
Applicability of Formal Synthesis Illustrated via
Scheduling �

Christian Blumenr�ohr� Dirk Eisenbiegler

Institute for Circuit Design and Fault Tolerance
�Prof� Dr��Ing� D� Schmid��

University of Karlsruhe� Germany
fblumen�eiseng�ira�uka�de

Ramayya Kumar

Forschungszentrum Informatik
�Prof� Dr��Ing� D� Schmid��

Karlsruhe� Germany
kumar�fzi�de

http�		goethe�ira�uka�de	fsynth	

Abstract

This paper describes a novel technique for formal synthesis and exempli
es the main
ideas using the high level synthesis task � scheduling� The novelty of the approach
is based on the fact� that arbitrary scheduling algorithms can be embedded within a
formal framework to automatically achieve guaranteed correct implementations� Two
realistic examples are used to emphasize its applicability and it can be seen that the
additional costs for formal synthesis are almost negligible in practice� We achieve the
same quality for the implementations as conventional synthesis plus the proof of their
correctness�

� Introduction

Although high level synthesis is based on a sequence of algorithms which conform to the
�correctness by construction� paradigm� its implementation may be error�prone� This is due
to the complexity of the programs � which implement these algorithms�
One approach towards proving the correctness of implementations is by post�synthesis

veri�cation� An excellent overview of veri�cation techniques is given in �Gupt	
� Melh	���
One of the important correctness criterions is to show that the implementation implies the
speci�cation� Two of the most important reasons for the complexity of these proofs are

�� the existence of the major gap between the abstraction levels of the speci�cation and
the implementation and

� the obliviousness of the information used in re�ning a speci�cation into an implemen�
tation�

Therefore� full automation can only be achieved for comparatively small sized circuits at lower
levels of abstraction� For large sized circuits� hardware veri�cation specialists are mandatory�
They have to either provide appropriate structuring and abstraction of the proofs� while using
automatable logics� or perform logical interactions with the underlying theorem prover� while
using complex logics�
Formal synthesis is a complementary approach to hardware veri�cation� since formal aver�

ment is an integral part of the synthesis process� However� it is a specialized technique� which
is only tailored towards the proof of synthesized implementations� Veri�cation is neverthe�
less needed for validating speci�cations which can be achieved by checking properties such as
safety and liveness�
We are developing a formal synthesis toolbox called HASH �Higher order logic Applied

to Synthesis of Hardware� which is applicable to di�erent abstraction levels� It contains
one universal transformation per synthesis step� e�g� scheduling� allocation� retiming� state�
minimization� etc� Each transformation is guided by the results of corresponding standard
synthesis algorithms� that abound in literature �TLWN	�� GDWL	��� Hence� no new synthesis

�This work has been partly �nanced by the Deutsche Forschungsgemeinschaft� Project SCHM ������	

�The programs implementing the synthesis algorithms are mostly imperative in nature� and the correctness

of large imperative programs is nearly impossible to prove

algorithms �either formal or informal� are proposed� rather a general scheme for logically
embedding various existing synthesis algorithms within a formal set�up is presented �EiKu	�b��
In contrast to conventional synthesis approaches� only correct hardware implementations can
be produced or no implementation is derived� when the results of the synthesis algorithms are
faulty� The quality with respect to costs of the fully automatically generated implementations
is dictated only by the conventional synthesis algorithms� The implementations therefore have
a higher quality than those of conventional synthesis from an overall perspective � since they
are proven to be correct� This concept will be elaborated with respect to the scheduling task
in the sections to follow�
There are also other approaches in the formal synthesis domain� An overview is given in

�KBES	��� But all other techniques do not exploit the results of the sophisticated algorithms
which abound in synthesis ��FoMa�	� HaLD�	� JoBB��� ShRa	���� Therefore� the quality
of their implementations is normally worse than that of conventional synthesis algorithms�
In contrast to HASH which supports fully automated synthesis� all other approaches need
interaction either at the schematic level or from a logician�s point of view�
The major contributions of this paper are two�fold

�� formal synthesis within HASH is applicable to realistic circuits� and

� the additional costs for formal synthesis are reasonable�

The above�mentioned contributions are exempli�ed via the scheduling task in high�level syn�
thesis�
The outline of this paper is as follows
 in the next section� we brie�y introduce our

approach and de�ne the notations and scope of our work� In section �� we will show the
results with two realistic examples and section � concludes the paper�

� Our Formal Synthesis Approach towards Scheduling

In this paper� we concentrate on the transformation in HASH for performing the scheduling
task within high�level synthesis� High�level synthesis converts an algorithmic description of
the circuit into a structure at the Register�Transfer �RT� level� The major steps in high�level
synthesis are scheduling� allocation of storage� functional and interconnection units� binding
the allocated hardware onto some library components and interface synthesis�
The scheduling task assigns a control step �c�step� to each operation in the algorith�

mic speci�cation� There exist various heuristic algorithms for solving this task �CaWo	��
GDWL	��� A large number of them start from data �ow graphs that correspond to the ba�
sic blocks in the algorithmic description� Although certain scheduling algorithms start from
control�data �ow graphs� we shall restrict ourselves to pure data �ow graphs in this paper�
The underlying idea behind the scheduling transformation in HASH is illustrated in �gure

�� Given a data �ow graph� some scheduling heuristic is started� This heuristic step has
nothing to do with logic� The heuristic returns a scheduling table which maps each opera�
tion in the data �ow graph onto a c�step� This scheduling table is now used by the formal
logical transformation in HASH to produce a scheduled data �ow graph� The split between
design space exploration �i�e� di�erent schedule tables for di�erent heuristics� and the logical
transformation is the core idea in HASH� This core idea is applicable to most of the synthesis
steps� e�g� allocation�no� of resources available� retiming�split in the combinational logic� etc�

schedule
table

scheduling heuristic
(ASAP, ALAP,
force-directed, ...)

scheduled data flow graph
and theorem

transformation
scheduling

data flow graph

Figure �
 The concept of HASH as applied to scheduling

All the logical transformations in HASH have been implemented within the HOL theorem

prover �GoMe	��� Each transformation takes the current design state and the result of some
synthesis heuristic and returns the new design state along with the correctness theorem�
stating that the old design state is equivalent to �or implied by� the new design state�
Returning to the scheduling task� the formalization of the current design state� i�e� the data

�ow graph� is achieved by using ��expressions �Davi�	�� The data �ow graphs are represented
as follows

��x�� � � � � xm��
let houtvars�i � op�hinvars�i in

let houtvars�i � op�hinvars�i in
���

let houtvarsli � oplhinvarsli in

�y�� � � � � yn�

The above structure describes the input�output function in terms of the basic operations
in the data �ow graph� x�� x�� � � � � xm are the inputs� y�� y�� � � � � yn the outputs and op��
op�� � � ��opl the operations of the data �ow graph� Each let�term describes the connectivity of
one operation� For all i� hinvarsii and houtvarsii denote the inputs and outputs of operation
opi� respectively� The inputs and outputs of operations are tuples� with each operation having
the speci�c arity of its input and output tuple� This formal representation is however not
unique� since the ordering of the operations is ambiguous� Nevertheless� the data dependencies
between the operations must be respected�
The scheduling transformation in HASH takes the formalized data �ow graph g and the

schedule table and produces g� which is a composition of functions g�� g�� � � � � gk such that
g� � gk � � � � � g� � g� and k is the number of c�steps� Each gi �i � �� � � � � k� represents a
slice in the original data �ow graph g and corresponds to those operations that are executed
in the ith c�step� Additionally� the transformation produces the correctness proof stating
the equivalence between g and g�� If the heuristic produces a false result �e�g� a schedule
table where the data dependencies are violated or some operations are unscheduled�� then
the transformation fails and returns some constructive feedback to the user which re�ects the
cause of the failure�
In �gure
� a simple example is shown which illustrates the invocation of the schedul�

ing transformation in HASH� In this example� a well�known heuristic called force�directed
scheduling has been applied �PaKn�	�� For better readability� the data �ow graphs are shown
in a schematic manner and not by their formal representation� If in this example the heuristic
schedules operation � before operation
� an exception will be raised during the transforma�
tion giving the constructive feedback that g� ��gure
� cannot be built with this schedule
table�
It is also possible to combine several synthesis steps into one complex step� Then the cor�

responding logical transformations have to be performed one after another� The cost for this
complex logical transformation is just the sum of the costs of the individual transformations
�see �EiBK	�� for more details about the transformations��

� Experimental Results

In this section� we demonstrate that our formal synthesis scenario works with realistic ex�
amples� We therefore consider two scalable data �ow graphs and compare the runtimes for
calculating the schedule using various algorithms with the runtimes for the transformations�
which produce a correct implementation� We cannot compare our work with any other veri�
�cation results� since to our knowledge� no one has formally veri�ed the scheduling task�
The scheduling algorithms we applied are ASAP �As Soon As Possible�� ALAP �As Late

As Possible�� list�scheduling and two versions of force�directed scheduling �without�with look�
ahead��
ASAP� ALAP and the two versions of force�directed scheduling do not enforce any con�

straints on the number of resources used� However� they always produce the shortest possible
schedule� List�scheduling on the other hand works with a constrained number of resources
but produces a schedule which is usually slower than those of the former approaches� The
main idea behind the force�directed heuristic is to use the slack between the ASAP and ALAP
schedules so as to distribute the operations in a better manner so that the resource utilization
is also minimized in addition to the number of c�steps �PaKn�	��

g’ = g

*

+
-

+

* +

*

g
2

g
3

g
4

c-step operations
schedule table

1
2
3
4

1,4
3,5
6,7

2

*

+
-

+

* +

*

g
1

scheduling transformation
in HASH

and the theorem

a

b

c

1

2
3

4

5 6

7

x

y

g’

a

b

c

1

2
3

4

5 6

7

x

y

g

heuristic
force-directed

Figure

 A simple example for the scheduling transformation in HASH

��� Division of two Polynomials

As a �rst example� we used a scalable data �ow graph� which realizes the division of two
polynomials with the given coe�cients �i and �i

p�qP
i��

�i x
i

pP
i��

�i xi
�

qX
i��

�i x
i �

p��P
i��

�i x
i

pP
i��

�i xi

The coe�cients �i and �i should be computed� To facilitate the calculation� we assume
that the divisor is normalized with respect to �p� After a few algebraic transformations we
get the following two formulas for the demanded coe�cients

�i � �i�p �
minfi�p�qgX

k�i��

�i�p�k � �k i � � � � � q

�j � �j �
minfj�qgX

k��

�j�k � �k j � � � � � p� �

Using these formulas� the data �ow graph can be realized very quickly� To illustrate the
underlying structure� a data �ow graph with p � � and q � � is shown in �gure ��
The data �ow graph consists of p� q subtractors� p�q��� multipliers and q�p� �� adders�

so there is a total of
pq �
p nodes� The critical path has a length of �q �
 nodes�
The runtimes � for the heuristics are shown in �gure �� The parameter p was always

set to
� and q was set to �� 	� ���
�� ��� FD� and FD
 correspond the two versions of the
force�directed algorithm� and LS stands for list scheduling�
Irrespective of the variations in q� ASAP always needed
� adders�
� multipliers and
�

subtractors� ALAP always required
� adders and
� subtractors but the number of multipli�
ers varied between
� and ��� The two versions of the force�directed algorithm delivered either

� adders�
� multipliers and
� subtractors or
� adders�
� multipliers and
� subtractors�

�All experiments have been run a SUN ULTRA CREATOR with 	��MB

β0 α 7

*

α 6 α 5 α 4 α 3 α 2

γ
3

γ
2

γ
1

γ
0 δ

2

-

-

*

*
*

*

*

*

-

-

-

*

*

*
*

*
*

* +

+
+

+
+

+

-

α 1

δ
1

-

α 0

δ
0

+
+

ββ1 2

*

γ
4

Figure �
 A data �ow graph with p�� and q��

Heuristics
�Nodes ASAP ALAP FD	 FD� LS

	

	

	

�

�

� � � � 	

�

 �

 �
� �

� ��
� 	�
� � �� � ��
�

 �
� �

� �	

� ��	
� ��
� � �� � ��
	�

 ��
� ��
� ���

� ����
� �
�
� � �� � ��
	�

 ��

 �
�
� ��		�
� �����
� ���

 � 	
� � 	�

Figure �
 Time for the heuristics

Although force�directed scheduling is a complicated algorithm which usually requires a lesser
number of resources than ASAP or ALAP� it does not perform better in this example� This is
because there is no better schedule� if the number of c�steps are minimized� On closer exami�
nation� one can detect� that one always needs p� � adders and either p� � multipliers and p
subtractors or vice�versa �cf� from �gure ��� The list�scheduling algorithm was restricted to
� adders� � multipliers and � subtractors� The number of resulting c�steps is shown as sum
of the c�steps for unconstrained scheduling and the additional c�steps for list�scheduling�
In �gure � the runtimes for the transformations after the heuristics can be seen� The

most interesting fact is that the runtime for the force�directed heuristic grows exponentially�
whereas the runtime for its transformation does not� instead it grows in a polynomial fash�
ion� Furthermore� the transformation is even faster than the heuristic for higher number of
nodes and the intersection lies at about ���� nodes� So it can be seen that the additional
costs for formal synthesis can be negligible for large data �ow graphs when compared with
sophisticated heuristics� Additionally� it turns out that the runtime for the transformation is
almost independent of the heuristic used� The only thing that matters is� how the heuristic
distributed the nodes in the c�steps� not how long it took for that�

Heuristics
�Nodes ASAP ALAP FD	 FD� LS

	

 	�
	 �
� 		
� 		
� 	�
�
�

 ���
� ���
� ���
� ���
� ���
�
�

 ���

 ��

� 	
��
� 	
��
� 		�

	�

 	���

 �	
�
� ����

 ���	
� ����
�
	�

 ����
� ����
� ��
�
� ����
� ���

�

Figure �
 Time for the transformations

��� Discrete Cosine Transform �DCT�

Another scalable data �ow graph is realized in our second example� It calculates the discrete
cosine transform� which is popularly used for image compression� The DCT of an image with
pixels x�n�m� is de�ned by

X�u� v� �

p

N �M � c�u� � c�v� �
N��X
n��

M��X
m��

x�n�m� � cos�� � u

N

� �
n� ��� � cos�� � v

M

� �
m� ���

with

c�u�� c�v� �

�
�p
�

 u� v � �

�
 otherwise

In most cases� N �M � � is used� The data �ow graphs are built as follows
 The N �M
pixels of the image are used as inputs� Furthermore� in order to ease the data �ow graph�
the cosine � terms are considered as additional inputs due to the complexity of the cosine �
operation� In order to minimize the number of these additional inputs� one can exploit the
periodicity of the cosine function� So the arguments can be restricted to the interval ��� ��� A
restriction to the interval ��� �

�
� would also be possible� but then additional inverters will be

necessary� If N �M � the following formula for the additional inputs due to cosine functions
can be given as

f�N� �

����
���

�
 N � �
�
 N � �

N � f�N
�
�
 N �
� �� � � �

N � �
 N � �� �� � � �

If N ��M � a formula cannot be given in a general manner� An additional reduction could
be achieved� if cos��

�
� would be omitted� but then the data �ow graph could not be built in

a regular manner anymore�
Due to the de�nition of the DCT� there are still two factors to consider
 �p

N �M and �p
�
�

The latter can be regarded as cos��
�
�� So if N is even� this coe�cient is already introduced

as input� All in all� one has N� � � � �N mod
� � f�N� inputs for the data �ow graph� if
N �M � The number of outputs is N� �N �M � if N ��M ��
To achieve a compact representation of the data �ow graph� as many intermediate results

as possible were reused� This leads to a total number of
N��N��N �N��M����N�M��

M�
��M � additions and
N��N �
 �N��M����N�M��M����
� multiplications�
So there is a total of �N��N��
N �
 �
N��M ����N�
M�� �M � ���M �
� nodes�
The length of the critical path is
N � � �N �M � ���
To give a better idea of the structure� the data �ow graph for N � M �
 is shown in

�gure ��

+ *

*

+

+

* +

+

*

*

+ +* +*

* **

cos 1/4 π

* *

+* *

*

cos 3/4 π

*

x(1,1)x(0,1)x(1,0)

+

x(0,0)

X(1,1) X(0,1) X(1,0)

1

X(0,0)

Figure �
 A data �ow graph with N�
� M�

In �gure � the runtimes and required resources for the di�erent heuristics are displayed�
It should be noted that in this example� the number of resources required for force�directed

scheduling is always better than that of ASAP or ALAP� For the list�scheduling algorithm� we
restricted the number of resources used to � adders and � multipliers� The number of resulting
c�steps is shown as sum of the c�steps for unconstrained scheduling and the additional c�steps
for list�scheduling�

Heuristics
�Nodes ASAP ALAP FD� FD� LS

Time �� � � Time �� � � Time �� � � Time �� � � Time �csteps
�	 �
�� � � �
�� 	 � �
�� � � �
�� � � �
�� �� �

� �
�� �� �
 �
�
 �� �	 �
��
 �� �
�	
 �� �
�� �� �
��� �
�� �� �
 �
�� �� �� �
� �� �� �
� �� �� �
�
� �
�	� �
	� �� ��� �
� �� �	 �
� �� �� 	
� �� �� �
� ��� ��
��� �
� �� ��� �
	 �� �� ��
� �� 	� ��
� �� 	� ��
� ��� ��
���� 	
� �	 �
� ��

 �� ��� ��
� 		 �	 	�
� 		 �	 ���

 ��� ��
�
�� ��
� �� ��
 ��
� ��
 �	� ��

	 �� ��� �	�
� �� ��� ���
� ������

Figure �
 Time and resources for the heuristics

We investigated � data �ow graphs by setting N � M and varying their numbers from

to �� One can see that the force�directed heuristic does not have an exponential behaviour�
as in the previous example� This can be explained by a closer look at the data �ow graphs� If
we compare e�g� the DCT with N � M � � and the polynomial division with p �
�� q � 	�
which have both nearly ��� nodes� one can see that �� of the nodes in the DCT are placed
immediately� since there is no di�erence between ASAP and ALAP �cf� brief description of
force�directed scheduling in the introduction to section ��� In the polynomial division� only
�	 are placed� Furthermore� the average movability of the remaining nodes is
�
 for the
DCT and ��� for the polynomial division� The maximal movability for the DCT is � and for
the polynomial division it is ��� So it can be concluded that the operations in the division
have more choices and the scheduling algorithm takes much longer�
In �gure � the runtimes of the scheduling transformation for the di�erent heuristics are

shown� The conversions for ALAP� FD� and FD
 are of the same magnitude� A special case
is the transformation for the ASAP algorithm� Due to the nature of the data �ow graph�
many operations can be scheduled in the �rst c�steps by the ASAP� which can also be seen
from the extremely high number of required resources in �gure �� This special constellation is
very disadvantageous for the transformation algorithm� The transformation of the data �ow
graph with �	�� nodes was not possible due to space problems� But in most cases� especially
when ingenious algorithms are used� the operations are better distributed in the schedule�
Generally� one can see again that the runtime for the transformation is fairly independent
from the heuristic� if the number of c�steps is equal� For list�scheduling the transformation
takes longer due to the larger number of c�steps required�

� Conclusions and Future Work

We have shown� that formal synthesis is not simply an academic dream� but can also be applied
to realistic circuits� Additionally� the costs for formal synthesis are acceptable and are almost
independent from the heuristics involved� In certain cases the design space exploration part
can take much longer than performing the actual logical transformation� which in turn not
only yields an implementation but also the proof of its correctness�
The novelty of HASH rests on the fact that in contrast to post�synthesis veri�cation or

other approaches for formal synthesis� we exploit the abundance of knowledge within the
synthesis domain� The quality of the synthesis results produced� in terms of area� timing and
power� are the same as that of conventional approaches� However� the correctness proof is an
added quality� Yet another plus point in HASH is that� although a theorem�prover is used in
the background� the entire procedure is automatic and no formal background is required on
the part of the designer�
The major consequences that can be drawn from this work are that immense amounts of

simulation�veri�cation time can be saved and hence veri�cation can be restricted to property
checking� The time required for formal synthesis can be reduced even further� if the trans�
formations are run either in the background or as a batch�process while the circuit designer
concentrates on his job ! the task of design exploration�
We have just discovered the tip of the iceberg and we still have a long way to go� In

the future we shall concentrate on �nding transformations for control��ow based scheduling
algorithms� chaining of operations� pipelining� memory mapping� etc� We shall also provide

Heuristics
�Nodes ASAP ALAP FD	 FD� LS

��

�

�

�

�

�
�� �
� �
� �
� �
� �
�
��� 	�
� 	�
� 	�
� 	�
� ��
�
��� �	
� ��

 ��
� ��
� 	��
�
�	� ���
� ���
� ���
� ���
� ���
�
	�		 	���
� �
�

 ���

 ���
� ����
�
	��
 � 	��	
� ��
�
� �	��
	 �	�

�

Figure �
 Time for the transformations

links between the di�erent levels of abstractions for the design of hardware �see �EiKu	�� for
application of HASH at RT�level��

References
�CaWo�	� R
 Camposano and W
 Wolf
 High�Level VLSI Synthesis
 Kluwer� Boston� 	��	

�Davi��� R
 E
 Davis
 Truth� Deduction and Computation� Logic and Semantics for Computer Science

Computer Science Press� New York� 	 edition� 	���

�EiBK��� D
 Eisenbiegler� C
 Blumenr�ohr� and R
 Kumar
 Implementation issues about the embedding
of existing high level synthesis algorithms in HOL
 In Joakim von Wright� Jim Grundy� and
John Harrison� editors� Theorem Proving in Higher Order Logics��th International Conference�
TPHOLs���� number 		�� in Lecture Notes in Computer Science� pages 	���	��� Turku�Finland�
August 	���
 Springer�Verlag

�EiKu��� D
 Eisenbiegler and R
 Kumar
 An automata theory dedicated towards formal circuit synthesis

In E
T
 Schubert� P
J
 Windley� and J
 Alves�Foss� editors� �th International Workshop on Higher
Order Logic Theorem Proving and its Applications� number ��	 in Lecture Notes in Computer
Science� pages 	���	��� Aspen Grove� Utah� USA� September 	���
 Springer�Verlag

�EiKu��b� D
 Eisenbiegler and R
 Kumar
 Formally embedding existing high level synthesis algorithms
 In
Paolo E
 Camurati and Hans Eveking� editors� Correct Hardware Design and Veri	cation Meth�
ods� number ��� in Lecture Notes in Computer Science� pages �	���� Frankfurt�Main� Germany�
October 	���
 IFIP WG	

� Advanced Research Working Conference� Springer�Verlag

�FoMa��� M
P
 Fourman and E
M
 Mayger
 Formally Based System Design � Interactive hardware scheduling

In G
 Musgrave and U
 Lauther� editors� Very Large Scale Integration� pages 	
	�		�� Munich�
Federal Republic of Germany� August 	���
 IFIP TC 	
�WG	

� International Conference� North�
Holland

�GDWL��� D
 Gajski� N
 Dutt� A
 Wu� and S
 Lin
 High�Level Synthesis� Introduction to Chip and System
Design
 Kluwer Academic Publishers� 	���

�GoMe��� M
J
C
 Gordon and T
F
 Melham
 Introduction to HOL� A Theorem Proving Environment for
Higher Order Logic
 Cambridge University Press� 	���

�Gupt��� A
 Gupta
 Formal hardware veri�cation methods� A survey
 Formal Methods in System Design�
	������	�	����� 	���

�HaLD��� F
K
 Hanna� M
 Longley� and N
 Daeche
 Formal synthesis of digital systems
 In Luc J
 M
 Claesen�
editor� Applied Formal Methods For Correct VLSI Design� volume �� pages �������
 IMEC�IFIP�
Elsevier Science Publishers� 	���

�JoBB��� S
D
 Johnson� B
 Bose� and C
D
 Boyer
 A tactical framework for digital design
 In G
 Birtwistle
and P
 Subrahmanyam� editors� VLSI Speci	cation� Veri	cation and Synthesis� pages ��������
Boston� 	���
 Kluwer Academic Publishers

�KBES��� R
 Kumar� C
 Blumenr�ohr� D
 Eisenbiegler� and D
 Schmid
 Formal synthesis in circuit design � A
classi�cation and survey
 In Formal Methods in Computer�Aided Design� FMCAD���� Palo Alto�
USA� 	���

�Melh��� T
 Melham
 Higher Order Logic and Hardware Veri	cation
 Cambridge University Press� 	���

�PaKn��� P
 G
 Paulin and J
 P
 Knight
 Force�directed scheduling for the behavioral synthesis of ASIC�s

IEEE Transactions on Computer Aided Design� �������	����� June 	���

�ShRa��� R
 Sharp and O
 Rasmussen
 The T�Ruby design system
 In CHDL�
� pages �������� 	���

�TLWN�
� D
E
 Thomas� E
D
 Langnese� R
A
 Walker� J
A
 Nestor� J
V
 Rajan� and R
L
 Blackburn
 Al�
gorithmic and Register�Transfer Level Synthesis� The System Architect�s Workbench
 Kluwer
Academic Publishers� 	��

