
A Formal Model for a VHDL Subset of Synchronous Circuits

Dirk Eisenbiegler� Ramayya Kumar and Jens M�uller
Forschungszentrum Informatik
�Prof� Dr��Ing� D� Schmid�

Haid�und�Neu�Stra�e 	
�	�� �	�	 Karlsruhe� Germany
e�mail� feisen�kumar�jmuellerg�fzi�de

October ��� 	���

Abstract

VHDL is based on a rather complex and power�

ful model� that is not very suitable for dealing with

purely synchronous circuits� In this article� a syn�

chronous subset of VHDL named ABC�VHDL is intro�

duced� VHDL descriptions do not always correspond

to real circuit descriptions� and in general� it is dif�

�cult to �gure out� whether or not a VHDL descrip�

tion really is an appropriate synchronous circuit de�

scription� In our approach� this can be achieved by a

static analysis of the program source� In contrast to

many other approaches towards synchronous VHDL

subsets� the semantics of ABC�VHDL are clear and

unambiguous and furthermore conform to the standard

VHDL semantics� However� the semantics are based

on a far less complex timing model� RT�Level descrip�

tion described by output and state transition functions�

ABC�VHDL therefore is a pragmatic formal basis for

the correct handling of synthesis� simulation and ver�

i�cation tools based on synchronous VHDL�

� Introduction

Clear and unambiguous semantics are a basis for
all tools dealing with hardware description languages
such as VHDL or subsets of VHDL� Very often� se�
mantics of hardware description languages are not as
precise as they should be� Ambiguities in hardware
description languages can lead to contradictory results
while using di�erent simulators or synthesis tools� Ex�
periences have shown� that� due to the complexity of
the timing model� de�ning exact formal semantics for
VHDL as a whole is a sophisticated goal ��� 	�
� ���

Many tools in the area of hardware synthesis are
dedicated to purely synchronous circuit descriptions�
They often use VHDL subsets which are de�ned to
describe those parts of the language that the tools
can handle� Usually this is done by listing a set of re�
strictions and inheriting the semantics of these subsets

from the VHDL standard ��� Since VHDL is based
on a very complex timing model� deriving a formal
relationship between the behavioral description and a
synthesized RT�level description is very di�cult� In
the approach presented in ���� a VHDL subset named
delta�delay VHDL is de�ned by describing the syntax
explicitly and developing the semantics from scratch�
However� the semantics of delta�delay VHDL are spec�
i�ed in terms of a formal speci�cation language named
FOCUS� which in turn do not directly have any RT�
level semantics�

In contrast to these approaches� we de�ne a syn�
chronous subset of VHDL called ABC�VHDL� whose
semantics are de�ned at the RT�level� This enables
us to bridge the gap between VHDL sources and RT�
level descriptions and builds a basis for the applica�
tion of formal synthesis and veri�cation methods� The
paper describes the core of the ABC�VHDL seman�
tics� i�e� the mapping between behavioral ABC�VHDL
processes and the corresponding output� and state�
transition function at the RT�level� Our approach is
static in a sense that both the syntactical analysis and
the mapping towards the RT�level �the semantics� is
directly derived from the control structures of the pro�
cess statement body� Besides behavioral descriptions�
ABC�VHDL also allows structures� The formal se�
mantics of the structural component of ABC�VHDL is
trivial and will be omitted in this paper�

ABC�VHDL will be formalized in a functional man�
ner using the ��calculus notation� We have imple�
mented a translation from ABC�VHDL source texts
to the functional representation used in the higher or�
der logic theorem proving environment HOL �� In this
paper� only the main ideas of this mapping will be
presented in an informal manner� For a detailed de�
scription of the formal semantics of ABC�VHDL in

�HOL is a public domain theorem prover for higher order
logic based on � axioms and � inference rules ����

terms of HOL see ���� Within HOL we have already
developed synthesis speci�c transformations for syn�
chronous circuits such as logic optimization� state en�
coding and the elimination of unreachable states based
on ABC�VHDL ����

In section �� the principal ideas of ABC�VHDL and
its relation to VHDL will be described� In section ��
statements will be classi�ed in three groups named A�
B and C� and according to this classi�cation� we will
show� how ABC�VHDL statements and programs can
be mapped to RT�level descriptions�

� Statements and Programs in

ABC�VHDL and VHDL
In ABC�VHDL� there is always one global clock sig�

nal� Simulation cycles are clock cycles and wait state�
ments correspond to control states in the implemen�
tation� There are only pure input and pure output
signals� Processes may either have one or zero clock
inputs� and all wait statements must have the form

wait until clk � ����

where clk is the clock signal of the circuit� In struc�
tural descriptions� all clock signals must be connected
to the clock input of the compound circuit� The clock
signal must not be connected to other signals� Simu�
lation cycles start whenever rising slopes of the clock
signal occur� During a clock cycle� the processes may
read the input signals and the current variables� and
depending upon these values certain variable and sig�
nal assignments are executed� and �nally a new wait
statement is reached� In ABC�VHDL� only zero delay
signal assignments are allowed� i�e� variable and sig�
nal assignments occur immediately when the input is
read�

The transition diagram on the left hand side of �g�
ure describes the life�cycle of an ABC�VHDL pro�
cess� The gray shape symbolizes a process� c� denotes
the beginning state� c�� c�� � � � cn denote the wait state�
ment positions and the arrows denote control state
transitions� The total number of control states needed
equals the number of wait statements plus one� Ar�
rows indicate control state transitions� The behavior
of processes is determined by their statement part�
The control state transition selected by the process
from some given control state� depends on the current
state of the variables and the current input�

ABC�VHDL processes consist of compound state�
ments� which are recursively constructed using cer�
tain basic statements and control structures� In
ABC�VHDL� the basic statements are wait state�
ments� signal assignments� variable assignments and
the empty operation null� The control structures are�

sequences of statements� loops and if�then�else struc�
tures�

Statements� i�e� parts of the statement part of pro�
cesses� will also be described in a manner similar to
entire processes� except that they not only have a be�
ginning state c� and some wait statement positions
c�� c�� � � � cn but also an end�state named c� �see �gure
��

In ABC�VHDL� statements as well as entire pro�
grams are represented by functions that describe the
transition from one clock tick to the next� These tran�
sition functions map the current control state� variable
state� output state and input to the next control state�
variable state and output state� The transition func�
tions cover both the control path and the data path�

Transition functions for basic statements are rather
simple� Compound statements are derived by recur�
sively combining the transition functions of the basic
statements according to the control structure of the
program� Control structures are described by func�
tions� which map such transition functions to com�
pound transition functions� Programs are compound
transition functions�

� Formalization of Statements and

Processes
VHDL processes which may reach in�nite loops

without ever reaching a wait statement do not corre�
spond to real circuits� We avoid this by guaranteeing�
that bodies of while statements and entire processes
cannot be executed without encountering at least one
wait statement� Hence we classify the statements of
ABC�VHDL into three classes named A� B and C and
de�ne restrictions on their combinations� In simpli�ed
terms� the di�erences between these three classes are
as follows� On their way from position c� to c�� the
type A statement never� the type B statement some�

times and the type C statement always reaches a wait
statement �see �gure ���

��� A� B and C Statements

Type A statements do not depend on the control
state and its semantics are represented by functions
that map the current variable state� output state and
input to the next output state and variable state�
Type B statements are represented by functions that
map the current control state� variable state� output
state and input to the next output state� control state
and variable state� For type B statements the current
state is a member of fc�� c�� c�� � � � cng and the next
state is a member of fc�� c�� � � � cn� c

�g� Type C state�
ments are similar to type B statements except that
the function is split in two� one function describes
the transition starting from c� and the other function

�

Process Statement
c�

c�

c�
c�

c�

c�

c�

c�
c�

Figure � Control Flow in Processes and Statements

A B C

c�

c�

c�

c�

c�

c�
c�

c�

c�

c�

c�
c�

Figure �� Classi�cation of Statements

describes the transition starting from one of the wait
statement positions fc�� c�� � � � cng� The �rst function
can only lead to one of the control states fc�� c�� � � � cng
whereas the second function can also lead to c��

��� Atomic Statements

There are two groups of atomic statements�

� type A statements� null�statements� variable as�
signments and signal assignments

� type C statements� wait statements

Type B statements do not correspond to any atomic
statements� and arise only while combining two atomic
statements into compound statements�

To describe the semantics of atomic statements� the
following functional constants have been de�ned� null�
varassign� sigassign and wait� null is a type A transition
function that leaves both variables and output signals
unchanged� Since variable assignments do not alter
output signals� they can be unambiguously described
by functions mapping the current input and the cur�
rent variable state to the new output state� Example�
The variable assignment

x �� b�

in �gure � is represented by the following function

� ��a� b� start�� �x� y� z��� �b� y� z�

which maps the current input �a� b� start� and the
old variable state �x� y� z� to the new variable state
�b� y� z�� where x has been replaced by b� The function

varassign maps such ��abstracted functions to type A
statement transition functions� Similarly signal as�
signments can be described by functions mapping the
current input� output state and variable state to the
new variable state� sigassign is used to convert them
to type A statement transition functions�

Wait statements are type C statements where there
is exactly one internal control state c�� The evaluation
of a wait statement starts at point c� then immediately
reaches state c� and then stays there� In the next clock
cycle� the process continues and immediately reaches
the end�state c�� The function wait de�nes the type C
transition of wait statements�

��� Conditions

if�then�else structures and while�loops depend on
conditions� They are represented by means of func�
tions mapping the current input and the current vari�
able state to a boolean value� Example� The condition

a � b

in �gure � is represented by the following function�

� ��a� b� start�� �x� y� z��� a � b

This function maps the current input �a� b� start� and
the current variable state �x� y� z� to the boolean ex�
pression a � b�

��� Compound Statements

Based on atomic statements and conditions com�
pound statements are derived by applying the follow�
ing operators� where the letters at the end of the op�

�

erator names indicate which statement types are in�
volved�

� whileC for describing while�loops over type C
statement bodies

� seqAA� seqAB� seqAC� seqBA�� � � for describing
sequences of statements with arbitrary combina�
tions of types

� ifteAA� ifteAB� ifteAC� ifteBA�� � � for describing
if�then�else structures of statements with arbi�
trary combinations of types

whilec combines a condition and a type C statement
to a type B statement� seqAA� seqAB�� � � are binary
operators used in an in�x fashion� They describe se�
quences for all combinations of statement types� The
expression f seqBC g� for example� stands for the se�
quence of the type B statement f and the type C state�
ment g� The result is a type C statement� ifteAA�
ifteAB�� � � are operators mapping one condition and
two statements to a compound if�then�else statement�

Figure � lists� how the types of compound state�
ments are derived from the types of its parts� The
term in �gure � is constructively derived from its
atomic statements and conditions by means of these
operators�

In VHDL� there are also other control structures
besides sequences� if�then�else statements and while
loops� These control structures are nothing but syn�
tactic sugar and can easily be constructed using these
three basic control structures�

��� Processes

Processes can be of type A of type C only� Type A
processes are used for describing pseudo�combinatorial
circuits� i�e� combinatorial circuits� whose outputs
may be bu�ered� Type C processes are used for de�
scribing sequential circuits� For type A processes� all
inputs must be listed in the sensitivity list� Type C
processes are sensitive to the clock signal only� and
the sensitivity list must be empty� The execution of
processes with type C statement bodies is always im�
mediately restarted from the beginning whenever the
end is reached� The operator processC maps a type
C statement to a transition function of a sequential
circuit and thereby removes the c� control state�

Both� type A and type C processes determine the
input�output behaviour of the circuit in an unambigu�
ous manner based on the initial state and on the out�
put and transition function derived from the state�
ment part�

� Conclusions
It has been shown� that ABC�VHDL is an appro�

priate synchronous VHDL subset with an unambigu�
ous semantics that was constructed from scratch� The
semantics of ABC�VHDL is constructive in the sense
that it not only speci�es the relation between input
and output� but also provides a mapping into RT�level
descriptions� Such formal embeddings are not only
a logical basis for formal argumentation �veri�cation�
formal synthesis�� but are also essential for synthesis
and simulation� to avoid ambiguities�

References
��� Alain Debreil and Philippe Oddo� Synchronous designs

in VHDL� In EURO�DAC ���� pages ��	
���� Ham�
burg� Germany� ���� IEEE Computer Society Press�

��� D� Eisenbiegler� R� Kumar� and J� M�uller� Formalizing
the semantics for a synchronous subset of VHDL� Tech�
nical Report FZI�Report ����� Forschungszentrum In�
formatik �FZI�� �����

�� D� Eisenbiegler and R� Kumar� An automata theory
dedicated towards formal circuit synthesis� In Higher

Order Logic Theorem Proving and Its Applications� As�
pen Grove� Utah� USA� September ����� Springer�

��� M� Fuchs and M� Mendler� A functional semantics for
delta�delay VHDL based on focus� In Formal Seman�

tics for VHDL� volume �� of The Kluwer international
series in engineering and computer science� chapter ��
Kluwer� Madrid� Spain� March �����

��� M�J�C� Gordon and T�F� Melham� Introduction to

HOL� A Theorem Proving Environment for Higher Or�

der Logic� Cambridge University Press� ����

�	� Peter T� Breuer� Luis Sanchez Fernandez� and Carlos
Delgado Kloos� Clean formal semantics for VHDL� In
EDAC ���� pages 	��
	��� Paris� France� ����� IEEE
Computer Society Press�

��� R� Boulton� A� Gordon� M� Gordon� J� Herbert� and
J� van Tassel� Experiences with Embedding hardware
description languages in HOL� In Conference on The�

orem Provers in Circuit Design� IFIP Transactions A�
��� pages ���
��	� North�Holland� �����

��� S� Olcoz and J�M� Colom� A petri net approach for the
analysis of VHDL descriptions� In CHARME��� num�
ber 	� in Lecture Notes in Computer Science� pages
��
�	� Arles�France� May ���� Springer Verlag�

��� W� Damm� B� Josko� and R� Schl�or� A net�based se�
mantics for VHDL� In EURO�DAC ���� pages ���

���� Hamburg� Germany� ���� IEEE Computer Soci�
ety Press�

�

sequence if�then�else while

successor
predecessor A B C

A A B C

B B B C

C C C C

else�branch
then�branch A B C

A A B B

B B B B

C B B C

body while�loop

C B

Figure �� Construction Rules for Compound Statements

entity gcd is
port �

clk � in std�logic�
a�b � in integer�
start � in std�logic�
ready � out std�logic�
result � out integer

��
end gcd�

architecture behavior of gcd is
begin process

variable x�y�z � integer�
begin processC �

while start �	
�
 loop �whileC ����a� b� start�� �x� y� z��� �start�	�����
wait until clk 	
�
� wait

end loop� � seqBC
ready 	
�
� sigassign����a� b� start�� �ready� result�� �x� y� z��� ����� result�� seqAC
if �a b� then ifteAA ����a� b� start�� �x� y� z��� a � b� �

x �	 b� varassign����a� b� start�� �x� y� z��� �b� y� z�� seqAA
y �	 a� varassign����a� b� start�� �x� y� z��� �x� a� z��

else � �
x �	 a� varassign����a� b� start�� �x� y� z��� �a� y� z�� seqAA
y �	 b� varassign����a� b� start�� �x� y� z��� �x� b� z��

end if� � seqAC
while �y �	 �� loop whileC ����a� b� start�� �x� y� z��� �y � ��� �

z �	 x � y� varassign����a� b� start�� �x� y� z��� �x� y� x� y�� seqAC
wait until clk 	
�
� wait seqCA
x �	 y� varassign����a� b� start�� �x� y� z��� �y� y� z�� seqAA
y �	 z� varassign����a� b� start�� �x� y� z��� �x� z� z��

end loop� � seqBC
ready 	
�
� sigassign����a� b� start�� �ready� result�� �x� y� z��� ����� result�� seqAC
result 	 x� sigassign����a� b� start�� �ready� result�� �x� y� z��� �ready� x�� seqAC
wait until clk 	
�
� wait

end process� �
end behavior�

Figure �� ABC�VHDL Description of a GCD Circuit and its Logical Representation

�

