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Abstract

This paper describes a novel technique for formal synthesis and exemplifies the main
ideas using the high level synthesis task — scheduling. The novelty of the approach
is based on the fact, that arbitrary scheduling algorithms can be embedded within a
formal framework to automatically achieve guaranteed correct implementations. Two
realistic examples are used to emphasize its applicability and it can be seen that the
additional costs for formal synthesis are almost negligible in practice. We achieve the
same quality for the implementations as conventional synthesis plus the proof of their
correctness.

1 Introduction

Although high level synthesis is based on a sequence of algorithms which conform to the
“correctness by construction” paradigm, its implementation may be error-prone. This is due
to the complexity of the programs ! which implement these algorithms.

One approach towards proving the correctness of implementations is by post-synthesis
verification. An excellent overview of verification techniques is given in [Gupt92, Melh93].
One of the important correctness criterions is to show that the implementation implies the
specification. Two of the most important reasons for the complexity of these proofs are:

1. the existence of the major gap between the abstraction levels of the specification and
the implementation and

2. the obliviousness of the information used in refining a specification into an implemen-
tation.
Therefore, full automation can only be achieved for comparatively small sized circuits at lower
levels of abstraction. For large sized circuits, hardware verification specialists are mandatory.
They have to either provide appropriate structuring and abstraction of the proofs, while using
automatable logics, or perform logical interactions with the underlying theorem prover, while
using complex logics.

Formal synthesis is a complementary approach to hardware verification, since formal aver-
ment is an integral part of the synthesis process. However, it is a specialized technique, which
is only tailored towards the proof of synthesized implementations. Verification is neverthe-
less needed for validating specifications which can be achieved by checking properties such as
safety and liveness.

We are developing a formal synthesis toolbox called HASH (Higher order logic Applied
to Synthesis of Hardware) which is applicable to different abstraction levels. It contains
one universal transformation per synthesis step, e.g. scheduling, allocation, retiming, state-
minimization, etc. Each transformation is guided by the results of corresponding standard
synthesis algorithms, that abound in literature [TLWN90, GDWL94]. Hence, no new synthesis

*This work has been partly financed by the Deutsche Forschungsgemeinschaft, Project SCHM 623/6-1.
!The programs implementing the synthesis algorithms are mostly imperative in nature, and the correctness
of large imperative programs is nearly impossible to prove.



algorithms (either formal or informal) are proposed, rather a general scheme for logically
embedding various existing synthesis algorithms within a formal set-up is presented [EiKu95b).
In contrast to conventional synthesis approaches, only correct hardware implementations can
be produced or no implementation is derived, when the results of the synthesis algorithms are
faulty. The quality with respect to costs of the fully automatically generated implementations
is dictated only by the conventional synthesis algorithms. The implementations therefore have
a higher quality than those of conventional synthesis from an overall perspective , since they
are proven to be correct. This concept will be elaborated with respect to the scheduling task

in the sections to follow. ) ) ) o )
There are also other approaches in the formal synthesis domain. An overview is given in

[KBES96]. But all other techniques do not exploit the results of the sophisticated algorithms
which abound in synthesis ([FoMa89, Hal.LD89, JoBB88, ShRa95|). Therefore, the quality
of their implementations is normally worse than that of conventional synthesis algorithms.
In contrast to HASH which supports fully automated synthesis, all other approaches need
interaction either at the schematic level or from a logician’s point of view.

The major contributions of this paper are two-fold:

1. formal synthesis within HASH is applicable to realistic circuits, and
2. the additional costs for formal synthesis are reasonable.

The above-mentioned contributions are exemplified via the scheduling task in high-level syn-

thesis.
The outline of this paper is as follows: in the next section, we briefly introduce our

approach and define the notations and scope of our work. In section 3, we will show the
results with two realistic examples and section 4 concludes the paper.

2 Our Formal Synthesis Approach towards Scheduling

In this paper, we concentrate on the transformation in HASH for performing the scheduling
task within high-level synthesis. High-level synthesis converts an algorithmic description of
the circuit into a structure at the Register-Transfer (RT) level. The major steps in high-level
synthesis are scheduling, allocation of storage, functional and interconnection units, binding
the allocated hardware onto some library components and interface synthesis.

The scheduling task assigns a control step (c-step) to each operation in the algorith-
mic specification. There exist various heuristic algorithms for solving this task [CaWo91,
GDWL94]. A large number of them start from data flow graphs that correspond to the ba-
sic blocks in the algorithmic description. Although certain scheduling algorithms start from
control /data flow graphs, we shall restrict ourselves to pure data flow graphs in this paper.

The underlying idea behind the scheduling transformation in HASH is illustrated in figure
1. Given a data flow graph, some scheduling heuristic is started. This heuristic step has
nothing to do with logic. The heuristic returns a scheduling table which maps each opera-
tion in the data flow graph onto a c-step. This scheduling table is now used by the formal
logical transformation in HASH to produce a scheduled data flow graph. The split between
design space exploration (i.e. different schedule tables for different heuristics) and the logical
transformation is the core idea in HASH. This core idea is applicable to most of the synthesis
steps, e.g. allocation/no. of resources available, retiming/split in the combinational logic, etc.

data flow graph
|
scheduling heuristic
(ASAP, ALAP,
force-directed, ...)

schedule scheduling
table transformation

scheduled data flow graph
and theorem

Figure 1: The concept of HASH as applied to scheduling
All the logical transformations in HASH have been implemented within the HOL theorem



prover [GoMe93|. Each transformation takes the current design state and the result of some
synthesis heuristic and returns the new design state along with the correctness theorem,
stating that the old design state is equivalent to (or implied by) the new design state.

Returning to the scheduling task, the formalization of the current design state, i.e. the data
flow graph, is achieved by using A-expressions [Davi89]. The data flow graphs are represented
as follows:

A(l‘l,...,l‘m). ) )
let (outvars;) = op,(invars;) in
let = op,(invarsz) in

outvarss

let (outvarslé = op,(invars;) in
(yla -y Yn

The above structure describes the input/output function in terms of the basic operations
in the data flow graph. xy,x9,...,2,, are the inputs, y,¥s,...,y, the outputs and op,,
0Py, - - .,op; the operations of the data flow graph. Each let-term describes the connectivity of
one operation. For all i, (invars;) and (outvars;) denote the inputs and outputs of operation
op;, respectively. The inputs and outputs of operations are tuples, with each operation having
the specific arity of its input and output tuple. This formal representation is however not
unique, since the ordering of the operations is ambiguous. Nevertheless, the data dependencies
between the operations must be respected.

The scheduling transformation in HASH takes the formalized data flow graph ¢ and the
schedule table and produces ¢’ which is a composition of functions g1, ¢gs, ..., gr such that
g = gro...0gy0g¢ and k is the number of c-steps. Each g; (i = 1,...,k) represents a
slice in the original data flow graph ¢ and corresponds to those operations that are executed
in the " c-step. Additionally, the transformation produces the correctness proof stating
the equivalence between g and ¢'. If the heuristic produces a false result (e.g. a schedule
table where the data dependencies are violated or some operations are unscheduled), then

the transtfﬁrmatlon fails and returns some constructive feedback to the user which reflects the
cause of the failure,
]qfn gure 2, a s1mple example is shown which illustrates the invocation of the schedul-

ing transformation in HASH. In this example, a well-known heuristic called force-directed
scheduling has been applied [PaKn89]. For better readability, the data flow graphs are shown
in a schematic manner and not by their formal representation. If in this example the heuristic
schedules operation 3 before operation 2, an exception will be raised during the transforma-
tion giving the constructive feedback that ¢’ (figure 2) cannot be built with this schedule

table.
It is also possible to combine several synthesis steps into one complex step. Then the cor-

responding logical transformations have to be performed one after another. The cost for this
complex logical transformation is just the sum of the costs of the individual transformations
(see [EiBK96] for more details about the transformations).

3 Experimental Results

In this section, we demonstrate that our formal synthesis scenario works with realistic ex-
amples. We therefore consider two scalable data flow graphs and compare the runtimes for
calculating the schedule using various algorithms with the runtimes for the transformations,
which produce a correct implementation. We cannot compare our work with any other veri-
fication results, since to our knowledge, no one has formally verified the scheduling task.

The scheduling algorithms we applied are ASAP (As Soon As Possible), ALAP (As Late
As Possible), list-scheduling and two versions of force-directed scheduling (without/with look-
ahead).

ASAP, ALAP and the two versions of force-directed scheduling do not enforce any con-
straints on the number of resources used. However, they always produce the shortest possible
schedule. List-scheduling on the other hand works with a constrained number of resources
but produces a schedule which is usually slower than those of the former approaches. The

main idea behind the force-directed heuristic is to use the slack between the ASAP and ALAP
schedules so as to distribute the operations in a better manner so that the resource utilization

is also minimized in addition to the number of c-steps [PaKn89].
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Figure 2: A simple example for the scheduling transformation in HASH
3.1 Division of two Polynomials

As a first example, we used a scalable data flow graph, which realizes the division of two
polynomials with the given coefficients a; and f;:

ptq i p—1 ;
zo ;T a 'Zo 0; ©
T E L
> Bzt i=0 > Bt
2=0 1=0

The coefficients ; and 0; should be computed. To facilitate the calculation, we assume
that the divisor is normalized with respect to 3,. After a few algebraic transformations we
get the following two formulas for the demanded coefficients:

min{i+p,q}
Vi = Qyp— > Bk % t=0...q
k=i+1
min{j,q}
6]' = Q5 — Z ﬁjfk")/k j:()p—l
k=0

Using these formulas, the data flow graph can be realized very quickly. To illustrate the
underlying structure, a data flow graph with p = 3 and ¢ = 4 is shown in figure 3.

The data flow graph consists of p 4 ¢ subtractors, p(¢ + 1) multipliers and ¢(p — 1) adders,
so there is a total of 2pg + 2p nodes. The critical path has a length of 3¢ 4+ 2 nodes.

The runtimes ? for the heuristics are shown in figure 4. The parameter p was always
set to 25 and g was set to 1,9,15,25,35. FD1 and FD2 correspond the two versions of the
force-directed algorithm, and LS stands for list scheduling.

Irrespective of the variations in ¢, ASAP always needed 24 adders, 25 multipliers and 24
subtractors. ALAP always required 24 adders and 25 subtractors but the number of multipli-
ers varied between 25 and 48. The two versions of the force-directed algorithm delivered either
24 adders, 24 multipliers and 25 subtractors or 24 adders, 25 multipliers and 24 subtractors.

2All experiments have been run a SUN ULTRA CREATOR with 196MB.
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Figure 3: A data flow graph with p=3 and q=4

Heuristics
#Nodes ASAP ALAP FDI FD2 LS
100 0.1 0.1 0.2 0.3 03/ 5+ 10
500 2.0 5.3 60.5 67.7 19.2 / 29+ 36
800 6.8 20.3 610.5 641.2 742/ 47+ 55
1300 25.5 78.4 8260.8 8343.8 3035 / 77+ 88
1800 64.0 203.3 47116.9 47289.3 763.0 / 107 + 120

Figure 4: Time for the heuristics

Although force-directed scheduling is a complicated algorithm which usually requires a lesser
number of resources than ASAP or ALAP, it does not perform better in this example. This is
because there is no better schedule, if the number of c-steps are minimized. On closer exami-
nation, one can detect, that one always needs p — 1 adders and either p — 1 multipliers and p
subtractors or vice-versa (cf. from figure 3). The list-scheduling algorithm was restricted to
4 adders, 4 multipliers and 4 subtractors. The number of resulting c-steps is shown as sum
of the c-steps for unconstrained scheduling and the additional c-steps for list-scheduling.

In figure 5 the runtimes for the transformations after the heuristics can be seen. The
most interesting fact is that the runtime for the force-directed heuristic grows exponentially,
whereas the runtime for its transformation does not; instead it grows in a polynomial fash-
ion. Furthermore, the transformation is even faster than the heuristic for higher number of

nodes and the intersection lies at about 1000 nodes. So it can be seen that the additional
costs for formal synthesis can be negligible for large data flow graphs when compared with

sophisticated heuristics! Additionally, it turns out that the runtime for the transformation is
almost independent of the heuristic used. The only thing that matters is, how the heuristic
distributed the nodes in the c-steps, not how long it took for that.

Heuristics
#Nodes ASAP ALAP FDI1 FD2 LS
100 12.1 98 11.6 11.7 19.4
500 247.9 238.4 339.6 333.2 443.2
800 647.0 660.4 1026.9 1035.9 1140.0
1300 1978.0 2106.9 2894.0 2881.5 3347.3
1800 4324.6 4693.4 6503.8 6442.7 7630.8

Figure 5: Time for the transformations

3.2 Discrete Cosine Transform (DCT)

Another scalable data flow graph is realized in our second example. It calculates the discrete
cosine transform, which is popularly used for image compression. The DCT of an image with
pixels x(n,m) is defined by:



X (u,v) = Wik c(u) - c(v) - 22 z(n,m) - 608[7;; -(2n+1)]- 605[7;—].\; -(2m+1)]
with
1
) s wu= 0
(), e(v) { 1 . otherwise

In most cases, N = M = 8 is used. The data flow graphs are built as follows: The N - M
pixels of the image are used as inputs. Furthermore, in order to ease the data flow graph,
the cosine - terms are considered as additional inputs due to the complexity of the cosine -
operation. In order to minimize the number of these additional inputs, one can exploit the
periodicity of the cosine function. So the arguments can be restricted to the interval [0, 7]. A
restriction to the interval [0, 7] would also be possible, but then additional inverters will be
necessary. If N = M, the following formula for the additional inputs due to cosine functions
can be given as:

N

Z2=z2=2=
[

QTN W

If N # M, a formula cannot be given in a general manner. An additional reduction could
be achieved, if cos(%) would be omitted, but then the data flow graph could not be built in
a regular manner anymore.

Due to the definition of the DCT, there are still two factors to consider: \/]\?—M and %
The latter can be regarded as cos(7). So if N is even, this coefficient is already introduced
as input. All in all, one has N? + 1 + (N mod2) + f(N) inputs for the data flow graph, if
N = M. The number of outputs is N* [N - M, if N # M].

To achieve a compact representation of the data flow graph, as many intermediate results
as possible were reused. This leads to a total number of 2N3—N?—N  [N*(M+1)+ N (M?—
2M —2)+ M] additions and 2N* — N +2  [N* (M +1)+ N(M? — M —1) +2] multiplications.
So there is a total of 4N3 — N? —2N +2 [2N*(M +1)+ N(2M?* —3M — 3) + M + 2] nodes.
The length of the critical path is 2N +1 [NV + M + 1].

To give a better idea of the structure, the data flow graph for N = M = 2 is shown in
figure 6.

1 coslarn cos3/4an  x(0,00 x(1,0) x(0,1) x(1,1)

X(L1)  X(©01)  X(L0) X(0,0)

Figure 6: A data flow graph with N=2, M=2

In figure 7 the runtimes and required resources for the different heuristics are displayed.
It should be noted that in this example, the number of resources required for force-directed



scheduling is always better than that of ASAP or ALAP. For the list-scheduling algorithm, we
restricted the number of resources used to 8 adders and 8 multipliers. The number of resulting
c-steps is shown as sum of the c-steps for unconstrained scheduling and the additional c-steps
for list-scheduling.

Heuristics

#Nodes ASAP ALAP FDI FD2 LS
Time [ ##+ [ #Fx* | Time | ##F+ [ #* Time F+ [ #Fx* Time F+ [ #Fx* Time F£csteps
26 0.0 1 5 0.0 6 7 0.02 3 4 0.03 3 1 0.02 5+ 0
95 0.03 12 19 0.09 12 16 0.24 9 12 0.26 9 12 0.22 7+ 1
234 0.20 20 49 0.53 21 33 1.3 20 25 1.5 20 25 1.5 9+ 7
467 0.63 30 | 101 2.3 37 56 5.2 33 47 6.4 33 44 7.8 114+ 20
818 2.3 42 | 181 7.6 57 85 17.5 48 65 22.5 48 62 33.8 13+ 41
1311 6.1 56 | 295 | 21.9 81 | 120 47.3 66 86 64.0 66 86 | 112.9 154+ 71
1970 15.4 72 | 449 | 54.1 109 | 161 | 139.6 87 | 131 | 160.3 87 | 128 | 322.5 174111

Figure 7: Time and resources for the heuristics

We investigated 7 data flow graphs by setting N = M and varying their numbers from 2
to 8. One can see that the force-directed heuristic does not have an exponential behaviour,
as in the previous example. This can be explained by a closer look at the data flow graphs. If
we compare e.g. the DCT with N = M =5 and the polynomial division with p = 25,¢ =9,
which have both nearly 500 nodes, one can see that 34% of the nodes in the DCT are placed
immediately, since there is no difference between ASAP and ALAP (cf. brief description of
force-directed scheduling in the introduction to section 3). In the polynomial division, only
19% are placed. Furthermore, the average movability of the remaining nodes is 2.2 for the
DCT and 8.5 for the polynomial division. The maximal movability for the DCT is 8 and for
the polynomial division it is 18. So it can be concluded that the operations in the division
have more choices and the scheduling algorithm takes much longer.

In figure 8 the runtimes of the scheduling transformation for the different heuristics are
shown. The conversions for ALAP, FD1 and FD2 are of the same magnitude. A special case
is the transformation for the ASAP algorithm. Due to the nature of the data flow graph,
many operations can be scheduled in the first c-steps by the ASAP, which can also be seen
from the extremely high number of required resources in figure 7. This special constellation is
very disadvantageous for the transformation algorithm. The transformation of the data flow
graph with 1970 nodes was not possible due to space problems. But in most cases, especially
when ingenious algorithms are used, the operations are better distributed in the schedule.
Generally, one can see again that the runtime for the transformation is fairly independent
from the heuristic, if the number of c-steps is equal. For list-scheduling the transformation
takes longer due to the larger number of c-steps required.

4 Conclusions and Future Work

We have shown, that formal synthesis is not simply an academic dream, but can also be applied
to realistic circuits. Additionally, the costs for formal synthesis are acceptable and are almost
independent from the heuristics involved. In certain cases the design space exploration part
can take much longer than performing the actual logical transformation, which in turn not
only yields an implementation but also the proof of its correctness.

The novelty of HASH rests on the fact that in contrast to post-synthesis verification or
other approaches for formal synthesis, we exploit the abundance of knowledge within the
synthesis domain. The quality of the synthesis results produced, in terms of area, timing and
power, are the same as that of conventional approaches. However, the correctness proof is an
added quality! Yet another plus point in HASH is that, although a theorem-prover is used in
the background, the entire procedure is automatic and no formal background is required on
the part of the designer.

The major consequences that can be drawn from this work are that immense amounts of
simulation /verification time can be saved and hence verification can be restricted to property
checking. The time required for formal synthesis can be reduced even further, if the trans-
formations are run either in the background or as a batch-process while the circuit designer
concentrates on his job — the task of design exploration.

We have just discovered the tip of the iceberg and we still have a long way to go. In
the future we shall concentrate on finding transformations for control-flow based scheduling
algorithms, chaining of operations, pipelining, memory mapping, etc. We shall also provide



Heuristics
#Nodes ASAP ALAP FDI1 FD2 LS
26 0.5 0.5 0.5 0.5 0.5
95 3.6 3.8 3.7 3.7 3.9
234 19.4 17.8 18.8 18.7 26.9
467 91.5 73.0 77.2 75.9 154.6
818 365.5 237.4 265.5 254.7 668.9
1311 1259.5 702.0 874.0 882.8 2523.4
1970 — 1751.7 2204.8 2139.1 8130.8

Figure 8: Time for the transformations

links between the different levels of abstractions for the design of hardware (see [EiKu95] for
application of HASH at RT-level).
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