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Abstract

The Distributed Computing Environment (DCE)

software of the Open Software Foundation o�ers solu-

tions for security problems and for shared �le manage-

ment in heterogeneous computer networks. It allows

distributed programming by remote procedure calls and

parallel programming by threads. Distributed shared

memory in a computer network pretends a globally

shared address space among networked computers.

By introducing distributed shared memory into

DCE we raise the concept of threads to a higher level

of concurrency | threads are spread over several ma-

chines. POSIX 1003.4a-compliant multithreaded pro-

grams are automatically transformed to execute on a

computer network running DCE. Reprogramming is

not necessary. The translator algorithms are concealed

behind a precompiler, and a runtime system on top of

DCE realizes the globally shared address space and dis-

tributes threads among di�erent machines.

Keywords: Distributed Computing Environment,

DCE, distributed shared memory, computer networks

1 Introduction

Today computer networks continue to grow both

in size and importance. Local area nets, already link-

ing personal computers and workstations, are merging

into high-speed networks. Due to this fact, distributed

operating systems are applied more often to networked

computers. Some experts estimate that only 25 to 30

percent of the computing power available in a net-

work is used [1, 2]. Utilizing this power will reduce

users response time and in turn increase their work

ow signi�cantly.

Furthermore, in most cases distributed resources,

such as under-utilized workstations, are already exis-

tent. Because no additional hardware is needed, the

application of these resources is cheap. The main

problems of distributed systems are upcoming secu-

rity holes and missing standardization in heteroge-

neous networks. Some vendors such as Sun Microsys-

tems supported distributed programming by Remote

Procedure Calls and provided Network File Systems.

But neither was the security problem solved satisfac-

torily, nor exists an integrated standard. The use of

these partial solutions lead to a very complicated ad-

ministration by a confusing con�guration of networked

computers.

The Distributed Computing Environment (DCE)

software [2, 3, 4] of the Open Software Foundation pro-

vides an enormous opportunity to transform a group

of networked computers into a single, coherent com-

puting engine. By masking di�erences among various

kinds of computers, DCE enables the utilization of dis-

tributed resources such as storage devices, CPUs and

memory. DCE allows distributed and parallel pro-

gramming as well as solutions for security problems

and for shared �le management. Because almost all

major vendors support it, DCE seems to become a

standard for distributed operating systems.

DCE supports parallel execution by POSIX

1003.4a-compliant threads, for distributed execution

DCE remote procedure calls must be used. Unfor-

tunately, the use of DCE RPCs requires reprogram-

ming of software, already existing for parallel exe-

cution on a multithreaded system. Due to the lack

of a common address space among di�erent remote

procedures, conversion of threads to RPCs leads to a

complicated redesign of the program structure. The

aim of our project is the automatic transformation of

POSIX 1003.4a-compliant threads, as used in multi-



threaded operating systems like Solaris 2.3, OS/2 or

Windows/NT, into distributed programs, that can be

executed on di�erent machines of a DCE network.

Chapter 2 introduces the parallel and distributed

programming features of DCE, chapter 3 gives a moti-

vation for implementing distributed shared memory on

top of DCE. Chapter 5 demonstrates our approach on

a example program, which is shown in chapter 4. The

last three chapters give some experimental results, dis-

cuss possible optimizations, and draw the conclusions.

2 DCE

DCE uses three fundamental techniques to sup-

port distributed and parallel programming: The

client-server model, the DCE Remote Procedure Calls

(RPC), and DCE Threads.

Client and server are abstract terms. They can be

considered as programs, for instance. Servers provide

services that may be used by client programs.

DCE RPCs allow distributed computing by acti-

vating procedures on remote machines. In contrast to

local procedures, RPCs do not share the same address

space with the calling program. However, like local

procedures, they execute synchronously: The calling

program waits for the end of execution of the called

procedure. Thus, RPCs support distributed, but not

parallel computing.

With DCE RPCs a client is enabled to use services

of a remote server: A client calls a procedure, which

is performed on the server system. Besides the en-

tire communication, the DCE RPC component accom-

plishes the necessary data marshalling. Therefore, the

interface between client and server has to be de�ned

exactly. DCE's Interface De�nition Language (IDL)

helps the programmer to accomplish this task. An ex-

ample of an interface de�nition in IDL is provided in

section 5.1.

Parallel computing is achieved by DCE Threads

and their synchronization methods. DCE Threads are

\lightweighted" processes. All threads of a client or a

server belong to one \heavyweighted" process and ac-

cess the same address space. Threads within a process

share global data, open �les, and any other resources

available to the process. Threads from di�erent pro-

cesses, e.g. from client and server, do not share data.

Threads may be executed in parallel on di�erent pro-

cessors of a single machine. However, threads of a

single process cannot be distributed among di�erent

machines. To allow parallel and distributed comput-

ing in DCE, threads and RPCs are combined: The

remote procedure is called from a previously created

thread, all other threads of the process execute in par-

allel.

The necessary synchronization of parallel applica-

tions using DCE Threads is done by mutexes and con-

dition variables. A mutex ensures the mutual exclu-

sion of threads executing a critical section. The use

of condition variables allows a thread to wait for a

speci�c condition of shared data.

3 Why Distributed Shared Memory in

DCE?

The distributed shared memory model [5, 6, 7] pro-

vides a common address space that is shared among

all processors in a loosely coupled system | either

a distributed memory multiprocessor or a computer

network.

For loosely coupled systems, no physically shared

memory is available. However, a software layer can

provide a shared memory abstraction to the applica-

tions, using the services of the underlying (message

passing) communication system. The shared memory

model applied to loosely coupled systems is referred

to as distributed shared memory [6]. An application

can use the distributed shared memory just as it uses

a normal local memory, except, of course, that the

application's threads of execution can run on di�er-

ent processors or machines in parallel. Hence, soft-

ware provided for time-shared uniprocessors or shared

memory multiprocessors can also run on a computer

network.

DCE Threads and their synchronization primitives

are POSIX 1003.4a-compliant like threads in multi-

threaded operating systems such as Solaris, OS/2 or

Windows/NT. By providing distributed shared mem-

ory in DCE, POSIX 1003.4a-compliant multithreaded

applications, for instance originally written for mul-

tiprocessor workstations, can be spread over several

machines of a network. In our approach, we provide

a software layer on top of DCE, which allows mul-

tiple threads and their synchronization operations to

execute in parallel in a computer network. This soft-

ware layer, which consists of a precompiler and a run-

time system, renders any reprogramming of the origi-

nal software superuous.

In contrast to our approach, distributing applica-

tions with DCE itself requires a strict client-server ori-

ented design. In consequence, server programs must

be devised, and threads rearranged using additional

RPCs. This results in the necessity of extensive re-



programming of the original software.

Our implementation on top of DCE utilizes solu-

tions provided by DCE, like security, �le sharing, and

| most important | the organization of communica-

tion in heterogeneous networks. Moreover, we choose

DCE for its potential as a future standard in dis-

tributed operating systems.

4 Example Program

The multithreaded example program approximates

� by using the rectangle rule to compute an approx-

imation to the de�nite integral of f(x) = 4
(1+x2)

be-

tween 0 and 1.

#include "pi.h" /* includes standard headers and */

/* contains prototype of eval */

double total;

pthread_mutex_t total_mutex;

int number_workers, intervals;

void eval( int position )

{

int first, current, last;

double width, tmp, sum = 0;

width = 1.0 / (double) (number_workers * intervals);

first = position * intervals;

last = first + intervals;

for ( current = first; current < last; current++ )

{

tmp = (0.5 + (double) current) * width;

sum += width * (4.0 / (1.0 + tmp * tmp));

}

pthread_mutex_lock( &total_mutex );

total = total + sum;

pthread_mutex_unlock( &total_mutex );

}

int main(void)

{

int i;

pthread_t worker_threads[MAX_NR_OF_THREADS];

pthread_addr_t status;

pthread_mutex_init( &total_mutex,

pthread_mutexattr_default );

/* reading of parameters left out */

total = 0.0;

for ( i=0; i<number_workers; i++ )

pthread_create( &worker_threads[i],

pthread_attr_default,

(pthread_startroutine_t) eval,

(pthread_addr_t) i );

for ( i=0; i<number_workers; i++ )

pthread_join( worker_threads[i], status );

}

5 Our Approach

In our approach we start with a POSIX 1003.4a-

compliant multithreaded program. A precompiler

translates the original multithreaded program into an

IDL �le and two seperate DCE-conform programs,

called \master" and \slave" (see Fig. 1).

file
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program

Slave
program

Start

functions
of threads

IDL

Precompiler

Static
modules

Input program

Figure 1: The precompiler

To allow dynamic distribution of servers we pro-

vide a facility called `server-server', which consists of

daemons running on each participating machine, and

a runtime library accomplishing the communication

with these daemons. The distribution of servers is

done under terms of load balancing information. The

`server-server' and our load balancing facility are not

described here. The shared memory of client and

servers is pretended by a runtime library.

5.1 General Program Structure

This section outlines the actions necessary to trans-

form the original multithreaded program into a dis-

tributed application. Figure 2 illustrates the trans-

formation scheme. The main thread of the original

program becomes a \master" program. The startrou-

tine of a thread is transformed into a \slave" program,

which is possibly distributed to di�erent machines.



Creation of a thread in the original program results in

two actions in the master program: A slave is started

as a DCE server (possibly on a remote machine) and

a RPC to this server is performed. Our master and

slave programs virtually share the same address space

as the threads of the original program.

pthread_create()

program
multithreaded

global data

synch. variables

main program

succeeding call to the

start functions
of threads

master

global data

synch. variables

main program

functions of the
listen thread

slave

copies of global
data

start functions
of threads

creation of a thread
start of a slave with

start function

Figure 2: Transformation scheme

Using the function prototypes of the startroutines

in the original program, an IDL �le is generated by

the precompiler automatically. C data types possi-

bly implemented di�erently on various machines, are

translated in DCE-compliant data types. Addition-

ally, a parameter of the type handle t identi�es the

slave to which a RPC of eval(...) is directed.

[uuid(006489e4-feb8-1d71-a31d-02608c2f76eb),

version(1.0)]

interface piapprox

{

void eval(

[in] handle_t binding,

[in] long position );

}

The master program is retrieved from the original

program by omitting the startroutines of threads. Ad-

ditional de�nitions for distributed shared memory are

included and initialized by a function call sm init().

Each pthread create(...) call is replaced by a

rthread create(...) with two additional parame-

ters, containing the name of the slave program and its

DCE-binding. This call causes the startup of a slave

program by the server-server on a remote machine.

Subsequently, a local thread is created that performs

a RPC to the startroutine in the slave. sm init() and

all functions beginning with rthread are part of our

runtime library for shared memory simulation.

#include "smsim.h" /* definitions for */

/* shared memory simulation */

#include "piapprox.h" /* generated automatically by */

/* IDL compiler */

#include "pi.h" /* modified header of */

/* the threaded program, */

/* prototype of eval removed */

/* definition of the global variables as idl_* types */

idl_long_float total;

pthread_mutex_t total_mutex;

idl_long_int number_workers, intervals;

int main(void)

{

int i;

pthread_t worker_threads[MAX_NR_OF_THREADS];

pthread_addr_t status;

pthread_mutex_init( &total_mutex,

pthread_mutexattr_default );

/* reading of parameters left out */

sm_init(); /* initialize shared memory */

total = 0.0;

for ( i = 0; i < number_workers; i++ )

rthread_create(

&worker_threads[i], &binding[i],

_slave_program,

pthread_attr_default,

(pthread_startroutine_t) eval,

(pthread_addr_t)i )

for ( i=0; i<number_workers; i++ )

pthread_join( worker_threads[i], status );

sm_cleanup(); /* cleanup of DCE information */

}

In the slave program the startroutine of the origi-

nal program is embedded in a program frame, which

makes the necessary settings for the DCE RPC compo-

nent. The structure of the program frame is uniform

over all possible slave programs. The DCE speci�c

parts that form the program frame are not shown in

this paper. The body of eval(...) is extended by

the de�nition of local copies of the global variables.

#include "smsim.h" /* definitions for */

/* shared memory simulation */

#include "piapprox.h" /* generated automatically by */

/* IDL compiler */

#include <dce/idlbase.h> /* standard DCE includes */

#include <dce/rpc.h>

#include "pi.h" /* modified header without */

/* prototype of eval */



void eval(

/* additional parameter */

/* [in] */ handle_t binding,

/* [in] */ idl_long_int position )

{

int first, current, last;

double width, tmp, sum = 0;

/* following variables have to be inserted */

idl_long_float total;

pthread_mutex_t total_mutex;

idl_long_int number_workers, intervals;

/* reading global variables for subsequent use */

read_global( NUMBER_WORKERS, &number_workers,

IDL_LONG_INT );

read_global( INTERVALS, &intervals, IDL_LONG_INT );

width = 1.0 / (double) (number_workers * intervals);

first = position * intervals;

last = first + intervals;

for ( current = first; current < last; current++ )

{

tmp = (0.5 + (double) current) * width;

sum += width * (4.0 / (1.0 + tmp * tmp));

}

/* first lock remote mutex, then read global data */

rthread_mutex_lock( TOTAL_MUTEX );

read_global( TOTAL, &total, IDL_LONG_FLOAT );

total = total + sum;

write_global( TOTAL, &total, IDL_LONG_FLOAT );

rthread_mutex_unlock( TOTAL_MUTEX );

}

5.2 Synchronization

The synchronization operations on mutexes as used

in the original program are available for synchroniza-

tion of our master and slaves. In the slaves the syn-

chronization operations are implemented by nested

RPCs to the master. The master automatically cre-

ates a listen thread to accomplish global read accesses,

global write accesses and synchronization events.

In the master of our example program the listen

thread is started implicitly by sm init(). This func-

tion establishes an interface to the slaves for synchro-

nization events, read and write of global data, and ini-

tializes the runtime library of the server-server. Due

to lack of space the code of sm init() is not included

in the sample program.

Synchronization operations in the slaves are trans-

formed in RPC to the listen thread of the master. In

our example program the pthread mutex lock(...)

is translated in a rthread mutex lock(...), thereby

activating a function of the interface established by

sm init(). In consequence the listen thread of the

master performs a local pthread mutex lock(...).

All other synchronization functions, including oper-

ations on condition variables, are handled the same

way.

5.3 Implementing Distributed Shared
Memory

Global data of the original program remain global

data in the master program. All accesses on global

data by the slaves are transformed in RPCs to the lis-

ten thread of the master. When translating a startrou-

tine of a thread in the original program into a slave

program, for each de�nition of a global variable, ex-

cept for synchronization variables, a local variable def-

inition is inserted in the slave program. Each appear-

ance of a global variable as a rvalue is supplemented

by a directly preceding read global(...), performed

as a RPC, thereby copying the current value of the

global variable in the master to the local variable in

the slave. Likewise write global(...) succeeds to

each appearance of a global variable as a lvalue,

thereby copying the current value of the local variable

in the slave to the global variable of the master.

The variables total, total mutex, intervals,

and number workers are global variables in the origi-

nal program of our example. Except for the synchro-

nization variable total mutex we provide additional

local variables in the slave program. Since total ap-

pears as a rvalue and as a lvalue in the statement

total = total + sum in the original program, it is

translated in the sequence

read_global( TOTAL, &total, IDL_LONG_FLOAT );

total+=sum;

write_global( TOTAL, &total, IDL_LONG_FLOAT );

in the slave program referring to the local variable

total. The constant TOTAL is used to identify the

global variable total in the master by the listen

thread.

All global actions by the slaves, i.e. read, write,

and synchronization operations, are implemented by

RPCs | thus they execute synchronously. There-

fore the order of read and write accesses of a single

thread will remain unchanged. Moreover, the guaran-

teed sequential consistency [7] for synchronization op-

erations on a single machine holds for all synchroniza-

tion operations of our slaves. For global data accesses

guarded by synchronization operations, the exclusive

access speci�ed in the original program is also guar-

anteed after our transformations. Therefore programs

produced according to our method will have a similar

behavior as the original program with respect to the

consistency model.



6 Experimental Results

To assess the results of our project we have to

compare the performance of our automatically created

output program with the performance of a program,

which is reprogrammed using RPCs and threads in

a DCE-common programming style. The use of our

transformation scheme renders reprogramming unnec-

essary. Due to communication overhead by additional

RPCs we have to take a possibly worse performance of

our output program against a newly designed program

into consideration.

For the given example output program the use of

four IBM RS/6000 workstations achieves a speedup

of 3.22 against the sample program of section 4

when evaluating a number of 100000000 intervals

per worker. A reprogrammed, DCE-conform software

made it up to a speedup of 3.38, equally using our

server-server facility (see at the beginning of section

5) for dynamic start of servers. Without using the

server-server the speedup could hardly be measured,

because each server must be started manually.

The reason of the worse performance of our

transformed against the redesigned program are

four additional read/write RPCs and two additional

lock/unlock RPCs of each worker. In the redesigned

program four servers are started and RPCs to these

servers are issued by previously created threads of the

client. Therefore, global data are transfered as param-

eters of the RPCs, the synchronization operations are

performed locally succeeding to the RPCs.

Of course, this good speedup could only be

achieved, because the example is well suited for distri-

bution. However, we expect worse performance, if the

input program contains many global data accesses or

many synchronizations, thereby increasing the com-

munication overhead due to the induced read, write

or synchronization RPCs. On the other hand, none of

the many possibilities for optimization are used.

7 Optimizations

Out of the possible optimizations, we will discuss

three examples briey. For many applications, such

as matrix multiplication, it is very ine�cient to read

only single data items, e.g. a single matrix element.

Especially for read-only data, it is possible to trans-

fer whole data structures instead of reading element

by element. In the case of matrix multiplication the

performance gain is easy to see: Instead of calling a

remote procedure for each element of the input matri-

ces, a single RPC for each matrix is performed.

The division of global data into several classes o�ers

many possibilities of optimization: For shared read-

only data only one read RPC in the slave program has

to be executed. For global data exclusively accessed by

a single slave, it is su�cient to perform only one write

RPC before the end of the slaves execution. In the

case of global data accessed by unsynchronized read

and write accesses, a single read RPC preceding the

�rst access and a single write RPC succeeding the last

access is su�cient. This leads to a di�erent, but not

incorrect behavior of our transformed program, since

a correct input program must not depend on a �xed

order of accesses on unsynchronized data.

If exclusive read and write accesses are desired,

these are always protected by synchronization op-

erations. A further optimization is possible, if

we use entry consistency [8], which is a more re-

laxed consistency model. Entry consistency guar-

antees correctness of data only after application of

a synchronization primitive, which guards this piece

of data. This allows us to restrict consistency

to shared data which is protected by synchroniza-

tion operations. Shared data is read only after a

pthread mutex lock(...) on the mutex guarding

this piece of shared data, and is written only before

the corresponding pthread mutex unlock(...) oc-

curs. In terms of DCE: Consistency of shared data is

ensured only, if the mutex to which this piece of data

is bound implicitly is locked previously. Hence, the

transformed program of a correct multithreaded pro-

gram will remain correct, if we read guarded data only

once after a rthread mutex lock(...) on the guard-

ing mutex and write it only once prior to the corre-

sponding rthread mutex unlock(...). I. e. not each

occurence of the same variable as rvaluemust be pre-

ceded by a read operation. Hence, network tra�c can

be reduced signi�cantly. However, a procedure, which

discovers the linkage of data and mutexes must be de-

vised, because in POSIX 1003.4a-compliant programs

this linkage exists only in programmers mind.

8 Conclusions

Our implementation uses only DCE-conform fea-

tures to ful�ll a precondition for the use of DCE ser-

vices. This on-top-of-DCE implementation guarantees

the compatibility to every DCE platform. Up to now

the implementation of dynamic server distribution

and the runtime library for distributed shared mem-

ory is accomplished. Moreover, we implemented sev-

eral sample programs to compare the original POSIX

1003.4a-compliant multithreaded programs with the



programs generated by our intended precompiler. We

are on the way to de�ne and implement the detailed

translator algorithms. Several ideas for optimization

are devised, some of them are ready for implementa-

tion. Our current research concentrates on the opti-

mization and the exact de�nition of translator algo-

rithms.
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