degree� which says that M� can be simulated by a GA M	 built on � �d� k!��� V 	
E �� which�

in turn� can be simulated by a GA M � built on � �k ! �� d�� V �

E�� because of the last theorem once again�

We have also

Theorem � �
For each GA built on A � � �k� d�� VE� which is not a symmetrical Cayley graph� there exists GA�s

respectively built on A � � �k ! �� d�� V �

E�� on A�� � � �k� nd�� V ��

E �� and on A��� � � �k ! c� d! ��� V ���

E � which
simulate it�

� Conclusion

We have devised �ascending� simulations between GA�s built on  �k� d�� In general� if k� � k and d� � d�
with some special conditions� for a GA built on � �k� d�� VE� we can build another one� on � �k�� d��� V �

E�
which simulates it in � time unit� A special case is the dual one� where the simulation is in time k ! � when
 �k� d� simulates  �d� k��

The morphism�induced simulations belong to a simulation class which may be called dual
unitary in
an analog sense as the one of Bruno Martin� because a vertex of the simulating GA has to simulate only
one vertex of the simulated GA� and his simulation de�nition is the other way� The �rst open question
coming now is �what happens downwards�� that is �do there exist dual�unitary simulations of GA�s built on
� �k�� d��� V �E� by GA�s built on � �k� d�� VE� ��� We conjecture that this is not possible in time ��

Then we also can ask �What if the simulation is also point�to�point� that is dual�unitary and also such
that one vertex is simulated by only one vertex � can we infer that one of the graphs is a sub�graph of the
other� if the simulation is � time unit �� We also conjecture this as true�

Also� more work has to be done to better understand the trade�o� between increasing one of �k� d� and
decreasing the other� and still keeping possible the simulation� as for the dual graphs�

Finally� a generalisation at GA built on other graphs� still �regular�� like the uniform tilings �with a �nite
family of regular polygons� always in the same order around any vertex� would be of great interest�
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Suppose the world is a machine. This is a long-held suspicion, at least as
old as the Pythagoreans, that has been revitalized by the early natural sciences.
Presently, this intuition is formalized by the computer sciences and constructive
as well as discrete mathematics.

Of course, anybody claiming that the world is a machine is in a state of sin,
in outright contradiction to the orthodox canon of physics, at least at the moment.
We are told that certain quantum mechanical events occur randomly and uncon-
trollably; and chaos theory pretends that there is randomness even in classical
continuum mechanics and electricity.

In principle, the statement that the world is a machine is trivial; a self-fulfilling
prophesy if you like. Because anything which can be comprehended can automat-
ically be called machine-like or constructive. Alternatively, if there would be no
world comprehension, there would be no talk of the machine-like character of the
world. But then there would most probably be no talk at all.

Having said this as a preamble, let me spell out one particular consequence of
the assumption that the world is a machine a little bit more explicitly. There has
been hardly any feature of quantum mechanics which has given rise to as many
fruitless speculations as complementarity. Intuitively, complementarity states that
it is impossible to (irreversibly) observe certain observables simultaneously with
arbitrary accuracy. The more precisely one of these observables is measured,
the less precisely can be the measurement of other — complementary — observ-
ables. Typical examples of complementary observables are position/momentum
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(velocity), angular momentum in the x/y/z direction, and particle number/phase
[Per93, WZ83].

The intuition (if intuition makes any sense in the quantum domain) behind
this feature is that the act of (irreversible) observation of a physical system causes
a loss of information by (irreversibly) interfering with the system. Thereby, the
possibility to measure other aspects of the system is destroyed.

As could be expected, this is not the whole story. Indeed, there is reason to be-
lieve that — at least up to a certain magnitude of complexity — any measurement
can be “undone” by a proper reconstruction of the wave-function. A necessary
condition for this to happen is that all information about the original measure-
ment is lost. Schrödinger, the creator of wave mechanics, liked to think of the
wave function as a sort of prediction catalog [Sch35]. This prediction catalogue
contains all potential information. Yet, it can be opened only at a single partic-
ular page. The prediction catalog may be closed before this page is read. Then
it could be opened once more at another, complementary, page. By no way it is
possible to open the prediction catalog at one page, read and (irreversibly) mem-
orize (measure) the page, and close it; then open it at another, complementary,
page. (Two non-complementary pages which correspond to two comeasurable
observables can be read simultaneously.)

This may sound a little bit like voodoo. It is tempting to speculate that comple-
mentarity can never be modeled by classical metaphors. Yet, classical examples
abound. A trivial one is a dark room with a ball moving in it. Suppose that we
want to measure its position and its velocity. We first try to measure the ball’s
position by touching it. This finite contact inevitably causes a finite change of the
ball’s motion. Therefore, we cannot any longer measure the initial velocity of the
ball with arbitrary position.

There are a number of more faithful classical metaphors for quantum comple-
mentarity. Take, for instance, Cohen’s “firefly-in-a-box” model [Coh89], Wright’s
generalized urn model [Wri78, Wri90], as well as Aerts’ vessel model [Aer82].
In what follows, we are going to explore a model of complementarity pioneered
by Moore [Moo56]. It is based on extremely simple systems — probably the
simplest systems you can think of : on finite automata. The finite automata we
shall consider here are objects which have a finite number of internal states and
a finite number of input and output symbols. Their time evolution is mechanistic
and can be written down on tables in matrix form. There are no build-in infinities
anywhere; no infinite tape or memory, no non-recursive bounds on the runtime et
cetera.
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Let us develop computational complementarity, as it is often called [FF83],
as a game between two players called Alice and Bob. The rules of the game
are as follows. Before the actual game, Alice gives Bob all he needs to know
about the intrinsic workings of the automaton. For example, Alice tells Bob, “if
the automaton is in state 1 and you input the symbol 2, then the automaton will
make a transition into state 2 and output the symbol 0,” and so on. Then Alice
presents Bob a black box which contains a realization of the automaton. Attached
to the black box are two interfaces: a keyboard for the input of symbols, and an
output display, on which the output symbols appear. Again, no other interfaces
are allowed. In particular, Bob is not allowed to “screw the box open.”

Suppose now that Alice chooses some initial state of the automaton. She may
either throw a dice, or she may make clever choices using some formalized sys-
tem. In any case, Alice does not tell Bob about her choice. All Bob has at his
disposal are the input-output interfaces.

Bob’s goal is to find out which state Alice has chosen. Alice’s goal is to fool
Bob.

Bob may simply guess or rely on his luck by throwing a dice. But Bob can also
perform clever input-output experiments and analyze his data in order to find out.
Bob wins if he gives the correct answer. Alice wins if Bob’s guess is incorrect.
(So, Alice has to be really mean and select worst-case scenarios).

Suppose that Bob tries very hard. Is cleverness sufficient? Will Bob always be
able to uniquely determine the initial automaton state?

The answer to that question is “no.” The reason is that there may be situations
when Bob’s input causes an irreversible transition into a black box state which
does not allow any further queries about the initial state.

What has been introduced here as a game between Alice and Bob is what
the mathematicians have called the state identification problem [Moo56, Cha65,
Con71, Bra84]: given a finite deterministic automaton, the task is to locate an
unknown initial state. Thereby it is assumed that only a single automaton copy is
available for inspection. That is, no second, identical, example of the automaton
can be used for further examination. Alternatively, one may think of it as choosing
at random a single automaton from a collection of automata in an ensemble dif-
fering only by their initial state. The task then is to find out which was the initial
state of the chosen automaton.

The logico-algebraic structure of the state identification problem has been
introduced in [Svo93], and subsequently studied in [Svo93, SS94, SS95, SS96,
DPS95, SZ96, ST96, CCSY97].
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Let us consider an example of the complementarity game. Finite automata,
in particular Moore (Mealy) machines are represented by flow tables and state
graphs. To illustrate this, assume a Mealy automaton Ms with three states 1�2�3,
three input symbols 1,2,3 and two output symbols 0,1. Input and output sym-
bols are separated by a comma. Arrows indicate transitions. That is, Ms �
�S� I�O�δ�λ�, with

S � f1�2�3g�

I � f1�2�3g�

O � f0�1g�

Its transition and output functions are (δs�x stands for the Kronecker delta function)

δ�s� i� � i�

λ�s� i� � δs�i �

�
1 if s � i
0 if s �� i

The flow table and state graph of this Mealy automaton is given in Fig. 1.
To illustrate the construction of the automaton propositional calculus, consider

the Mealy automaton Ms discussed above. Input/output experiments can be per-
formed by the input of just one symbol i (in this example, more inputs yield no
finer partitions). Suppose again that Bob does not know the automaton’s initial
state. So, Bob has to choose between the input of symbols 1,2, or 3. If Bob in-
puts, say, symbol 1, then he obtains a definite answer whether the automaton was
in state 1 — corresponding to output 1; or whether the automaton was not in state 1
— corresponding to output 0. The latter proposition “not 1” can be identified with
the proposition that the automaton was either in state 2 or in state 3.

Likewise, if Bob inputs symbol 2, he obtains a definite answer whether the
automaton was in state 2 — corresponding to output 1; or whether the automaton
was not in state 2 — corresponding to output 0. The latter proposition “not 2” can
be identified with the proposition that the automaton was either in state 1 or in
state 3. Finally, if Bob inputs symbol 3, he obtains a definite answer whether the
automaton was in state 3 — corresponding to output 1; or whether the automaton
was not in state 3 — corresponding to output 0. The latter proposition “not 3”
can be identified with the proposition that the automaton was either in state 1 or
in state 2.

Recall that Bob can actually perform only one of these input-output experi-
ments. This experiment will irreversibly destroy the initial automaton state (with
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SnI 1 2 3 1 2 3
1 1 1 1 1 0 0
2 2 2 2 0 1 0
3 3 3 3 0 0 1
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Figure 1: Simplest Mealy automaton featuring computational complementarity.

83



the exception of a “hit”; i.e., of output 1). Let us thus describe the three possible
types of experiment as follows.

� Bob inputs the symbol 1.

� Bob inputs the symbol 2.

� Bob inputs the symbol 3.

The corresponding observable propositions are:

pf1g � f1g: On input 1, Bob receives the output symbol 1.

pf2�3g � f2�3g: On input 1, Bob receives the output symbol 0.

pf2g � f2g: On input 2, Bob receives the output symbol 1.

pf1�3g � f1�3g: On input 2, Bob receives the output symbol 0.

pf3g � f3g: On input 3, Bob receives the output symbol 1.

pf1�2g � f1�2g: On input 3, Bob receives the output symbol 0.

Note that, in particular, pf1g� pf2g� pf3g are not comeasurable. Note also that,
for εi jk �� 0, p�

fig � pf j�kg and pf j�kg � p�
fig; or equivalently fig� � f j�kg and

f j�kg� fig�.
In that way, we naturally arrive at the notion of a partitioning of automaton

states according to the information obtained from input/output experiments. Every
element of the partition stands for the proposition that the automaton is in (one of)
the state(s) contained in that partition. Every partition corresponds to a quasi-
classical Boolean block. Let us denote by v�x� the block corresponding to input
(sequence) x. Then we obtain

no input:
v� /0� � ff1�2�3gg�

one input symbol:

input output output
1 0

v�1� � ff1g , f2�3gg
v�2� � ff2g , f1�3gg
v�3� � ff3g , f1�2gg.
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Conventionally, only the finest partitions are included into the set of state parti-
tions.

Just as in quantum logic, the automaton propositional calculus and the associ-
ated partition logic is the pasting of all the blocks of partitions v�i� on the atomic
level.

For the Mealy automaton Ms discussed above, the pasting renders just the hor-
izontal sum — only the least and greatest elements 0�1 of each 22 is identified—
and one obtains a “Chinese lantern” lattice MO3. The Hasse diagram of the propo-
sitional calculus is drawn in Figure 2.
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Figure 2: Hasse diagram of the propositional calculus of the Mealy automaton
drawn in Figure 1.

Let us go still a little bit further and ask which automaton games of the above
kind can people play. This requires the systematic investigation of all possible
non-isomorphic automaton propositional structures, or, equivalently, partition log-
ics [Svo93, SS94, SS95, SS96]. In Fig. 3, the Hasse diagrams of all nonisomor-
phic four-state automaton propositional calculi are drawn.
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Figure 3: Variations of the complementarity game up to four automaton states.
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New automata can be composed from old ones by parallel and serial compo-
sitions. In Figures 4 and 5, the Hasse diagrams for simple parallel compositions
of two and three automata are drawn [Svo98].

Recall that the method introduced here is not directly related to diagonaliza-
tion and is a second, independent source of undecidability. It is already realizable
at an elementary pre-diagonalization level, i.e., without the requirement of com-
putational universality or its arithmetic equivalent. The corresponding machine
model is the class of finite automata.

Since any finite state automaton can be simulated by a universal computer,
complementarity is a feature of sufficiently complex deterministic universes as
well. To put it pointedly: if the physical universe is conceived as the product
of a universal computation, then complementarity is an inevitable and necessary
feature of the perception of intrinsic observers. It cannot be avoided.

Conversely, any computation can be realized by a sufficiently complex finite
automaton. Therefore, the class of all complementary games is a unique one,
encompassing all possible deterministic universes.
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Figure 4: Hasse diagram of the automaton resulting from a parallel composition
of two automata.
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Figure 5: Hasse diagram of the automaton resulting from a parallel composition
of three automata.
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Cellular Algorithms with ��Bit Inter�Cell

Communications
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Abstract

We propose several cellular algorithms for a special class of cellular
automata� CA��bit� whose inter�cell communication is restricted to ��
bit� The problems we consider are real�time generation of non�regular
binary sequences� �ring squad synchronization problem and connectiv�
ity recognition problem for two�dimensional binary images� It is shown
that in�nite Fibonacci sequences can be generated in real�time by one�
dimensional CA��bit� In addition� we propose linear� and optimum�
time �ring squad synchronization algorithms with ��bit inter�cell com�
munications and� in the last� we show that a set of two�dimensional
binary connected images of size m � n con be recognized in exactly
��m	 n
 steps by two�dimensional CA��bit�

The full version of this paper is not available as a postscript �le�



Simulations between alternating CA� alternating TM

and circuit families

Frank Reischle and Thomas Worsch

Fakult�at f�ur Informatik� Universit�at Karlsruhe

Abstract

Variants of cellular automata consisting of alternating instead of determin�
istic �nite automata are investigated� so�called uniform alternating Ca �Aca�
and two types of nonuniform Aca� The former two have been considered by
Matamala ��		
�� It is shown that the nonuniform Aca are time equivalent�
The main contributions are fast simulations of Aca by uniform circuit families
and vice versa� It is shown that nonuniform Aca are time equivalent to circuit
families with unbounded fan�in� and that uniform Aca are time equivalent to
circuit families with constant fan�in� Hence uniform Aca and alternating Tm
are time equivalent� too� solving a problem left open by Matamala� The results
also give some evidence that a time simulation of nonuniform Aca by Atm is
�unlikely� to exist�

� Introduction

The standard model of deterministic cellular automata �CA� has been generalized in
several directions� e�g� nondeterministic CA or stochastic CA� Recently they have also
been extended using the concept of alternation ���� First results have been obtained
by Krithivasan and Mahajan �	�� They are considering a rather restricted model� one
would call a special type of uniformAca �Uaca�� using the terminology of Matamala
�
��
Besides uniform Aca he considers so�called weak Aca �Waca� and one variant

of nonuniform Aca �denoted ���Aca in this paper�� In �
� it is shown that Uaca
andWaca are time equivalent �i�e� they can simulate each other with only constant
slowdown�� that these models can simulate alternating Turing machines �Atm� with
constant slowdown� and that these models can be simulated by ���Acawith constant
slowdown�
The rest of the paper is organized as follows� In Section 	 some basic notation is

introduced as well as some concepts which are common to all alternating devices� In
Section 
 two variants of nonuniform Aca ����Aca and ���Aca� are considered�
We prove that these models can simulate each other with only constant slowdown�
Section 
 is devoted to uniform Aca �Uaca�� weak Aca �Waca� and alternating
Tm �Atm�� We show that they are all time equivalent� solving a problem left open in
�
�� In Section � relations between uniform resp� nonuniformAca and circuit families
with bounded fan�in resp� unbounded fan�in are investigated� Therefore the question
whether nonuniform Aca are time equivalent to Atm is related to the corresponding

���



problem for circuit families with �un��bounded fan�in� giving some indication that
nonuniform Aca may be somewhat more powerful than Atm�

� Basic notions

In this paper we are only dealing with one�dimensional cellular automata �Ca� with
von Neumann neighborhood N of radius �� Thus a deterministic Ca is speci�ed
by a set of states Q and a local transition function� � � QN � Q specifying for
each local con�guration l � N � Q the new state ��l� of the central cell� A �global�
con�guration is a mapping c � Z � Q� The state of cell i in c is denoted ci and the
local con�guration �observed� by cell i in its neighborhood is denoted ci�N � N � Q �
n �� ci�n� For a con�guration c denote by c

N the mapping cN � Z� QN � i �� ci�N �
For a subset T � Z we write c �T�� c� i� i � T �� c�i � ��cNi � �where we have written
cNi instead of cN�i��� The relation c �Z�� c

� is abbreviated to c �� c
� and describes

one step of a deterministic Ca according to the local rule ��
Of course the usual de�nition of deterministic Ca is captured by the above seem�

ingly unnecessarily complicated formalism� The reason for introducing it is� that it
will turn out to be useful for the de�nition of alternating Ca�
For all types of alternating Ca it is assumed that the set of states Q � Q� 	Q�

is partitioned into existential states q � Q� and universal states q � Q�� The local
transition function is now of the form � � QN � 	Q� specifying a subset ��l� of
possible new states for a cell observing l in its neighborhood� A con�guration is
de�ned as for deterministic Ca�
For the recognition of formal languages an input alphabet A 
 Q and a set F 
 Q

of accepting �nal states has to be speci�ed� as well as a quiescent state �� For the
quiescent local con�guration l� � n �� � the local function has to satisfy ��l�� � f�g�
In the initial con�guration cw for an input w � x� � � �xn � A� of length n � � cell
i holds input symbol xi �for � 
 i 
 n� and all other cells are in state �� A
con�guration c is accepting i� c� � F �
The recognition of formal languages by alternating devices is usually de�ned using

the notion of a computation tree� Its nodes are con�gurations and the root is always
an initial con�guration� In general there are several computation trees with the same
root� A computation tree is accepting i� all of its leaves are accepting con�gurations�
A word is accepted if there is an accepting computation tree with cw as root�
Two machines �be it Ca� Tm� � � � � are called equivalent i� they recognize the

same language� They are called time equivalent i� their time� complexities only di�er
by a constant factor�
The main di�erences between the various types of alternating Ca lie in the def�

initions of which trees are legal computation trees� This topic is treated separately
in the following sections�

�BA denotes the set of all mappings from A to B�
�For Aca and TM this means the number of steps� for circuit families their depth�

���



� Nonuniform alternating CA

First we de�ne two types of nonuniform cellular automata� denoted as ���Aca and
���Aca� While ���Aca are considered in �
� the ���Aca are equally natural to
look at�
For a con�guration c let ��c� � fi � Z j ci � Q�g and ��c� � fi � Z j ci � Q�g�

Let �c and �c� be two mappings Z � Q 	 QN and T 
 Z a subset of cells� We write
�c �T�� �c

� i� i �� T �� �ci � �c
�
i and i � T �� �ci � QN � �c�i � ���ci��

Using subsets �C � �C �� existential and universal �substeps� are now de�ned as
follows� �c ��T

�C � i� �C � � f�c� j �c �T�� �c�g and �C �
�
T
�C � i� j �Cj � j �C �j and for each �c � �C

there is a �c� � �C � such that �c �T�� �c��
The one�step relation for ���Aca is now de�ned as c ��� C � i� there is a �c� such

that� cN �
�
��c� �c �

�
��c� C

�� For ���Aca we use c ��� C i� there is a set �C� such that

cN �
�
��c�

�C �
�
��c� C

�� One should note that both substeps always refer to the original
con�guration c�
A tree of con�gurations is a computation tree for an ���Aca i� for each non�leaf

node c the set Succ�c� of its successors in the tree satis�es c ��� Succ�c�� Analogously
for ���Aca all non�leaves c have to satisfy c ��� Succ�c��

Lemma ��� For each ���Aca there is a time equivalent one such that all con�gu�
rations occuring in any computation tree are such that either all non�quiescent states
are existential or they are all universal� The same holds for ���Aca�

Proof� The proof is shown only for ���Aca with von Neumann neighborhood N �
f��� �� �g� �The proofs for other N and ���Aca can be done analogously�� Let Q
denote the set of states of an ���Aca M � We construct another ���Aca M � with
state set Q�� the same input alphabet A and the same quiescent state �� which uses
one full step to simulate an existential substep and a subsequent full step to simulate
the corresponding universal substep of a step of M �
The simulation of an existential substep �resp� a universal substep� is indicated

by a special �ag ��E� resp� �U�� which is stored additionally in each cell of M �� The
state set of M � is Q� � A 	 f�g 	 �fE�Ug �Q� 	 �fUg �Q���
For x� y� z � Q the states �U� y�� �U� xyz� � Q� are universal� States �E� y� � Q� are

existential as well as all states in A� because the �rst step ofM � will be an existential
one� By convention � is existential� too �although it doesn�t matter�� The set of
accepting �nal states for M � is F � � F 	 �fEg � F �� where F is the set of accepting
�nal states for M � The transition function �� of M � is de�ned in terms of � of M as
follows� For x�� y�� z� � Q�� and using ���x�� y�� z�� as a shorthand notation� we have�

����E� x�� �E� y�� �E� z�� �

�
f�U� �y� j �y � ��x� y� z�g if y � Q�

f�U� xyz�g if y � Q�

���x�� �U� y�� z�� � f�E� y�g

���x�� �U� xyz�� z�� � f�E� �y� j �y � ��x� y� z�g

Furthermore a cell in state � having a neighbor with �ag E �resp� U� acts like a cell
in state �E��� �resp� �U����� A cell in state x � A acts like a cell in state �E� x�� A

�We are identifying x and fxg here�
�for ���l� where l satis�es l���� � x�� l�	� � y� and l��� � z�

���



cell in state �E� y� �or acting as such� treats a neighbor in state x � A	f�g as if that
were in state �E� x�� For all other local con�gurations �� can be de�ned arbitrarily
because they will never occur in con�gurations belonging to simulations of M �
In an existential step cells storing a universal state from Q only collect the states

of their neighbors and alter their �ag� resulting in a state �U� xyz�� Cells in a state
�U� y� �did their work� during the previous existential step and do nothing except
changing their �ag during a universal step� In other cases the cells of M � work as
they would in C and alter their �ag�
Note that for an arbitrary con�guration ofM � which occurs during a computation

starting with some initial con�guration cw either all �ags are E or all �ags are U�
hence either all non�quiescent states are existential or they are all universal�
Now suppose M makes one ���step cN �

�
��c� �c �

�
��c�

�C� Denote by E� C the set

of con�gurations of M � which is obtained from the set C of con�gurations of M by
adding the E �ag in every non�quiescent cell in every con�guration� and analogously
for U � C� Because of the de�nition of �� and since ��E � c� � Z for M � one gets
�E� c�N �

�
��E�c� U� �c� and since ��E� c� � � furthermore U� �c ����E�c� U� �c� I�e�

for M � holds� E� c ��� U� �c �
An analogous consideration �which is a bit more complicated because � is exis�

tential� shows� that forM � also holds U��c ��� E� �C � That is� everyM �step c ��� �C
can be simulated by 	 M ��steps

E� c ��� U� �c ��� E� �C �

Conversely� for 	 steps of M � starting in a con�guration of the form E� c� there has
to be a �c such that

E� c ��� U� �c ��� E� �C �

It is then not di�cult to see that this implies that for M one has

cN �
�
��c� �c �

�
��c�

�C i�e� c ��� �C �

Hence� given an input word� for every accepting computation tree for M of height h
there is one forM � of height 	h and vice versa�

Essentially the same argument as above leads to the following result�

Theorem ��� For all time bounds t and space bounds s holds�

���Aca�Time�Space�O�t�� s� � ���Aca�Time�Space�O�t�� s� �

� Uniform ACA versus bounded fan�in circuits

Uniform Aca have been de�ned in �
� as follows� A deterministic transition function
� � QN � Q is said to be compatible with a nondeterministic transition function
� � QN � 	Q� written as � � � for short� i� for all l � QN � ��l� � ��l�� A
con�guration c of a Uaca is called existential �resp� universal� i� c� is existential
�resp� universal�� A tree of con�gurations is a computation tree for a Uaca i� each
existential con�guration c has exactly one successor c� such that c �� c� for some
� � � and for each universal con�guration c the set of successors is Succ�c� � fc� j

���



there is a � � � � c �� c�g� Hence the main di�erence to nonuniform Aca is that
if in a con�guration c the same local con�guration occurs several times� in a Uaca
all cells observing it will enter the same new state� while in a nonuniform Aca they
don�t have to�
For completeness we mention the so�called weak Aca �Waca�� They are �essen�

tially� Ca with deterministic cells with the exception of one cell� say cell �� which is
an alternating one� Waca are time equivalent to Uaca �
��
One of the main contributions of this paper are results concerning the relations

between alternating Ca and uniform circuit families �Ucir�� In this section Uaca
will be shown to be time equivalent toUcir with bounded fan�in gates� As a corollary
one also gets the time equivalence of Uaca and Atm� solving a problem left open
in �
�� In order to have the same set of input symbols for all models� we restrict
ourselves to the input alphabet A � f�� �g below�
A circuit family with bounded fan�in consists of a circuit Cn with n inputs and

one output for each integer n � �� such that each Cn consists of ��gates �having one
entry�� and �� and ��gates with two entries� It is sometimes convenient to assume
that there are �gates� producing the constants � �resp� �� as output� Such devices
obviously can be built from the ��� �� and ��gates using one input bit� Furthermore
we assume that the n input bits are provided at the exits of �input gates� �having
no �entries�� and that the result of the circuit is available at the exit of an �output
gate� �having one �entry� and doing nothing��
The size of a circuit is the total number of entries of all gates� For circuits

with bounded fan�in this di�ers from the number of gates only by a constant factor
�which we will ignore throughout the paper� and has the advantage that it actually
is the de�nition used for circuits with unbounded fan�in gates �see next section�� The
depth of a circuit is the length of the longest path from an input to the output� These
notions are generalized to circuit families in the obvious way�
An important topic in the de�nition of Ucir is a concept also called uniformity

�which has nothing to do with the uniformity condition for Aca�� Di�erent versions
are used in the literature� see ��� for an overview� In this paper we will use the
following �is also applicable to Ucir with unbounded fan�in�� To the gates of each
circuit Cn numbers v of length O�log size�Cn�� have to be assigned such there is
a deterministic TM which on input of �n� v� i� can compute the type of gate v� its
number e of entries and for i 
 e the number v� of the gate providing the input for
the i�th entry of v� using space complexity O�log size�Cn���

Lemma ��� For functions t � n and s � n which can be computed in space O�s��

Uaca�Time�Space�O�t��O�s�� � Ucir�Depth�Size�O�t�� 	O�s��

Proof� Let C be an arbitrary Uaca� For each input size n a circuit Cn will be
constructed which accepts an input word w of length n� if and only if C accepts w�
such that the resulting circuit family is uniform�
The circuit consists of an �upper� and a �lower� part� The upper part of the

circuit is similar to the construction for the proof of ��� Theorem 
� and checks for
all w � An whether C accepts them in time t�n� or not� For all � 
 i 
 t�n�

�Sometimes we don
t use the word input to avoid confusions with the inputs of the circuit� and
analogously for �exit� instead of output of a gate�

���



and all con�gurations c of C occupying space s�n� or less � there are 	O�s�n�� such
con�gurations � the circuit contains a gate labeled �i� c�� Imagine the gates being
arranged in t�n� levels with an increasing �rst index from the bottom to the top�
Furthermore there is a zero level with 	n gates labeled ��� cw� where the cw are the
initial con�gurations of C for inputs w � An� For all gates their type is � �resp�
�� if the con�guration is universal �resp� existential�� The inputs of a gate �i� c� are
the outputs of all gates �i  �� c�� such that c� is a successor con�guration of c� In
general there are more than two successors of a con�guration c� but for the Uaca
there are not more than K �� jQj�jQj��� i�e� a constant number� So the !gates� used
above are implemented as binary trees of height 
 dld�K�e consisting of ordinary
gates with in�degree 	� Thus the overall depth of the circuit is increased only by a
constant factor that depends on the machine C and not on the length of the input�
As the circuit is constructed from lower levels to higher levels a !gate� labeled with
an accepting con�guration is replaced by a constant � and !gates� labeled with a
con�guration using more space than s�n� and gates on level t�n�  � are replaced by
a constant �� Now the following can be shown by induction ���� the output of a !gate�
��� cw� is � i� there is an accepting tree for C on w of height 
 t�n��
The lower part of Cn uses the actual input bits x�� � � � � xn to select the proper

!gate� ��� cw� the output of which is used as the output bit of the whole circuit� To
this end there are 	n �comparators� Kb each comparing w � x� � � �xn to one of the
constant bit pattern b � b� � � � bn � An producing a � as output i� w � b� The
outputs of Kb and the gate labeled ��� cb� are fed to an ��gate� The outputs of these
	n ��gates are fed to a tree of ��gates �with height ld�	n� � n�� The root of this tree
is the output of the circuit and the following holds� The output of the constructed
circuit is � i� C accepts w in time 
 t�n��
The depth of the circuit is dld�K�e � �t�n� 	� dld�n ��e � n � O�t�n��� The

size of the circuit is dominated by the size of its upper part which is 	O�s�n�� ��t�n� ���
Since t�n� 
 	O�S�n��� the overall size is 	O�s�n���

Note that the assumption t�n� � n is no real restriction because a Uaca needs
at least n steps until every input symbol might have had an in�uence on the state of
the origin cell�
Since it is known ���� that for t and s which can be linearly approximated	�

Ucir�Depth�Size�O�t�� 	O�s�� � Atm�Time�Space�O�t��O�s��

and that �
�

Atm�Time�Space�O�t��O�s�� � Uaca�Time�Space�O�t��O�s�� �

one also gets the opposite inclusion as in Lemma 
�� and therefore�

Theorem ��� For t�n� � n which can be linearly approximated holds�

Uaca�Time�O�t�� � Atm�Time�O�t�� � Ucir�Depth�O�t�� �

�I�e� there is a 
t� t � 
t � O�t�� �resp� 
s� which is time constructible�

���



� Nonuniform ACA and circuits

In the previous section uniformAca have been shown to be time equivalent to circuit
families with bounded fan�in� In the following an analogous relation between nonuni�
form Aca and circuit families with unbounded fan�in will be established� Aca will
also be compared to circuits with bounded fan�in�
In a circuit with unbounded fan�in �UbUcir� �� and ��gates are allowed with an

arbitrary number of entries� The uniformity condition used is exactly the same as
for circuit with bounded fan�in above�
The proof in section 
 cannot be applied unchanged to nonuniform Aca because

unlike for Uaca the number of successors of a con�guration of a nonuniform Aca

����Aca or ���Aca� cannot be bounded by a constant
� This leads to the idea to
compare nonuniform Aca with uniform circuit families with unbounded fan�in gates�

Lemma ��� For functions t � n and s � n which can be computed in space O�s��

���Aca�Time�Space�O�t��O�s�� � UbUcir�Depth�Size�O�t�� 	O�s��

Proof� Recall the proof of Lemma 
��� Here� a similar construction is used� but there
are the following changes� A gate labeled �i� c� in the upper part of the circuit now is
replaced by a tree of height 	 of gates with unbounded fan�in� For ���Aca the root
of the tree is a � gate whose inputs are connected to intermediate � nodes which
correspond to the �c such that cN �

�
��c� �c� The inputs of these intermediate gates in

turn are connected to the outputs of the gates �i �� �c�� for all �c � �C� where �c ����c�
�C�

Again� gates labeled with accepting con�gurations are replaced by a constant � and
gates labeled by a con�guration using more than space s�n� or gates on level t�n� �
are replaced by �� It can be shown by induction on the level i where a gate �i� c�
occurs that it has output � if and only if c is the root of an accepting computation
tree of height 
 t�n��i of the ���Aca� Therefore the output of a gate labeled ��� cw�
of the ���Aca is � i� it accepts cw�
The comparators selecting the output of the proper gate ��� cw� can be imple�

mented using a single ��gate with fan�in 	n� making use of input symbols and their
negations� Likewise the outputs of these ��gates are input to a single ��gate with
fan�in 	n� Thus the depth of the circuit with n inputs is 	t�n� 	�

If in the above construction gates with large fan�in are replaced by trees of gates with
fan�in 	 one gets the following result��

Lemma ��� For functions t and s satisfying the requirements of Lemma 	�
 holds�

���Aca�Time�Space�O�t��O�s�� � Ucir�Depth�Size�O�st�� 	O�s��

���Aca�Time�O�t�� � Ucir�Depth�O�t���

Proof� First� the same construction as above is used� Then� each gate with a fan�in
f � 	 is replaced by a tree of height dld�f�e of gates with fan�in 	� The maximum

�It depends on the number of cells in a con�guration that are in a universal state observing a local
con�guration which allows at least two new states� i�e� jSucc�c�j depends on the space complexity
and in general cannot be bounded by a constant�

�In the light of ��� Theorem �� this follows from ��� Theorem ��� but the proof of the latter needs
some modi�cations in our opinion �see �����

���



fan�in cannot exceed the number of gates in the UbUcir�circuit� and the constructed
circuits contain 	O�s�n�� � �t�n�  �� gates� where 	O�s�n�� is the number of possible
con�gurations occupying space O�s�n���� Since t 
 	O�s�n�� �see ��� for a similar
result for Atm�� the number of gates and thus the maximum fan�in is bounded by
	O�s�n��� Therefore the depth of the Ucir�circuit is bounded by s�n�t�n� which is
O�t��n���

We are now going to prove a kind of reverse result compared to Lemma ���� thus
establishing a close relation between nonuniform Aca and circuit families with un�
bounded fan�in �satisfying certain conditions��

Lemma ��� Let t � n and s � n be functions which can be computed in space O�s�
and which satisfy t � "�s�� Then it holds�

UbUcir�Depth�Size�O�t�� 	O�s�� � ���Aca�Time�Space�O�t��O�s��

Proof� Let Cn be the circuit with n inputs� having depth O�t� and size 	
O�s�� We have

to construct an ���Aca accepting the same w � An as Cn� satisfying the time and
space bounds O�t� and 	O�s�� The construction is modeled on the one in the proof
for the analogous simulation of Ucir by Atm ��� Theorem 
�� It essentially relies
on a procedure value with two integer parameters v and i� Its task is to determine
whether the i�th input of gate v will get a � as input� Consider the following algorithm
sequentially executing two steps�

A� universally do in parallel�

�� v� � guess existentially the number of a gate v�

�� � � � guess existentially the type of v�

B� universally do in parallel�

�� check that during guess in A�� above all participating cells guessed that
they should do something existentially

�� do sequentially�

��� check that the output of v� is the i�th input of v

��� check that v� is of type � �

�� depending on the type � � do one of the following�

��� for inputs�

��� if � � � �� sequentially do

a� i� � guess existentially a number

b� universally do in parallel

i� compute value�v�� i��

ii� check that during guess in B��a� above all participating cells
guessed that they should do something existentially

��� if � � � �� analogously to the case � � � ��

The crucial point of the construction is to make sure that only a constant number of
steps is needed between the start of value and the recursive calls happening inside�

	Note� that its size is � its depth which in turn is � the time complexity of the Aca which is
� n�

��	



For this to be true� some numbers �v�� i�� have to be guessed in constant time�
although in general they will consist of k � log size�Cn� many bits�
This is achieved by using k subsequent cells� each of which guesses one bit� But

there is a further complication� Sometimes a number has to be guessed existentially�
e�g� in B��a�� but sometimes numbers have to be guessed universally� e�g� in the not
shown step B��a�� The information which is the case is present at some cell� but it
cannot be provided to all k guessing cells in constant time� The solution is as follows�
Guessing is done in two steps� In the �rst one� each of the k cells guessing whether
the number guessing has to be an existential one or a universal one and enter an
existential or universal state accordingly� In the second step each cell guesses a bit�
Afterwards� see B��bii� above� it is veri�ed that all cells have correctly guessed that
an existential guess was needed� This can be done in k steps by sending � � to the
guessing cells� For the universal guessing of numbers an analogous approach can be
used�
This way the next recursion level is always called after a constant number of steps�

and the time for veri�cation only contributes a summand of log size�Cn� � O�s� to
the overall execution time� All other considerations are analogous to the proof in ����

As a corollary one obtains�

Theorem ��� For functions t and s satisfying the requirements of Lemmata 	�

and 	�� holds�

���Aca�Time�Space�O�t��O�s�� � UbUcir�Depth�Size�O�t�� 	O�s�� �

It is not known whether UbUcir of depth O�d� can be simulated by Ucir of depth
O�d�� The general expectation seems to be that this is not possible� Therefore
Lemma ��
 together with Theorem 
�	 can be taken as an indication� that a linear�
time simulation of nonuniform Aca by Atm is �unlikely� to exist�
Furthermore one should note that in the comparisons of UbUcir and Atm �in�

stead of Aca� the depth of the circuits usually corresponds to number of alternations
and not to the time of the Atm� To put it the other way round� alternation depth
of Atm is linearly related to the time of Aca�

� Conclusions

The results obtained above together with those proved in �
� lead to the relatively
simple situation depicted in Figure �� An arrow from A to B with a label O�f�t��
indicates that each machine of type A with time complexity t can be simulated by
a machine of type B with time complexity O�f�t��� Thick lines indicate results
obtained in this paper�
Thus� as long as the time bound satis�es some standard requirements� uniform

Aca correspond to circuit families with bounded fan�in and nonuniform Aca corre�
spond to circuit families with unbounded fan�in�
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Abstract

Cellular automata provide a specialized model of parallel computation

and give rise to a number of typically di�cult classi�cation problems�

We discuss the computational aspects of the reversibility problem for a

class of very simple additive cellular automata� On the other end of the

spectrum� we study the computatonial properties of Gandy Machines� a

very general model of parallel computation�

� Introduction

One of main areas of interest in the study of cellular automata is a comparison
to other models of computation� From the foundational work of Church� G�odel�
Turing and others it is apparent that Turing machines provide a natural and
adequate basic model of computation� By imposing time and space bounds� and
perhaps with the addition of nondeterminism� one obtains an elaborate system
of complexity classes that serve as a classi�cation scheme for computational
problems� at least with respect to sequential computation�

As was recognized during the last two decades� even exceedingly simple cel�
lular automata turn out to be di�cult to analyze computationally� As a case
in point� we will discuss a family of additive cellular automata over the two�
element �eld F� on two�dimensional grids� These automata are far removed
from computational universality� and are very much predictable in the sense
that elements in the orbit of a con�guration can be easily computed without
direct simulation� As Fredkin noted� these automata give a somewhat unin�
tentional solution to von Neumann�s problem of constructing a self�reproducing
machine� A lot of information about the structure of the phase spaces of these
automata can be determined using various algebraic methods� see 	
�� However�
�nding e�cient methods to determine the reversibility of these automata is dif�
�cult� One encounters problems of an algebraic nature� one has to determine
the location of irreducible polynomials over F� in a sequence of polynomials� a
problem that currently seems to yield only to a brute force computation�
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At the other extreme� we will discuss a very general model of synchronous
parallel computation due to Gandy 	�� 
�� 
��� Gandy�s approach naturally
encompasses other parallel models such as cellular automata� families of circuits
and various parallelized versions of RAMs� Gandy�s mechanisms are premised on
the idea of parallel devices that use only local information about their inputs�
and process this information essentially by a table lookup� very much in the
spirit of cellular automata� We will analyze the complexity of calculating in a
Gandy Machine and comment on the meaning of locality in this context�

Unde�ned notions of recursion theory or complexity theory can be found in
	
�� 

� �� or the references quoted there�

� Predictability and Reversibility in Xor Au�

tomata

Consider a �nite cellular automaton hC� �i over some grid G � hV�Ei� an undi�
rected graph� Thus� the con�gurations are maps X � V � � into the alphabet
of the automaton� and the local maps a de�ned on local con�gurations obtained
by restriction to the neighborhood of a point in the graph� It is clear that the
problem of calculating �t�X�� often referred to as the Prediction Problem� is
in general P�complete� even if we restrict the graph to be a simple path� It is
straightforward to express a cellular automaton as a circuit of polynomial size�
but there is no hope to obtain exponential speed�up in general� unless� of course�
some collapse of complexity classes such as P � NC occurs�

The question of the existence of predecessors naturally leads to nondetermin�
istic complexities� The �nite case often re�ects the di�culty of the associated
in�nite problem� In the case of Predecessor Existence� the problem is unde�
cidable for in�nite ��dimensional automata� even if the target con�guration is
�nite� see 	���� For in�nite 
�dimensional automata� Predecessor Existence can
be expressed as a path existence problem in the de Bruijn graph �or rather� its
square� of the cellular automaton� and is easily decidable in quadratic time 	�
��
Note� though� that the in�nitary version of the problem admits some variations
that appear to have no clear counterpart in the �nite case� For example� we can
restrict the target con�guration to be recursive�

Theorem ��� For an in�nite ��dimensional cellular automaton� every recur�
sive target con�guration that has a predecessor already has a recursive prede�
cessor� However� the existence of such a predecessor is undecidable� and if a
predecessor exists� it cannot be computed e�ectively in general�

At any rate� a similar discrepancy betweem dimensions 
 and � occurs for
�nite cellular automata� In the ��dimensional case� the problem isNP�complete�
even for a �xed rule �the obvious transformation from a tiling problem requires a
family of rules� see 	��� for a reduction directly from ��SAT�� For 
�dimensional
automata the complexity drops to NL� and the problem is hard for this class
with respect to log�space reductions�
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Determining membership of a target con�guration in the orbit of a given
source con�guration on a �nite cellular automaton is PSPACE�complete� since
cellular automata can simulate Turing machines� Linear Bounded Automata
Acceptance is a special case of this problem� If we consider the structure of
orbits in general� the threshold to undecidability is readily crossed� even if the
graphs are restricted to simple paths or circles� Since the con�guration space
of a single such automaton is �nite� it is necessary to consider a family hCn� �i�
where� say� Gn is a path or circle of length n� and the same local rule is uniform
for all n� This is quite similar to the notion of uniform families of circuits in
parallel complexity� In analogy to Wolfram�s classes� let us say that the family
is in class BO�f�n�� if all con�gurations on hCn� �i evolve to a con�guration
with period of length O�f�n��� Thus� the length of limit cycles is O�f�n��� We
write BO� for the special case where all con�gurations evolve to a �xed point�
Clearly� every such cellular automaton belongs to BO��O����� but for smaller
growth rates it becomes di�cult to determine membership� More precisely� the
following results are shown in 	����

Theorem ��� Class BO� is ��
��complete� The classes BO�nk� are ��

��complete�
even for k � ��

Using ��
��uniformization� it follows from the second result that there is a

��
� function that bounds the lengths of limit cycles� but no such bounding

function will be recursive in general� It is worth mentioning that these results
do not directly follow from the usual observations about simulations of Turing
machines by cellular automata� The computations of a Turing machine deal only
with instantaneous descriptions of a certain restricted form� In our situation�
however� we have to contend with arbitrary con�gurations� most of which are
meaningless from the point of view of the simulated Turing machine� It is
easy to weed out con�gurations that are syntactically of the wrong form� but it
is di�cult to deal with con�gurations that correspond to syntactically correct
instantaneous descriptions which happen not to occur in any computation of
the corresponding Turing machine �this property is undecidable�� The device
used in the reference is a self�verifying Turing machine� a machine that performs
many redundant computations and that will recognize and discard inappropriate
con�gurations after �nitely many steps� Similar techniques where also used by
Shepherdson 	
��� It is shown there� for example� that the question of whether a
con�guration appears in the orbit of another can be made to be of any recursively
enumerable degree� by proper choice of the corresponding Turing machine� For
a di�erent approach to the problem of dealing with erroneous con�gurations see
	
��

��� Xor Automata

When the local map is constrained to be a simple algebraic operation� the situ�
ation chances drastically� We will only consider the arguably simplest situation
here� with alphabet � � f�� 
g and the local map given by addition modulo ��
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We denote this rule by � and refer to these cellular automata as ��automata�
A �rst extensive study of the phase space in particular of 
�dimensional ��
automata can be found in 	
��

First o�� prediction of hC� �i can be handled by matrix multiplication over
F� � the two�element �eld� More precisely�

�t�X� � M t �X

whereM is the adjacency matrix of the underlying graph� Matrix multiplication
is well known to be in parallel logarithmic time� and M t can be computed in
O�log t� multiplication steps by the usual divide�and�conquer approach� Hence
we have

Observation� For a ��automaton� prediction is in NC��

As a matter of fact� a little calculation with binomial coe�cient shows that
prediction is even in NC� for paths and circles� These results were generalized
to Abelian groups and other algebraic structures in 	
���

How about the existence of predecessors� This is again a problem of linear
algebra� but when we search for predecessor of small cardinality� the problem
becomes NP�hard for general graphs� see 	����

Likewise� the question of reversibility of a ��automaton is equivalent to the
matrix M being non�singular� the latter property being in NC� We will now
focus on a more restricted class of automata� where the underlying graph is
standard two�dimensional m by n grid� We denote these graphs by Pm�n� Fur�
thermore� we use standard von Neumann neighborhoods� More precisely� the
automata which include the center cell from the summation will be referred
to as ���automata� whereas ��automaton denotes a machine on Pm�n where
the center cell is excluded� We assume �xed boundary conditions� though the
results mentioned below all have counterparts for circular boundary conditions�

Since the global function � � C � C is a linear map� we may consider d�m�n��
the corank of �� One can easily see that d�m�n� � min�m�n��

Theorem ��� A ��automaton on a m�n grid is reversible i� m�
 and n�

are coprime� More precisely� d�m�n� � gcd�m� 
� n� 
�� 
�

Hence� we can test reversibility in time polynomial in logn� the size of the
succinct version of problem�

��� ���Automata

Surprisingly� for ���automata no such simple procedure seems to exist� To
get some understanding of the complexity of determining the reversibility of a
���automaton� we de�ne a binary version of the Chebyshev polynomials of the
second kind� More precisely� let �� � � and �i is a polynomial de�ned by

�i�x� � Ui���x��� mod � � F� 	x��
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Alternatively� these polynomials can be de�ned in terms of a homogeneous sec�
ond order recurrence over F� 	x��

�n�� � x � �n�� � �n

with initial conditions �� � �� �� � 
� Note that second order recurrences
similar to the last one can also be used to construct reversible cellular automata�
a trick going back to Fredkin� see for example 	����

As one might suspect from the simplicity of the recurrence� the ��polynomials
enjoy many special divisibility properties�

Proposition ��� Let a� b � F 	x� be coprime� where F is an arbitrary �nite �eld�
De�ne a sequence ��n� in F 	x� by �� � �� �� � 
� and �n � a � �n�� � b � �n���
for all n � �� Then

�p � �q���p�q � b � �q�p�q���

gcd��n� �m� � �gcd�n�m��

��kn � a�
k�� ��

k

n �

��n�� � ��n�� � b � ��n�

where p � q � 
�

Our binary Chebyshev polynomials correspond to a � x and b � 
� so that
the last two equations can also be written as

��kn � x�
k�� ��

k

n �

��n�� � ��n�� � ��n

� ��n�� � �n�
��

As a consequence of the second equation� we have m jn 	
 �m j�n�

A recent paper by Barua and Ramakrishnan 	�� 
�� shows that m by n grids
under rule �� are reversible i� the two polynomials �m���x� and �n���x � 
�
are coprime� One can extend their results to show that �n is the minimal
polynomial of the map �� � Cn � Cn �underlying graph a path of length n��
From this one obtains

Lemma ���

d��m�n� � deg gcd
�
�m���x�� �n���x� 
�

�
where d��m�n� is corank of the global map �� � C � C �

The analogous result for plain ��automata is d�m�n� � deg gcd
�
�m��� �n��

�
�

How does this help to determine reversibility� Needless to say� one does not have
run the recurrence n steps to obtain �n� In fact�

�n�x� �
X
i

�
n� i

�i� 


�
xi mod ��








By Lucas� theorem 	���
�
x
y

�
mod � �

Q�xi
yi

�
mod �� where xi is the i�th digit in

the binary expansion of x� and likewise for y� so the coe�cients of �n can be
computed in time O�logn�� But the polynomials are still objects of size linear
in n�

To get more information about the possible values of the GCD of two such
polynomials we have to consider their irreducible factors� De�ne the depth of
an irreducible polynomial � � F� 	x� to be

dep��� � min
�
n � �

�� � divides �n
�
�

It is not hard to see that every irreducible polynomial has a depth� Now let

�n �
Y

dep����n

��

be the squared product of all irreducible factors that occur at level n for the
�rst time� For the sake of completeness� let �� � �� � 
� We will refer to �n as
the critical factors of �n� The following decomposition theorem describes the
structure of a ��polynomial in terms of critical factors� see 	

��

Theorem ��� For all positive n � �kp� where p is odd�

�n�x� � x�
k��
Y
djp

��
k

d �x� � x�
k��
Y
djp

�d�x
�k ��

Furthermore� deg �d � 	�d� unless d � 
�

Here 	 is Euler�s totient function� M�obius inversion allows one to compute

the critical factors in terms of the ��polynomials� �n �
Q

djn �
��d�
n�d � again for

all odd numbers n� where 
 denotes the M�obius function� As an example of a
decomposition consider ����� We have the factorization

���� � x� �
 � x�	 �
 � x� x��	 �
 � x� � x
�	

�
 � x� x� � x� � x� � x� � x���	

�
 � x� � x
 � x� � x
 � x�� � x�� � x�� � x���	

where the irreducible terms are associated with divisors �� �� �� 
�� ��� and
��� respectively� All critical factors are squares of just one irreducible term in

this case� but� e�g�� ��� �
�

 � x� x


�� �

 � x� x� � x� � x


��
�

To use the lemma� we have to determine the depth of polynomials of the
form ��x � 
�� More precisely� given irreducible � of depth d� we would like
to calculate the depth of the image of � under the involution x �� x � 
� We
can pin down the depth of a polynomial to some degree� but not much else is
known� Recall that the suborder of � in the multiplicative group Z�

n� n odd� is
de�ned as sordn��� � min

�
i
�� �i � 

 �mod n�

�
�

Theorem ��� Let � � F� 	x� be an irreducible polynomial of degree k and depth
d� Letting q � �k� d divides q � 
 i� the linear term in � vanishes� and q � 

otherwise� In either case� k is the suborder of � in the multiplicative group Z�

d�


��



Still� for special values of m an n these results su�ce to solve the problem
of determining reversibility of a ���automaton�

Corollary ��� For m� 
 � �k and n� 
 � �lp� p odd� we have

d��n�m� �

��
�

� if � � jn� 
�
�l�� if l � k � 
�
�k � 
 otherwise�

Recently� Sarkar 	
�� has shown that no square grids are totally irreversible
�meaning d��n� n� � n�� other than for n � ��

However� in general there appears to be no easy way to compute the depth
of an irreducible polynomial� More precisely� the depth function appears to
display fairly chaotic behavior under the involution x �� x� 
�

Problem� Find an e�cient way to compute the depth of ��x � 
�� for an
irreducible polynomial � of depth n�

Problem� Generalize these results to more general algebraic structures�
such as Abelian groups� groups� semigroups� and so forth� See 	
�� for some
results in the 
�dimensional case�

The following table exhibits some of the chaotic behavior of the depth func�
tion in conjunction with the involution on F� 	x�� It shows the depths of all
��x � 
� where � is irreducible of degree ��


�




number image depth irreducible polynomial

 
� ��� 
 � x� x� � x
 � x	

� 
� �
 
 � x� � x� � x
 � x	

� 
� ��� 
 � x� x� � x� � x	

� �
 ��� 
 � x� � x� � x� � x	

� 
� ��� 
 � x� � x
 � x� � x	

� 
� ��� 
 � x� x� � x� � x
 � x� � x	

� 
� ��� 
 � x� � x� � x� � x	

� �� ��� 
 � x� x� � x� � x
 � x� � x	


 
 ��� 
 � x� x� � x� � x	


� � ��� 
 � x� � x� � x� � x	



 �� ��� 
 � x� � x� � x� � x	


� � �� 
 � x
 � x� � x� � x	


� � ��� 
 � x� x� � x
 � x� � x� � x	


� �� ��� 
 � x� x� � x
 � x� � x� � x	


� � ��� 
 � x� x� � x� � x	


� � ��� 
 � x� x� � x� � x	


� 
 �
 
 � x� � x� � x� � x	


� 

 ��� 
 � x� x� � x� � x
 � x� � x	



 
� ��� 
 � x� x� � x� � x	

�� �
 �� 
 � x� � x� � x� � x	

�
 �� ��� 
 � x
 � x� � x� � x	

�� �� ��� 
 � x� � x� � x
 � x� � x� � x	

�� � ��� 
 � x� x� � x� � x	

�� 
� ��� 
 � x� x� � x� � x� � x� � x	

�� �� ��� 
 � x� x� � x
 � x� � x� � x	

�� �� �� 
 � x� � x� � x
 � x� � x� � x	

�� �� ��� 
 � x� x� � x� � x� � x� � x	

�� 

 ��� 
 � x� x
 � x� � x� � x� � x	

�
 � �� 
 � x� � x
 � x� � x� � x� � x	

�� �� ��� 
 � x� � x
 � x� � x� � x� � x	

Table 
� The depths of all irreducible binary polynomials � of degree �� The
image column gives the index of � with respect to the numbering in the �rst
column� All polynomials of the form 
 � x� � � �� x	 have depth ����
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� Gandy Machines

In his 

�� paper 	���� Turing gave cogent arguments for the thesis that any�
thing that can be calculated by a human being in a routine fashion is computable
on a Turing machine� Since his key application was the Entscheidungsproblem�
there was no need to speculate about the possibilities of computation by general
mechanisms� Furthermore� it was already observed by Church that any com�
putational device with �nite con�gurations and a recursive next�con�guration
function computes a recursive function� so that indeed Turing computability
appears to be a natural environment�

In 

�� Gandy developed a general framework that appears to capture any
reasonable notion of mechanism or device capable of synchronous� parallel com�
putation� Gandy was motivated by Neumann�s �crystalline automata � and
space�time computation can be easily modeled in Gandy�s framework� The de�
vices conform to basic principles of physics� albeit not Newtonian physics� there
is no instantaneous action at a distance� The main result in Gandy�s paper is
that� with very mild conditions on the way the parallel device is organized� one
has the following theorem�

Theorem ��� Any function computable on a Gandy Machine is recursive�

Gandy gives a long list of counterexamples that demonstrate that his condi�
tions cannot be further relaxed� any conceivable modi�cation leads to machines
that �display free will � i�e�� that can compute any number theoretic function�

The main source of interest in Gandy Machines from the point of view of
cellular automata is that they encapsulate precisely the basic principles of cel�
lular automata� local causation and unique reassembly� Here� local causation
means that the computation of F �x�� where F is the global map of the Gandy
Machine� requires only local information about x� produces local pieces of in�
formation about F �x�� from which pieces F �x� can be reassembled in a unique
way� Moreover� Gandy Machines are in a sense coordinate�free� so that invari�
ance under shift operations� and in fact under more general automorphisms of
the underlying structure� is automatically satis�ed�

Regrettably� Gandy�s framework of structural maps on hereditarily �nite
sets with urelements is technically somewhat complicated� see the comments in
	
�� but also 	
��� We will give a brief description of Gandy Machines in the next
section� omitting some of the more tedious details� We caution the reader to
consult the references for details� We then list some basic examples� and lastly
study some of the complexity issues involved with Gandy Machines�

��� The Framework

A Gandy Machine is a discrete dynamical system hC� F i� The key idea is to
divide the process of computing F �x� into three phases� First� the input x is
disassembled into a set of local approximations� A simple local rule is then
applied to these pieces� and the resulting approximations for F �x� are� in the
last step� reassembled to produce F �x��


��



x
� disassembly

fu
�� u v x g
� local map v � G�u�

f v
�� v v F �x� g

� reassembly
F �x�

It is clear that cellular automata �t this basic pattern precisely� Since Gandy
is trying to capture as wide a class of mechanisms as possible� the con�gurations
have to be fairly general combinatorial structures� To express the notion of
location in some abstract way� the structures will contain urelements �or atoms��
which are indistinguishable safe for equality� More precisely� �x a countable set
of U urelements and de�ne the hereditarily �nite sets over U as follows�

HF��U� � �

HFn���U� � P��U � HFn�U��

HF�U� �
	

HFn�U�

Here P� denotes the power set operation restricted to �nite sets� Gandy�s
original de�nition excludes pure sets other than �� but that is a minor technical
detail� The con�gurations of a Gandy Machine are elements of HF�U�� C �
HF�U�� and F � C � C�

In order to hide information in the atoms� consider an automorphism � of
HF�U�� � is determined by a permutation on U � We say that x is isomorphic
to y over A � U � x ��A y� i� ���A � Fix��� and y � x��� and x �� y i� x ��� y�
Write x ��z y for x ��spt z y where spt z � U � TC�z� denotes the support of z�
TC being the transitive closure operation� The stereotype of x is the collection
of all isomorphic sets�

� Principle I� Form of Description�
C and F are both structural�

	 x � C� y �� x implies y � C� and

	 F �x�� ��x� F �x�� �

The last condition is stronger than x �� y 
 F �x� �� F �y� but weaker than
full invariance F �x�� �� F �x�� � The idea is that F �x� may contain new urele�
ments� but that the old ones should persist� In practice� it is more convenient to
use a �nite set U� � U of �xed atoms and only consider automorphisms over U��
The next requirement restricts con�gurations to be of bounded rank� thereby
limiting the combinatorial structures that can appear in a con�guration�
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� Principle II� Bounded Rank�
We must have C � HFk�U� for some �xed k�

To approximate x � HF�U� consider P � TC�x�� a so�called set of parts
�SoP	 for x� De�ne the restriction x � P of x to P by

�x � P � �
	
f z � �P � TC�z��

�� z � x g�

u is an approximation to x� u v x i� �P � TC�x��u � x � P �� Lastly�
an assembly for x is a set of approximations� We say that x can be uniquely
assembled from an assembly C i� C is not an assembly for any y �� x�

Example�

x � fa� b� c� fa� bg � fa� cgg

x � fag � fa� fagg

Thus� some parts of the ��tree of x are erased� and the result is properly
collapsed to produce a set� Since the local map should just be a table lookup�
we have to rule out unboundedly large approximations�

� Principle III� Bounded Assembly�
There is a bound � such that for all x � C there are SoPs P�� � � � � Pm such
that jsptPij � � and x can be uniquely reassembled from
fx � Pi

�� i � 
� � � � �m g�

Since x has bounded rank� there are only �nitely many possible sets of parts
up to isomorphism� Thus� disregarding urelements� there are only �nitely many
approximations� More precisely� there is a collection T of stereotypes so that
any x � P belongs to T � We can now de�ne the causal neighborhoods of x and
the determined regions in F �x�� as produced by applying a local map G to the
causal regions�

CN�x� � fu v x
�� u maximal in T g

DR�x� � fG�u�
�� u � CN�x�� sptG�u� � sptx � sptu g

The map G is �nite� up to isomorphism� The maximality condition simply
serves to extract as large an amount of local information about x as possible�
We require for all determined regions v and w that v ��x w 
 v � w� This leads
us to the last condition a Gandy Machine has to satisfy�

� Principle IV� Local Causation �abridged version�
F �x� can be uniquely reassembled from DR�x��

To summarize� a Gandy Machine is a discrete dynamical system hC� F i that
satis�es Principles I through IV� A few examples are in order�
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����� Cellular Automata

One�dimensional cellular automata are readily expressed in terms of Gandy
Machines� The con�gurations here take the form

x � fhp�� s�� p�i� hp�� s�� p�i� � � � � hpn� sn� pn��ig

where the free atoms pi label cells� Cell states are given by �xed atoms si�
and proximity information is expressed in the combinatorial structure of the
con�gurations� It is straightforward to design an appropriate global map� and
to check that all Principles are indeed satis�ed�

We actually have omitted a crucial problem in this presentation� since the
local maps may introduce new atoms� care has to be taken that atoms introduced
by di�erent approximations u� and u� of x are properly matched up� This is
not a problem for 
�dimensional automata� since the number of new atoms is
bounded� but for ��dimensional cellular automata the number of new atoms
is in general unbounded� Consider Moore neighborhoods� As before� we can
represent a con�guration x as a set containing elements of the form

hp� q�� � � � � q	� si

where p is the label of the center cell� the qi are the labels of the four neighbors�
and s is a �xed atom indicating the state of cell p� For a cell along the boundary
of a con�guration� some of the qi will be a special �xed atom ! indicating
that there is no cell in that direction� When the con�guration of the cellular
automaton expands� the !�s will have to be replaced by new atoms� and the
choice of new labels will have to be coordinated between adjacent boundary
cells�

This can be done by requiring the existence of a second local map� which
provides suitable patches� We refer the reader to 	�� 
�� for details� At any rate�
it is quite straightforward to express cellular automata of arbitrary dimension�
and on a variety of underlying grids� in terms of Gandy Machines�

����� Regular Languages

Here is an example of a more algebraic computation� Suppose we wish to check
membership in a regular language L � ��� Let hS� �i by the syntactic semigroup
of L � ��� Thus S is �nite� and there is a homomorphism h � �� � S such that

L �
	
fh���s�

�� s � S� g some S� � S�

We choose con�gurations of the form

x � f hp� s� qi
�� p� q positions� s � S g

where an input w � w�� � � � � wn is represented by a con�guration of the form
x � fhp�� h�w��� p�i� hp�� h�w��� p�i� � � � g� The local map is given by

G�fhp� s� qi� hq� t� p�ig � fhp� s � t� p�ig


��



Thus� regular language recognition on a Gandy Machine is in O�logn� time�

����� Circuits

More generally� one can simulate circuits in a natural fashion� AC
k is the

collection of all log�space uniform circuits of depth O�logk n� and polynomial
number of gates� with unbounded fan�in� ACk can be handled in O�logk n�
time on a Gandy Machine� so that NC is contained in poly�log time on a Gandy
Machine�

Con�gurations here are essentially sets containing ��tuples

hp� t� fq�� � � � � qn g � si

where p� q�� � � � � qn are free atoms that label the gates of the circuit�
Furthermore� t � f������ Ig� s ��� f�� 
��g are composed of �xed atoms�

The local map for or�gates has the form

G�fhp��� fqg � f�gi� hq� � �� sig� � fhp��� fqg � TC�s�ig

G�fhp��� fqg � f�� �gi� � � � g� � fhp��� fqg � f�gig

G�fhp��� fqg � f
� � � � gi� � � � g� � fhp��� �� 
ig

G�fhp��� fqg � f�gi� � � � g� � fhp��� �� �ig

G�fhp��� �� si� � � � g� � fhp��� �� sig

The de�nitions for not"and�gates are similar� The ellipses indicate that
the approximations obtained by restricting x to sets of parts are of the form
P � fp� q������� I� �� 
��g may contain other� irrelevant parts�

����� Parallel RAMs

It is natural to ask about the relationship between PRAMs and Gandy Machines�
It was shown by Shepherdson 	
�� that one can implement a PRAM operating
over a FOD structure A � hA�R�� � � � � Rr� f�� � � � � fs i on a Gandy Machine�

Theorem ��� Shepherdson Computability on a Gandy Machine over a struc�
ture is equivalent to computability by a synchronous parallel procedure�

See 	
�� 
�� for details�

��� Computing y � F �x	 on a Gandy Machine

The previous examples show that Gandy Machine do in fact proved a fairly nat�
ural model for synchronous parallel computation� Repeated application of the
global map allows one to emulate parallel computations in a very general sense�
How about a single step in a Gandy Machine� In particular� considering the
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framework of sets rather than ordered combinatorial structures� with a natural
notion of proximity� how does local causation really work�

The condition that con�gurations are of bounded rank� and can be uniquely
reassembled from parts of bounded size� imposes a fairly strong restriction on
admissible con�guration spaces� The key obstruction is the following� Consider

x � fx�� � � � � xn g � xi � U �nite

On can show that x can be reassembled for bound � � n� but cannot be reassem�
bled for any � � n� Hence� for an admissible con�guration space containing sets
x as above� the cardinality n of x has to be bounded� Sets of arbitrary size can�
not occur in a nested fashion� Note that the con�gurations in example ��
�� do
fall prey to this obstruction�

Theorem ��� Disassembly and application of the local map can be done in
constant time on a PRAM�

Proof sketch

We can code hereditarily �nite sets with urelements as �nite FOD structures

hTC�x���� U� � � � i

More precisely� we consider structures of the form

A � hf�� � � � � n� 
g � R�� RU � � � � i

where n � jTC�x�j� E�g� R� uses n� bits� RU uses n bits� and so on� Note that
this representation is not unique� we can enumerate the support of x arbitrarily�

Now suppose 
 is a FOD formula of appropriate type� By a theorem of
Immerman 	���

A j� 
 can be tested in constant time an a CRAM�

Here a CRAM is a type of CRCW PRAM with priority writes� and a shift
operation shift�x� y� � bx��yc� It is clear that A j� 
 is clearly in SPACE�logn��
parallelism gets us down to constant time� One can then show

Claim �� u v x can be expressed as a FOD formula�
Claim �� v � G�u� can be expressed as a FOD formula�

Hence� using polynomially many processors� we can construct the set of
approximations fG�u�

�� u v x� matches T g for F �x� in constant time� �

As one might suspect� reassembly is a bit more complicated� Note that we
have to calculate a FOD structure representing TC�F �x��� Using a de�nability
approach as in the last argument� it is not hard to see that one can test y �
F �x�� given structures that code the transitive closures of x and y� in constant
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time� Indeed� for all the natural examples from above� reassembly is possible in
logarithmic time on a CRAM� The processors can agree on a coherent naming
scheme for the new atoms in logarithmic time� and then assemble the sets in
logarithmic time using a divide�and�conquer approach� A similar approach also
works for con�gurations of the form mentioned as the key obstruction above�
Since in a Gandy Machine sets of arbitrary size cannot occur in a nested fashion�
one can generalize this method to arbitrary con�gurations�

Theorem ��� Reassembly of F �x� from approximations f v
�� v v F �x� g can be

done in logarithmic time on a CRAM�

Thus� a single step in a Gandy Machine can be performed in a fairly low
parallel complexity class� A similar result is claimed in 	��� but we have been
unable to verify their proofs�

We conclude with a comment about the nature of �local causation in Gandy
Machines� In the framework of sets over anonymous urelements� locality has
to be taken with a grain of salt� To extract information about a neighboring
component from a set� it seems necessary to admit something akin to unbounded
fan�in in the world of circuits� or to increase the number of processors in the
PRAM nonlinearly� Neither alternative is really adequate from the point of
view of physical realization� a real gate cannot have an unbounded number of
inputs� and a great many processors communicating with each other do not
process information locally� By contrast� low�dimensional cellular automata
admit perfectly reasonable physical models�

Problem� Find natural restrictions on Gandy Machines that are more con�
sistent with local causation in physics� In particular� �nd machines that corre�
spond more naturally to cellular automata�

One possible line of attack would be to impose some amount of structure on
the set of urelements� and to permit the local maps to make use of this structure�
For example� one might have an order structure on U � However� it is not clear
how to do this without destroying the versatility of the model�
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