A Formal Model for a VHDL Subset of Synchronous Circuits

Dirk FEisenbiegler, Ramayya Kumar and Jens Miiller
Forschungszentrum Informatik
(Prof. Dr.-Ing. D. Schmid)
Haid-und-Neu-Strafle 10-14, 76131 Karlsruhe, Germany
e-mail: {eisen,kumar,jmueller }Qfzi.de

October 23, 1995

Abstract

VHDL is based on a rather complexr and power-
ful model, that is not very suitable for dealing with
purely synchronous circuits. In this article, a syn-
chronous subset of VHDL named ABC-VHDL is intro-
duced. VHDL descriptions do not always correspond
to real circuit descriptions, and in gemeral, it is dif-
ficult to figure out, whether or not a VHDL descrip-
tion really is an appropriate synchromous circuit de-
scription. In our approach, this can be achieved by a
static analysis of the program source. In contrast to
many other approaches towards synchronous VHDL
subsets, the semantics of ABC-VHDL are clear and
unambiguous and furthermore conform to the standard
VHDL semantics. However, the semantics are based
on a far less complex timing model: RT-Level descrip-
tion described by output and state transition functions.
ABC-VHDL therefore is a pragmatic formal basis for
the correct handling of synthesis, simulation and ver-
ification tools based on synchronous VHDL.

1 Introduction

Clear and unambiguous semantics are a basis for
all tools dealing with hardware description languages
such as VHDL or subsets of VHDL. Very often, se-
mantics of hardware description languages are not as
precise as they should be. Ambiguities in hardware
description languages can lead to contradictory results
while using different simulators or synthesis tools. Ex-
periences have shown, that, due to the complexity of
the timing model, defining exact formal semantics for
VHDL as a whole is a sophisticated goal [6, 7, 8, 9].

Many tools in the area of hardware synthesis are
dedicated to purely synchronous circuit descriptions.
They often use VHDL subsets which are defined to
describe those parts of the language that the tools
can handle. Usually this is done by listing a set of re-
strictions and inheriting the semantics of these subsets

from the VHDL standard [1]. Since VHDL is based
on a very complex timing model, deriving a formal
relationship between the behavioral description and a
synthesized RT-level description is very difficult. In
the approach presented in [4], a VHDL subset named
delta-delay VHDL is defined by describing the syntax
explicitly and developing the semantics from scratch.
However, the semantics of delta-delay VHDL are spec-
ified in terms of a formal specification language named
FOCUS, which in turn do not directly have any RT-
level semantics.

In contrast to these approaches, we define a syn-
chronous subset of VHDL called ABC-VHDL, whose
semantics are defined at the RT-level. This enables
us to bridge the gap between VHDL sources and RT-
level descriptions and builds a basis for the applica-
tion of formal synthesis and verification methods. The
paper describes the core of the ABC-VHDL seman-
tics, i.e. the mapping between behavioral ABC-VHDL
processes and the corresponding output- and state-
transition function at the RT-level. Our approach is
static in a sense that both the syntactical analysis and
the mapping towards the RT-level (the semantics) is
directly derived from the control structures of the pro-
cess statement body. Besides behavioral descriptions,
ABC-VHDL also allows structures. The formal se-
mantics of the structural component, of ABC-VHDL is
trivial and will be omitted in this paper.

ABC-VHDL will be formalized in a functional man-
ner using the A-calculus notation. We have imple-
mented a translation from ABC-VHDL source texts
to the functional representation used in the higher or-
der logic theorem proving environment HOL . In this
paper, only the main ideas of this mapping will be
presented in an informal manner. For a detailed de-
scription of the formal semantics of ABC-VHDL in

THOL is a public domain theorem prover for higher order
logic based on 5 axioms and 8 inference rules [5].

terms of HOL see [2]. Within HOL we have already
developed synthesis specific transformations for syn-
chronous circuits such as logic optimization, state en-
coding and the elimination of unreachable states based
on ABC-VHDL [3].

In section 2, the principal ideas of ABC-VHDL and
its relation to VHDL will be described. In section 3,
statements will be classified in three groups named A,
B and C, and according to this classification, we will
show, how ABC-VHDL statements and programs can
be mapped to RT-level descriptions.

2 Statements and Programs in
ABC-VHDL and VHDL

In ABC-VHDL, there is always one global clock sig-
nal. Simulation cycles are clock cycles and wait state-
ments correspond to control states in the implemen-
tation. There are only pure input and pure output
signals. Processes may either have one or zero clock
inputs, and all wait statements must have the form

wait until clk = ’1’;

where clk is the clock signal of the circuit. In struc-
tural descriptions, all clock signals must be connected
to the clock input of the compound circuit. The clock
signal must not be connected to other signals. Simu-
lation cycles start whenever rising slopes of the clock
signal occur. During a clock cycle, the processes may
read the input signals and the current variables, and
depending upon these values certain variable and sig-
nal assignments are executed, and finally a new wait
statement is reached. In ABC-VHDL, only zero delay
signal assignments are allowed, i.e. variable and sig-
nal assignments occur immediately when the input is
read.

The transition diagram on the left hand side of fig-
ure 1 describes the life-cycle of an ABC-VHDL pro-
cess. The gray shape symbolizes a process: ¢y denotes
the beginning state, ¢1,ca, ... c, denote the wait state-
ment positions and the arrows denote control state
transitions. The total number of control states needed
equals the number of wait statements plus one. Ar-
rows indicate control state transitions. The behavior
of processes is determined by their statement part.
The control state transition selected by the process
from some given control state, depends on the current
state of the variables and the current input.

ABC-VHDL processes consist of compound state-
ments, which are recursively constructed using cer-
tain basic statements and control structures. In
ABC-VHDL, the basic statements are wait state-
ments, signal assignments, variable assignments and
the empty operation null. The control structures are:

sequences of statements, loops and if-then-else struc-
tures.

Statements, i.e. parts of the statement part of pro-
cesses, will also be described in a manner similar to
entire processes, except that they not only have a be-
ginning state ¢y and some wait statement positions
C1,Ca,...Cpy but also an end-state named ¢’ (see figure
1).
In ABC-VHDL, statements as well as entire pro-
grams are represented by functions that describe the
transition from one clock tick to the next. These tran-
sition functions map the current control state, variable
state, output state and input to the next control state,
variable state and output state. The transition func-
tions cover both the control path and the data path.

Transition functions for basic statements are rather
simple. Compound statements are derived by recur-
sively combining the transition functions of the basic
statements according to the control structure of the
program. Control structures are described by func-
tions, which map such transition functions to com-
pound transition functions. Programs are compound
transition functions.

3 Formalization of Statements and
Processes

VHDL processes which may reach infinite loops
without ever reaching a wait statement do not corre-
spond to real circuits. We avoid this by guaranteeing,
that bodies of while statements and entire processes
cannot be executed without encountering at least one
wait statement. Hence we classify the statements of
ABC-VHDL into three classes named A, B and C and
define restrictions on their combinations. In simplified
terms, the differences between these three classes are
as follows: On their way from position ¢y to c’, the
type A statement never, the type B statement some-
times and the type C statement always reaches a wait,
statement (see figure 2).
3.1 A, B and C Statements

Type A statements do not depend on the control
state and its semantics are represented by functions
that map the current variable state, output state and
input to the next output state and variable state.
Type B statements are represented by functions that
map the current control state, variable state, output
state and input to the next output state, control state
and variable state. For type B statements the current
state is a member of {cp,c;,Co,...C,} and the next
state is a member of {ci,co,...Cy,c'}. Type C state-
ments are similar to type B statements except that
the function is split in two: one function describes
the transition starting from ¢y and the other function

Process
Co

Statement
Co

L/

! &—
C

Figure 1: Control Flow in Processes and Statements

A

Figure 2: Classification of Statements

describes the transition starting from one of the wait
statement positions {cy, ca,...c,}. The first function
can only lead to one of the control states {c1,ca,...Cp}
whereas the second function can also lead to c’.

3.2 Atomic Statements

There are two groups of atomic statements:

e type A statements: null-statements, variable as-
signments and signal assignments

e type C statements: wait statements

Type B statements do not correspond to any atomic
statements, and arise only while combining two atomic
statements into compound statements.

To describe the semantics of atomic statements, the
following functional constants have been defined: null,
varassign, sigassign and wait. null is a type A transition
function that leaves both variables and output signals
unchanged. Since variable assignments do not alter
output signals, they can be unambiguously described
by functions mapping the current input and the cur-
rent variable state to the new output state. Example:
The variable assignment

X := b;
in figure 4 is represented by the following function
A ((a, b, start), (z,y,2)). (b,y,2)

which maps the current input (a,b,start) and the
old variable state (x,y,z) to the new variable state
(b,y, z), where x has been replaced by b. The function

varassign maps such A-abstracted functions to type A
statement transition functions. Similarly signal as-
signments can be described by functions mapping the
current input, output state and variable state to the
new variable state. sigassign is used to convert them
to type A statement transition functions.

Wait statements are type C statements where there
is exactly one internal control state c;. The evaluation
of a wait statement starts at point ¢y then immediately
reaches state c; and then stays there. In the next clock
cycle, the process continues and immediately reaches
the end-state ¢’. The function wait defines the type C
transition of wait statements.

3.3 Conditions

if-then-else structures and while-loops depend on
conditions. They are represented by means of func-
tions mapping the current input and the current vari-
able state to a boolean value. Example: The condition

a<b
in figure 4 is represented by the following function:
A ((a, b, start), (z,y,2)). a<b

This function maps the current input (a, b, start) and
the current variable state (z,y, z) to the boolean ex-
pression a < b.
3.4 Compound Statements

Based on atomic statements and conditions com-
pound statements are derived by applying the follow-
ing operators, where the letters at the end of the op-

erator names indicate which statement types are in-
volved:

e whileC for describing while-loops over type C
statement bodies

o seqAA, seqAB, seqAC, seqBA,... for describing
sequences of statements with arbitrary combina-
tions of types

o ifte AA, ifte AB, ifte AC, ifteBA,... for describing
if-then-else structures of statements with arbi-
trary combinations of types

whilec combines a condition and a type C statement
to a type B statement. seq.4.A, seqAB,... are binary
operators used in an infix fashion. They describe se-
quences for all combinations of statement types. The
expression f seqBC g, for example, stands for the se-
quence of the type B statement f and the type C state-
ment g. The result is a type C statement. ifteAA,
ifteAB,... are operators mapping one condition and
two statements to a compound if-then-else statement.

Figure 3 lists, how the types of compound state-
ments are derived from the types of its parts. The
term in figure 4 is constructively derived from its
atomic statements and conditions by means of these
operators.

In VHDL, there are also other control structures
besides sequences, if-then-else statements and while
loops. These control structures are nothing but syn-
tactic sugar and can easily be constructed using these
three basic control structures.

3.5 Processes

Processes can be of type A of type C only. Type A
processes are used for describing pseudo-combinatorial
circuits, i.e. combinatorial circuits, whose outputs
may be buffered. Type C processes are used for de-
scribing sequential circuits. For type A processes, all
inputs must be listed in the sensitivity list. Type C
processes are sensitive to the clock signal only, and
the sensitivity list must be empty. The execution of
processes with type C statement bodies is always im-
mediately restarted from the beginning whenever the
end is reached. The operator processC maps a type
C statement to a transition function of a sequential
circuit and thereby removes the ¢’ control state.

Both, type A and type C processes determine the
input/output behaviour of the circuit in an unambigu-
ous manner based on the initial state and on the out-
put and transition function derived from the state-
ment part.

4 Conclusions

It has been shown, that ABC-VHDL is an appro-
priate synchronous VHDL subset with an unambigu-
ous semantics that was constructed from scratch. The
semantics of ABC-VHDL is constructive in the sense
that it not only specifies the relation between input
and output, but also provides a mapping into RT-level
descriptions. Such formal embeddings are not only
a logical basis for formal argumentation (verification,
formal synthesis), but are also essential for synthesis
and simulation, to avoid ambiguities.

References

[1] Alain Debreil and Philippe Oddo. Synchronous designs
in VHDL. In EURO-DAC 93, pages 486-491, Ham-
burg, Germany, 1993. IEEE Computer Society Press.

[2] D. Eisenbiegler, R. Kumar, and J. Miiller. Formalizing
the semantics for a synchronous subset of VHDL. Tech-
nical Report FZI-Report 8/95, Forschungszentrum In-
formatik (FZI), 1995.

[3] D. Eisenbiegler and R. Kumar. An automata theory
dedicated towards formal circuit synthesis. In Higher
Order Logic Theorem Proving and Its Applications, As-
pen Grove, Utah, USA, September 1995. Springer.

[4] M. Fuchs and M. Mendler. A functional semantics for
delta-delay VHDL based on focus. In Formal Seman-
tics for VHDL, volume 307 of The Kluwer international

series 1n engineering and computer science, chapter 1.
Kluwer, Madrid, Spain, March 1995.

[6] M.J.C. Gordon and T.F. Melham. Introduction to
HOL: A Theorem Proving Environment for Higher Or-
der Logic. Cambridge University Press, 1993.

[6] Peter T. Breuer, Luis Sanchez Fernandez, and Carlos
Delgado Kloos. Clean formal semantics for VHDL. In
EDAC ’94, pages 641-647, Paris, France, 1994. ITEEE
Computer Society Press.

[7] R. Boulton, A. Gordon, M. Gordon, J. Herbert, and
J. van Tassel. Experiences with Embedding hardware
description languages in HOL. In Conference on The-
orem Provers in Circuit Design, IFIP Transactions A-
10, pages 129-156. North-Holland, 1992.

[8] S. Olcoz and J.M. Colom. A petri net approach for the
analysis of VHDL descriptions. In CHARMFE93, num-
ber 683 in Lecture Notes in Computer Science, pages
15-26, Arles,France, May 1993. Springer Verlag.

[9] W. Damm, B. Josko, and R. Schlor. A net-based se-
mantics for VHDL. In FURO-DAC 93, pages 514—
519, Hamburg, Germany, 1993. IEEE Computer Soci-
ety Press.

sequence if-then-else while
successor else-branch
predecessor | A B C then-branch | A B C -
1 1 B ¢ 1 1 B B bocdy I Whll(;gloop
B B B C B B B B
C c ¢ ¢ C B B C

Figure 3: Construction Rules for Compound Statements

entity gcd is

port (
clk : in std_logic;
a,b : in integer;
start : in std_logic;
ready : out std_logic;
result : out integer

)5

end gcd;

architecture behavior of gcd is
begin process
variable x,y,z :
begin
while start /= 1’ loop

integer;

wait until clk = ’1’;
end loop;
ready <= ’0’;
if (a < b) then
x = b;
y = a;
else
X = aj;
y := b;
end if;
while (y /= 0) loop
Z =X - Y;
wait until clk = ’1°;
X = y;
y = z;
end loop;

ready <= ’1’;
result <= x;
wait until clk =
end process;
end behavior;

)1);

processC (

(whileC (A((a, b, start), (z,y, z)). (start/=¢1%))
wait

) seqBBC

sigassign(\((a, b, start), (ready, result), (z,y, z)). (‘0¢, result))

ifteAA (A((a,b, start), (z,y,2)).a < b) (
varassign(A((a, b, start), (z,y, 2)). (b,y,2)) seqAdA
varassign(A((a, b, start), (z,y, 2)). (z,a, z))
varassign(\((a, b, start), (z,,2)). (a,y,2)) seadAA
varassign(\({a, b, start), (. y.2)). (. b, =)
seq.AC

whileC (M((ab,start), (z,3,2)). (y = 0)) (
varassign(A((a, b, start), (z,y, 2)). (z,y,2 —y)) seqAC
wait seqC
varasmgn(A((a b, start), (v,y,2)). (y,y,2)) seqAA
varassign(A((a, b start), (z,y, 2)). (z, 2, 2))

) seqBC

sigassign(\((a, b, start), (ready, result), (z,y, z)). (‘1¢, result))
sigassign(A((a, b, start), (ready, result), (z,y, z)). (ready, z))
walt

seqAC

seqAC
seqAC

Figure 4: ABC-VHDL Description of a GCD Circuit and its Logical Representation

