
The CuPit Compiler for the MasPar MP-1 and MP-2

A Literate Programming Document

Lutz Prechelt (prechelt@ira.uka.de)

Fakult�at f�ur Informatik

Universit�at Karlsruhe

76128 Karlsruhe, Germany

++49/721/608-4068, Fax: ++49/721/694092

January 7, 1995

Technical Report 1/95

Abstract

This document contains the complete source code of the CuPit compiler for the MasPar MP-1/MP-2

SIMD parallel machines. The compiler is presented as a FunnelWeb literate programming document

that contains de�nitions for the various speci�cation �les needed by the Eli compiler construction
system. The exactly same set of �les that enabled FunnelWeb to produce this document also enable Eli

to produce the complete executable compiler, run time system, and standard library. In this document

the source code is complemented by interspersed documentation text and several larger introduction
text blocks and appendices, in particular a description of all errors found in the compiler during its

development and use. The compiler takes CuPit source code as input and produces MPL source code as

output. CuPit is a special purpose language for neural network algorithms which dynamically change
the topology of the neural network. The compiler is designed to optimize the irregular problems

that arise when executing such algorithms for both data locality and load balancing. The compiler

can produce several di�erent versions of code: (1) a plain do-as-good-as-you-can-without-any-tricks
one (unoptimized), (2) one that uses a better data distribution (statically optimized), (3) one that

contains additional instructions to collect information about program behavior at run time, also

known as the rti version, meaning \run time information version" (dynamically optimized).

1

2 CONTENTS

Contents

PART 0: Introduction 8

1 Purpose of this compiler 8

2 The Eli compiler construction system 8

3 The MasPar MP-1/MP-2 computers 9

3.1 Machine architecture : 9
3.2 MPL programming language : 10
3.3 MPL library : 10

4 How to use this document 11

PART I: Syntax and Language De�nition 13

5 Type de�nitions 13

5.1 Overview : 13
5.2 Simple types : 14
5.3 Interval types : 15
5.4 Record types : 15
5.5 Node types : 17
5.6 Connection types : 18
5.7 Array types : 18
5.8 Group types : 19
5.9 Network types : 19

6 Data object de�nitions 20

7 Subroutine de�nitions 21

7.1 Overview : 21
7.2 Procedures and functions : 21
7.3 Reduction functions : 23
7.4 Winner-takes-all functions : 24
7.5 Merge procedures : 24

8 Statements 25

8.1 Overview : 25
8.2 Assignment : 26
8.3 I/O assignment : 27
8.4 Procedure call : 27
8.5 Reduction statement : 29
8.6 Winner-takes-all statement : 29
8.7 Control
ow statements : 30
8.8 Data allocation statements : 32

8.8.1 Connection creation and deletion : 32
8.8.2 Node creation and deletion : 32
8.8.3 Network replication : 33

8.9 Merge statement : 34

9 Expressions 34

9.1 Overview : 34
9.2 Type compatibility and type conversion : 34
9.3 Operators : 36
9.4 Function call : 41

CONTENTS 3

10Referring to data objects 41

10.1 ME, YOU, INDEX, and explicit variables : 41
10.2 Selection : 42
10.3 Subscription and parallel variables : 42
10.4 Connection addressing : 43

11The central agent 43

12Overall program structure 44

13Basic syntactic elements 45

13.1 Identi�er : 45
13.2 Denoter : 45
13.3 Keywords and Comments : 46

14C preprocessor support 47

14.1 Reimplementation of the err module : 47
14.2 Auxiliary scanner for line directives : 54

PART II: Semantic Analysis 57

15Abstract syntax 57

16Consistent renaming 57

16.1 Basic scoping rule symbols and attributes : 58
16.2 Name de�nition, name use, blocks : 58
16.3 Prede�ned identi�ers : 59

17General type analysis de�nitions 61

17.1 Kinds of objects : 61
17.2 Properties and attributes : 62
17.3 Properties of prede�ned objects : 66
17.4 General traversal order : 67

18Type de�nitions 67

18.1 Symbolic type de�nitions : 68
18.2 Scoping in structured types : 69
18.3 Record type de�nitions : 70
18.4 Node type de�nitions : 71
18.5 Connection type de�nitions : 73
18.6 Array type de�nitions : 74
18.7 Group type de�nitions : 75
18.8 Network type de�nitions : 75

19Data object de�nitions 76

20Subroutine de�nitions 78

20.1 Normal procedures and functions : 80
20.2 Object procedures and functions : 81
20.3 Parameter lists : 83
20.4 Reduction functions : 85
20.5 Winner-takes-all functions : 86
20.6 Merge procedures : 86

21Statements 87

21.1 Assignment : 87
21.2 I/O assignment : 88

4 CONTENTS

21.3 Procedure call : 89
21.4 Reduction statement : 93
21.5 Winner-takes-all statement : 94
21.6 Control
ow : 96
21.7 Data allocation : 99
21.8 Merge statement : 102

22Expressions 102

22.1 Operator identi�cation : 103
22.2 Constant folding : 109
22.3 Ternary expressions : 114
22.4 Binary expressions : 115
22.5 Unary expressions : 116
22.6 Denoters : 118
22.7 Function calls : 119

23Objects 122

23.1 ME, YOU, INDEX, and explicit variables : 122
23.2 Selection : 125
23.3 Subscription : 126
23.4 Connection addressing : 128

24Put it all together 128

25Usage analysis 130

25.1 May-be-used sets : 130
25.2 Accessing remote connection objects : 132

PART III: Code Generation A | Introduction and Code-Templates 141

26Code generation strategy 141

26.1 Optimization Goals : 141
26.2 Assumptions : 142
26.3 Techniques : 143

27The code generation types 143

28The data distributions 143

28.1 Form A : 144
28.2 Form 0 : 145

29Data distribution parameter decisions 145

29.1 The run time measurements : 145
29.2 Where to put connection data : 145
29.3 How to fetch remote connection data : 146
29.4 Decision about node block size : 147
29.5 Decision about node virtualization : 147
29.6 Decision about number of network replicates : 148
29.7 Segment and block layout : 148
29.8 Reorganization scheduling : 149

30The topology-changing operations 149

30.1 Connect : 149
30.2 Disconnect : 149
30.3 Extend : 149
30.4 Replicate network : 150

30.4.1 One into one : 150

CONTENTS 5

30.4.2 One into many : 150
30.4.3 Many into one : 150
30.4.4 Many into many : 151

30.5 Replicate node : 151
30.6 Replicate connection : 151

31Name generation rules 151

31.1 Type de�nitions : 151
31.2 Named procedures and functions : 151
31.3 Unnamed procedures, operators, and builtin objects : 152
31.4 Structure elements and desriptors : 152
31.5 Data objects : 152
31.6 Run time information : 152

32Data types 153

32.1 CuPit builtin types : 153
32.2 Descriptor types : 153
32.3 Auxiliary types and machine description : 157

33Auxiliary MPL header �les 158

33.1 Forgotten MPL library routine prototypes : 158
33.2 Miscellaneous utility stu� : 159

34The template method 160

34.1 Why ? : 160
34.2 What ? : 160
34.3 How ? : 160
34.4 Example : 161

35INIT templates 161

35.1 INIT node array : 161
35.2 INIT non-node arrays : 163

36REDUCTION templates 163

36.1 REDUCTION connections : 163
36.2 REDUCTION nodes : 167
36.3 REDUCTION networks : 170

37WTA templates 171

37.1 WTA connections : 172
37.2 WTA nodes : 175
37.3 WTA networks : 178

38CONNECT template 180

39I/O templates 186

39.1 Input : 186
39.2 Output : 188

40MERGE templates 189

40.1 MERGE connections : 189
40.2 MERGE nodes : 191
40.3 MERGE networks : 194

41EXTEND template 196

42REPLICATE templates 198

6 CONTENTS

42.1 REPLICATE node : 199
42.2 REPLICATE network : 200

PART IV: Code Generation B | Now We Really Do It 212

43General code generation de�nitions 212

43.1 Attributes and properties : 212
43.2 Properties of prede�ned types : 213
43.3 Auxiliary PTG de�nitions : 214
43.4 General traversal order : 214
43.5 Overall program structure : 215

44Type de�nitions 218

44.1 Symbolic types : 219
44.2 Record types : 220
44.3 Node types : 223
44.4 Connection types : 227
44.5 Array types : 229
44.6 Group types : 231
44.7 Network types : 231

45Data object de�nitions 233

46Subroutine de�nitions 235

46.1 Procedures and functions : 238
46.2 Parameter lists : 240
46.3 Reduction functions : 243
46.4 Winner-takes-all functions : 244
46.5 Merge procedures : 245

47Statements 246

47.1 Assignment : 247
47.2 I/O assignment : 248
47.3 Procedure call : 249
47.4 Reduction statement : 251
47.5 Winner-takes-all statement : 253
47.6 Control
ow : 255
47.7 Data allocation : 259
47.8 Merge statement : 262

48Expressions 262

48.1 Operators : 264
48.2 Function call : 268

49Objects 269

49.1 ME, YOU, INDEX, and explicit variables : 270
49.2 Selection : 271
49.3 Subscription : 271
49.4 Connection addressing : 272

50Basic syntactic elements 273

51Put it all together 273

PART V: Run Time System 276

52Language operations 276

CONTENTS 7

52.1 Random number generation : 276
52.2 Type conversion and operators : 278
52.3 Topology change : 281
52.4 Standard library : 290

53Internal operations 301

53.1 Communication operations : 301
53.2 Memory allocation : 304
53.3 Computation : 306
53.4 Machine control and analysis : 315
53.5 Output : 317

54Miscellany 321

54.1 The front end program : 321
54.2 Compiler driver script : 322
54.3 The compiler Make�le : 325
54.4 The library Make�le : 327

55Put it all together 328

PART VI: Auxiliary Stu� 332

56LIDO extensions 332

57cupit.h 333

58Command line processing 333

APPENDIX 335

A cupit.specs 335

B Compiler restrictions 335

C List of exit codes 336

D I/O area handling 337

E Errors during compiler development 337

Index 345

8 2 THE ELI COMPILER CONSTRUCTION SYSTEM

PART 0: Introduction

This introduction part tells why and in which context this compiler was built, gives a rough idea of what
the Eli compiler construction system is, which was used to built the compiler, gives a short introduction
into the architecture and properties of the MasPar MP-1 machine and its MPL programming language,
and describes how to read the rest of this document.

1 Purpose of this compiler

The language and compiler speci�ed in this document were designed and implemented in the course of the
research project leading to my Ph.D. The research goal was to �nd and evaluate a way to compile neural
algorithms onto massively parallel machines for optimal data locality and load balance. The underlying
neural networks should be allowed to vary their topology dynamically and the load balancing operations
should be static in the sense that upon entry into a parallel section the work distribution for this section
is fully determined.

The key idea to these goals is a particular data distribution scheme which this compiler implements
prototypically. The compiler is not meant for production use but as a tool to empirically evaluate the
behavior of the data distribution scheme. The compiler was written (from scratch) entirely by myself
between June 1993 and April 1994.

2 The Eli compiler construction system

For those who have no knowledge of the Eli compiler construction system used for this compiler, here is
a quickquickquick introduction into the major features of Eli. The compiler presented in this report was
written using Eli 3.5.

Eli is a system that tries to hide from the user as many details of compiler construction as possible.
The idea is to make the compiler writer express a lot of speci�cations from which the compiler is then
constructed completely automatically. Therefore, Eli contains several special-purpose languages that
allow to express speci�cations of the solutions for certain particular well-understood areas of compiler
construction; other such areas are covered by re-usable modules. Where no such generic understanding
(and thus no special-purpose language or re-usable module) is available, C code has to be supplied by
the compiler writer.

Eli is centered around a tool that compiles declarative speci�cations of attribute grammars into a C
program that is able to compute all attributes in this grammar. Eli provides special purpose languages
for scanner speci�action via regular expressions (gla), parser speci�cation via LALR(1) grammars (con),
concrete-to-abstract-syntax-mapping speci�cation (sym), de�nition table functionality speci�cation (pdl),
operator identi�cation (oil), attribute grammar speci�cation (lido), tree-structured program text gen-
eration (ptg), and compiler command line processing (clp). In addition there are re-usable modules
for symbol table handling, error message generation, consistent renaming, and several other tasks. The
names given in parentheses above are also the �le name extensions of the corresponding speci�cation �les;
you'll �nd these extensions at several places in this document.

To explain all these various languages and modules would clearly lead too far in this introduction. I
suggest that the reader relies on the intuitive understanding of the speci�cations which will be correct
in most cases. Details that cannot be understood can most often be ignored without hampering overall
understanding of the compiler's structure; just a few important pieces of information shall be given here:

The declaration of a property X in a pdl (property de�nition language) �le induces implementations of
two functions SetX (to set or re-set an X value) and GetX (to read an X value or return a default value
when the property is not set).

9

The declaration of a program text template t in a ptg (program text generator) �le induces the imple-
mentation of a function PTGt that has as many parameters as are mentioned in the template (as either $,
numbered consecutively, or $1, $2, etc.). All these parameters are of type PTGNode, as is the function's
result. An empty PTGNode is called PTGNULL (or PTGNull()).

In a lido �le, a clause of the form CONSTITUENTS Symbol.Attr WITH (Type, Merge, Create, Null)

means that from all subtrees of the current context the values of Symbol.Attr are collected and combined
into a single value of type Type, where an empty Type object is constructed by a call to the 0-ary operation
Null, Attr can be converted into a Type by a call to the 1-ary operation Create, and two Type objects
can be merged into a single one by a call to the 2-ary operation Merge. An expression of the form
ORDER(A, B, C) means that all the expressions A, B, and C are evaluated in the given order and the
last one (C in this case) is returned as the result. An arbitrary number of expressions can be given in an
ORDER expression.

The head �les are technical details you may ignore. The tplr �les introduced in the �rst part of code
generation contain C with re�nements. They are converted into plain C with the tool C-Re�ne before
they are used | then called tpl �les.

3 The MasPar MP-1/MP-2 computers

For those who have no knowledge of the MasPar machines but want to understand the code in this
document, here is a quickquick introduction into the machine architecture and the MPL programming
language.

3.1 Machine architecture

The MasPar MP-1 and MP-2 machines are massively parallel SIMD computers. They have 1024 or 2048
or : : :or 16384 simple 4-bit wide processors called \processing elements" or PEs for short. Each PE has
the same amount of memory which is either 16 KB or 64 KB. The machine for which the compiler is
meant to produce code in the context of this project is a MP-1216A, an MP-1 with 16384 PEs with 16
KB memory each. The PEs are arranged as a 2D toroidal mesh and numbered row-wise with the upper
left corner being PE number 0. Compass points are used to describe directions in the PE array with up
being north and left being west.

The PEs are controled by a more powerful central processor called the ACU, which is 32 bit wide.
The programs run on the ACU and are started there from a front-end computer which is a DEC 5000
workstation.

The MasPar has two independent interprocessor communication networks: The \global router" (or just
\router") allows for arbitrary communication patterns with automatic resolution of multiple reads and
automatic random resolution of multiple writes. The latency is about 230 microseconds, bandwith is
about 250 kilobit per second per PE. Both of these values are for a random permutation, which internally
takes about 48 communication steps. For simpler communication patterns, latency and bandwith can be
signi�cantly higher. A particular case of a \simpler pattern" is when not all PEs are participating |
when PE activity is not clustered, communication performance increases about linearly with sinking PE
activity.

The \X-net" is a simpler communication network. In an xnet communication all participating PEs
communicate with a partner in the same direction (the hardware supports only the eight main compass
directions N,NE,E,SE,S,SW,W,NW, but the library also allows other directions). All these partners must
also be the same distance away. The advantage of the xnet is that xnet communications are blindingly
fast (roughly operand size times distance times 13 microseconds, with the operand size measured in bits).

Since both communication networks are line-switched, a fetch is not more expensive than a send.

With all PEs participating a 32 bit random router permutation communication costs about as much as
137 integer additions, 14 integer multiplications, 12
oat additions, 8
oat multiplications, or 43 loads. A

10 3 THE MASPAR MP-1/MP-2 COMPUTERS

nearest neigbor xnet communication costs only half as much as a load, a distance 64 xnet communication
costs about as much as 30 loads.

3.2 MPL programming language

The MasPar machines are programmed in a data-parallel variant of C, called MPL (the \MasPar pro-
gramming language"). Its main idea is to use so-called \plural variables" to express parallelism: a variable
declared plural, e.g. plural int a, is allocated once on each PE, each of these exemplars may hold a
di�erent value. Operations on this variable occur on each PE, thus implementing data-parallelism. Data
that is non-plural is also called singular and is allocated on the ACU.

The notion of plural variables extends to control
ow in a natural way: An if with a plural condition
will in e�ect execute its then part on all PEs where the condition is true and the else part on all others
that were active during the evaluation of the if condition. A plural while may lose the participation of
some of its PEs before each iteration; it terminates as soon as no more PEs participate. All such control

ow constructs establish the so-called \active set" of PEs that participate in the execution of the next
statement(s). The active set is always a subset of the active set in the next \surrounding" (in a dynamic
sense) control
ow construct. This establishes a stack of active sets; upon exit from the body of a control

ow construct the PEs of the previous active set are activated. A special case is the all statement: Upon
entry into its body, all PEs are active, independent of the surrounding active set.

The communication networks are used as follows: The plural expression router[pe].expr evaluates the
plural expression expr on the PEs given by the plural expression pe and returns it on the PE that
executed the router expression. expr must evaluate into a single integer, pointer, or
oating point value;
it is not possible to communicate records or arrays as a whole with the router expression. Note that
expr is used by name, i.e., in router[pe].a[i], the value of i is also determined on the remote PE!

Similarly, the plural expression xnetE[dist].expr evaluates the plural expression expr on the PEs that
are dist PEs to the right (with toroidal wraparound). The xnetE can be replaced by xnetSW to access
PEs in right-down direction etc. The expression dist must be singular integer.

In addition you can access a plural value on a single PE from the ACU using the singular expression
proc[pe].expr (here, pe must be singular), which evaluates the plural expression expr on only the PE
pe and returns the result.

Router, xnet, and proc expressions can also be used on the left hand side of assignments. It is possible
to communicate with PEs that are not currently active.

A bit di�cult to understand are declarations of pointers: An X* always points into ACU memory (i.e. to
non-plural variables). A plural X* points into PE memory (i.e., to a plural variable), but the pointer
itself is singular and thus always points to only one and the same variable on all PEs. A plural X*

plural points into PE memory (i.e., to plural variables) and is also itself plural so that it may point to
a di�erent variable on each PE. Nevertheless, such plural pointers to plural data can only point to data
located on the same PE. (In the compiler, we introduce a type called Gptr to implement fully global
addresses). Note that singular pointers are signi�cantly more e�cient than plural pointers.

3.3 MPL library

The MPL library implements many functions that directly correspond to functions of the standard C
library but have plural operands and/or results. These have names just like their sequential counterparts
with an additional p prepended.

What is more interesting are the communication functions: sp rsend (plural int target pe, plural

char *src, plural char *plural dest, int bytes) sends bytes bytes beginning at the local address
src to the address dest on the remote PE indicated by its number target. This is a functionality similar
to that of the router expression; the main di�erences are: (1) you don't have to give an expression that
is evaluated by name but can give a direct address instead and (2) you are not limited to individual

11

values but can send whole records or arrays at once. For sp rsend, the src must be a singular pointer
while the dest must be a plural pointer; this is indicated by the two pre�x characters sp. The versions
ss, ps, and pp of rsend are available as well as are the corresponding rfetch to fetch data from src

into dest.

Along the same lines, there is a set of 8 functions for xnet communication called ss xsend to pp xfetch.
These functions extend the 8 native directions available for xnet to arbitrary o�sets in the left/right
direction (or west/east-direction or x-direction) and the up/down direction (or north/south-direction or
y-direction), e.g. ss xsend(int dy, int dx, plural char* src, plural char* dest, int bytes).
Note that the �rst argument is dy, not dx.

In addition, there is a large number of reduction operations that combine a value from all PEs into
a singular value, e.g. unsigned short reduceAdd16u (plural unsigned short x) Adds the 16-bit
unsigned values x from all active PEs and returns the result. Corresponding functions are available for
Multiplication, Minimum, Maximum, and bitwise operations for all signed and unsigned 8, 16, 32, and
64 bit integer as well as
oat and double values. (The 64 bit integer type is called long long)

4 How to use this document

This document is structured along the compiler phases and the CuPit language constructs. It is not
meant to be read completely but should serve as a reference to investigate about individual aspects of
the compiler that are of interest. To �nd the parts of the document relevant to such an aspect of interest
the reader should start with an examination of the table of contents.

The document is written as a \web" using a literate programming tool called FunnelWeb[Wil92], which is
a program designed after Donald Knuth's idea of literate programming and is able to produce arbitrarily
many �les (not only one, as Knuth's original WEB program) in any \language" (not only in Pascal, as
Knuth's original WEB program). The idea is that typeset documentation text and program code can be
combined in a single document and the code can also be split into arbitrary parts, which may be arranged
in any order so that you can chose the order that is most appropriate to write or understand the code
instead of the order required by your language(s) and programming environment. These parts of code
are usually called \chunks" in the literate programming community; FunnelWeb uses the term \macros".
Macros are either used by other macros or are attached to an output �le, i.e, running FunnelWeb produces
this output �le.

The document consists of �ve main parts: Part I contains in its code part a speci�cation of the concrete
syntax of CuPit and in its text part a (rather informal) language de�nition1. Part II contains the semantic
analysis of the compiler. Part III and IV contain the code generation, where part III is an introduction
into the design of the code generation (including a rough description of the key ideas used in the compiler)
plus some \infrastructure" (large code templates), while part IV contains the actual code generation itself.
Part V contains the run-time system of the compiler. Parts I, II, and IV are all substructured in the same
way along the language constructs of CuPit. Before these �ve main parts there is the introduction you
are currently reading. After these �ve main parts follows a part VI of miscellaneous compiler fragments
not directly belonging somwhere else, a few appendices (in particular a list of compiler limitations), a
short bibliography, and the keyword index.

This structure should allow to access for reading any part of the compiler relatively easily. Where
additional access information is needed, the index should be consulted. It contains entries for most terms
and identi�ers that are used not only in a local fashion. The FunnelWeb macros are also indexed. The
entries in the index are labeled by page number, where an entry in italic font means that the corresponding
term or identi�er is de�ned on that page. Entries that begin with a dot (such as �le name su�xes) or
an underscore (such as several type names) are given without these characters in the index. Entries of
generic identi�ers that have the form N T where N is the stem of the identi�er and T is for instance a type

1This part, together with some additional sections and a tutorial is also used to construct another document: The CuPit

language reference manual. Due to this fact, some of the statements in this part are not quite true since they describe the
language as such while the concrete implementation has some restrictions.

12 4 HOW TO USE THIS DOCUMENT

name (where there is one such identi�er for any one type name from a certain set of typenames) are often
given in the index as N only or as N X (where X is really just an X), whichever seemed more intuitive. The
names of all FunnelWeb macros are also mentioned in the index. The macros are numbered consecutively
independent of page numbers, the index entry of a macro is nevertheless its page number. Note that the
page numbers given in the index entries of things de�ned within the body of a FunnelWeb macro refer
to the beginning or end of the macro, so they can sometimes be o� by one or two pages.

I do not claim that this document is a detailed or even excellent description of my compiler's code in
the sense of literate programming. But I believe that it is a much better documentation than is usually
available for research prototypes.

13

Group typesInteger types Real

Interval types Record types Connection types Node types Network types

Array typesStructure types

String

Simple types

Number types

Complex types

Types

Bool

Int Int2 Int1

Interval Interval2 Interval1 Realerval

SYMBOLIC

Figure 1: CuPit type taxonomy

PART I: Syntax and Language De�nition

The syntax description consists of the context free grammar (LALR(1)) describing the concrete syntax
of the language and of the scanner description describing the structure of the nonliteral nonterminal
symbols.

The description of the semantics of these language constructs (as viewed by a programmer) is embedded
into the syntax description; this part of the compiler document is the very same that is used for the
core part of the CuPit language reference manual, where you can also �nd a tutorial example of CuPit
programming [Pre94].

5 Type de�nitions

5.1 Overview

There are several categories of types in CuPit:

1. Elementary types, such as Int, Real, Bool, String, and enumerations (SYMBOLIC types).

2. Intervals of Int or Real.

3. Record types.

4. Connection types.

5. Node types.

6. Network types.

7. Arrays of objects of simple types, intervals, record types, node types, or array types.

8. Groups of objects of node types (i.e. collections with or without �xed order)

The elementary types are also called simple types. The elementary types except Bool, String, and
enumerations are called number types. The interval, record, connection, node, and network types are
also called structure types. The structure types, interval types, array types, and group types are called
complex types. You can see the whole taxonomy of the CuPit type system in �gure 1.

This is the general syntax of type de�nitions:

Type De�nition[1] � 1

f

TypeDef:

14 5 TYPE DEFINITIONS

'TYPE' NewTypeId 'IS' TypeDefBody 'END' OptTYPE.

NewTypeId:

UppercaseIdent.

TypeDefBody:

SymbolicTypeDef /

RecordTypeDef /

NodeTypeDef /

ConnectionTypeDef /

ArrayTypeDef /

GroupTypeDef /

NetworkTypeDef.

OptTYPE:

/* nothing */ /

'TYPE'.

Symbolic Type De�nition[2]
Record Type De�nition[3]
Node Type De�nition[6]
Connection Type De�nition[8]
Array Type De�nition[9]
Group Type De�nition[10]
Network Type De�nition[11]
g

This macro is invoked in de�nition 55.

A type de�nition may appear only on the outermost level of a CuPit program (i.e. not within procedures).
The TypeId mentioned in the TypeDef is introduced as a new type name and bound to the de�nition
given in the TypeDefBody. The new TypeId is de�ned and visible in the rest of the program after the
point where it appears �rst in its own de�nition, i.e., types must be de�ned before they can be used in
the de�nition of another type or in the de�nition of an object. Type names must not be rede�ned.

All types that occur in a CuPit program have an explicit name and two types are identical only if they
have the same name. Design rationale: This makes the semantics of the language much simpler.

The individual kinds of de�nitions will be explained in the next few subsections.

5.2 Simple types

Among the basic types of CuPit are truth values Bool, integral numbers Int and
oating point numbers
Real. The exact representation and operation semantics of these types is machine dependent. There are
three variants of Int, namely Int1, Int2, and Int. These are one-byte, two-byte, and four-byte signed
integers, respectively.

Other simple types are the String type, which represents pointers to arrays of bytes terminated by a byte
with value 0 (like in C), and the so-called SYMBOLIC types, which are de�ned by giving a list of names
that represent the set of values of the type. Thus a SYMBOLIC type is similar to an enumeration type in
MODULA-2 or in C, except that in CuPit symbolic values are not ordered and cannot be converted into
or created from integer values. The only operations that are de�ned on symbolic types are assignment
and test for equality.

Objects of simple types may occur as members in any other type, as global variables and as local variables
in all kinds of procedures and functions.

Symbolic Type De�nition[2] �2

f

5.3 Interval types 15

SymbolicTypeDef:

'SYMBOLIC' NewEnumIdList OptSEMICOLON.

OptSEMICOLON:

/* nothing */ /

';'.

NewEnumIdList:

NewEnumId /

NewEnumIdList ',' NewEnumId.

NewEnumId:

LowercaseIdent.

g

This macro is invoked in de�nition 1.

5.3 Interval types

Types can be de�ned that can hold two integer or real values and mean the compact integer or real
interval between the two. Objects of interval types may occur as elements of any complex type, as global
variables and as local variables in all kinds of procedures and functions.

Objects of type Interval, Interval1, and Interval2, use objects of type Int, Int1, Int2 respectively,
to represent their current maximum and minimum; Realerval objects use Real values. The strange
name Realerval is just a play on words.

Design rationale: The reason for introducing Interval types explicitly in the language is that some
special operations shall be de�ned for them.

5.4 Record types

Records are compounds of several data elements (also called components or �elds) and are similar to
RECORDs in Modula-2 or structs in C. Records types consist of internal data elements and a number of
operations, which can be performed on them, the so-called record procedures (and record functions).

Objects of record types may occur as elements in any other complex type, as global variables, and as
local variables in all kinds of procedures and functions.

Record Type De�nition[3] � 3

f

RecordTypeDef:

'RECORD' RecordElemDefList.

RecordElemDefList:

RecordElemDef ';' /

RecordElemDefList RecordElemDef ';'.

RecordElemDef:

RecordDataElemDef /

MergeProcDef /

ObjProcedureDef /

ObjFunctionDef.

g

This macro is de�ned in de�nitions 3 and 4.

This macro is invoked in de�nition 1.

16 5 TYPE DEFINITIONS

For the meaning and restrictions of procedure and function de�nitions in records, see section 7. The data
element de�nition will be explained now:

Record Type De�nition[4] �4

f

RecordDataElemDef:

TypeId InitElemIdList.

InitElemIdList:

InitElemId /

InitElemIdList ',' InitElemId.

InitElemId:

NewElemId /

NewElemId ':=' Expression.

NewElemId:

LowercaseIdent.

Type Identi�er[5]
g

This macro is de�ned in de�nitions 3 and 4.

This macro is invoked in de�nition 1.

Type Identi�er[5] �5

f

TypeId:

UppercaseIdent.

g

This macro is invoked in de�nition 4.

Each name in the initialized-identi�er list introduces an element of the record in the sense of a record
�eld in Modula-2 or a component of a struct in C. The name of the element is local to the record, i.e., the
same name may be used again as the name of a procedure or data object or as the name of an element
in a di�erent structure type.

Elements of records may be of simple type, interval type, record type, or array of those. Initializers for
individual elements in a record type may be given. The meaning of an initializer x at an element c is that
for each object A of the record type the element c of this object is initialized to the value of expression
x upon creation of that object A. The initializer may consist of any expression of objects visible at that
point in the program. The type of the expression must be compatible to the type of the element.

Other initializers for elements of the record type may exist in the object declarations using the record
type or in the declarations of types that contain elements of the record type. These initializers apply
later and thus overwrite the e�ect of the initializers here.

Example:

TYPE Atype IS RECORD Int a, b = 7; END

TYPE Btype IS RECORD A x = A (2, 5);

Int c = 0; END

Here, element b will be initialized to 7 in an Atype object, while element x.b will be initialized to 5
in an Btype object. Element a will be initialized to an unde�ned value in an Atype object, because no
initializer is given. Programs that rely on certain values in such unde�ned objects are erroneous.

5.5 Node types 17

5.5 Node types

The nodes are the active elements of neural computation (some people call them units or even neurons).
In CuPit, Nodes consist of input and output interface elements, internal data elements, and a number of
operations, the so-called node procedures, that operate on the internal data elements and the connections
attached to the interface elements.

Objects of node types may only occur as members in objects of group types and array types. They are
not allowed as global variables or as local variables or parameters in any kind of procedure or function.

Node Type De�nition[6] � 6

f

NodeTypeDef:

'NODE' NodeElemDefList.

NodeElemDefList:

NodeElemDef ';' /

NodeElemDefList NodeElemDef ';'.

NodeElemDef:

NodeInterfaceElemDef /

NodeDataElemDef /

MergeProcDef /

ObjProcedureDef /

ObjFunctionDef.

NodeDataElemDef:

TypeId InitElemIdList.

g

This macro is de�ned in de�nitions 6 and 7.

This macro is invoked in de�nition 1.

For the meaning and restrictions of procedure and function de�nitions and merge procedure de�nitions
in nodes, see section 7. The data element de�nitions are analogous to those in record types and obey the
same rules. The node interface element de�nitions will be explained now:

Node Type De�nition[7] � 7

f

NodeInterfaceElemDef:

InterfaceMode TypeId InterfaceIdList.

InterfaceMode:

'IN' /

'OUT'.

InterfaceIdList:

NewInterfaceId /

InterfaceIdList ',' NewInterfaceId.

NewInterfaceId:

LowercaseIdent.

g

This macro is de�ned in de�nitions 6 and 7.

This macro is invoked in de�nition 1.

Interface elements are no data elements but instead have the property that connections can be attached
to them. The type name given in an interface element de�nition must be the name of a connection
type; only connections of this type can be attached to the interface element. For interface mode IN,

18 5 TYPE DEFINITIONS

the connections are incoming connections: the output of these connections is connected to the interface
element. For interface mode OUT the connections are outgoing connections: the input of these connections
is connected to the interface element. The name of an interface element of a particular node object stands
for all the connections that are attached to that interface element at once. The visibility of the name of
an interface element obeys the same rules as the visibility of the name of a data element.

It is allowed to have several interface elements with the same interface mode in a single node type.
Initializers for interface elements cannot be given in a node type declaration.

5.6 Connection types

Connections are the communication paths along which data
ows from one node to another in a network.
A connection object may contain arbitrary data and may perform arbitrary operations on it.

Objects of connection types cannot be declared explicitly; they may occur only implicitly connected to
an output interface element of one node and to an input interface element of another (maybe the same)
node. They are not allowed as members in any other type, nor as global variables nor as local variables
in any kind of procedure or function. They can, however, be passed as parameters to external functions.

Connections are directed, i.e., they are not connections between A and B , but either from A to B or
from B to A. Nevertheless, data can be transported along a connection in both directions. Design

rationale: Connections must be directed because otherwise it is very di�cult to provide an e�cient
implementation: Without direction it is not possible to store the actual connection data always at, say,
the input end of the connection; thus we could not achieve data locality between connections and (at
least one of the two) attached nodes.

Connection Type De�nition[8] �8

f

ConnectionTypeDef:

'CONNECTION' ConElemDefList.

ConElemDefList:

ConElemDef ';' /

ConElemDefList ConElemDef ';'.

ConElemDef:

ConDataElemDef /

MergeProcDef /

ObjProcedureDef /

ObjFunctionDef.

ConDataElemDef:

TypeId InitElemIdList.

g

This macro is invoked in de�nition 1.

For the meaning and restrictions of procedure and function de�nitions and merge procedure de�nitions
in connections, see section 7. The data element de�nitions are analogous to those in record and node
types and obey the same rules.

5.7 Array types

Arrays are linear arrangements of several data elements of the same type (called the base type of the
array). The number of data elements in the array is called the size of the array. The elements can be
accessed individually by means of an index as known from Modula-2. The lowest index to an array is

5.8 Group types 19

always 0, the highest index is the size of the array minus one. An attempt to access an array using a
negative index or an index that is too large is a run-time error.

Objects of array types may be used wherever objects of their element type may be used.

Array Type De�nition[9] � 9

f

ArrayTypeDef:

'ARRAY' '[' ArraySize ']' 'OF' TypeId.

ArraySize:

Expression.

g

This macro is invoked in de�nition 1.

The array size expression must be of integer type and must contain only constant values, so that it can
be evaluated at compile time. The value of the expression determines the size of the array.

5.8 Group types

Groups are linear arrangements of several data elements of the same type (called the base type of the
group). The number of data elements in the group is called the size of the group. The elements can be
accessed individually by means of an index just like for an array. The lowest index to a group is always
0, the highest is the size of the group minus one. An attempt to access a group using a negative index or
an index that is too large results in a run-time error.

Objects of group types may occur only as elements of network types. The base type of a group type must
be a node type.

This far, groups and arrays are mostly the same. The main di�erence between groups and arrays is
that groups are dynamic in size: There are operations to add new elements to a group at the end of
the current index range, or to delete elements from the end of the current index range (see section 8.8).
These operations cause the size of the group to change, but keep the indices of those elements of the
group constant that already existed before the operation and still exist after it. In contrast to these
operations there are others, which also change the size of the group, but do not necessarily leave the
indices of constantly existing elements unchanged: Elements of a group can self-delete, even if they
are not the last ones of the group and elements of a group can self-replicate (i.e. make one or several
additional copies of themselves), even if they are not the last element of the group (see section 8.8). Such
operations cause the indices of all the elements of the group to be recomputed. For arrays, the identity
of an element with index i remains constant for the whole lifetime of the element. This is not true for
groups: A constant index i is not guaranteed to refer to the same object in a group after a self-delete or
self-replicate operation has been performed on the group (see section 8.8). The initial size of a group is
0.

Group Type De�nition[10] � 10

f

GroupTypeDef:

'GROUP' 'OF' TypeId.

g

This macro is invoked in de�nition 1.

5.9 Network types

Networks are the central data structures of neural algorithms. A network contains one or more groups or
arrays of nodes, which are interconnected by connections. Other data may also be present in a network.
Objects of network types may occur only as global variables.

20 6 DATA OBJECT DEFINITIONS

Network Type De�nition[11] � 11

f

NetworkTypeDef:

'NETWORK' NetElemDefList.

NetElemDefList:

NetElemDef ';' /

NetElemDefList NetElemDef ';'.

NetElemDef:

NetDataElemDef /

MergeProcDef /

ObjProcedureDef /

ObjFunctionDef.

NetDataElemDef:

TypeId InitElemIdList.

g

This macro is de�ned in de�nitions 11.

This macro is invoked in de�nition 1.

The data element de�nitions for a network type are similar to those of a node type, except that arrays and
groups of nodes are allowed as elements additionally. Arrays and groups cannot be initialized explicitly.
Nodes can be used as elements of a network only in groups or arrays | individual nodes are not allowed.

6 Data object de�nitions

Data Object De�nition[12] �12

f

DataObjectDef:

TypeId AccessType InitDataIdList.

AccessType:

'CONST' /

'VAR' /

'IO'.

InitDataIdList:

InitDataId /

InitDataIdList ',' InitDataId.

InitDataId:

NewDataId /

NewDataId ':=' Expression.

NewDataId:

LowercaseIdent.

g

This macro is invoked in de�nition 55.

Objects can be de�ned as either constants or variables or I/O areas. The only di�erence between constants
and variables is that constants must be initialized and cannot be assigned to at any other point in the
source code. It is possible, though, that a constant is not really allocated in memory as a data object at
run-time when its properties are completely known at compile-time.

21

The I/O area data object category is CuPit's way to handle input and output. The exact layout and
handling of I/O area objects are machine-dependent and must be speci�ed separately for each compiler.
Design rationale: Since the semantics of actual parallel I/O are tricky, CuPit de�nes only bu�er operations
and leaves the actual transfer of these bu�ers to machine-dependent external procedures.

An I/O area is a data object that is used to move data into a CuPit program from and out of a CuPit

program to an external program part. De�ning an I/O area basically means to declare a name for a
variable whose storage must be allocated by an external program part and whose memory layout is
de�ned by each CuPit compiler in a target machine dependent way. I/O areas can be used as arguments
to external functions and special CuPit operators exist to move data from an I/O area into a group or
array of nodes or vice versa (see section 8.3). I/O areas are allowed to occur everywhere. However, in
network or node or connection procedures they are usually useless.

7 Subroutine de�nitions

7.1 Overview

There are several types of subroutines in CuPit:

1. Procedures.

2. Functions.

3. Object procedures and object functions, which are much like normal procedures and functions.

4. Reduction functions, to combine many values into one.

5. Winner-takes-all functions, to reduce a parallel context into a sequential one.

6. Object merge procedures, to unite multiple replicates of a data object into one.

We will explain each of these types in order.

Subroutine De�nition[13] � 13

f

Procedure De�nition[14]
Function De�nition[15]
Reduction Function De�nition[16]
Winner-takes-all Function De�nition[17]
Object Merge Procedure De�nition[18]
Statements[19]
g

This macro is invoked in de�nition 55.

7.2 Procedures and functions

Procedure De�nition[14] � 14

f

ProcedureDef:

'PROCEDURE' NewProcedureId SubroutineDescription OptPROCEDURE.

NewProcedureId:

LowercaseIdent.

SubroutineDescription:

ParamList 'IS' SubroutineBody 'END' /

ParamList 'IS' 'EXTERNAL'.

22 7 SUBROUTINE DEFINITIONS

ParamList:

'(' ')' /

'(' Parameters ')'.

Parameters:

ParamsDef /

Parameters ';' ParamsDef.

ParamsDef:

TypeId AccessType ParamIdList.

ParamIdList:

NewParamId /

ParamIdList ',' NewParamId.

NewParamId:

LowercaseIdent.

SubroutineBody:

Statements.

OptPROCEDURE:

/* nothing */ /

'PROCEDURE'.

ObjProcedureDef:

'PROCEDURE' NewObjProcedureId SubroutineDescription OptPROCEDURE.

NewObjProcedureId:

LowercaseIdent.

g

This macro is invoked in de�nition 13.

The semantics of a procedure de�nition is similar to that of a procedure de�nition in Modula-2:
PROCEDURE p (CONST T1 a, b; VAR T2 c) IS stmts END

de�nes a procedure with the name p with three parameters. The parameters a and b have type T1 and
are available in the body of the procedure just like constants of same name and type, i.e. they may be
read but not assigned to. Parameter c has type T2 and is available in the body of the procedure just like
a variable of same name and type. The body of the procedure consists of stmts.

If the procedure de�nition is part of the de�nition of a record type, node type, connection type, or network
type, the procedure is called an object procedure. In this case, the object for which the procedure has
been called is visible as ME in the procedure body. All elements of that object are visible and can be
accessed using the selection syntax (e.g. ME.a to access a element a). VAR parameters are allowed for an
object procedure only when the procedure is only called from other object subroutines of the same type.
Otherwise, object procedure de�nitions are just like normal procedure de�nitions.

If the procedure body is replaced by the EXTERNAL keyword, the procedure is only declared, but not
de�ned and must be implemented externally. Design rationale: The purpose of an EXTERNAL procedure
de�nition is to make procedures and their parameter lists visible, so that a CuPit program can call them.

Parameters of node or connection types are allowed for external procedures only.

Function De�nition[15] �15

f

FunctionDef:

TypeId 'FUNCTION' NewFunctionId SubroutineDescription OptFUNCTION.

7.3 Reduction functions 23

NewFunctionId:

LowercaseIdent.

OptFUNCTION:

/* nothing */ /

'FUNCTION'.

ObjFunctionDef:

TypeId 'FUNCTION' NewObjFunctionId SubroutineDescription OptFUNCTION.

NewObjFunctionId:

LowercaseIdent.

g

This macro is invoked in de�nition 13.

The semantics of a function de�nition is analogous to that of a procedure de�nition. The di�erence is
that for a function a return type has to be declared. The value is returned in the function body using the
RETURN statement with an expression. Connection, node, and network types are not allowed as return
types of functions. An object function de�nition looks exactly like a normal function de�nition. The only
di�erence is that for an object function de�nition the ME object that denotes the object the function was
called for is visible in the body; neither ME nor its elements can be changed. No function may have a VAR

parameter.

7.3 Reduction functions

Reduction Function De�nition[16] � 16

f

ReductionFunctionDef:

TypeId 'REDUCTION' NewReductionFunctionId 'IS'

ReductionFunctionBody 'END' OptREDUCTION.

NewReductionFunctionId:

LowercaseIdent.

ReductionFunctionBody:

Statements.

OptREDUCTION:

/* nothing */ /

'REDUCTION'.

g

This macro is invoked in de�nition 13.

The de�nition of a reduction function introduces a binary operator (which must be commutative and
associative). This operator is used to reduce multitudes to single values in an implicit way.
For a declaration T REDUCTION op IS body END, the objects ME and YOU are implicitly declared as T

CONST and are visible in body. T is the type of the values that can be reduced by this reduction function.

Reduction functions can be declared only globally (i.e. outside of type de�nitions and procedure de�ni-
tions) and are used in three di�erent contexts: First, in a node subroutine to reduce the values delivered
to a node by the set of connections attached to a single connection interface; second, in a network sub-
routine to reduce the values of a particular data element of all nodes of a single node group or node array,
and third, in a global subroutine to reduce the values of a particular data element of all replicates of a
single network.

Design rationale: A reduction function declaration can be used to construct an e�cient reduction pro-
cedure that runs in logarithmic time on a parallel machine and uses knowledge about the speci�c data

24 7 SUBROUTINE DEFINITIONS

distribution in order to avoid communication operations.

Example: Given the de�nition
Real REDUCTION sum IS RETURN (a+b) END

then in a node procedure of a node type having a connection interface in of a connection type having a
Real data element val, the statement
REDUCTION ME.in[].val:sum INTO inSum;

means to apply the sum reduction to the val �elds of all connections attached to the in interface.
Assuming that there are exactly three connections whose val values are x, y, z, respectively. The value
of inSum after the statement will be either (x+y)+z or x+(y+z) or (x+z)+y or any commutation of one
of these.

7.4 Winner-takes-all functions

Winner-takes-all Function De�nition[17] �17

f

WtaFunctionDef:

TypeId 'WTA' NewWtaFunctionId 'IS' WtaFunctionBody 'END' OptWTA.

NewWtaFunctionId:

LowercaseIdent.

WtaFunctionBody:

Statements.

OptWTA:

/* nothing */ /

'WTA'.

g

This macro is invoked in de�nition 13.

The de�nition of a winner-takes-all function introduces a binary operator. This operator is a comparison
operator and is used to induce an ordering on the type for which the operator is de�ned.

For a declaration T WTA op IS body END, the objects ME and YOU are implicitly declared as T CONST and
are visible in body. The body must return a Bool result; true means that ME is above YOU in the ordering
de�ned by the operator and false means that it is not.

Winner-takes-all functions can be declared only globally (i.e. outside of type de�nitions) and are used in
three di�erent contexts: First, to select one connection per node from the sets of connections attached
to a certain node interface of each node in a group of nodes; second, to select one node from a group of
nodes; and third, to select a network from a set of replicated networks. See section 8.6.

Design rationale: The winner of a winner-takes-all call is always unique. Thus it is not easily possible
to emulate a winner-takes-all function by a reduction and subsequent rebroadcast of the result, because
the winning value need not be unique. A winner-takes-all function declaration can be used to construct
an e�cient reduction procedure that runs in logarithmic time on a parallel machine and uses knowledge
about the speci�c data distribution in order to avoid communication operations.

7.5 Merge procedures

Object Merge Procedure De�nition[18] �18

f

MergeProcDef:

'MERGE' 'IS' MergeProcedureBody 'END' OptMERGE.

25

MergeProcedureBody:

Statements.

OptMERGE:

/* nothing */ /

'MERGE'.

g

This macro is invoked in de�nition 13.

Merge procedures are similar to reduction functions; they also perform a reduction. Their purpose is to
reunite replicated exemplars of networks or individual network elements. For a description of network
replication, see section 8.8.

While replication and subsequent merging can only be executed for a whole network, merging is de�ned in
network types, node types, and connection types separately. This way, the knowledge about how merging
works for particular object types remains local to the de�nitions of these types.

When network merging is called, each merge procedure of the network elements is implicitly called as an
object procedure, i.e., the object for which it has been called is available as ME. This object is also where
the result of the merging has to be placed by the merge procedure. The object to be merged into ME is
available as YOU with CONST access, i.e., writing to elements of YOU is not allowed. The task of the merge
procedure body is to construct in ME the reunion of ME and YOU. A merge procedure of a network type
should merge all relevant non-node elements of the network. The node elements are merged one-by-one
by the respective merge procedures of the node types. A merge procedure of a node type should merge all
relevant non-interface elements of the node. The connections attached to the node are merged one-by-one
by the respective merge procedures of the connection types.

If no merge procedure is de�ned for a particular type, no merging occurs and the reunited exemplar of
each object of this type is identical to a random one of the replicated exemplars of the object. Design

rationale: Often, most of the data structures do not really need to be merged in neural algorithms.

However, merging is still performed on the enclosed parts of the data structure. That is, if no merge
procedure for a network is de�ned, merging can still occur for the nodes and connections of this network,
if merging procedures for them are de�ned. If no merge procedure for a node is de�ned, merging can still
occur for its connections. Open question: Do we need the capability to declare multiple merge procedures for the same

type ?

8 Statements

8.1 Overview

The statements available in CuPit can be divided into the following groups:

1. Statements that are common in sequential procedural languages, such as assignment, control
ow,
procedure call.

2. Statements that imply parallelism, such as group procedure call and reductions.

3. Statements that modify the number of data objects, i.e., create new objects or delete existing ones.

Each list of statements can have some data object de�nitions at its beginning. The objects declared this
way are visible only locally in the list of statements. They are created at run-time just before the list is
executed and vanish as soon as the execution of the list is over. This introduces a kind of block structure
for local data objects into CuPit that is similar to that of C.

Statements[19] � 19

f

Statements:

DataObjectDefList StatementList.

26 8 STATEMENTS

DataObjectDefList:

/* nothing */ /

DataObjectDefList DataObjectDef ';'.

StatementList:

/* nothing */ /

StatementList Statement ';'.

g

This macro is invoked in de�nition 13.

Statement[20] �20

f

Statement:

Assignment /

InputAssignment /

OutputAssignment /

ProcedureCall /

ObjectProcedureCall /

MultiObjectProcedureCall /

ReductionStmt /

WtaStmt /

ReturnStmt /

IfStmt /

LoopStmt /

BreakStmt /

DataAllocationStmt /

MergeStmt.

Assignment[21]
I/O Assignment[22]
Procedure Call[23]
Reduction Statement[26]
Wta Statement[27]
Return Statement[28]
If Statement[29]
Loop Statement[30]
Break Statement[31]
Data Allocation Statement[32]
Merge Statement[33]
g

This macro is invoked in de�nition 55.

All these kinds of statements will now be explained individually.

8.2 Assignment

Assignment[21] �21

f

Assignment:

Object AssignOperator Expression.

AssignOperator:

':=' / '+=' / '-=' / '*=' / '/=' / '%='.

g

8.3 I/O assignment 27

This macro is invoked in de�nition 20.

The assignment a := b stores a new value (as given by the expression b) into a data object (a, in this
case). The types of a and b must be compatible (see section 9.2) and b is converted into the type of
a if necessary. The computation of the memory location to store to (the address of a) may involve the
evaluation of expressions, too. In this case, the the left hand side and the right hand side are evaluated in
unde�ned order (e.g. in parallel). The assignments a += b, a -= b, a *= b, a /= b, a %= b have
the same meaning as a = a+b, a = a-b, a = a*b, a = a/b, a = a%b, except that any expressions
involved in computing the address of a are evaluated only once.

The assignment to a node object N is de�ned only, when this node N does not yet have any connections
attached to it.

Design rationale: This is because assignment to node objects is intended to be used for initialization
only. During the rest of the program run, nodes should only be changed by themselves by means of node
procedures.

8.3 I/O assignment

I/O Assignment[22] � 22

f

InputAssignment:

Object '<--' Object.

OutputAssignment:

Object '-->' Object.

g

This macro is invoked in de�nition 20.

The purpose of these special assignments is to provide a way of communication between a network and
the \outer world": Since the mapping of nodes onto processors is completely left to (and known only by)
the compiler, external procedures can not directly read data from nodes or write data into nodes. On
the other hand, the memory mapping of I/O areas is statically de�ned by any compiler (see sections 6
and D), so that external procedures can easily access them for reading and writing.

The object on the left hand side must be a data element of a group of nodes (i.e., a parallel variable),
the object on the right hand side must be a global X IO, where X is the type of the data element �eld of
the nodes mentioned on the left hand side.

A single input or output assignment statement provides one value for each node of the group in each of
the replicates of the respective network. For the input assignment each such value is copied from the I/O
area into the data element of the appropriate node according to the I/O area data layout de�ned for the
particular compiler. For the output assignment the value is copied from the data elements of the nodes
into the I/O area.

Input and output assignments are allowed in the central agent only. Design rationale: The central agent
is conceptually the only part of the program where knowledge about network replication is present. Since
input and output assignments work on all replicates at once and the program who �lls or reads an I/O
area must know that; the central agent is the only program part where input and output assignments
make sense.

8.4 Procedure call

Procedure Call[23] � 23

f

ProcedureCall:

ProcedureId '(' ArgumentList ')'.

28 8 STATEMENTS

ProcedureId:

LowercaseIdent.

ArgumentList:

/* nothing*/ /

ExprList.

g

This macro is de�ned in de�nitions 23, 24, and 25.

This macro is invoked in de�nition 20.

The semantics of a procedure call are similar to that known in languages such as Modula-2 or C: First,
all formal parameters of the procedure are bound to the arguments of the procedure call. Then control
is transferred to the body of the procedure. This body is executed until its end or a RETURN statement
is encountered. Then control is transferred back to the point immediately after the point at which the
procedure was called. Procedure calls can be nested and so will be the extent of any local variables or
parameters procedures created during a call.

The binding of arguments to parameters involves evaluating the arguments. This occurs in an unde�ned
order (e.g. in parallel). Parameter binding may have either call-by-value or call-by-reference semantics for
constant parameters and either copy-in-copy-out or call-by-reference semantics for variable parameters.
Which of these is used for any single procedure call is left to the compiler. Any program that relies on a
certain selection within these possibilities is erroneous.

Design rationale: The appropriateness of one or the other parameter passing mechanism depends on the
particular data type to be passed and the actual parallel machine on which the program shall run. Thus,
the compiler should have the freedom to choose the most e�cient mechanism in each situation.

Procedure Call[24] �24

f

ObjectProcedureCall:

Object '.' ObjectProcedureId '(' ArgumentList ')'.

ObjectProcedureId:

LowercaseIdent.

g

This macro is de�ned in de�nitions 23, 24, and 25.

This macro is invoked in de�nition 20.

An object procedure call, for which the object is an array or a group of nodes or an input or output
interface of a node (referring to a set of connections) is called a group procedure call . A group procedure
call means that the called object procedure is executed for all objects of the group in an asynchronously
parallel fashion (i.e. in any sequential or overlapping order). This language construct introduces a
level of object-centered parallelism. Such object-centered parallelism is similar to data parallelism but is
more expressive than pure data parallelism, because more than a single assignment or expression can be
evaluated in a single parallel statement and additional parallelism can be introduced in the body of an
object-centered parallel operation.

Object procedure calls for network procedures are allowed in the central agent and in network procedures
and functions. Object procedure calls for individual nodes or for arrays or groups of nodes are allowed
in network procedures and network functions. Object procedure calls for individual nodes are allowed
in node procedures and functions. Object procedure calls for input or output interfaces of nodes (thus
calling a connection type object procedure) is allowed in node procedures and node functions. Object
procedure calls for individual connections are allowed in connection procedures and functions.

Procedure Call[25] �25

f

MultiObjectProcedureCall:

ObjectProcedureCall 'AND' ObjectProcedureCall /

8.5 Reduction statement 29

ObjectProcedureCall 'AND' MultiObjectProcedureCall.

g

This macro is de�ned in de�nitions 23, 24, and 25.

This macro is invoked in de�nition 20.

A multiple object procedure call means the execution of the individual object procedure calls in an
asynchronously parallel fashion (i.e. in any sequential or overlapping order). This language construct
introduces a level of process parallelism. This is the only kind of process parallelism supported in CuPit.

8.5 Reduction statement

Reduction Statement[26] � 26

f

ReductionStmt:

'REDUCTION' Object ':' ReductionFunctionId 'INTO' Object.

ReductionFunctionId:

LowercaseIdent.

g

This macro is invoked in de�nition 20.

Reduction statements are allowed in the central agent, in network procedures and functions and in node
procedures and functions. For the meaning of the statement REDUCTION obj.d:op INTO x there are
three cases:

obj can be a network variable. Then the call must be in the central agent and d is a data element of the
network variable (i.e. not a node or a node group). In this case, the op reduction of the d elements in all
replicates of the network is determined and stored into x.

Or obj is a group of nodes. Then the call must be in a network procedure and d is a data element of the
base type of the node group (i.e. the node type). In this case, the op reduction of the d elements of all
nodes of the node group is determined and stored into x.

Or obj is a connection interface element of a node. In this case, the call must be in a node procedure
and d must be a data element of the connections attached to the interface. In this case, the op reduction
of the d elements for each node of the node group are determined and stored into x.

If the set of objects to perform the reduction on is empty, x is not changed. The types of the object to
reduce, the object to reduce into, and the reduction function must be the same.

8.6 Winner-takes-all statement

Wta Statement[27] � 27

f

WtaStmt:

'WTA' Object ':' Elementname '.' WtaFunctionId ':'

ObjectProcedureId '(' ArgumentList ')'.

WtaFunctionId:

LowercaseIdent.

g

This macro is invoked in de�nition 20.

Winner-takes-all statements are allowed in the central agent, in network procedures and functions and in
node procedures and functions. For the meaning of the statement WTA obj:d.op:p(params) there are
three cases:

30 8 STATEMENTS

obj can be a network variable. Then the call must be in the central agent and d is a data element of
the network variable (i.e. not a node or a node group). In this case, the winner of the d elements in all
replicates of the network with respect to the WTA function op is determined and the function p is called
only for the winning network replicate.

Or obj is a group (or array) of nodes. Then the call must be in a network procedure and d is a data
element of the base type of the node group (i.e. the node type). In this case, the winner of the d elements
of all nodes of the node group with respect to the WTA function op is determined and the function p is
called only for the winning node in each network replicate.

Or obj is a connection interface element of a node. In this case, the call must be in a node procedure
and d must be a data element of the connections attached to the interface. In this case, the winners of
the d elements for each node of the node group with respect to the WTA function op are determined and
the function p is called only for the winning connection of each node in each network replicate.

The types of d and op must be the same. If the set obj of objects to pick the winner from is empty, the
procedure p is not called at all.

8.7 Control
ow statements

Return Statement[28] �28

f

ReturnStmt:

'RETURN' /

'RETURN' Expression.

g

This macro is invoked in de�nition 20.

The RETURN statement is allowed in all kinds of functions and procedures. Its semantics is the immediate
termination of the execution of the current procedure or function. In functions (and only in functions)
an expression must be given, which must have a type that is compatible to the declared return type of
the function. This expression is evaluated and (perhaps after an implicit type conversion to the return
type) returned as the result of the function. Since a RETURN statement is the only way to return a value
in a function, each function must have at least a RETURN statement at its end.

In group function or procedure invocations, the RETURN statement of course terminates only the calls that
execute it, the others continue normal execution.

If Statement[29] �29

f

IfStmt:

'IF' Expression 'THEN' Statements ElsePart 'END' OptIF.

ElsePart:

/* nothing */ /

'ELSE' Statements /

'ELSIF' Expression 'THEN' Statements ElsePart.

OptIF:

/* nothing */ /

'IF'.

g

This macro is invoked in de�nition 20.

The semantics of the IF statement is the same as in Modula-2.

Loop Statement[30] �30

f

8.7 Control
ow statements 31

LoopStmt:

OptWhilePart 'REPEAT' Statements OptUntilPart 'END' OptREPEAT /

'FOR' Object ':=' Expression ForLoopStep Expression

'REPEAT' Statements OptUntilPart 'END' OptREPEAT.

OptWhilePart:

/* nothing */ /

'WHILE' Expression.

OptUntilPart:

/* nothing */ /

'UNTIL' Expression.

OptREPEAT:

/* nothing */ /

'REPEAT'.

ForLoopStep:

'UPTO' / 'TO' / 'DOWNTO'.

g

This macro is invoked in de�nition 20.

Loops are available in two forms: the normal loop and the FOR loop.

The normal loop can have two boolean conditions, both are optional. This combines the WHILE, UNTIL,
and LOOP loop types of Modula-2 and has the intuitive semantics. The WHILE test defaults to true and
the UNTIL test defaults to false. The WHILE test is evaluated immediately before each iteration of the
loop body, the UNTIL test is evaluated immediately after each iteration of the loop body. Whenever a
WHILE test yields false or an UNTIL test yields true, the loop terminates.

Design rationale: You won't need a combined while/until loop very often. But once you need it, it is
really nice to have it.

The semantics of the FOR loop are be de�ned by the following transformation pattern: A loop of the form
FOR i := f TO t REPEAT s; UNTIL c END has the meaning

i := f; (* initialization *)

t2 := t; (* limit computation *)

WHILE i <= t2 REPEAT (* FOR termination test *)

s; (* body *)

IF c THEN BREAK END; (* UNTIL termination test *)

i += 1; (* count step *)

END

where i is an existing variable of integral type, f and t are arbitrary expressions of integral type, s is a
list of statements, and c is a boolean expression. t2 is an implicitly declared anonymous variable of the
same type as t that is used for this loop only. The keyword TO may be replaced by UPTO without change
in meaning. It may also be replaced by DOWNTO. In this case the \for termination test" is i >= t2 and
the \count step" is i += -1. In all three forms, the UNTIL test defaults to false, just as for the normal
loop.

Break Statement[31] � 31

f

BreakStmt:

'BREAK'.

g

This macro is invoked in de�nition 20.

The BREAK statement is allowed in loops only. Its semantics is the immediate termination of the innermost
textually surrounding loop, just like the break statement in C.

32 8 STATEMENTS

8.8 Data allocation statements

Data Allocation Statement[32] �32

f

DataAllocationStmt:

'REPLICATE' Object 'INTO' Expression /

'EXTEND' Object 'BY' Expression /

'CONNECT' Object 'TO' Object /

'DISCONNECT' Object 'FROM' Object.

g

This macro is invoked in de�nition 20.

These statements allocate or deallocate nodes or connections or create or reunite network replicates.

8.8.1 Connection creation and deletion

The REPLICATE statement can in its �rst form be used in a connection procedure. In REPLICATE ME

INTO n, the expression must be non-negative integral and gives the number of identical exemplars of
this connection that shall exist after the replication statement has been executed. Zero means \delete
myself", one means \do nothing". In connection procedures, only REPLICATE ME INTO 0 and REPLICATE

ME INTO 1 are allowed (Design rationale: Only one connection can exist between any two node interfaces
at any given time).

The rest of the procedure in which REPLICATE was called is not executed, i.e., the REPLICATE statement
implies a RETURN. It is a run time error to call REPLICATE for a connection with an operand that is
negative or larger than one or to call it while the whole network is replicated.

The CONNECT and DISCONNECT statements can only be used in network procedures to create or delete
connections between two groups of nodes, which have to be given in the order origin{destination. The
statement CONNECT a[2...4].out WITH b[].in1 has the following semantics: a and b must be node
arrays or node groups of the network for which the statement was issued. out must be an output interface
of the nodes in a, in1 must be an input interface of the nodes in b; the types of in1 and out must be
identical. The statement creates a connection from each of the nodes 2, 3, and 4 of a to each node of b.
Generally speaking, the objects given in a CONNECT or DISCONNECT statement must be parallel variable
selections (see section 10.3 on page 42) of connection type, where the �rst one is an output interface and
the second an input interface. All newly created connections are initialized using the default initializers
given in the respective connection type declaration. Connections that already exist are not created again
and are not initialized again.

The DISCONNECT statements works in the same way, except that it deletes connections instead of creating
them. If CONNECT is used to create connections that already exist, an additional exemplar of these
connections may or may not be created; such use is non-portable and should be avoided. If DISCONNECT
is used to delete connections of which multiple exemplars exist, all exemplars will be deleted. It is no
error if some or all of the connections that a DISCONNECT statement conceptually would delete do not
exist. It is a run time error to call CONNECT or DISCONNECT while the network is replicated. CONNECT may
produce a run time error if there is not enough memory available on the machine.

8.8.2 Node creation and deletion

The REPLICATE statement can in its �rst form be used in a node procedure. In REPLICATE ME INTO n,
the expression must be non-negative integral and gives the number of identical exemplars of this node that
shall exist after the replication statement has been executed. Zero means \delete myself", one means
\do nothing" and larger values mean \create n-1 additional exemplars". All incoming and outgoing
connections of the node are cloned for each new exemplar when REPLICATE is called with a value of 2 or
higher. The new nodes are inserted in the index range at the point of the old node (i.e. the replicates
of a node will be in a contiguous subrange of the new index range). The new indices are computed in a

8.8 Data allocation statements 33

way that maintains the order of the indices of the nodes (although not the indices itself). Example: In
a node group with four nodes 1, 2, 3, 4, after a replicate statement where the nodes request 3, 1, 0, 1
replicates, respectively, the new indices 1, 2, 3, 4, 5 will be given to the nodes stemming from the nodes
with old indices 1, 1, 1, 2, 4, respectively. The statement can produce a run time error if it creates so
many new nodes that the machine runs out of memory, if it is called for nodes that are not part of a
GROUP but part of a node ARRAY instead, and if it is called while the network is replicated.

REPLICATE implies RETURN, i.e., the procedure that calls it terminates after the replication has been
performed. Open question: This is a bit ugly. But what is the semantics otherwise? And how would you implement it?

The EXTEND statement can only be used in network procedures for nodes that belong to a node GROUP.
EXTEND g BY n means that the group of nodes g shall be extended by n new nodes (or reduced by -n

nodes if n is negative). The nodes are added or removed at the upper end of the group's current index
range. The new nodes, if any, are initialized using the default initializers as given in the type declaration
of the node type, if any. The new nodes do not have any connections initially. It is a run time error if
the size that the group g would have after the EXTEND is negative, if EXTEND is called while the network
is replicated, or if there is not enough memory on the machine.

8.8.3 Network replication

The network replication statement is allowed in the central agent only. The object must be a network
variable. The expression must have integral or integer interval type.

Design rationale: At the beginning of the existence of a network variable, the corresponding object exists
as a single exemplar (as one would usually expect for any variable of any type). Since many Neural
Algorithms allow input example parallelism, i.e., the simultaneous independent processing of several
input examples, CuPit allows network objects to be replicated . This is what the network replication
statement is for.

REPLICATE nw INTO 3, for example, tells CuPit to create 3 exemplars of the network object designated
by the variable nw. The exemplars are identical copies of the original object. The input assignment and
output assignment statements, though, allow to feed di�erent data into and read di�erent data from each
of the exemplars. REPLICATE nw INTO 3...20, tells CuPit to create any number of exemplars of the
network object it would like to, provided it is in the range 3 to 20. The compiler chooses the number of
replicates that it thinks will make the program run fastest.

Design rationale: The compiler may have a lot more knowledge about available memory and the cost
of replicating, reuniting (merging), and operating on several replicates in parallel than the programmer
has. It should thus be given some freedom to optimize the parameter \number of network replicates". A
compiler may for example choose to prefer network replication with numbers of replicates that are powers
of two, because this is the most e�cient on the particular target machine.

While a network is replicated, all network procedure calls are automatically executed by all exemplars of
the network. For network functions the behavior is di�erent, depending on where they are being called
from: If a network function is called from the central agent or from another network function that has
been called from the central agent, the function is executed and the results are returned for the �rst
exemplar of the network only. If it is called from a network procedure or from another network function
that has been called from a network procedure, execution occurs on all exemplars of the network and a
value is returned for all exemplars as well.

REPLICATE nw INTO 1 reunites the replicated exemplars to a single object again, using the MERGE proce-
dures as de�ned in the network type and the relevant node and connection types. The two states `repli-
cated' and `non-replicated' have an important di�erence: While a network is replicated, no CONNECT,

DISCONNECT, REPLICATE, or EXTEND commands must be issued for its parts. This restriction is neces-
sary because it is not clear how replicates with di�ering topology could be merged. The advantage of the
restriction is that it may allow the compiler to work with a more e�cient data distribution in replicated
state. Even if a program uses only one replicate all the time, it can switch between \topology changes
allowed but data distribution maybe less e�cient" and \topology changes forbidden but data distribution
is most e�cient" by using REPLICATE nw INTO 1...1 for the latter.

34 9 EXPRESSIONS

The number of exemplars minus one that currently exist can be inquired for any network variable using
the MAXINDEX operation. It is a run-time error, to request a number of replicates that is not strictly
positive or to request network replication while the network is already replicated.

8.9 Merge statement

Merge Statement[33] �33

f

MergeStmt:

'MERGE' Object.

g

This macro is invoked in de�nition 20.

The statement MERGE nw applies the respective MERGE procedures to all parts of all replicates of the
network nw, thus collecting the data from all the replicates in the �rst replicate, and then redistributes
this data from the �rst replicate to all other replicates again. After a MERGE, the values of all corresponding
data elements that are merged by the merge procedures of the respective data types are identical in the
di�erent network replicates. It is unde�ned whether the data elements not modi�ed by the individual
MERGE procedures retain their previous values in all replicates or are all changed to the values of the
corresponding data elements of the �rst replicate. The MERGE statement can only be called from the
central agent.

Design rationale: It is often useful to reunite the data in network replicates without actually destroying
the replicated network, because the next thing the program does is to create replicates again, anyway.
This is the case when the purpose of reuniting the replicates is not a change in network topology but
only the collection of data from the replicates.

9 Expressions

9.1 Overview

Most of the expression syntax and semantics of CuPit is well-known from common procedural languages:
Mentioning an object uses it as a value, a function can be called with arguments and returns a value,
operators are used to combine values generating new values, all values have a type, there are restrictions
on type compatibility for the application of operators, and values of some types can explicitly be converted
into values of other types. There are, though, a few special expressions, which are concerned with handling
dynamic data structures and accessing object elements. The concrete operators that are available can be
seen in table 1.

9.2 Type compatibility and type conversion

For most binary operations (including assignment and parameter passing), the two operands must be
compatible. In the current version of CuPit, two types A;B are compatible only if they are the same; the
exception to this rule is automatic promotion from smaller to larger integer types and integer interval
types according to the following rules: Two integer types A and B are compatible if and only if either

1. they are the same or

2. A is smaller than B and A is not the type of the left-hand object in an assignment or the formal
parameter in an argument passing, or

3. B is smaller than A and B is not the type of the left-hand object in an assignment or the formal
parameter in an argument passing.

9.2 Type compatibility and type conversion 35

Prio Appearance Purpose
1 ?: ternary if-then-else expression
2 OR Boolean or
2 XOR Boolean exclusive or
3 AND Boolean and
4 = <> < > Equality, inequality, less than, greater than
4 <= >= Less than or equal, greater than or equal
4 IN Interval hit
5 BITOR Bitwise or
5 BITXOR Bitwise exclusive or
5 ... Interval construction
6 BITAND Bitwise and
7 LSHIFT Leftshift
7 RSHIFT Rightshift
8 + - Addition
9 * / % Multiplication, Division, Modulo
10 ** Exponentiation
11 NOT Unary boolean not
11 BITNOT Unary bitwise not
11 - Unary arithmetic negation
11 MIN Access minimum of interval
11 MAX Access maximum of interval
11 RANDOM Random number generation
11 - Unary arithmetic negation
11 Type Explicit type conversion or construction
12 [] Array/group subscription, parallel variable creation
13 . Record element selection
14 () Grouping

Table 1: Operators in CuPit

36 9 EXPRESSIONS

In the latter two cases, the smaller operand is converted into the type of the larger one. Formal parameters
can not be converted, nor can objects that are passed as arguments to a VAR or IO formal parameter.
Integer denoters have smallest integer type that can represent their value. Analogous rules apply to
integer intervals.

For explicit type conversion, see page 40. The set of explicit type conversions that are available can be
described as follows. There are type constructors that generate an object of a certain type T from objects
of the component types of X: For each record type there is a conversion from a complete set of record
elements to the record type, e.g. an object of TYPE Rec IS RECORD REAL a; INT b; BOOL c; INT d;

END can be constructed by Rec(3.0,7,false,0). The order of the arguments for the conversion is the
order in which the elements of the record were de�ned. Type constructors for array or group types do
not exist.

9.3 Operators

Expression[34] �34

f

Expression:

E1.

ExprList:

Expression /

ExprList ',' Expression.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

All operators can be used in a constant expression. The only requirement is that the values of all operands
must be available at compile time. The compiler performs as much constant folding as possible with real,
integer, and boolean values in order to produce constant expressions where necessary. The compiler
may, but need not, fold constants in other contexts, too. Note that this may change the semantics of a
program, if the compilation machine's arithmetic is not exactly equivalent to that of the target machine.

Expression[35] �35

f

E1:

E2 '?' E2 ':' E2 /

E2.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

This is the useful if-then-else operator known from C. Note that it is non-associative in CuPit: In order
to nest it, parentheses must be used. The �rst expression must have boolean type, the second and third
must have compatible types.

A ? B : C has the following semantics: First, A is evaluated and must yield a Bool. Then, if A is true, B is
evaluated and returned, otherwise C is evaluated and returned. The types of B and C must be compatible;
implicit type conversion is performed on them as if they were an operand pair.

Expression[36] �36

f

E2:

E2 OrOp E3 /

E3.

OrOp:

9.3 Operators 37

'OR' / 'XOR'.

E3:

E3 AndOp E4 /

E4.

AndOp:

'AND'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

These are the usual logical operators: both of their operands must have type Bool, the result has type
Bool, too. a OR b is true i� either a or b or both are true. a XOR b is true i� either a or b but not both
are true. a AND b is true i� both, a and b, are true. The operands are evaluated in unde�ned order.
Open question: Do we need this freedom ? Or would it be better to de�ne left-to-right shortcut evaluation ?

Expression[37] � 37

f

E4:

E5 CompareOp E5.

CompareOp:

'=' / '<>' / '<' / '>' / '<=' / '>='.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

These are the usual comparison operators: both of their operands must be numbers or enumerations;
their types must be compatible. The result has type Bool. The result for the comparison of SYMBOLIC
values is well-de�ned only for the '=' and '<>' test. The other tests yield a result without any special
meaning for these types, but this result is constant within the same run of the program. The operands
are evaluated in unde�ned order.

Expression[38] � 38

f

E4:

E5 InOp E5 /

E5.

InOp:

'IN'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

This is the interval test operator. The left operand must have a number type, the right operand must
have the corresponding interval type. The IN operator returns true if the value of the left operand lies
in the interval and false otherwise.

Expression[39] � 39

f

E5:

E5 BitorOp E6.

BitorOp:

'BITOR' / 'BITXOR'.

g

38 9 EXPRESSIONS

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

These are logical operators that operate bitwise. Both of their operands must be integral numbers; their
types must be compatible. The operation a BITOR b means that for every bit position in the internal
representation of a and b (after the type conversion required by the compatibility has been performed)
a logical OR operation is performed, just as the OR operator does. A zero bit corresponds to false and
a one bit corresponds to true. BITXOR is de�ned analogously. Since the internal representation of
integral numbers is not de�ned in CuPit, the result of these operators is generally machine-dependent.
The operands are evaluated in unde�ned order.

Expression[40] �40

f

E5:

E6 IntervalOp E6 /

E6.

IntervalOp:

'...'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

This is the interval construction operator: both operands must be numbers and must have compatible
types. The result of a...b is a Realerval if a and b have type Real and an Interval if a and b have
types compatible to Int. Objects of type Interval1 and Interval2 can only be generated by explicit
type conversion.

The interval is empty, if a > b, otherwise it contains all numbers x of type Int or Real, respectively, for
which a� x �b. a and b are evaluated in unde�ned order.

Expression[41] �41

f

E6:

E6 BitandOp E7 /

E7.

BitandOp:

'BITAND'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

This is the bitwise logical AND operator. Works analogous to BITOR, but performs a bitwise AND operation.

Expression[42] �42

f

E7:

E7 ShiftOp E8 /

E8.

ShiftOp:

'LSHIFT' / 'RSHIFT'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

These are shift operators working on the bit representation of the left operand. Both operands must
be of integral type. The result for negative values of a or b is machine-dependent; otherwise a LSHIFT b

9.3 Operators 39

(where a has type A) is equivalent to A(a*2**b) and a RSHIFT b (where a has type A) is equivalent to
A(a/2**b). The operands are evaluated in unde�ned order.

Expression[43] � 43

f

E8:

E8 AddOp E9 /

E9.

AddOp:

'+' / '-'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

Addition and subtraction of numbers. Both operands must be of compatible type. The exact semantics
of these operations is machine-dependent (but will be the same on almost all machines). The operands
are evaluated in unde�ned order.

Expression[44] � 44

f

E9:

E9 MulOp E10 /

E10.

MulOp:

'*' / '/' / '%'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

Multiplication, division, and modulo operation on numbers. For multiplication and division, both
operands must have compatible type. The exact semantics of these operations is machine-dependent
(but will be the same on almost all machines, except perhaps for division and modulo by negative inte-
gers). For modulo, the right operand must have integral type. a % b where a is integral is de�ned as
a-b*(a/b) for positive a and b and is machine-dependent if either is negative. a % b where b has type
Real is de�ned as a-b*R(Int((a/b))). The operands are evaluated exactly once, in unde�ned order.

Expression[45] � 45

f

E10:

E11 ExponOp E10 /

E11.

ExponOp:

'**'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

The exponentiation a**b is de�ned

1. for integral a and non-negative integral b with result type Int.

2. for real a and integral b with result type Real.

3. for non-negative real a and arbitrary real b with result type Real.

In all cases, the meaning is ab, where 00 equals 1. The behavior upon over
ow is machine-dependent.
The compiler may provide run-time checking. The operands are evaluated in unde�ned order.

40 9 EXPRESSIONS

Expression[46] � 46

f

E11:

UnaryOp E12 /

TypeId '(' ExprList ')' /

'MAXINDEX' '(' Object ')' /

E12.

UnaryOp:

'NOT' / 'BITNOT' / '-' / 'MIN' / 'MAX' / 'RANDOM'.

g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

These are unary operators. All unary operators have the same precedence.

NOT a is de�ned i� a has type Bool; it returns false, if a is true and true if a is false.

BITNOT a is de�ned i� a has an integer type. The internal representation of a is returned complemented
bitwise. The result has the same type as a.

-a is de�ned i� a has a number type. The result is the same as (0-a).

MIN(a) and MAX(a) are de�ned i� a has an interval type. The result is the minimum or maximum,
respectively, of the interval.

RANDOM a is de�ned for real or integer intervals a. It returns a pseudorandom number in the given interval,
with even distribution. This operator can usually not be evaluated as a constant expression, i.e., each
time RANDOM a is executed at run time, it may return a di�erent value, even if a is not changing. The
exception to this rule occurs when it is possible to guarantee that the expression will be evaluated only
once; this is always the case for the initialization of global variables.

A typename X can be applied to a parenthesized expression like a unary operator in order to specify a
type conversion into type X. All the usual conversions between the types Real, Int, Int1, Int2 are
available; their exact semantics is machine-dependent.

For structure types, it is possible to list all data elements of an object of that type separated by commas
and enclosed in parentheses in order to use the typename as a constructor for values of that type. The
elements must appear in the order in which they are de�ned in the type de�nition.

MAXINDEX(a) returns the highest currently available index to the object a as an Int. a must be a
connection interface, group, array, or network. For connection interfaces, the number of connections
at the interface minus one is returned. For networks the meaning is the number of currently existing
replicates minus one.

Expression[47] �47

f

E12:

'(' Expression ')' /

Object /

Denoter /

FunctionCall /

ObjectFunctionCall.

Data Object Access[50]
Denoter[48]
Function Call[49]
g

This macro is de�ned in de�nitions 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

This macro is invoked in de�nition 55.

9.4 Function call 41

Denoter[48] �48

f

Denoter:

IntegerDenoter /

RealDenoter /

StringDenoter.

g

This macro is invoked in de�nition 47.

9.4 Function call

Function Call[49] � 49

f

FunctionCall:

FunctionId '(' ArgumentList ')'.

FunctionId:

LowercaseIdent.

ObjectFunctionCall:

Object '.' ObjectFunctionId '(' ArgumentList ')'.

ObjectFunctionId:

LowercaseIdent.

g

This macro is invoked in de�nition 47.

Function calls look exactly like procedure calls. The di�erence is that functions return a value. This value
can usually be used just like any other value of the same type. Function calls that involve parallelism,
however, are allowed only if they do not change the amount of parallelism: Object function calls to
network functions from within network functions or network procedures and object function calls to
node functions from within node functions or node procedures and object function calls to connection
functions from within connection functions or connection procedures work just like other normal function
calls; object function calls to node functions from network functions or network procedures and object
function calls to connection functions from node functions or node procedures are not allowed. Object
function calls to network functions from the central agent are an exception: They return the result from
the �rst network replicate. Design rationale:We could allow function calls into a higher level of parallelism
instead of the data element in a reduction statement. I didn't do it in order to keep the semantics and
implementation of the reduction statement simple.

10 Referring to data objects

Data objects are referred to either by identi�ers, by record element selection, by subscription, by connec-
tion addressing, or by special keywords.

10.1 ME, YOU, INDEX, and explicit variables

Data Object Access[50] � 50

f

Object:

Objectname /

'ME' /

42 10 REFERRING TO DATA OBJECTS

'YOU' /

'INDEX'.

Objectname:

LowercaseIdent.

g

This macro is de�ned in de�nitions 50, 51, 52, and 53.

This macro is invoked in de�nition 47.

An identi�er used as an object refers to an object by name. We call this an explicit variable (using the
term \variable" also for CONST and IO objects, meaning an object occupying some data storage | as
opposed to, say, a denoter).

The special object ME can only be used in object subroutines, object merge procedures, and winner-takes-
all and reduction functions. It denotes the object for which the procedure or function was called. ME is
called an implicit variable. In reduction and winner-takes-all functions, ME is CONST, otherwise it is VAR.

The special object YOU can only be used in object merge procedures and winner-takes-all and reduction
functions. It denotes the second object for which the procedure or function was called and is also an
implicit variable. For merge procedures, the result of the merging has to be constructed in ME (i.e. YOU
has to be merged into ME | not the other way round). For reduction functions, the value constructed
from ME and YOU is returned as the function result (i.e. here ME and YOU have equal rights). YOU is always
CONST.

The special object INDEX is an implicit Int CONST and can only be used in object procedures and object
functions. When read in a network procedure, it returns the replicate index of the network replicate it is
read from. When read in a node subroutine, its value is the current index number of the object for which
the subroutine has been called in the array or group it belongs to. INDEX is unde�ned in connection
subroutines.

Note that for the very same node object, the value of INDEX may change from call to call if sister objects
are created or deleted with the REPLICATE statement.

10.2 Selection

Data Object Access[51] �51

f

Object:

Object '.' Elementname.

Elementname:

LowercaseIdent.

g

This macro is de�ned in de�nitions 50, 51, 52, and 53.

This macro is invoked in de�nition 47.

Selections pick an element of a structure type object (node, connection, network, or record) by name.
The selected element can be a data element (of a network, node, connection, or record), a node group or
node array (of a network), or an interface element (of a node).

10.3 Subscription and parallel variables

Data Object Access[52] �52

f

Object:

Object '[' Expression ']' /

Object '[' ']'.

10.4 Connection addressing 43

g

This macro is de�ned in de�nitions 50, 51, 52, and 53.

This macro is invoked in de�nition 47.

Subscriptions pick one or several elements of an array or group by position. To pick a single element, the
expression must have integral type. If the value of the expression is n, e.g. ME.nodes[n], the subscription
refers to the element of the array or group that has index n. The �rst object of an array or group has index
0. To pick several elements at once, the expression must have Interval type, e.g. ME.nodes[3...5].
The object that is referred to by such a subscription is called a slice of the group or array and consists of
all elements whose index is contained in the interval. There is a special slice, called the all-slice containing
all objects of an array or group that is denoted by just using selection brackets without any expression
at all, e.g. ME.nodes[]. Slice subscriptions that contain indices of objects that are not existing in the
sliced object are automatically clipped to only the existing objects without producing an error.

As we have seen in the description of the object procedure calls, all parallelism in CuPit is created by
operating on a multitude of objects. To describe this, the notion of a parallel variable is used: a parallel
variable is a multiple object that can induce parallelism; parallel variables are either multiple replicates
of a network, multiple nodes of a node array or group, or multiple connections attached to a connection
interface of a node.

Slice subscription is used to create parallel variables. In order to do this, connection interfaces and explicit
network variables are implicitly treated as groups . Given a network variable called net, a node group
(or array) called nodes and a connection interface called cons, we �nd the following cases: In a global
subroutine, net[] and net[1...3] are parallel variables while net and net[3] are ordinary variables.
In a network subroutine ME.nodes[] and ME.nodes[3...5] are parallel variables while ME.nodes and
ME.nodes[3] are ordinary variables. In a node subroutine, ME.con[] is a parallel variable while ME.con
is an ordinary variable; actual subscription is not allowed for connection interfaces.

Parallel variables can be used for calls to object procedures (but not object functions, since that would
return a multitude of values). Further subscription is not allowed on parallel variables. Further selection
from a parallel variable creates a parallel variable selection. Such an object can be used only in REDUCTION
and WTA statements and in CONNECT and DISCONNECT statements. E.g. given a Real data element called
r in cons, in REDUCTION ME.cons[].r:sum INTO x the term ME.cons[] denotes a parallel variable of
connection type and ME.cons[].r is a parallel variable selection of Real type.

10.4 Connection addressing

Data Object Access[53] � 53

f

Object:

'{' Object '-->' Object '}'.

g

This macro is de�ned in de�nitions 50, 51, 52, and 53.

This macro is invoked in de�nition 47.

The connection addressing syntax uses the right arrow to address a connection by giving the
node output interface from which it originates and the node input interface at which it ends, e.g.
{net.nd[1].out-->net.hid[1].in}. Such objects can be used to create and initialize connections at
the beginning of the program run. They may appear on the left hand side of assignments only, cannot
be further selected, and have the side e�ect to create the connection described by the object pair. Both
node interfaces must belong to nodes in the same network. The construct can only be used in the central
agent and only while the number of network replicates is 1.

11 The central agent

All global (i.e. non-object) procedures and functions of a CuPit program either belong to the central

agent or are called free. The central agent of a CuPit program consists of the global procedure with the

44 12 OVERALL PROGRAM STRUCTURE

name program plus a number of other subroutines according to the rules given below.

Design rationale: The signi�cance of the central agent is that certain operations are allowed only there.
The idea behind the central agent is that it is the (sequential) control program from which the (possibly
parallel) network operations are called. All parallelism occurs outside the central agent hidden in object
procedures.

A function or procedure is free if and only if

1. it does not mention a NETWORK variable explicitly and

2. it does not call any global procedure or function that is not free

All subroutines that are not free are part of the central agent.
All subroutines that are part of the central agent are not free.

The global procedure program must exist and is always part of the central agent (unless the program
does not use a NETWORK variable at all); the program procedure is implicitly called when a CuPit program
is invoked. Object subroutines are never part of the central agent. Note that since the CuPit compiler
cannot check external procedures they are always assumed to be free. It is not allowed to call subroutines
that belong to the central agent from an object subroutine. Object-subroutines may, however, call free
global subroutines.

12 Overall program structure

A CuPit program is simply a sequence of type de�nitions, data object de�nitions, and procedure or
function de�nitions. Any object must be de�ned before it can be used.

Cupit Program[54] �54

f

Root:

CupitProgram.

CupitProgram:

CupitParts.

CupitParts:

/* nothing */ /

CupitParts CupitPart ';'.

CupitPart:

TypeDef /

DataObjectDef /

ProcedureDef /

FunctionDef /

ReductionFunctionDef /

WtaFunctionDef.

g

This macro is invoked in de�nition 55.

All these de�nitions are now put into the Eli [GHL+92] grammar speci�cation �le grammar.con:

grammar.con[55] �55

f

Cupit Program[54]
Type De�nition[1]
Subroutine De�nition[13]
Data Object De�nition[12]

45

Statement[20]
Expression[34]
g

This macro is attached to an output �le.

13 Basic syntactic elements

All keywords and operators in a CuPit program must appear exactly as shown in the grammar. The
syntactic structure of identi�ers, denoters (value literals), and comments will be described in this section.

These are the contents of the scanner de�nition for CuPit:

scanner.gla[56] � 56

f

Lowercase Identi�er[57]
Uppercase Identi�er[58]
Integer Denoter[59]
Real Denoter[60]
String Denoter[61]
Wrong Keywords[62]
Comment[64]
g

This macro is attached to an output �le.

13.1 Identi�er

Identi�ers appear in two forms: Starting with an uppercase letter (for type names) or starting with a
lowercase letter (for everything else).

Lowercase Identi�er[57] � 57

f

LowercaseIdent: $[a-z][a-zA-Z0-9]* [mkidn]

g

This macro is invoked in de�nition 56.

A LowercaseIdent is a sequence of letters and digits that starts with a lowercase letter.

Uppercase Identi�er[58] � 58

f

UppercaseIdent: $([A-Z][a-zA-Z0-9]*[a-z0-9][a-zA-Z0-9]*)|[A-Z] [mkidn]

g

This macro is invoked in de�nition 56.

An UppercaseIdent is either a single uppercase letter or a sequence of letters and digits that starts with
an uppercase letter and contains at least one lowercase letter or digit. This has the consequence that for
instance T, T1 and TreeIT2 are UppercaseIdents while TREE is not.

13.2 Denoter

There are denoters for integer, real, and string values.

Integer Denoter[59] � 59

f

IntegerDenoter: $([0-9]+|0[xX][0-9a-fA-F]*) [c_mkint]

46 13 BASIC SYNTACTIC ELEMENTS

g

This macro is invoked in de�nition 56.

Integer denoters are de�ned exactly as in the C programming language, except that the L and U su�xes
are not supported in CuPit.

Real Denoter[60] �60

f

RealDenoter: $([0-9]+\.[0-9]+)([eE][\+\-]?[0-9]+)? [mkstr]

g

This macro is invoked in de�nition 56.

Real denoters are similar to
oating point denoters in the C programming language. However, there must
always be a decimal point that is surrounded by digits in a CuPit
oating point denoter.

String Denoter[61] �61

f

StringDenoter: $\" (auxCString) [c_mkstr]

g

This macro is invoked in de�nition 56.

String denoters are de�ned exactly as string literals in the C programming language.

13.3 Keywords and Comments

Wrong Keywords[62] �62

f

$[A-Z][A-Z]+ [ComplainKeyword]

g

This macro is invoked in de�nition 56.

Eli extracts the keywords from the parser grammar and automatically constructs the scanner in a way to
recognize them. However, if you misspell a keyword (or use a nonexisting one) you get one syntax error
per character in your wrong keyword after the point where the wrong keyword looks di�erent from any
existing one. This is awful. Therefore, we introduce a scanner rule that catches any token that looks like
a keyword (but is not a true keyword | those always take precedence) and produces an error message
that says \I have never heard of a keyword like that and do not like it, too". Here is the procedure that
produces this message:

scanerr.c[63] �63

f

#include "err.h"

void ComplainKeyword (char *start, int lgth, int *extCodePtr, char *intrPtr)

{

message (ERROR, "Huh ? What's that ?? An unknown keyword!", 0, &curpos);

}

g

This macro is attached to an output �le.

Comment[64] �64

f

$\(* (auxM3Comment)

g

This macro is invoked in de�nition 56.

Comments are de�ned exactly as in Modula-2 or in Modula-3, i.e. comments begin with (*, end with
*), and can be nested. auxM3comment is a so-called \canned description" in Eli; so to say a miniature
re-usable module.

47

14 C preprocessor support

It is convenient if CuPit programs can be run through the C preprocessor before compilation. This allows
to store several variants of a program in one �le by using the conditional compilation feature of the
preprocessor (#ifdef etc.).

To allow this, we need support in the compiler to understand the #line directives added to its output
by the preprocessor. Without such support, we would have to generate preprocessor output without
the directives and the CuPit compiler could not produce proper �le names and line numbers in its error
messages.

For this support, the scanner description must be augmented. When the scanner sees the hash symbol,
which starts any preprocessor directive, it calls the auxiliary scanner auxLinedirective that reads the
directive and adjusts the scanners internal curpos accordingly.

cpp.gla[65] � 65

f

$# (auxLinedirective)

g

This macro is attached to an output �le.

The next subsections will contain the implementation of a modi�ed error module and the auxiliary
scanner.

14.1 Reimplementation of the err module

For the implementation of the auxiliary scanner, we must be able to store the virtual �le name given in
the #line directive in the curpos variable. This �lename should then be used in error messages referring
to this position. Therefore, we need a di�erent de�nition of the POSITION type and an implementation of
the message function that is changed accordingly. Both are implemented by the following hacked version
of the Eli 3.5.1 err module. Note that the changes in the data structure de�nition may a�ect other
modules of Eli that use knowledge about the POSITION type.

In err.h, the only change compared to the original version is in the de�nition of the type POSITION (plus
a new macro NameOf to access the �lename component). The changes are marked by the comment LP in
the source code.

err.h[66] � 66

f

#ifndef ERR_H

#define ERR_H

/* $Id: err.h,v 1.23 1993/10/14 00:58:46 waite Exp $ */

/* Copyright 1989, The Regents of the University of Colorado

* Permission is granted to use any portion of this file for any purpose,

* commercial or otherwise, provided that this notice remains unchanged.

*/

#if defined(__cplusplus) || defined(__STDC__)

#include <stdio.h>

#endif

/* Error report classification */

#define NOTE 0 /* Nonstandard construct */

#define COMMENT 0 /* Obsolete */

#define WARNING 1 /* Repairable error */

48 14 C PREPROCESSOR SUPPORT

#define ERROR 2 /* Unrepairable error */

#define FATAL 2 /* Obsolete */

#define DEADLY 3 /* Error that makes continuation impossible */

/* Types exported by the Error Module */

typedef struct { /* Source listing coordinates */

int line; /* Line number */

int col; /* Character position */

char *fn; /*LP*/ /* file name (real or virtual) */

} POSITION;

#define NoPosition ((POSITION *)0)

#define LineOf(pos) ((pos).line)

#define ColOf(pos) ((pos).col)

#define NameOf(pos) ((pos).fn) /*LP*/

/* Variables exported by the Error Module */

extern int ErrorCount[];

extern int LineNum; /* Index of the current line in the total source text */

extern POSITION NoCoord; /* The NULL coordinate */

extern POSITION curpos; /* Position variable for general use */

#ifdef MONITOR

extern POSITION endpos; /* Ending position */

#endif

/* Routines exported by the Error Module */

#if defined(__cplusplus) || defined(__STDC__)

extern void ErrorInit(int ImmOut, int AGout, int ErrLimit);

/* Initialize the error module

* On entry-

* ImmOut=1 if immediate error output required

* AGout=1 to print AG line number on error reports

* ErrLimit=1 to limit the number of errors reported

***/

extern void message(int severity, char *Msgtext, int grammar, POSITION *source);

/* Report an error

* On entry-

* severity=error severity

* Msgtext=message text

* grammar=identification of the test that failed

* source=source coordinates at which the error was detected

***/

extern void lisedit(char *name, FILE *stream, int cutoff, int erronly);

/* Output the listing with embedded error messages

* On entry-

* name is the source file name

* stream specifies the listing file

* cutoff=lowest severity level that will be listed

14.1 Reimplementation of the err module 49

* If erronly != 0 then on exit-

* Source file lines containing errors have been added to file stream

* with error messages attached

* Else on exit-

* All source file lines have been added to file stream

* with error messages attached to those containing errors

***/

#else

extern ErrorInit();

extern void message();

extern void lisedit();

#endif

#endif

g

This macro is attached to an output �le.

In err.c, the only changes compared to the original version are in the de�nition of the function message,
the initialization of the NoCoord variable, and the computation of the error limit. The latter has nothing
to do with the other changes. All changes are marked by the comment LP.

err.c[67] � 67

f

static char RCSid[] = "$Id: err.c,v 1.32 1993/09/29 21:48:51 kadhim Exp $";

/* Copyright 1989, The Regents of the University of Colorado

* Permission is granted to use any portion of this file for any purpose,

* commercial or otherwise, provided that this notice remains unchanged.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "err.h"

#include "source.h"

/* Variables exported by the Error Module */

int ErrorCount[] = { /* Counts at each severity level */

0, 0, 0, 0

};

int LineNum = 1; /* Index of the current line

in the total source text */

POSITION NoCoord = { 0, 0, 0 }; /*LP*/ /* The NULL coordinate */

POSITION curpos; /* Position variable for general use */

#ifdef MONITOR

POSITION endpos; /* Ending position */

#endif

static char *key[] = {"NOTE", "WARNING", "ERROR", "DEADLY"};

struct msg {

int severity;

POSITION loc;

50 14 C PREPROCESSOR SUPPORT

int grammar;

char *Msgtext;

struct msg *forward, *back;

};

static struct msg reports = { /* Error report list */

DEADLY, 0, 0, 0/*LP*/, 0, "", &reports, &reports};

static struct msg emergency; /* In case malloc fails */

static int ImmediateOutput = 1; /* 1 if immediate error output required */

static int GrammarLine = 1; /* 1 to print AG line number */

static int ErrorLimit = 1; /* 1 to abort after too many errors */

#if defined(__cplusplus) || defined(__STDC__)

void

ErrorInit(int ImmOut, int AGout, int ErrLimit)

#else

ErrorInit(ImmOut, AGout, ErrLimit)

int ImmOut, AGout, ErrLimit;

#endif

/* Initialize the error module

* On entry-

* ImmOut=1 if immediate error output required

* AGout=1 to print AG line number on error reports

* ErrLimit=1 to limit the number of errors reported

***/

{

#ifdef MONITOR

generate_enter ("message");

#endif

ImmediateOutput = ImmOut;

GrammarLine = AGout;

ErrorLimit = ErrLimit;

reports.severity = DEADLY;

reports.loc.line = reports.loc.col = 0;

reports.grammar = 0; reports.Msgtext = "";

reports.forward = reports.back = &reports;

#ifdef MONITOR

generate_leave ("message");

#endif

}

#if defined(__cplusplus) || defined(__STDC__)

int

earlier(POSITION *p, POSITION *q)

#else

int

earlier(p,q)

POSITION *p, *q;

#endif

14.1 Reimplementation of the err module 51

/* Check relative position

* On exit-

* earlier != 0 if p defines a position in the source Msgtext that

* preceeds the position defined by q

***/

{

if (p->line != q->line) return(p->line < q->line);

return(p->col < q->col);

}

/***/

#if defined(__cplusplus) || defined(__STDC__)

void

lisedit(char *name, FILE *stream, int cutoff, int erronly)

#else

void

lisedit(name, stream, cutoff, erronly)

char *name; FILE *stream; int cutoff, erronly;

#endif

/* Output the listing with embedded error messages

* On entry-

* name is the source file name

* stream specifies the listing file

* cutoff=lowest severity level that will be listed

* If erronly != 0 then on exit-

* Source file lines containing errors have been added to file stream

* with error messages attached

* Else on exit-

* All source file lines have been added to file stream

* with error messages attached to those containing errors

***/

{

register char *p;

int fd;

struct msg *r;

#ifdef MONITOR

generate_enter ("message");

#endif

if (name == NULL || *name == '\0') {

(void)fprintf(stderr, "lisedit: Null source file name\n");

#ifdef MONITOR

generate_leave ("message");

#endif

exit(1);

}

if ((fd = open(name,0)) < 0) {

perror(name);

#ifdef MONITOR

generate_leave ("message");

#endif

exit(1);

}

52 14 C PREPROCESSOR SUPPORT

initBuf(name, fd);

p = TEXTSTART; LineNum = 1;

r = reports.forward;

while (r != &reports && r->loc.line == 0) {

if (r->severity >= cutoff){

(void)fprintf(stream, "*** %s: %s\n", key[r->severity], r->Msgtext);

}

r = r->forward;

}

while (r != &reports || (!erronly && *p != 0)) {

if (r != &reports && LineNum > r->loc.line) {

/* Output reports for the last line printed */

char buf[BUFSIZ];

int l, s;

if (r->severity >= cutoff) {

(void)sprintf(buf, "*** %s: %s", key[r->severity], r->Msgtext);

l = strlen(buf);

s = r->loc.col - 1 + (erronly?8:0);

if (l > s) {

while (s--) (void)putc(' ', stream);

(void)fprintf(stream, "^\n%s\n", buf);

} else {

(void)fprintf(stream, "%s", buf);

while (l < (s--)) (void)putc('-', stream);

(void)fprintf(stream, "^\n");

}

}

r = r->forward;

} else { /* Print up through the next line with a report */

register char c;

char *StartLine = p;

while ((c = *p++) && c != '\n') ;

if (c == '\n') {

if (!erronly || LineNum == r->loc.line) {

if (erronly) (void)fprintf(stream, "%6d |", LineNum);

(void)fwrite(StartLine, p-StartLine, 1, stream);

}

if (*p == 0) { refillBuf(p); p = TEXTSTART; }

} else /* c == 0 */ {

if (erronly) (void)fprintf(stream, "%6d |", LineNum);

(void)fputs("(End-of-file)\n", stream);

p--;

}

LineNum++;

}

}

(void)close(fd);

#ifdef MONITOR

generate_leave ("message");

#endif

}

14.1 Reimplementation of the err module 53

#if defined(__cplusplus) || defined(__STDC__)

void

message(int severity, char *Msgtext, int grammar, POSITION *source)

#else

void

message(severity, Msgtext, grammar, source)

int severity; char *Msgtext; int grammar; POSITION *source;

#endif

/* Report an error

* On entry-

* severity=error severity

* Msgtext=message text

* grammar=identification of the test that failed

* source=source coordinates at which the error was detected

***/

{

int fail = 0;

struct msg *r, *c;

#ifdef MONITOR

generate_enter ("message");

generate_message (key[severity], Msgtext, source->line, source->col);

#endif

if (severity < NOTE || severity > DEADLY) {

(void)fprintf(stderr, "Invalid severity code %d for \"%s\"\n",

severity, Msgtext);

severity = DEADLY;

}

if (source == (POSITION *)0) source = &NoCoord;

if (ImmediateOutput) {

(void)fprintf(stderr, "\"%s\", line %d:%d %s: %s",

source->fn ? source->fn : SRCFILE, source->line,source->col, /*LP*/

key[severity], Msgtext);

if (grammar>0 && GrammarLine) (void)fprintf(stderr," AG=%d\n", grammar);

else (void)putc('\n', stderr);

(void)fflush(stderr);

}

ErrorCount[severity]++;

if ((r = (struct msg *)malloc(sizeof(struct msg))) == (struct msg *)0) {

r = &emergency;

(void)fprintf(stderr, "No storage for error report at");

fail = 1;

}

r->loc = *source;

r->severity = severity;

r->Msgtext = Msgtext;

r->grammar = grammar;

c = reports.back; while (earlier(&r->loc,&c->loc)) c = c->back;

54 14 C PREPROCESSOR SUPPORT

r->forward = c->forward; c->forward = r;

r->back = c; (r->forward)->back = r;

if(ErrorLimit &&

ErrorCount[ERROR] > LineNum/2 +10) { /*LP*/ /* old: LineNum/20 */

(void)fprintf(stderr, "\"%s\", line %d:%d %s: %s",

SRCFILE, source->line,source->col, key[DEADLY],

"Too many ERRORs");

fail = 1;

}

if (severity == DEADLY || fail) {

(void)putc('\n', stderr);

#ifdef MONITOR

generate_leave ("message");

#endif

exit(1);

}

#ifdef MONITOR

generate_leave ("message");

#endif

}

g

This macro is attached to an output �le.

14.2 Auxiliary scanner for line directives

The auxiliary scanner

auxscan.c[68] �68

f

/* auxiliary scanner to analyse #line directives */

#include <ctype.h>

#include <string.h>

#include "err.h"

#include "source.h"

#include "gla.h"

extern char* auxEOL (char* start, int length); /* $/Tool/gla/auxScanEOL.c */

char *auxLinedirective (start, length)

char* start; /* start of characters recognized by reg expr */

int length; /* length of what was recognized already */

{

char c;

char *p = start + length; /* first char not yet processed */

char *startnum, /* where in p the line number begins */

startname, / where in p the filename begins */

endnum, / where the 0-terminator must be put after the num */

endname; / where the 0-terminator must be put (replacing quote) */

enum { _afterhash, _l, _i, _n, _e, _afterline,

_num, _afternum, _quote, _name, _finished } state = _afterhash;

for (;;) {

14.2 Auxiliary scanner for line directives 55

c = *p++;

if (c == '\0') { /* refill buffer if necessary */

refillBuf(p-1);

p = TEXTSTART;

StartLine = p-1;

c = *(p-1);

if (*p == '\0')

return (p);

}

/* the following is a finite automaton that accepts ' line 123 "asdf"'

then skips the rest of the line. It stores the beginning and end

addresses of the number and the filename to be used afterwards.

*/

if (state == _afterhash && (c == 9 || c == ' '))

;

else if (state == _afterhash && c == 'l')

state = _l;

else if (state == _afterhash && isdigit (c))

{ state = _num; startnum = p-1; } /* word 'line' may be missing */

else if (state == _l && c == 'i')

state = _i;

else if (state == _i && c == 'n')

state = _n;

else if (state == _n && c == 'e')

state = _e;

else if (state == _e && (c == 9 || c == ' '))

state = _afterline;

else if (state == _afterline && (c == 9 || c == ' '))

state = _afterline;

else if (state == _afterline && isdigit (c))

{ state = _num; startnum = p-1; }

else if (state == _num && isdigit (c))

;

else if (state == _num && (c == 9 || c == ' '))

{ state = _afternum; endnum = p-1; }

else if (state == _afternum && (c == 9 || c == ' '))

;

else if (state == _afternum && c == '"')

{ state = _name; startname = p; }

else if (state == _name && c != '"')

;

else if (state == _name && c == '"')

{ state = _finished; endname = p-1; }

else if (state == _finished && c != '\n')

;

else if (state == _finished && c == '\n')

break;

else { /* something went wrong */

message (ERROR, "this is no #line directive", 0, NoPosition);

return (auxEOL (start, length)); /* ignore the line */

}

}

endnum = 0; / write 0-terminators */

*endname = 0;

curpos.line = LineNum = atoi (startnum);

56 14 C PREPROCESSOR SUPPORT

curpos.fn = strdup (startname);

return (p);

}

#if 0

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

else if (state == _ && c == '')

state = ;

if (c == '\n') {

message(ERROR, "incomplete #line directive", 0, &curpos);

LineNum++;

StartLine = p-1;

return(p);

}

#endif

g

This macro is attached to an output �le.

57

PART II: Semantic Analysis

Semantic analysis consists of three parts. The �rst and smallest is the description of the abstract syntax,
the second is consistent renaming for the block-scoped identi�ers, and the third is type analysis. The
latter is structured in exactly the same fashion as the syntax description above (see the table of contents).

The purpose of type analysis is to compute the properties of all objects2 in the abstract syntax tree, in
particular their types, and to emit error messages for all violations of the semantic rules of the language
(except for scoping, which was already checked before).

15 Abstract syntax

To specify the abstract syntax is very simple in Eli: One or several �les of type .sym specify a set of
nonterminal equivalence classes. Using these, Eli generates the abstract syntax automatically from the
parsing grammar.

For CuPit, most of the equivalence classes are concerned with expressions. The various expression non-
terminals for the di�erent precedence levels of operators all belong into the same equivalence class. The
same is true for all binary operators.

abstract.sym[69] � 69

f

/* $Id: names.fw,v 1.8 1994/04/13 07:25:50 prechelt Exp prechelt $ */

Expr ::= Expression E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12.

BinOp ::= OrOp AndOp CompareOp InOp BitorOp IntervalOp BitandOp

ShiftOp AddOp MulOp ExponOp.

g

This macro is attached to an output �le.

That's all, folks!

16 Consistent renaming

The scoping rules of CuPit are similar to those of C: Identi�ers can be de�ned globally (i.e. in the
outermost block of the program) or locally (in a nested block). Identi�ers must be de�ned exactly
once. De�nitions in inner blocks hide de�nitions in outer blocks, however. This section describes the Eli
speci�cations that solve the problem of assigning a unique symbol value to each de�nition and use of an
identi�er so that corresponding de�nitions and uses get the same symbol; the process is called consistent
renaming. Note that the �elds of record types (and connection, node, and network types) are not handled
the same way, because they obey di�erent scoping rules.

In Eli, library modules are available that de�ne these consistent renaming rules: Name/Chain.gnrc

describes the visibility of names in blocks, Name/NoKeyMsg.gnrc emits an error message for each unde�ned
identi�er, and Name/Unique.gnrc emits an error message for each multiply de�ned identi�er.

Consistent renaming is an attribution process, so we need a LIDO �le to specify it. We call this �le
names.lido:

names.lido[70] � 70

f

Scoping Basics[71]
Name De�nition[72]
Name Use[73]

2Here we use the word object not for \object in the sense of the CuPit language de�nition", but for \object handled
internally in the compiler"

58 16 CONSISTENT RENAMING

Name Ranges[74]
g

This macro is attached to an output �le.

The scoping basics contain a few basic attribute and symbol de�nitions. The name de�nition, use, and
ranges macros connect the LIDO symbols that describe identi�er de�nitions, identi�er uses, and blocks,
respectively, to the corresponding symbols in the grammar.

16.1 Basic scoping rule symbols and attributes

Three LIDO attributes are used in the consistent renaming process: Env represents a scope, Key holds
a pointer to the de�nition table entry representing an object, and Sym is just the identi�er number of a
name.

The NameOccurrence and TypeNameOccurrence are just little helpers to pick a name from a small subtree.
IdDef is an auxiliary symbol that unites all the properties required to describe a name de�nition: C-
like name visibility rules, pick a LowercaseIdent as the actual name, and there must at most be one
de�ntion for each name in a block. IdUse correspondingly describes name uses: C-like name visibility,
pick a LowercaseIdent as the actual name, and there must at least be one visible de�nition for each
name. The symbols that are inherited from are de�ned in the library modules mentioned above.

These auxiliary symbols do not work for the type identi�ers, because these are not LowercaseIdents (see
below).

Scoping Basics[71] �71

f

ATTR Env: Environment SYNT;

ATTR Key: DefTableKey SYNT;

ATTR Sym: int SYNT;

SYMBOL NameOccurrence COMPUTE

SYNT.Sym = CONSTITUENT LowercaseIdent.Sym;

END;

SYMBOL TypeNameOccurrence COMPUTE

SYNT.Sym = CONSTITUENT UppercaseIdent.Sym;

END;

SYMBOL IdDef INHERITS IdDefChain, NameOccurrence, IdDefUnique END;

SYMBOL IdUse INHERITS IdUseChain, NameOccurrence, NoKeyMsg END;

g

This macro is invoked in de�nition 70.

These auxiliary symbols are now used to connect the scoping rules to the grammar symbols that represent
names.

16.2 Name de�nition, name use, blocks

Name de�nitions occur in procedure and function de�nitions, in type de�nitions (enumeration identi�ers!)
and in data object de�nitions. Type names are special, because they are UppercaseIdents.

Name De�nition[72] �72

f

SYMBOL NewTypeId INHERITS IdDefChain, IdDefUnique, TypeNameOccurrence END;

SYMBOL NewEnumId INHERITS IdDef END;

SYMBOL NewDataId INHERITS IdDef END;

SYMBOL NewParamId INHERITS IdDef END;

16.3 Prede�ned identi�ers 59

SYMBOL NewProcedureId INHERITS IdDef END;

SYMBOL NewFunctionId INHERITS IdDef END;

SYMBOL NewReductionFunctionId INHERITS IdDef END;

SYMBOL NewWtaFunctionId INHERITS IdDef END;

g

This macro is invoked in de�nition 70.

Name uses can occur in expressions, on the left hand side of assignments, in data object de�nitions
(type name use), and in procedure and function calls. Type names are special, because they are
UppercaseIdents.

Name Use[73] � 73

f

SYMBOL TypeId INHERITS IdUseChain, NoKeyMsg, TypeNameOccurrence END;

SYMBOL Objectname INHERITS IdUse END;

SYMBOL ProcedureId INHERITS IdUse END;

SYMBOL FunctionId INHERITS IdUse END;

SYMBOL ReductionFunctionId INHERITS IdUse END;

SYMBOL WtaFunctionId INHERITS IdUse END;

g

This macro is invoked in de�nition 70.

To distinguish scopes, we have to de�ne what the range of visibility for a name is. The root symbol is a
special range, because it implicitly includes the de�nitions of the prede�ned symbols.

Name Ranges[74] � 74

f

SYMBOL CupitProgram INHERITS RootChain, RangeUnique

COMPUTE

SYNT.Env = StandardEnv (NewEnv());

END;

SYMBOL Statements INHERITS RangeChain, RangeUnique END;

SYMBOL SubroutineDescription INHERITS RangeChain, RangeUnique END;

g

This macro is invoked in de�nition 70.

16.3 Prede�ned identi�ers

The objects that are prede�ned in CuPit are the basic types and the boolean value constants true and
false. In addition, we need a prede�ned key for the type Void that is used only internally in the compiler:

Prede�ned Objects[75] � 75

f

PredefObj (Bool, UppercaseIdent)

PredefObj (Int, UppercaseIdent)

PredefObj (Int1, UppercaseIdent)

PredefObj (Int2, UppercaseIdent)

PredefObj (Real, UppercaseIdent)

PredefObj (String, UppercaseIdent)

PredefObj (Interval, UppercaseIdent)

PredefObj (Interval1, UppercaseIdent)

PredefObj (Interval2, UppercaseIdent)

PredefObj (Realerval, UppercaseIdent)

PredefObj (true, LowercaseIdent)

60 16 CONSISTENT RENAMING

PredefObj (false, LowercaseIdent)

PredefKey (Void);

g

This macro is invoked in de�nitions 76, 77, and 79.

The way these prede�ned objects are handled in the compiler is the following: For each of the objects, a
variable is declared that holds a de�nition table key pointing to the objects property de�nitions (which will
be added in later modules). Then we have a procedure called StandardEnv that creates an environment
consisting of all the prede�ned objects; this procedure is called to compute the Env attribute of the
CupitProgram symbol.

There is one additional standard objects for which a key is computed. This key, however, is not bound
to any identi�er, which means that it can not be accessed from the user program; instead, it is used for
internal handling only: Void is used for the handling of procedures; procedures are assigned the virtual
return type Void so that they can be treated more like functions.

Now for the implementation of these prede�ned objects: First we need to de�ne the variables for the
object keys. For this purpose, we create a header �le scope.h that contains the appropriate extern

declarations and an implementation �le scope.c that contains the corresponding de�nitions. In both
cases, we use the above declarations by declaring appropriate PredefObj and PredefKey preprocessor
macros.

scope.h[76] �76

f

#ifndef scope_H

#define scope_H

#include "deftbl.h"

#include "envmod.h"

#include "pdl_gen.h"

#define PredefObj(name,type) extern DefTableKey name##Key;

#define PredefKey(name) extern DefTableKey name##Key;

Prede�ned Objects[75]
#undef PredefObj

#undef PredefKey

extern Environment StandardEnv (Environment e);

#endif

g

This macro is attached to an output �le.

The scope.c �le does also contain the implementation of the StandardEnv function.

scope.c[77] �77

f

#include "scope.h"

#include "termcode.h"

#define PredefObj(name,type) DefTableKey name##Key;

#define PredefKey(name) DefTableKey name##Key;

Prede�ned Objects[75]
#undef PredefObj

#undef PredefKey

StandardEnv function[79]

61

g

This macro is attached to an output �le.

The contents of the header �le are not only needed to compile scope.c, but also to compile the LIGA-
generated attribution module, so we also stu� it into a corresponding scope.head �le:

scope.head[78] � 78

f

#include "scope.h"

g

This macro is attached to an output �le.

What is left to do is the actual StandardEnv procedure. Once again, clever preprocessor macros do most
of the work:

StandardEnv function[79] � 79

f

Environment StandardEnv(Environment e)

{

/* Add the predefined objects to Environment e

This PredefObj macro works only for ANSI-C preprocessors

*/

int Code, idn;

#define PredefObj(name,type)\

Code = type; \

mkidn(#name, strlen (#name), &Code, &idn); \

name##Key = DefineIdn (e, idn);\

SetSym (name##Key, idn, idn);

#define PredefKey(name) name##Key = NewKey();

Prede�ned Objects[75]
#undef PredefObj

#undef PredefKey

return e;

}

g

This macro is invoked in de�nition 77.

17 General type analysis de�nitions

17.1 Kinds of objects

The properties that have to be determined for an object di�er from one category of objects to the other.
We will call this category of an object its Kind . We de�ne the following kinds:

Kinds Of Objects[80] � 80

f

typedef enum {

UndefinedK,

SimpleTypeK, SymbolicTypeK, RecordTypeK, ConTypeK, NodeTypeK,

NetTypeK, ArrayTypeK, NodeArrayTypeK, NodeGroupTypeK,

ProcedureK, FunctionK,

ReductionFunctionK, WtaFunctionK, MergeProcedureK,

VariableK, ParVariableK, ParVariableSelK,ConstantK,

ErrorK

} tKind;

62 17 GENERAL TYPE ANALYSIS DEFINITIONS

g

This macro is invoked in de�nition 195.

UndefinedK is the kind of an object that is not declared and about which nothing is known.

The xTypeK kinds are explained in respect to �gure 1: A SimpleTypeK object is one of the simple types;
a RecordTypeK object is either a record type or an interval type; a ConTypeK object is a connection
type; a NodeTypeK object is a node type, node array type, or node group type; a NetTypeK object is a
network type; an ArrayTypeK object is an array type whose base type is neither a connection or network
type (which are forbidden) nor a node type (which is covered by NodeArrayTypeK). NodeGroupTypeK is
(surprise! surprise!) the kind of a node group type.

A ProcedureK or FunctionK object is a global, extern, or object procedure or function, respectively.
A ReductionFunctionK or WtaFunctionK object is a reduction function or winner-takes-all function,
respectively.

A VariableK object is either an object declared as either VAR, CONST, or IO or an expression whose
value cannot be determined at compile-time; a ConstantK object is either a constant (denoter), constant
expression, or a CONST object, whose value can be determined at compile time; a ConstantK can have
simple type or interval type. A ParVariableK is a VariableK object that represents a parallel variable:
not only a single object of its type, but a multitude of objects on which we can operate in parallel.
Parallel variables are node arrays (having NodeArrayTypeK type), node groups (having NodeGroupTypeK
type), slices of node arrays or groups (having NodeTypeK type), and the connection interfaces in a node
(having ConTypeK type). Network variables are not parallel variables, although they might induce parallel
operations due to existing replicates. Parallel variables are relevant for selection, subscription, I/O
assignment, and object subroutine call.

The ErrorK kind is used to
ag internal errors in the compiler only.

17.2 Properties and attributes

To store the properties of objects in the de�nition table, these properties have to be declared in a tiny
language called property de�nition language in Eli. This language allows to include header �les to declare
types, to give a list of property names and a type name to declare properties and to request additional
operations (beyond the standard GetX and SetX) to be de�ned for individual properties. Here is the
property de�nition �le that is used for the type analysis in the CuPit compiler:

Type Analysis Properties[81] �81

f

Sym: Int;

Kind: tKind;

Type: DefTableKey;

OilType: tOilType;

Access: tAccess;

Mode: tInterfaceMode;

Dataloc: tInterfaceMode;

IsUsed: int;

MergeDefs: int;

Val: CupitConst;

Params: KeyArray;

CentralAgent: Bool;

MayBeRead,

MayBeWritten: DefTblKeySet;

NeedConReduction,

NeedNodeReduction,

NeedNetReduction,

NeedConWta,

NeedNodeWta,

17.2 Properties and attributes 63

NeedNetWta: Bool;

g

This macro is invoked in de�nition 192.

Most properties correspond to attributes with the same name. The semantics of the attributes and
properties are discussed below.

In the now following attribute declarations, the keywords SYNT and INH indicate that the respective
attributes are synthesized (i.e., propagated upwards in the syntax tree) or inherited (i.e., propagated
downwards in the syntax tree), respectively. Eli could usually determine this attribute class itself; the
information is given here explicitly for increased clarity.

Type Analysis Attributes[82] � 82

f

ATTR Sym: int SYNT;

ATTR nr: int SYNT;

ATTR str: String SYNT;

ATTR Kind, Kind2: tKind SYNT;

ATTR InhKind: tKind INH;

ATTR Key: DefTableKey SYNT;

ATTR Type, Type2: DefTableKey SYNT;

ATTR ParVarType: DefTableKey SYNT;

ATTR InhType, InhKey: DefTableKey INH;

ATTR MeType, YouType: DefTableKey INH;

ATTR ScopeKey: DefTableKey INH;

ATTR Access: tAccess SYNT;

ATTR InhAccess: tAccess INH;

ATTR Mode: tInterfaceMode SYNT;

ATTR ParVarMode: tInterfaceMode SYNT;

ATTR InhMode: tInterfaceMode INH;

ATTR Dataloc: tInterfaceMode SYNT;

ATTR IsUsed: int SYNT;

ATTR Context: tContext INH;

ATTR LoopNest: int INH;

ATTR Val: CupitConst SYNT;

ATTR Params: KeyArray SYNT;

ATTR InhParams: KeyArray INH;

ATTR CentralAgent: Bool SYNT;

ATTR MayBeUsed: DefTblKeySet SYNT;

ATTR MayBeRead: DefTblKeySet SYNT;

ATTR MayBeWritten: DefTblKeySet SYNT;

ATTR NetVar: DefTableKey SYNT;

ATTR Operator: tOilOp SYNT;

ATTR done1, done2: VOID SYNT;

g

This macro is invoked in de�nition 193.

The Sym attribute is the string handle returned by the scanner for all non-literal terminal symbols (TERMs).
nr and str are use-it-as-you-like attributes that are used as local variables for various purposes in some
rules.

The meaning of Kind was already discussed above. The InhKind attribute is used to propagate the type
kind of a declaration list into the list body (containing the names).

The Type and Key attributes are used to propagate type information and object identity information,
respectively, upwards in the tree. InhType and InhKey are used to propagate a Type or Key that came
upwards from one subtree downwards into another (for example to give type de�nition bodies access to
the type name they describe, so properties of the type name can be set from rules for the type de�nition

64 17 GENERAL TYPE ANALYSIS DEFINITIONS

body). This InhX naming convention is used for many attributes that are used in a way similar to this;
these attributes will not always be explained individually. Type2 is an auxiliary attribute used locally in
some rules.

The Type property and attribute is used to store the type of data objects, formal parameters, and expres-
sions and the return type of global functions, object functions, and reduction functions. For procedures
a virtual return type represented by VoidKey is used. For array and group types, Type is used to store
the base type. MeType represents the type of the implicit parameter ME for object procedures, object
functions, reduction functions, winner-takes-all functions, and merge procedures. Analogously, YouType
represents the type of the implicit parameter YOU for reduction functions, winner-takes-all functions, and
merge procedures. The property OilType is used to store the corresponding Oil type for each named type;
it is not set for data objects. See section 22.1. ParVarType propagates the type of a parallel variable to a
parallel variable selection, because the type is needed for the code generation of CONNECT and REDUCTION

statements.

Key represents the de�nition table entry created for each named object. The de�nition table module is
created automatically by Eli from the pdl �les. Due to interface constraints of the generic name analysis
module field.gnrc, Key must also be used inherited in some places. ScopeKey is introduced locally by
the field.gnrc module; we declare it globally here for convenience and clarity.

The Access property speci�es for a named data object or a formal parameter whether it has CONST, VAR,
or IO access rights (values ConstAcc, VarAcc, IoAcc, respectively). For objects that are parameters, a
corresponding set of values also announces this fact (values ConstPAcc, VarPAcc, IoPAcc, respectively).
The Access attribute re
ects the same for expressions. ME and YOU are always treated as parameters
because they are of course implemented this way.

Access Rights of Objects[83] �83

f

typedef enum {

NoAcc, ConstAcc, VarAcc, IoAcc, ConstPAcc, VarPAcc, IoPAcc

} tAccess;

g

This macro is invoked in de�nition 195.

The following macros are supplied for testing tAccess values and to convert normal access values into
parameter access values:

Parameter Access Handler[84] �84

f

#define IsConstAcc(x) ((x) == ConstAcc || (x) == ConstPAcc)

#define IsVarAcc(x) ((x) == VarAcc || (x) == VarPAcc)

#define IsIoAcc(x) ((x) == IoAcc || (x) == IoPAcc)

#define ParameterAcc(x) ((x) == ConstAcc ? ConstPAcc : \

(x) == VarAcc ? VarPAcc : \

(x) == IoAcc ? IoPAcc : NoAcc)

g

This macro is invoked in de�nition 196.

The Mode property speci�es for a connection interface element in a node type whether it is an IN or an
OUT interface (values InMode or OutMode, respectively).

Interface Modes of Connection Elements[85] �85

f

typedef enum {

NoMode, InMode, OutMode

} tInterfaceMode;

g

This macro is invoked in de�nition 195.

17.2 Properties and attributes 65

ParVarMode propagates the mode of a parallel variable to a parallel variable selection, because the value
is needed for the code generation of, for instance, REDUCTION statements.

The Dataloc property speci�es for a connection type, which data location was chosen for it: InMode

means the data is located at input interfaces of nodes (i.e. at the output end of the connection) and the
output interfaces of this type hold only remote connection objects; OutModemeans the opposite situation.

The IsUsed property speci�es for each procedure and function whether and how it is used in the program:
used0 means the subroutine is not used at all (i.e. no code has to be generated), used means the
subroutine is used sequentially (for plain subroutines, meaning the sequential version has to be generated)
or from the same level of parallelism (for object subroutines, meaning the unvirtualized version has to be
generated), usedA means the subroutine is called in parallel (for plain subroutines, meaning the parallel
version has to be generated) or is used to introduce additional parallelism (for object procedures, meaning
the virtualized version must be generated), usedAR is valid for connection procedures only and means
a usedA-type call for remote connections (meaning the remote virtualized version has to be generated;
as opposed to a usedA-type call for local connections). The property is bitcoded. For calls from global
procedures that are not part of the central agent, we set both used and usedA.
IsUsed Values[86] �

86
f

#define used0 0

#define used 1

#define usedA 2

#define usedAR 4

g

This macro is invoked in de�nition 196.

The Context attribute is used to discriminate the kinds of environments for data declarations and state-
ments:

Kinds Of Contexts[87] � 87

f

typedef enum {

NoContext, GlobalContext, GlobalSubroutineContext, TypeDefContext,

ObjSubroutineContext, ReductionContext, WtaContext, MergeContext

} tContext;

g

This macro is invoked in de�nition 195.

The LoopNest attribute describes the current nesting level of loops in order to be able to correctly reject
a BREAK statement outside of any loop. The root context has nesting level 0.

The MergeDefs property is used to store the number of MERGE procedures seen for a structure type; zero
or one are legal, more than one is an error.

The Val property is used to store the values of constant objects and constant expressions of integer, real,
or interval types. The Val property is also used to store the number of elements of an array type. The
Val attribute propagates the values during the evaluation of constant expressions. When Val is invalid,
it holds the value ErrorConst.

The Params attribute and property are used to compute and store the parameter list of a procedure or
function. InhParams is used to supply the formal parameter list for the analysis of an actual parameter
list. The Params property is also used for types to store the arguments needed by a type constructor.

The CentralAgent attribute and property are used to compute and whether a certain global subroutine
is free (false) or belongs to the central agent (true). The attribute is computed at object names (true
for network variables, false otherwise) and global subroutine calls (true for central agent subroutines,
false otherwise) and collected at the subroutine de�nition level where it is stored in the property of
the subroutine; due to the de�ned-before-applied restriction on the order of subroutine de�nitions, this
behavior constitutes a correct transitive-hull computation.

66 17 GENERAL TYPE ANALYSIS DEFINITIONS

The MayBeUsed, MayBeRead, and MayBeWritten attributes are used to compute for each object subroutine
the elements of ME that are statically read or written in it (i.e. may be dynamically read or written in
a call to it). MayBeUsed is used at the object and expression level where we can not decide whether the
access is a read or write access. The other two attributes are used at the statement level, for subscription
expressions, and for actual parameter expressions where we can decide whether the accesses are read or
write accesses. The corresponding properties are set for each object subroutine.

The NetVar attribute is computed at the InitDataId symbol and is the key for network variables and
NoKey otherwise. This symbol is used with a CONSTITUENTS clause at the root symbol in order to
collect the names of the variables that have to be initialized by a global initialization procedure call.

The Operator attribute is used to propagate the Oil representation of an operator from an operator leaf
to the expression subtree immediately above; see section 22.1.

NeedConReduction, NeedNodeReduction, and NeedNetReduction are boolean properties that are set to
true for the type x when an actual reduction statement for values of type x is encountered during type
analysis. Which of the three properties is used depends on whether the reduction statement is found in a
connection, node or network subroutine. The properties announce that an a REDUCTION procedure has to
be generated for the respective object category. The properties are reset to false by the code generation
phase as soon as the a REDUCTION procedure was generated. The property remains unde�ned for any
type for which no respective reduction statement is issued somewhere in the program.

NeedConWta, NeedNodeWta, and NeedNetWta are the analog properties for winner-takes-all functions
(a WTA). They are used in exactly the same fashion.

done1 and done2 are used locally in some rules merely to introduce dependencies for certain actions.

17.3 Properties of prede�ned objects

For the prede�ned objects, the properties must be set by the compiler before the actual compilation
begins. This is done in a way similar to that used to de�ne the prede�ned objects in section 16.3.

For the prede�ned types, we only have to set the Kind property and compute the corresponding Oil types,
for the prede�ned constants (true, false), the kind, type and value must be set.

Set Properties of Prede�ned Objects[88] �88

f

extern void SetPredefObjProperties ()

{

DefTableKey HelpKey;

KeyArray HelpArray;

SetKind (BoolKey, SimpleTypeK, ErrorK);

SetKind (IntKey, SimpleTypeK, ErrorK);

SetKind (Int1Key, SimpleTypeK, ErrorK);

SetKind (Int2Key, SimpleTypeK, ErrorK);

SetKind (RealKey, SimpleTypeK, ErrorK);

SetKind (StringKey, SimpleTypeK, ErrorK);

SetKind (IntervalKey, RecordTypeK, ErrorK);

SetKind (Interval1Key, RecordTypeK, ErrorK);

SetKind (Interval2Key, RecordTypeK, ErrorK);

SetKind (RealervalKey, RecordTypeK, ErrorK);

SetKind (trueKey, ConstantK, ErrorK);

SetVal (trueKey, SetIval (true), ErrorConst);

SetType (trueKey, BoolKey, NoKey);

SetKind (falseKey, ConstantK, ErrorK);

SetVal (falseKey, SetIval (false), ErrorConst);

17.4 General traversal order 67

SetType (falseKey, BoolKey, NoKey);

Set Oil Types For Standard Types[148]

De�ne Conversion[89](`Int';` Real')
De�ne Conversion[89](`Int2';` Int')
De�ne Conversion[89](`Int1';` Int')
De�ne Conversion[89](`Real';` Int')

}

g

This macro is invoked in de�nition 194.

For the standard type conversions we de�ne the Params property with a single constant parameter given.

De�ne Conversion[89](�2) � 89

fHelpArray = NewKeyArray (1);

HelpKey = NewKey();

SetAccess (HelpKey, ConstPAcc, NoAcc);

SetType (HelpKey, �2Key, NoKey);

StoreKeyInArray (HelpArray, 0, HelpKey);

SetParams (�1Key, HelpArray, NoKeyArray);

g

This macro is invoked in de�nitions 88, 88, 88, and 88.

17.4 General traversal order

Most of the CuPit type analysis can be done in a single text-order traversal of the syntax tree. We thus
de�ne a CHAIN known that represents the invariant \all visible objects have all their visible type analysis
properties de�ned".

The declaration of a CHAIN x makes Eli introduce two attributes x pre and x post of VOID type (i.e.,
the attributes are either set or not, but do not have any particular value). Accessing a chain always
accesses either of these attributes: In a rule context A ::= B C assignments A.x = ... and uses B.x

access x post while assignments B.x = ... or C.x = ... and uses A.x access x pre. These attribute
accesses can be used to force computations in arbitrary parts of the subtree below the CHAINSTART of the
chain to occur in a single left-to-right depth-�rst text-order traversal of the subtree.

Traversal Order Invariant[90] � 90

f

CHAIN known: VOID;

SYMBOL CupitProgram COMPUTE

CHAINSTART HEAD.known =

ORDER (SetPredefObjProperties (),

Messag (NOTE, "setpredefobjproperties()")) DEPENDS_ON THIS.Env;

Messag (NOTE, "everything is 'known' now ") DEPENDS_ON TAIL.known;

IF (GT (NrOfErrors, 0),

Message (DEADLY, "No code was generated")) DEPENDS_ON TAIL.known;

END;

g

This macro is invoked in de�nition 193.

18 Type de�nitions

Type De�nition Analysis[91] � 91

68 18 TYPE DEFINITIONS

f

Type De�nition Key [92]
Symbolic Type Analysis[94]
Structure Type Scoping Rules[95]
Record Type Analysis[96]
Node Type Analysis[98]
Connection Type Analysis[100]
Array Type Analysis[101]
Group Type Analysis[102]
Network Type Analysis[103]
g

This macro is invoked in de�nition 193.

When a type de�nition is processed, two things have to be done:

1. The structure of the new type must be determined and a (compiler-internal) object that describes
this structure be created.

2. The structure of the new type must be bound to the name of the new type.

The latter is prepared here by making the Key of the new type name available to the type de�nition body
subtree TypeDefBody as InhKey. The same technique is used at many other places in this compiler; it
will not be described there again.

Type De�nition Key [92] �92

f

RULE rTypeDef :

TypeDef ::= 'TYPE' NewTypeId 'IS' TypeDefBody 'END' OptTYPE

COMPUTE

TypeDefBody.InhKey = NewTypeId.Key;

TypeDefBody.Context = TypeDefContext;

END;

g

This macro is de�ned in de�nitions 92 and 93.

This macro is invoked in de�nition 91.

For all identi�ers we set the Sym property in order to be able to produce error messages that explicitly
contain the identi�er although at the point where the message is produced we only have its key. This is
particularly useful for type names in order to make type con
icts clearer in the error messages.

Type De�nition Key [93] �93

f

RULE rNewTypeId :

NewTypeId ::= UppercaseIdent

COMPUTE

NewTypeId.known = SetSym (NewTypeId.Key, NewTypeId.Sym, NoSym)

DEPENDS_ON NewTypeId.known;

END;

g

This macro is de�ned in de�nitions 92 and 93.

This macro is invoked in de�nition 91.

18.1 Symbolic type de�nitions

To introduce a symbolic type, we have to compute and bind a value (the EnumIdNo) for each enumeration
identi�er. Since assignment and comparison is de�ned for values of a symbolic type, we also instantiate
an Oil schema (using NewSymbolicOilType) for the type.

Symbolic Type Analysis[94] �94

18.2 Scoping in structured types 69

f

CHAIN EnumIdNo : int;

RULE rSymbolicTypeDef :

SymbolicTypeDef ::= 'SYMBOLIC' NewEnumIdList OptSEMICOLON

COMPUTE

.Type = INCLUDING TypeDefBody.InhKey;

NewEnumIdList.known =

ORDER (SetKind (.Type, SymbolicTypeK, SymbolicTypeK),

SetOilType (.Type, NewSymbolicOilType(.Type), OilErrorType()))

DEPENDS_ON SymbolicTypeDef.known;

CHAINSTART NewEnumIdList.EnumIdNo = 0;

END;

RULE rNewEnumId :

NewEnumId ::= LowercaseIdent

COMPUTE

NewEnumId.known =

ORDER (SetVal (NewEnumId.Key, SetIval (NewEnumId.EnumIdNo), ErrorConst),

SetKind (NewEnumId.Key, ConstantK, ErrorK),

SetSym (NewEnumId.Key, NewEnumId.Sym, NoSym))

DEPENDS_ON NewEnumId.known;

NewEnumId.EnumIdNo = ADD (NewEnumId.EnumIdNo, 1); /* postincrement */

END;

g

This macro is invoked in de�nition 91.

18.2 Scoping in structured types

For the elements of structured types (records, connections, nodes, networks) di�erent scoping rules apply
than for the other names in a CuPit program: If an element name is de�ned within a structure of type
T, then the scope of that de�nition is the name following the dot in all phrases of the form Object '.'

LowercaseIdent for which Object yields an object of type T.

Scope rules of this kind are common in programming languages, and they cannot be veri�ed dur-
ing scope analysis because they depend on type analysis. Eli provides a generic library module
$/Tool/lib/Name/Field.gnrc to implement consistent renaming according to this rule. Field.gnrc

exports four symbols to describe the concepts involved: A FieldScope is a phrase that contains element
de�nitions, a FieldDef is an element name de�nition, and a FieldUse is an element name use. RootField
is a phrase containing all of the FieldScope phrases in the source program. Name de�nitions and uses
are assumed to be represented by tree nodes having a Sym attribute that speci�es the corresponding name
(this attribute is automatically set by the scanner in Eli). The module will compute the value of a Key

attribute of type DefTableKey at each tree node representing a name de�nition or use. Key attribute
values of associated de�nitions and uses will be identical. If a use is not associated with any de�nition, its
Key attribute will be the distinguished DefTableKey value NoKey (which is always used in Eli to indicate
a non-valid or unavailable key).

Each FieldScope must be provided with a Key attribute of type DefTableKey by some mechanism
outside of the module. The same DefTableKey value must be provided as the ScopeKey attribute of each
FieldUse or FieldDef, again via a mechanism outside of the module. It is this DefTableKey value that
links the �eld with the record in which it is de�ned.

Since the element names must be unique within a structure and every element must be de�ned, the
symbols also inherit from the error reporting modules discussed in section 16.

The rules for FieldUse will not be de�ned here; they are discussed in section 23.

Structure Type Scoping Rules[95] � 95

70 18 TYPE DEFINITIONS

f

SYMBOL CupitProgram INHERITS RootField END;

SYMBOL StructureTypeDef: Key: DefTableKey INH;

SYMBOL StructureTypeDef INHERITS FieldScope, RangeUnique COMPUTE

INH.Key = INCLUDING TypeDefBody.InhKey; /* to satisfy Field.gnrc */

END;

SYMBOL NewElemId INHERITS FieldDef, IdDefUnique, NameOccurrence COMPUTE

INH.ScopeKey = INCLUDING TypeDefBody.InhKey; /* to satisfy Field.gnrc */

SYNT.known =

ORDER (

SetType (THIS.Key, INCLUDING InitElemIdList.InhType, NoKey),

SetKind (THIS.Key, VariableK, VariableK),

SetSym (THIS.Key, THIS.Sym, NoSym),

Messag3 (NOTE, "%s %s into type %s",

SymString (GetSym (INCLUDING InitElemIdList.InhType, NoSym)),

SymString (THIS.Sym),

SymString (GetSym (THIS.ScopeKey, NoSym))))

DEPENDS_ON THIS.known;

END;

g

This macro is invoked in de�nition 91.

18.3 Record type de�nitions

We set the Kind property of a record type to RecordTypeK. For each data element in a record type
de�nition we have to compute its type property. Therefore, for any RecordDataElemDef phrase we
propagate the type given to be accessed by the NewElemId phrases.

Record Type Analysis[96] �96

f

SYMBOL RecordTypeDef INHERITS StructureTypeDef END;

RULE rRecordTypeDef :

RecordTypeDef ::= 'RECORD' RecordElemDefList

COMPUTE

.Type = RecordTypeDef.Key;

RecordElemDefList.known = ORDER (

SetKind (.Type, RecordTypeK, RecordTypeK),

Messag1 (NOTE, "RecordScope %s", SymString (GetSym (.Type, NoSym))))

DEPENDS_ON RecordTypeDef.known;

END;

RULE rRecordDataElemDef :

RecordDataElemDef ::= TypeId InitElemIdList

COMPUTE

InitElemIdList.InhType = TypeId.Key;

InitElemIdList.InhKind = TypeId.Kind;

InitElemIdList.known =

IF (EQ (TypeId.Kind, NetTypeK),

Message (ERROR, "networks cannot be elements of records"),

IF (OR (OR (EQ (TypeId.Kind, NodeTypeK), EQ (TypeId.Kind, NodeArrayTypeK)),

EQ (TypeId.Kind, NodeGroupTypeK)),

Message (ERROR, "nodes cannot be elements of records"),

IF (EQ (TypeId.Kind, ConTypeK),

18.4 Node type de�nitions 71

Message (ERROR, "connections cannot be elements of records"))))

DEPENDS_ON RecordDataElemDef.known;

END;

g

This macro is de�ned in de�nitions 96 and 97.

This macro is invoked in de�nition 91.

The now following analysis of the \initialized element identi�er list" (InitElemIdList) is also used for the
data elements of the network, node, and connection types. We just record the type and kind (VariableK)
of each element and check that the initializer (if any) has an assignment-compatible type and a constant
value.

Record Type Analysis[97] � 97

f

RULE rInitElemIdList :

InitElemIdList ::= InitElemIdList ',' InitElemId

COMPUTE

TRANSFER InhType, InhKind;

END;

RULE rInitElemIdList1 :

InitElemIdList ::= InitElemId

COMPUTE

TRANSFER InhType, InhKind;

END;

RULE rInitElemId1 :

InitElemId ::= NewElemId ':=' Expr

COMPUTE

InitElemId.known =

ORDER (

/* for SetKind, SetType see SYMBOL NewElemId */

IF (AND (AND (NE (InitElemId.InhType, NoKey), /* Elem type defined */

NE (Expr.Type, NoKey)), /* and initializer type defined */

NOT (OilIsValidOp (OilIdOp2 (AssignOp, /* but assignment not */

DefTbl2Oil (InitElemId.InhType), DefTbl2Oil (Expr.Type))))),

Message2 (ERROR, "Initializer has wrong type: %s (expected: %s)",

SymString (GetSym (Expr.Type, NoSym)),

SymString (GetSym (InitElemId.InhType, NoSym)))))

DEPENDS_ON TAIL.known;

END;

g

This macro is de�ned in de�nitions 96 and 97.

This macro is invoked in de�nition 91.

For de�nitions of subroutine elements (procedures, merge procedures, functions), see section 20.

18.4 Node type de�nitions

The scoping rules for node elements are the same as for record elements; see section 18.2 for a description.
See section 18.3 for a description of the analysis of data element de�nition lists. The same element types
are allowed; the messages for illegal element types are di�erent, though. In addition to the element
categories for record types we have to process interface de�nitions.

Node Type Analysis[98] � 98

f

72 18 TYPE DEFINITIONS

SYMBOL NodeTypeDef INHERITS StructureTypeDef END;

RULE rNodeTypeDef :

NodeTypeDef ::= 'NODE' NodeElemDefList

COMPUTE

.Type = NodeTypeDef.Key;

NodeElemDefList.known = ORDER (

SetKind (.Type, NodeTypeK, NodeTypeK),

Messag1 (NOTE, "NodeScope %s", SymString (GetSym (.Type, NoSym))))

DEPENDS_ON NodeTypeDef.known;

END;

RULE rNodeDataElemDef :

NodeDataElemDef ::= TypeId InitElemIdList

COMPUTE

InitElemIdList.InhType = TypeId.Key;

InitElemIdList.InhKind = TypeId.Kind;

InitElemIdList.known =

IF (EQ (TypeId.Kind, NetTypeK),

Message (ERROR, "Networks cannot be elements of nodes"),

IF (OR (OR (EQ (TypeId.Kind, NodeTypeK), EQ (TypeId.Kind, NodeArrayTypeK)),

EQ (TypeId.Kind, NodeGroupTypeK)),

Message (ERROR, "Nodes cannot be elements of nodes"),

IF (EQ (TypeId.Kind, ConTypeK),

Message (ERROR, "Interface mode (IN or OUT) missing"))))

DEPENDS_ON NodeDataElemDef.known;

END;

g

This macro is de�ned in de�nitions 98 and 99.

This macro is invoked in de�nition 91.

For interface de�nitions (NodeInterfaceElemDef) we have to check that the given type is a connection
type.

Node Type Analysis[99] �99

f

RULE rNodeInterfaceElemDef :

NodeInterfaceElemDef ::= InterfaceMode TypeId InterfaceIdList

COMPUTE

InterfaceIdList.InhMode = InterfaceMode.Mode;

InterfaceIdList.InhType = TypeId.Key;

InterfaceIdList.InhKind = TypeId.Kind;

InterfaceMode.known =

IF (NE (GetKind (TypeId.Key, ConTypeK), ConTypeK),

Message (ERROR, "Only connection types can have IN or OUT"))

DEPENDS_ON NodeInterfaceElemDef.known;

END;

RULE rInterfaceModeIn :

InterfaceMode ::= 'IN'

COMPUTE

InterfaceMode.Mode = InMode;

END;

RULE rInterfaceModeOut :

InterfaceMode ::= 'OUT'

COMPUTE

18.5 Connection type de�nitions 73

InterfaceMode.Mode = OutMode;

END;

RULE rInterfaceIdList1 :

InterfaceIdList ::= NewInterfaceId

COMPUTE

TRANSFER InhType, InhKind, InhMode;

END;

RULE rInterfaceIdList :

InterfaceIdList ::= InterfaceIdList ',' NewInterfaceId

COMPUTE

TRANSFER InhType, InhKind, InhMode;

END;

SYMBOL NewInterfaceId INHERITS FieldDef, IdDefUnique, NameOccurrence COMPUTE

INH.ScopeKey = INCLUDING TypeDefBody.InhKey; /* to satisfy Field.gnrc */

SYNT.known =

ORDER (SetKind (THIS.Key, VariableK, VariableK),

SetType (THIS.Key, THIS.InhType, NoKey),

SetSym (THIS.Key, THIS.Sym, NoSym),

SetMode (THIS.Key, THIS.InhMode, NoMode)) DEPENDS_ON THIS.known;

END;

g

This macro is de�ned in de�nitions 98 and 99.

This macro is invoked in de�nition 91.

18.5 Connection type de�nitions

The scoping rules for connection elements are the same as for record elements; see section 18.2 for a
description. See section 18.3 for a description of the analysis of data element de�nition lists. The same
element types are allowed; the messages for illegal element types are di�erent, though.

Connection Type Analysis[100] � 100

f

SYMBOL ConnectionTypeDef INHERITS StructureTypeDef END;

RULE rConnectionTypeDef :

ConnectionTypeDef ::= 'CONNECTION' ConElemDefList

COMPUTE

.Type = ConnectionTypeDef.Key;

ConElemDefList.known = ORDER (

SetKind (.Type, ConTypeK, ConTypeK),

SetDataloc (.Type, IF (conAtOut, OutMode, InMode), NoMode),

Messag1 (NOTE, "ConScope %s", SymString (GetSym (.Type, NoSym))))

DEPENDS_ON ConnectionTypeDef.known;

END;

RULE rConDataElemDef :

ConDataElemDef ::= TypeId InitElemIdList

COMPUTE

InitElemIdList.InhType = TypeId.Key;

InitElemIdList.InhKind = TypeId.Kind;

InitElemIdList.known =

IF (EQ (TypeId.Kind, NetTypeK),

74 18 TYPE DEFINITIONS

Message (ERROR, "Networks cannot be elements of connections"),

IF (OR (OR (EQ (TypeId.Kind, NodeTypeK), EQ (TypeId.Kind, NodeArrayTypeK)),

EQ (TypeId.Kind, NodeGroupTypeK)),

Message (ERROR, "Nodes cannot be elements of connections"),

IF (EQ (TypeId.Kind, ConTypeK),

Message (ERROR, "Connections cannot be elements of connections"))))

DEPENDS_ON ConDataElemDef.known;

END;

g

This macro is de�ned in de�nitions 100.

This macro is invoked in de�nition 91.

18.6 Array type de�nitions

An array type can have any other type as its base type, except a connection or network type. We thus
have to emit an error message for these cases. Negative or non-integral or non-constant array sizes also
evoke an error message.

Array Type Analysis[101] �101

f

ATTR BaseTypeKind, ArrayTypeKind : tKind;

RULE rArrayTypeDef :

ArrayTypeDef ::= 'ARRAY' '[' ArraySize ']' 'OF' TypeId

COMPUTE

.BaseTypeKind = TypeId.Kind;

.ArrayTypeKind =

IF (EQ (.BaseTypeKind, ConTypeK),

ORDER (Message (ERROR, "Arrays of connections are impossible"),

UndefinedK),

/* else: */

IF (EQ (.BaseTypeKind, NetTypeK),

ORDER (Message (ERROR, "Arrays of networks are not allowed"),

UndefinedK),

/* else: */

IF (OR (OR (EQ (.BaseTypeKind, ArrayTypeK),

EQ (.BaseTypeKind, NodeArrayTypeK)),

EQ (.BaseTypeKind, NodeGroupTypeK)),

ORDER (Message (ERROR, "Arrays of arrays are not implemented"),

UndefinedK),

/* else: */

IF (EQ (.BaseTypeKind, NodeTypeK),

NodeArrayTypeK,

/* else: */

ArrayTypeK)))) DEPENDS_ON ArrayTypeDef.known;

ArrayTypeDef.known =

ORDER (.ArrayTypeKind,

SetKind (INCLUDING TypeDefBody.InhKey, .ArrayTypeKind,

.ArrayTypeKind),

SetType (INCLUDING TypeDefBody.InhKey, TypeId.Key, NoKey),

SetVal (INCLUDING TypeDefBody.InhKey, ArraySize.Val, ErrorConst))

DEPENDS_ON TAIL.known;

END;

RULE rArraySize :

18.7 Group type de�nitions 75

ArraySize ::= Expr

COMPUTE

ArraySize.Val =

IF (AND (NE (Expr.Kind, UndefinedK), NE (Expr.Kind, ConstantK)),

ORDER (Message (ERROR, "Array size must be constant expression"),

SetIval (1)),

/* else */

IF (AND (AND (AND (NE (Expr.Type, IntKey), NE (Expr.Type, Int2Key)),

NE (Expr.Type, Int1Key)), NE (Expr.Type, NoKey)),

ORDER (Message (ERROR, "Array size must be integer expression"),

SetIval (1)),

/* else */

IF (AND (EQ (Expr.Kind, ConstantK), LE (GetIval (Expr.Val), 0)),

ORDER (Message1 (ERROR, "Array size must be positive (is: %d)",

GetIval (Expr.Val)),

SetIval (1)),

/* else */

Expr.Val))) DEPENDS_ON TAIL.known;

ArraySize.known = ArraySize.Val;

END;

g

This macro is invoked in de�nition 91.

18.7 Group type de�nitions

A group type must have a node type as its base type; we thus have to emit an error message if this is
not the case.

Group Type Analysis[102] � 102

f

ATTR BaseTypeKind, GroupTypeKind : tKind;

RULE rGroupTypeDef :

GroupTypeDef ::= 'GROUP' 'OF' TypeId

COMPUTE

.BaseTypeKind = TypeId.Kind;

.GroupTypeKind =

IF (AND (NE (.BaseTypeKind, UndefinedK), NE (.BaseTypeKind, NodeTypeK)),

ORDER (Message (ERROR, "Groups can be defined for Nodes only"),

UndefinedK),

NodeGroupTypeK);

GroupTypeDef.known =

ORDER (SetKind (INCLUDING TypeDefBody.InhKey, .GroupTypeKind,

.GroupTypeKind),

SetType (INCLUDING TypeDefBody.InhKey, TypeId.Key, NoKey))

DEPENDS_ON TypeId.known;

END;

g

This macro is invoked in de�nition 91.

18.8 Network type de�nitions

The scoping rules for network elements are the same as for record elements; see section 18.2 for a
description. Node groups and node arrays are allowed as elements.

76 19 DATA OBJECT DEFINITIONS

Network Type Analysis[103] �103

f

SYMBOL NetworkTypeDef INHERITS StructureTypeDef END;

RULE rNetworkTypeDef :

NetworkTypeDef ::= 'NETWORK' NetElemDefList

COMPUTE

.Type = NetworkTypeDef.Key;

NetElemDefList.known = ORDER (

SetKind (.Type, NetTypeK, NetTypeK),

Messag1 (NOTE, "NetScope %s", SymString (GetSym (.Type, NoSym))))

DEPENDS_ON NetworkTypeDef.known;

END;

RULE rNetDataElemDef :

NetDataElemDef ::= TypeId InitElemIdList

COMPUTE

InitElemIdList.InhType = TypeId.Key;

InitElemIdList.InhKind = TypeId.Kind;

InitElemIdList.known =

IF (EQ (TypeId.Kind, NetTypeK),

Message (ERROR, "Networks cannot be elements of Networks"),

IF (EQ (TypeId.Kind, NodeTypeK),

Message (ERROR, "Single nodes cannot be elements of networks"),

IF (EQ (TypeId.Kind, ConTypeK),

Message (ERROR, "Connections cannot be explicit elements of networks"))))

DEPENDS_ON NetDataElemDef.known;

END;

g

This macro is de�ned in de�nitions 103.

This macro is invoked in de�nition 91.

19 Data object de�nitions

To handle data object de�nitions, we have to propagate the type and access information into the
InitDataIdList. For the latter, we then have to check types compatibility and correct presence or
absence of initializers.

Data Object De�nition Analysis[104] �104

f

RULE rDataObjectDef:

DataObjectDef ::= TypeId AccessType InitDataIdList

COMPUTE

InitDataIdList.InhType = TypeId.Key;

InitDataIdList.InhKind = TypeId.Kind;

InitDataIdList.InhAccess = AccessType.Access;

END;

RULE rTypeId :

TypeId ::= UppercaseIdent

COMPUTE

TypeId.Kind = GetKind (TypeId.Key, UndefinedK) DEPENDS_ON TypeId.known;

TypeId.known = TypeId.Kind;

END;

77

RULE rConstAccess :

AccessType ::= 'CONST'

COMPUTE

AccessType.Access = ConstAcc;

END;

RULE rVarAccess :

AccessType ::= 'VAR'

COMPUTE

AccessType.Access = VarAcc;

END;

RULE rIoAccess :

AccessType ::= 'IO'

COMPUTE

AccessType.Access = IoAcc;

END;

g

This macro is de�ned in de�nitions 104 and 105.

This macro is invoked in de�nition 193.

With the declarations above, the type and access of the declaration are available in the InitDataIdList.
So now we check the following: (1) Initializers may be present at VAR objects, (2) must be present at
CONST objects, and (3) must not be present at IO objects. (4) If an initializer is present, its type must
be assignment compatible with the object type; for global variables and constants, this intializer must
be a compile-time constant expression. We also compute the Kind: For CONST objects with a constant
expression as initializer it is ConstantK, otherwise it is VariableK.

Data Object De�nition Analysis[105] � 105

f

RULE rInitDataIdList1 :

InitDataIdList ::= InitDataId

COMPUTE

TRANSFER InhType, InhKind, InhAccess;

END;

RULE rInitDataIdList :

InitDataIdList ::= InitDataIdList ',' InitDataId

COMPUTE

TRANSFER InhType, InhKind, InhAccess;

END;

RULE rInitDataId0 :

InitDataId ::= NewDataId

COMPUTE

InitDataId.NetVar =

IF (EQ (InitDataId.InhKind, NetTypeK),

NewDataId.Key, /* else */ NoKey);

NewDataId.known =

IF (IsConstAcc (InitDataId.InhAccess),

Message (ERROR, "CONST objects must be initialized"))

DEPENDS_ON InitDataId.known;

END;

RULE rInitDataId1 :

InitDataId ::= NewDataId ':=' Expr

78 20 SUBROUTINE DEFINITIONS

COMPUTE

.Type = InitDataId.InhType;

InitDataId.NetVar =

IF (EQ (InitDataId.InhKind, NetTypeK),

NewDataId.Key, /* else */ NoKey);

InitDataId.known = ORDER (

IF (IsIoAcc (InitDataId.InhAccess),

Message (ERROR, "IO objects cannot be initialized")),

IF (AND (IsConstAcc (InitDataId.InhAccess),

EQ (Expr.Kind, ConstantK)),

ORDER (SetKind (NewDataId.Key, ErrorK, ConstantK), /* is a change! */

SetVal (NewDataId.Key, Expr.Val, ErrorConst),

Messag2 (NOTE, "CONST %s = %f",

SymString (GetSym (NewDataId.Key, NoSym)),

GetRval (GetVal (NewDataId.Key, ErrorConst))))),

IF (AND (EQ (Context Kind[111], GlobalContext),

EQ (Expr.Kind, VariableK)),

Message (ERROR, "Initializers of global CONSTs/VARs must be constant")),

IF (/* Incompatible type of initializer: */

AND (AND (NE (.Type, NoKey), NE (Expr.Type, NoKey)),

NOT (OilIsValidOp (OilIdOp2 (AssignOp, DefTbl2Oil (.Type),

DefTbl2Oil(Expr.Type))))),

Message2 (ERROR, "Initializer has incompatible type: %s (expected: %s)",

SymString (GetSym (Expr.Type, NoSym)),

SymString (GetSym (.Type, NoSym)))))

DEPENDS_ON Expr.known;

END;

RULE rNewDataId :

NewDataId ::= LowercaseIdent

COMPUTE

NewDataId.known =

ORDER (SetType (NewDataId.Key, INCLUDING InitDataId.InhType, NoKey),

SetKind (NewDataId.Key, VariableK, VariableK),

SetSym (NewDataId.Key, NewDataId.Sym, NoSym),

SetAccess (NewDataId.Key, INCLUDING InitDataId.InhAccess, VarAcc))

DEPENDS_ON NewDataId.known;

END;

g

This macro is de�ned in de�nitions 104 and 105.

This macro is invoked in de�nition 193.

20 Subroutine de�nitions

The analysis of subroutine de�nitions must determine the following features:

1. Result type of subroutine (Void for procedures); stored in InhType attribute and in Type property
of subroutine name.

2. Object type of subroutine (Void for non-object subroutines); stored in MeType attribute.

3. Type and access mode of all parameters; stored in Params property.

4. Initial local environment of procedure body, based on parameter list.

The analysis consists of the following parts:

Subroutine De�nition Analysis[106] �106

79

f

Subroutine Type Remote Access[107]
Procedure De�nition Analysis[112]
Function De�nition Analysis[113]
Object Procedure De�nition Analysis[114]
Object Function De�nition Analysis[116]
Parameterlist De�nition Analysis[117]
Reduction Function De�nition Analysis[121]
Wta Function De�nition Analysis[122]
Merge Procedure De�nition Analysis[123]
g

This macro is invoked in de�nition 193.

For easy access (via INCLUDING) to the InhType attribute from procedures and to MeType and YouType

from non-object procedures, we assign the value Void for these attributes at the root symbol and de�ne
appropriate macros for the access. A similar technique is used to make the Context accessible globally.

Subroutine Type Remote Access[107] � 107

f

SYMBOL CupitProgram COMPUTE

INH.InhType = VoidKey DEPENDS_ON THIS.Env;

INH.Context = GlobalContext;

END;

g

This macro is invoked in de�nition 106.

The following three macros can be used to access the result type or the type of the ME or YOU object from
within a subroutine body:

Subroutine Return Type[108] � 108

fINCLUDING (

CupitProgram.InhType,

SubroutineDescription.InhType,

ReductionFunctionBody.InhType,

WtaFunctionBody.InhType)

g

This macro is invoked in de�nitions 134, 134, 134, 134, and 134.

Subroutine ME Type[109] � 109

fINCLUDING (

CupitProgram.InhType,

TypeDefBody.InhKey,

ReductionFunctionBody.MeType,

WtaFunctionBody.MeType,

MergeProcedureBody.MeType)

g

This macro is invoked in de�nitions 112, 113, 115, 130, 131, 131, 131, 132, 138, 139, 182, 186, 187, and 188.

Subroutine YOU Type[110] � 110

fINCLUDING (

CupitProgram.InhType,

ReductionFunctionBody.YouType,

WtaFunctionBody.YouType,

MergeProcedureBody.YouType)

g

This macro is invoked in de�nition 186.

To determine the context of a statement or declaration we use the following similar construction:

80 20 SUBROUTINE DEFINITIONS

Context Kind[111] �111

fINCLUDING (

CupitProgram.Context,

TypeDefBody.Context,

SubroutineDescription.Context,

ReductionFunctionBody.Context,

WtaFunctionBody.Context,

MergeProcedureBody.Context)

g

This macro is invoked in de�nitions 105, 128, 128, 131, 132, 138, 139, 143, 177, 182, 184, 184, 186, 186, and 187.

20.1 Normal procedures and functions

The simplest case for subroutine de�nition analysis are ordinary global procedures: Set the Type property
of the procedure name to Void, inherit the procedure name key into the procedure body and parameter
list analysis using the InhKey attribute, and store ProcedureK in the Kind property of the procedure
name. The SubroutineDescription phrase (including the parameter list) is handled in section 20.3
below.

Procedure De�nition Analysis[112] �112

f

RULE rProcedureDef :

ProcedureDef ::= 'PROCEDURE' NewProcedureId SubroutineDescription

OptPROCEDURE

COMPUTE

SubroutineDescription.known =

SetType (NewProcedureId.Key, VoidKey, NoKey)

DEPENDS_ON NewProcedureId.known;

SubroutineDescription.InhKey = NewProcedureId.Key;

SubroutineDescription.InhType = VoidKey;

SubroutineDescription.Context =

IF (EQ (Subroutine ME Type[109], VoidKey),

GlobalSubroutineContext, /* else */ ObjSubroutineContext);

ProcedureDef.CentralAgent =

CONSTITUENTS (FunctionCall.CentralAgent, ProcedureCall.CentralAgent,

Objectname.CentralAgent)

WITH (Bool, OR, IDENTICAL, BoolNull)

DEPENDS_ON SubroutineDescription.known;

ProcedureDef.known =

IF (EQ (SubroutineDescription.Context, GlobalSubroutineContext),

SetCentralAgent (NewProcedureId.Key, ProcedureDef.CentralAgent, false))

DEPENDS_ON SubroutineDescription.known;

END;

RULE rNewProcedureId :

NewProcedureId ::= LowercaseIdent

COMPUTE

NewProcedureId.known = ORDER (

SetKind (NewProcedureId.Key, ProcedureK, ProcedureK),

SetSym (NewProcedureId.Key, NewProcedureId.Sym, NoSym))

DEPENDS_ON NewProcedureId.known;

END;

g

This macro is invoked in de�nition 106.

20.2 Object procedures and functions 81

Global functions are handled analogously to global procedures, except that we have to register their
return type in the Type property of the function name and in the InhType attribute of the function
description phrase:

Function De�nition Analysis[113] � 113

f

RULE rFunctionDef :

FunctionDef ::= TypeId 'FUNCTION' NewFunctionId SubroutineDescription

OptFUNCTION

COMPUTE

SubroutineDescription.known =

SetType (NewFunctionId.Key, TypeId.Key, NoKey)

DEPENDS_ON NewFunctionId.known;

SubroutineDescription.InhKey = NewFunctionId.Key;

SubroutineDescription.InhType = TypeId.Key;

SubroutineDescription.Context =

IF (EQ (Subroutine ME Type[109], VoidKey),

GlobalSubroutineContext, /* else */ ObjSubroutineContext);

FunctionDef.CentralAgent =

CONSTITUENTS (ProcedureCall.CentralAgent, FunctionCall.CentralAgent,

Objectname.CentralAgent)

WITH (Bool, OR, IDENTICAL, BoolNull)

DEPENDS_ON SubroutineDescription.known;

FunctionDef.known =

IF (EQ (SubroutineDescription.Context, GlobalSubroutineContext),

SetCentralAgent (NewFunctionId.Key, FunctionDef.CentralAgent, false))

DEPENDS_ON SubroutineDescription.known;

END;

RULE rNewFunctionId :

NewFunctionId ::= LowercaseIdent

COMPUTE

NewFunctionId.known = ORDER (

SetKind (NewFunctionId.Key, FunctionK, FunctionK),

SetSym (NewFunctionId.Key, NewFunctionId.Sym, NoSym))

DEPENDS_ON NewFunctionId.known;

END;

g

This macro is invoked in de�nition 106.

20.2 Object procedures and functions

For object subroutines, we de�ne a SYMBOL NewObjRoutineId that makes it easier to satisfy the interface
requirements of the Field.gnrc module for the introduction of �eld names (in this case: subroutine
names).

Object Procedure De�nition Analysis[114] � 114

f

SYMBOL NewObjRoutineId INHERITS FieldDef, IdDefUnique, NameOccurrence COMPUTE

INH.ScopeKey = INCLUDING TypeDefBody.InhKey; /* to satisfy Field.gnrc */

END;

g

This macro is de�ned in de�nitions 114 and 115.

This macro is invoked in de�nition 106.

82 20 SUBROUTINE DEFINITIONS

Using this symbol, we now compute the type attributes and properties for the procedure as a whole (in
analogy to the way we treat global procedures in the previous section):

Object Procedure De�nition Analysis[115] �115

f

SYMBOL NewObjProcedureId INHERITS NewObjRoutineId END;

RULE rObjProcedureDef :

ObjProcedureDef ::= 'PROCEDURE' NewObjProcedureId SubroutineDescription

OptPROCEDURE

COMPUTE

.Kind = GetKind (Subroutine ME Type[109], UndefinedK)

DEPENDS_ON ObjProcedureDef.known;

SubroutineDescription.known =

SetType (NewObjProcedureId.Key, VoidKey, NoKey)

DEPENDS_ON NewObjProcedureId.known;

SubroutineDescription.InhType = VoidKey;

SubroutineDescription.InhKey = NewObjProcedureId.Key;

SubroutineDescription.Context = ObjSubroutineContext;

ObjProcedureDef.MayBeRead =

SubroutineDescription CONSTITUENTS (Assignment.MayBeRead,

InputAssignment.MayBeRead, OutputAssignment.MayBeRead,

ProcedureCall.MayBeRead, ObjectProcedureCall.MayBeRead,

ReductionStmt.MayBeRead, WtaStmt.MayBeRead,

ReturnStmt.MayBeRead, IfStmt.MayBeRead, LoopStmt.MayBeRead,

DataAllocationStmt.MayBeRead)

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

ObjProcedureDef.MayBeWritten =

SubroutineDescription CONSTITUENTS (Assignment.MayBeWritten,

InputAssignment.MayBeWritten,

ProcedureCall.MayBeWritten, ObjectProcedureCall.MayBeWritten,

ReductionStmt.MayBeWritten, WtaStmt.MayBeWritten,

LoopStmt.MayBeWritten, DataAllocationStmt.MayBeWritten)

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

/* !!! ORDER (

Message (NOTE, ""),

DSprint (stderr, ObjProcedureDef.MayBeRead),

DSprint (stderr, ObjProcedureDef.MayBeWritten),

fprintf (stderr, " is read/written in %s\n",

SymString (NewObjProcedureId.Sym))); */

ObjProcedureDef.known = ORDER (

SetMayBeRead (NewObjProcedureId.Key, ObjProcedureDef.MayBeRead,

NoDefTblKeySet),

SetMayBeWritten (NewObjProcedureId.Key, ObjProcedureDef.MayBeWritten,

NoDefTblKeySet))

DEPENDS_ON TAIL.known;

END;

RULE rNewObjProcedureId :

NewObjProcedureId ::= LowercaseIdent

COMPUTE

NewObjProcedureId.known = ORDER (

SetKind (NewObjProcedureId.Key, ProcedureK, ProcedureK),

SetSym (NewObjProcedureId.Key, NewObjProcedureId.Sym, NoSym))

DEPENDS_ON NewObjProcedureId.known;

END;

20.3 Parameter lists 83

g

This macro is de�ned in de�nitions 114 and 115.

This macro is invoked in de�nition 106.

The analysis of object functions works similarly, but here we have to set the function result type attribute
InhKey as well:

Object Function De�nition Analysis[116] � 116

f

SYMBOL NewObjFunctionId INHERITS NewObjRoutineId END;

RULE rObjFunctionDef :

ObjFunctionDef ::= TypeId 'FUNCTION' NewObjFunctionId SubroutineDescription

OptFUNCTION

COMPUTE

SubroutineDescription.known =

SetType (NewObjFunctionId.Key, TypeId.Key, NoKey)

DEPENDS_ON NewObjFunctionId.known;

SubroutineDescription.InhKey = NewObjFunctionId.Key;

SubroutineDescription.InhType = TypeId.Key;

SubroutineDescription.Context = ObjSubroutineContext;

END;

RULE rNewObjFunctionId :

NewObjFunctionId ::= LowercaseIdent

COMPUTE

NewObjFunctionId.known = ORDER (

SetKind (NewObjFunctionId.Key, FunctionK, FunctionK),

SetSym (NewObjFunctionId.Key, NewObjFunctionId.Sym, NoSym))

DEPENDS_ON NewObjFunctionId.known;

END;

g

This macro is de�ned in de�nitions 116.

This macro is invoked in de�nition 106.

20.3 Parameter lists

Parameter lists are represented as objects of type KeyArray and stored in the Params attribute and
property. To collect the parameters and give each one a number (used to select the position in the
KeyArray), we de�ne a CHAIN Paramcounter of integer type. The fact that the number of a particular
parameter identi�er has been computed, is indicated by a void attribute GotParam.

Parameterlist De�nition Analysis[117] � 117

f

CHAIN Paramcounter : int;

SYMBOL NewParamId: GotParam: VOID;

RULE rSubroutineDescription :

SubroutineDescription ::= ParamList 'IS' SubroutineBody 'END'

COMPUTE

CHAINSTART ParamList.Paramcounter = 0;

SubroutineBody.known =

SetParams (SubroutineDescription.InhKey, ParamList.Params, ParamList.Params)

DEPENDS_ON (ParamList CONSTITUENTS NewParamId.GotParam,

ParamList.known);

END;

84 20 SUBROUTINE DEFINITIONS

RULE rSubroutineDescription0 :

SubroutineDescription ::= ParamList 'IS' 'EXTERNAL'

COMPUTE

CHAINSTART ParamList.Paramcounter = 0;

SubroutineDescription.known =

SetParams (SubroutineDescription.InhKey, ParamList.Params, ParamList.Params)

DEPENDS_ON (ParamList CONSTITUENTS NewParamId.GotParam,

ParamList.known);

END;

g

This macro is de�ned in de�nitions 117, 118, 119, and 120.

This macro is invoked in de�nition 106.

When the attribution of a parameter list starts, we �rst have to count the parameters, then allocate
a KeyArray of the appropriate size, and then put all the individual parameters in this key array. The
process is simpli�ed when the parameter list is empty.

Parameterlist De�nition Analysis[118] �118

f

RULE rParamList0 :

ParamList ::= '(' ')'

COMPUTE

ParamList.Params = NewKeyArray (0);

END;

RULE rParamList :

ParamList ::= '(' Parameters ')'

COMPUTE

ParamList.Params = NewKeyArray (Parameters.Paramcounter);

END;

g

This macro is de�ned in de�nitions 117, 118, 119, and 120.

This macro is invoked in de�nition 106.

For each parameter, we have to compute the type and the access; these are propagated down to each
NewParamId using inherited attributes:

Parameterlist De�nition Analysis[119] �119

f

RULE rParamsDef :

ParamsDef ::= TypeId AccessType ParamIdList

COMPUTE

ParamIdList.InhType = TypeId.Key;

ParamIdList.InhKind = TypeId.Kind;

ParamIdList.InhAccess = ParameterAcc (AccessType.Access);

END;

RULE rParamIdList1 :

ParamIdList ::= NewParamId

COMPUTE

TRANSFER InhType, InhKind, InhAccess;

END;

RULE rParamIdList :

ParamIdList ::= ParamIdList ',' NewParamId

COMPUTE

20.4 Reduction functions 85

TRANSFER InhType, InhKind, InhAccess;

END;

g

This macro is de�ned in de�nitions 117, 118, 119, and 120.

This macro is invoked in de�nition 106.

All parameters have VariableK kind, since we do not perform interprocedural constant propagation
analysis. When the parameter is stored in the key array, the GotParam attribute is set; this must happen
only after all properties for the parameter were computed.

Parameterlist De�nition Analysis[120] � 120

f

RULE rNewParamId :

NewParamId ::= LowercaseIdent

COMPUTE

NewParamId.known =

ORDER (SetType (NewParamId.Key, NewParamId.InhType, NoKey),

SetKind (NewParamId.Key, VariableK, VariableK),

SetSym (NewParamId.Key, NewParamId.Sym, NoSym),

SetAccess (NewParamId.Key, NewParamId.InhAccess, VarPAcc))

DEPENDS_ON NewParamId.known;

NewParamId.GotParam =

ORDER (StoreKeyInArray (INCLUDING ParamList.Params,

NewParamId.Paramcounter, NewParamId.Key),

Messag3 (NOTE, "Param %d: %s %s", NewParamId.Paramcounter,

SymString (GetSym (NewParamId.InhType, NoSym)),

SymString (GetSym (NewParamId.Key, NoSym))))

DEPENDS_ON NewParamId.known;

NewParamId.Paramcounter = ADD (NewParamId.Paramcounter, 1);

END;

g

This macro is de�ned in de�nitions 117, 118, 119, and 120.

This macro is invoked in de�nition 106.

20.4 Reduction functions

Reduction functions and winner-takes-all functions have implicit parameters ME and YOU whose types can
be seen from the type name given in the function de�nition. For reduction functions this is also the
result type; for winner-takes-all functions the result type is always Bool. The context of the body of a
reduction function is ReductionContext, for a winner-takes-all function it is WtaContext.

Reduction Function De�nition Analysis[121] � 121

f

RULE rReductionFunctionDef :

ReductionFunctionDef ::= TypeId 'REDUCTION' NewReductionFunctionId 'IS'

ReductionFunctionBody 'END' OptREDUCTION

COMPUTE

ReductionFunctionBody.known =

SetType (NewReductionFunctionId.Key, TypeId.Key, NoKey)

DEPENDS_ON NewReductionFunctionId.known;

ReductionFunctionBody.InhType = TypeId.Key;

ReductionFunctionBody.MeType = TypeId.Key;

ReductionFunctionBody.YouType = TypeId.Key;

ReductionFunctionBody.Context = ReductionContext;

END;

86 20 SUBROUTINE DEFINITIONS

RULE rNewReductionFunctionId :

NewReductionFunctionId ::= LowercaseIdent

COMPUTE

NewReductionFunctionId.known = ORDER (

SetKind (NewReductionFunctionId.Key, ReductionFunctionK,

ReductionFunctionK),

SetSym (NewReductionFunctionId.Key, NewReductionFunctionId.Sym, NoSym))

DEPENDS_ON NewReductionFunctionId.known;

END;

g

This macro is invoked in de�nition 106.

20.5 Winner-takes-all functions

(see description under reduction functions above)

Wta Function De�nition Analysis[122] �122

f

RULE rWtaFunctionDef :

WtaFunctionDef ::= TypeId 'WTA' NewWtaFunctionId 'IS'

WtaFunctionBody 'END' OptWTA

COMPUTE

WtaFunctionBody.known =

SetType (NewWtaFunctionId.Key, BoolKey, NoKey)

DEPENDS_ON NewWtaFunctionId.known;

NewWtaFunctionId.InhType = TypeId.Key;

WtaFunctionBody.InhType = BoolKey;

WtaFunctionBody.MeType = TypeId.Key;

WtaFunctionBody.YouType = TypeId.Key;

WtaFunctionBody.Context = WtaContext;

END;

RULE rNewWtaFunctionId :

NewWtaFunctionId ::= LowercaseIdent

COMPUTE

NewWtaFunctionId.known = ORDER (

SetKind (NewWtaFunctionId.Key, WtaFunctionK, WtaFunctionK),

SetType (NewWtaFunctionId.Key, NewWtaFunctionId.InhType, NoKey),

SetSym (NewWtaFunctionId.Key, NewWtaFunctionId.Sym, NoSym))

DEPENDS_ON NewWtaFunctionId.known;

END;

g

This macro is invoked in de�nition 106.

20.6 Merge procedures

Since Merge procedures have no name, no assignment of name properties or attributes is necessary.
However, the object type has to be propagated into the merge procedure body and the context type
MergeContextmust be indicated. We also count the merge procedure de�nition in the type's MergeDefs
property:

Merge Procedure De�nition Analysis[123] �123

f

RULE rMergeProcDef :

87

MergeProcDef ::= 'MERGE' 'IS' MergeProcedureBody 'END' OptMERGE

COMPUTE

.Type = INCLUDING TypeDefBody.InhKey;

.Kind = GetKind (.Type, ErrorK) /* Kind of Type ! */

DEPENDS_ON MergeProcDef.known;

MergeProcedureBody.MeType = .Type;

MergeProcedureBody.YouType = .Type;

MergeProcedureBody.Context = MergeContext;

MergeProcedureBody.known =

ORDER (

SetMergeDefs (.Type, 1, ADD (GetMergeDefs (.Type, 0), 1)),

IF (GT (GetMergeDefs (.Type, 0), 1),

Message (ERROR, "Only one MERGE procedure allowed per type")),

IF (EQ (.Kind, RecordTypeK),

Message (ERROR, "MERGE procedures are impossible in RECORD types")))

DEPENDS_ON MergeProcDef.known;

END;

g

This macro is invoked in de�nition 106.

21 Statements

The semantic analysis for statements consists of the following parts, which will be discussed in order in
a separate section each:

Statement Analysis[124] � 124

f

Assignment Analysis[125]
I/O Assignment Analysis[127]
Procedure Call Analysis[128]
Reduction Statement Analysis[131]
Winner-takes-all Analysis[132]
Control Flow Analysis[133]
Data allocation Analysis[138]
Merge Statement Analysis[143]
g

This macro is invoked in de�nition 193.

21.1 Assignment

For an assignment we have to check that (1) the object assigned to is a plain variable or variable param-
eter, (2) the types of the variable and the expression are compatible, and (3) we like the shape of the
programmer's nose.

Assignment Analysis[125] � 125

f

RULE rAssignment :

Assignment ::= Object AssignOperator Expr

COMPUTE

.Operator = AssignOperator.Operator;

GETSUBCOORD (2);

Assignment.MayBeRead =

DSunite (Object.MayBeRead, DSunite (Expr.MayBeRead, Expr.MayBeUsed));

88 21 STATEMENTS

Assignment.MayBeWritten = Object.MayBeUsed;

Assignment.known =

ORDER (

IF (IsIoAcc (Object.Access),

Message (ERROR, "Use <nodes> --> <IO> for assignment to IO objects"),

/* else */

IF (IsIoAcc (Expr.Access),

Message (ERROR, "Use <nodes> <-- <IO> for assignment from IO objects"),

/* else */

IF (AND (NE (Object.Kind, UndefinedK), NOT (IsVarAcc (Object.Access))),

Message (ERROR, "Object to be assigned to is no variable"),

/* else */

IF (EQ (Object.Kind, ParVariableK),

Message (ERROR, "Can't assign to parallel variable"),

/* else */

IF (AND (AND (NE (Object.Type, NoKey), NE (Expr.Type, NoKey)),

NOT (OilIsValidOp (OilIdOp2 (.Operator, DefTbl2Oil (Object.Type),

DefTbl2Oil(Expr.Type))))),

Message2 (ERROR, "Object and value incompatible in assignment (%s/%s)",

SymString (GetSym (Object.Type, NoSym)),

SymString (GetSym (Expr.Type, NoSym)))))))))

DEPENDS_ON Expr.known;

END;

g

This macro is de�ned in de�nitions 125 and 126.

This macro is invoked in de�nition 124.

The type checks for assignments are done using Oil, see page 108 for the corresponding Oil declarations.

Assignment Analysis[126] �126

f

Operator Mapping [172](`AssignOp';` AssignOperator';` ':='')
Operator Mapping [172](`PlusAssignOp';` AssignOperator';` '+='')
Operator Mapping [172](`MinusAssignOp';` AssignOperator';` '-='')
Operator Mapping [172](`MulAssignOp';` AssignOperator';` '*='')
Operator Mapping [172](`DivAssignOp';` AssignOperator';` '/='')
Operator Mapping [172](`ModAssignOp';` AssignOperator';` '%='')
g

This macro is de�ned in de�nitions 125 and 126.

This macro is invoked in de�nition 124.

21.2 I/O assignment

For input and output assignments we have to check that the left hand side object represents a data �eld
of a slice of a node group or node array (a ParVariableSelK) and the right hand side object is an IO

object of the same type as the data �eld. We set the type attribute for the input and output assignment
statements so that the code generation can easily determine for which types a corresponding procedure
has to be generated.

I/O Assignment Analysis[127] �127

f

RULE rInputAssignment :

InputAssignment ::= Object '<--' Object

COMPUTE

InputAssignment.known = ORDER (

IF (NE (Object[1].Kind, ParVariableSelK),

21.3 Procedure call 89

Message (ERROR, "Must be parallel variable selection"),

IF (NOT (IsIoAcc (Object[2].Access)),

Message (ERROR, "Right-hand-side must be IO object"))),

IF (AND (AND (NE (Object[1].Type, NoKey), NE (Object[2].Type, NoKey)),

NE (Object[1].Type, Object[2].Type)),

Message2 (ERROR, "Type conflict %s/%s: types must be identical",

SymString (GetSym (Object[1].Type, NoSym)),

SymString (GetSym (Object[2].Type, NoSym)))))

DEPENDS_ON TAIL.known;

InputAssignment.MayBeRead = Object[1].MayBeRead;

InputAssignment.MayBeWritten = Object[1].MayBeUsed;

InputAssignment.Type = Object[2].Type;

END;

RULE rOutputAssignment :

OutputAssignment ::= Object '-->' Object

COMPUTE

OutputAssignment.known = ORDER (

IF (NE (Object[1].Kind, ParVariableSelK),

Message (ERROR, "Must be parallel variable selection"),

IF (NOT (IsIoAcc (Object[2].Access)),

Message (ERROR, "Right-hand-side must be IO object"))),

IF (AND (AND (NE (Object[1].Type, NoKey), NE (Object[2].Type, NoKey)),

NE (Object[1].Type, Object[2].Type)),

Message2 (ERROR, "Type conflict %s/%s: types must be identical",

SymString (GetSym (Object[1].Type, NoSym)),

SymString (GetSym (Object[2].Type, NoSym)))))

DEPENDS_ON TAIL.known;

OutputAssignment.MayBeRead = DSunite (Object[1].MayBeRead,

Object[1].MayBeUsed);

OutputAssignment.Type = Object[2].Type;

END;

g

This macro is invoked in de�nition 124.

21.3 Procedure call

Most of the work for procedure calls is the checking of the actual parameters against the formal parameter
list. Most of this is done in the rules for ExprList; in the rule for the procedure call itself we only check
that the parameter list has the correct length. We use the same CHAIN Paramcounter as for the processing
of formal parameter lists (see section 20.3).

The only other thing to check is that the meant-to-be procedure identi�er really is a procedure identi�er.

Procedure Call Analysis[128] � 128

f

RULE rProcedureCall :

ProcedureCall ::= ProcedureId '(' ArgumentList ')'

COMPUTE

CHAINSTART ArgumentList.Paramcounter = 0;

ArgumentList.InhParams = GetParams (ProcedureId.Key, NoKeyArray)

DEPENDS_ON ProcedureCall.known;

.nr = KeyArraySize (ArgumentList.InhParams);

ProcedureCall.known =

IF (AND (EQ (ProcedureId.Kind, ProcedureK),

90 21 STATEMENTS

NE (.nr, ArgumentList.Paramcounter)),

Message2 (ERROR, "Procedure call has %d parameters, expected: %d",

ArgumentList.Paramcounter, .nr))

DEPENDS_ON (TAIL.known, .done1, .done2);

ProcedureCall.CentralAgent =

GetCentralAgent (ProcedureId.Key, false) DEPENDS_ON ProcedureCall.known;

ProcedureCall.MayBeRead = ArgumentList.MayBeRead;

ProcedureCall.MayBeWritten = ArgumentList.MayBeWritten;

.done1 =

IF (AND (ProcedureCall.CentralAgent,

NE (Context Kind[111], GlobalSubroutineContext)),

Message1 (ERROR, "%s belongs to central agent, cannot be called here",

SymString (ProcedureId.Sym)));

.IsUsed =

IF (EQ (Context Kind[111], GlobalSubroutineContext),

BITOR(used,usedA), /*else*/ usedA);

.done2 =

SetIsUsed (ProcedureId.Key, .IsUsed,

BITOR (GetIsUsed (ProcedureId.Key,used0), .IsUsed));

END;

RULE rProcedureId :

ProcedureId ::= LowercaseIdent

COMPUTE

ProcedureId.Kind = GetKind (ProcedureId.Key, UndefinedK)

DEPENDS_ON ProcedureId.known;

ProcedureId.known =

IF (EQ (ProcedureId.Kind, FunctionK),

Message (ERROR, "Result of function call not used"),

/* else */

IF (NE (GetKind (ProcedureId.Key, ProcedureK), ProcedureK),

Message1 (ERROR, "%s is called as a global procedure but it is none",

SymString (ProcedureId.Sym))));

END;

g

This macro is de�ned in de�nitions 128 and 130.

This macro is invoked in de�nition 124.

For each actual parameter, we check that variables are given where for VAR formal parameters, that IO
objects are given for and only for IO formal parameters, and that the type of the formal and actual
parameter agree: CONST parameters must be compatible, VAR and IO parameters must have identical
type.

Expression List Analysis[129] �129

f

RULE rActParam :

ActParam IS Expr

COMPUTE

.Key = /* formal parameter: */

FetchKeyFromArray (ActParam.InhParams, ActParam.Paramcounter)

DEPENDS_ON ActParam.known;

.Type = GetType (.Key, NoKey) DEPENDS_ON ActParam.known;

.Access = GetAccess (.Key, NoAcc) DEPENDS_ON ActParam.known;

ActParam.MayBeWritten =

IF (IsVarAcc (.Access), Expr.MayBeUsed, NoDefTblKeySet);

ActParam.MayBeRead = DSunite (Expr.MayBeRead, Expr.MayBeUsed);

ActParam.Paramcounter = ADD (ActParam.Paramcounter, 1);

21.3 Procedure call 91

ActParam.known = ORDER (

IF (AND (NOT (IsIoAcc (.Access)), IsIoAcc (Expr.Access)),

Message (ERROR, "IO object not allowed for this parameter")),

IF (AND (AND (IsVarAcc (.Access),

NOT (IsVarAcc (Expr.Access))), NE (Expr.Access, NoAcc)),

Message (ERROR, "Variable needed as parameter")),

IF (AND (AND (IsIoAcc (.Access),

NOT (IsIoAcc (Expr.Access))), NE (Expr.Access, NoAcc)),

Message (ERROR, "IO object needed as parameter")),

IF (/* Different types for VAR or IO parameter and argument: */

AND (AND (AND (NOT (IsConstAcc (.Access)),

NE (.Type, NoKey)), NE (Expr.Type, NoKey)), NE (.Type, Expr.Type)),

Message2 (ERROR, "Argument has wrong type: %s (expected: %s)",

SymString (GetSym (Expr.Type, NoSym)),

SymString (GetSym (.Type, NoSym)))),

IF (/* Incompatible types for CONST parameter and argument: */

AND (AND (AND (IsConstAcc (.Access),

NE (.Type, NoKey)), NE (Expr.Type, NoKey)),

NOT (OilIsValidOp (OilIdOp2 (AssignOp, DefTbl2Oil (.Type),

DefTbl2Oil(Expr.Type))))),

Message2 (ERROR, "Argument has incompatible type: %s (expected: %s)",

SymString (GetSym (Expr.Type, NoSym)),

SymString (GetSym (.Type, NoSym)))));

END;

RULE rArgumentList :

ArgumentList ::= ExprList

COMPUTE

TRANSFER InhParams;

ArgumentList.MayBeRead = ExprList CONSTITUENTS ActParam.MayBeRead

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

ArgumentList.MayBeWritten = ExprList CONSTITUENTS ActParam.MayBeWritten

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

END;

RULE rArgumentList0 :

ArgumentList ::=

COMPUTE

ArgumentList.MayBeRead = NoDefTblKeySet;

ArgumentList.MayBeWritten = NoDefTblKeySet;

END;

RULE rExprList1 :

ExprList ::= ActParam

COMPUTE

TRANSFER InhParams;

END;

RULE rExprList :

ExprList ::= ExprList ',' ActParam

COMPUTE

TRANSFER InhParams;

END;

g

This macro is invoked in de�nition 144.

92 21 STATEMENTS

The analysis of object procedure calls is analogous, except that we have to determine the procedure key
from the object context. If the object is a ParVariableK then the call is a parallel call, otherwise it is a
sequential call.

Procedure Call Analysis[130] �130

f

RULE rObjectProcedureCall :

ObjectProcedureCall ::= Object '.' ObjectProcedureId '(' ArgumentList ')'

COMPUTE

CHAINSTART ArgumentList.Paramcounter = 0;

.Kind = GetKind (Object.Type, UndefinedK)

DEPENDS_ON ObjectProcedureCall.known;

ObjectProcedureId.ScopeKey =

IF (OR (EQ (GetKind (Object.Type, UndefinedK), NodeArrayTypeK),

EQ (GetKind (Object.Type, UndefinedK), NodeGroupTypeK)),

GetType (Object.Type, NoKey),

/* else */

Object.Type) DEPENDS_ON ObjectProcedureCall.known;

ArgumentList.InhParams = GetParams (ObjectProcedureId.Key, NoKeyArray)

DEPENDS_ON ObjectProcedureCall.known;

.nr = KeyArraySize (ArgumentList.InhParams);

ObjectProcedureCall.MayBeRead =

DSunite (ArgumentList.MayBeRead,

IF (EQ (Object.MayBeUsed, NoDefTblKeySet), /* pure ME call */

GetMayBeRead (ObjectProcedureId.Key, NoDefTblKeySet),

DSunite (Object.MayBeRead, Object.MayBeUsed)));

ObjectProcedureCall.MayBeWritten =

IF (EQ (Object.MayBeUsed, NoDefTblKeySet), /* pure ME call */

DSunite (GetMayBeWritten (ObjectProcedureId.Key, NoDefTblKeySet),

ArgumentList.MayBeWritten),

Object.MayBeUsed /* ??? */);

ObjectProcedureCall.known = ORDER (

IF (AND (EQ (ObjectProcedureId.Kind, ProcedureK),

NE (.nr, ArgumentList.Paramcounter)),

Message2 (ERROR, "Object procedure call has %d parameters, expected: %d",

ArgumentList.Paramcounter, .nr)),

IF (EQ (Object.Kind, ParVariableSelK),

Message (ERROR, "Calls are impossible for parallel variable selections"),

/* else */

IF (AND (AND (NE (Object.Kind, ParVariableK),

NE (Object.Type, Subroutine ME Type[109])), NE (Object.Type, NoKey)),

Message (ERROR, "Use '[]': Call needs parallel variable"))))

DEPENDS_ON (.done1);

.IsUsed =

IF (EQ (Object.Kind, ParVariableK), /* call introducing parallelism: */

IF (AND (EQ (.Kind, ConTypeK),

NE (Object.Mode, IF (conAtOut, OutMode, InMode)/*!!!*/)),

usedAR, /*else*/ usedA),

/*else*/ /* call on same level: */

used) DEPENDS_ON ObjectProcedureCall.known;

.done1 =

SetIsUsed (ObjectProcedureId.Key, .IsUsed,

BITOR (GetIsUsed (ObjectProcedureId.Key, used0), .IsUsed));

END;

SYMBOL ObjectProcedureId INHERITS FieldUse, NoKeyMsg, NameOccurrence END;

21.4 Reduction statement 93

RULE rObjectProcedureId:

ObjectProcedureId ::= LowercaseIdent

COMPUTE

ObjectProcedureId.Kind = GetKind (ObjectProcedureId.Key, UndefinedK)

DEPENDS_ON ObjectProcedureId.known;

ObjectProcedureId.known =

IF (EQ (ObjectProcedureId.Kind, FunctionK),

Message (ERROR, "Result of object function call not used"),

/* else */

IF (NE (GetKind (ObjectProcedureId.Key, ProcedureK), ProcedureK),

Message2 (ERROR, "%s is not a PROCEDURE in type %s",

SymString (ObjectProcedureId.Sym),

SymString (GetSym (ObjectProcedureId.ScopeKey, NoSym)))));

END;

g

This macro is de�ned in de�nitions 128 and 130.

This macro is invoked in de�nition 124.

MultiObjectProcedureCalls are not di�erent from pure sequencing as far as semantic checking is con-
cerned and thus do not need any computations here.

21.4 Reduction statement

For a reduction statement we have to check (1) that the object given is a parallel variable selection;
(2) that the context is that of a node subroutine (for connection reduction) or network subroutine (for
node reduction), or global subroutine (for network reduction); (3) that the function identi�er given is
really that of a reduction function; (4) that the reduction function type and reduction object type are
assignment compatible; (5) that the type of the target object and the result type of the reduction function
are assignment compatible; and (6) that the destination object is a variable. The type of the reduced
objects is marked to need a general a REDUCTION procedure.

Reduction Statement Analysis[131] � 131

f

RULE rReductionStmt :

ReductionStmt ::= 'REDUCTION' Object ':' ReductionFunctionId 'INTO' Object

COMPUTE

.Type = Object[1].Type DEPENDS_ON ReductionStmt.known;

.Type2 = Object[2].Type DEPENDS_ON ReductionStmt.known;

.Kind = GetKind (Object[1].ParVarType, UndefinedK)

DEPENDS_ON ReductionStmt.known;

.Kind2 = GetKind (Subroutine ME Type[109], UndefinedK)

DEPENDS_ON ReductionStmt.known;

ReductionStmt.known =

IF (EQ (Context Kind[111], GlobalSubroutineContext),

SetNeedNetReduction (Object[1].Type, true, true),

/* else */

IF (EQ (.Kind2, NetTypeK),

SetNeedNodeReduction (Object[1].Type, true, true),

/* else */

IF (EQ (.Kind2, NodeTypeK),

SetNeedConReduction (Object[1].Type, true, true))))

DEPENDS_ON (TAIL.known, .done1, .done2);

ReductionStmt.MayBeRead =

DSunite (DSunite (Object[1].MayBeRead, Object[1].MayBeUsed),

Object[2].MayBeRead);

94 21 STATEMENTS

ReductionStmt.MayBeWritten = Object[2].MayBeUsed;

/* (1): */

.done1 = ORDER (

IF (NE (Object[1].Kind, ParVariableSelK),

Message (ERROR, "REDUCTION works only for parallel variable selection")),

/* (2): */

IF (AND (OR (OR (EQ (.Kind, NodeGroupTypeK), EQ (.Kind, NodeArrayTypeK)),

EQ (.Kind, NodeTypeK)),

NE (GetKind (Subroutine ME Type[109], NetTypeK), NetTypeK)),

Message (ERROR, "REDUCTION <nodes> is allowed in NETWORK subroutines only")),

IF (AND (EQ (.Kind, ConTypeK),

NE (GetKind (Subroutine ME Type[109], NodeTypeK), NodeTypeK)),

Message (ERROR, "REDUCTION <connections> allowed in NODE subroutines only")));

/* (4) object compatible to reduction function ? : */

.done2 =

IF (AND (AND (NE (ReductionFunctionId.Type, NoKey), NE (.Type, NoKey)),

NE (.Type, ReductionFunctionId.Type)),

Message3 (ERROR, "Type conflict: REDUCTION %s:%s(%s)",

SymString (GetSym (.Type, NoSym)),

SymString (ReductionFunctionId.Sym),

SymString (GetSym (ReductionFunctionId.Type, NoSym))),

/* (5) reduction function compatible to target object ? : */

IF (AND (AND (NE (ReductionFunctionId.Type, NoKey), NE (.Type2, NoKey)),

NE (ReductionFunctionId.Type, .Type2)),

Message2 (ERROR, "Type conflict: REDUCTION %s INTO %s",

SymString (GetSym (ReductionFunctionId.Type, NoSym)),

SymString (GetSym (.Type2, NoSym))),

IF (NOT (IsVarAcc (Object[2].Access)),

Message (ERROR, "REDUCTION INTO non-VARiable"))));

END;

RULE rReductionFunctionId :

ReductionFunctionId ::= LowercaseIdent

COMPUTE

.Key = ReductionFunctionId.Key;

ReductionFunctionId.Type = GetType (.Key, NoKey)

DEPENDS_ON ReductionFunctionId.known;

/* (3): */

ReductionFunctionId.known =

IF (NE (GetKind (.Key, ReductionFunctionK), ReductionFunctionK),

Message1 (ERROR, "%s is no REDUCTION function",

SymString (GetSym (.Key, NoSym))))

DEPENDS_ON ReductionFunctionId.known;

END;

g

This macro is invoked in de�nition 124.

21.5 Winner-takes-all statement

The analysis of a winner-takes-all statement consists of the following parts: (1) compute and check the
selection of Elementname from Object, (2) check that the given WTA function identi�er is the name of a
WTA function, (3) check that the type of the element and the WTA function are compatible, (4) check
that the object procedure call is valid, and (5) mark the type for which WTA is computed as needing a
general WTA procedure.

21.5 Winner-takes-all statement 95

Winner-takes-all Analysis[132] � 132

f

RULE rWtaStmt :

WtaStmt ::= 'WTA' Object ':' Elementname '.' WtaFunctionId ':'

ObjectProcedureId '(' ArgumentList ')'

COMPUTE

.Kind = GetKind (Object[1].ParVarType, UndefinedK) DEPENDS_ON WtaStmt.known;

.Kind2 = GetKind (Subroutine ME Type[109], UndefinedK) DEPENDS_ON WtaStmt.known;

WtaStmt.MayBeRead =

DSunite (ArgumentList.MayBeRead, Object[1].MayBeRead);

WtaStmt.MayBeWritten = Object[1].MayBeUsed;

/* (1): Selection */

.Type =

IF (EQ (Object.Kind, ParVariableK),

Object.Type,

ORDER (

Message1 (ERROR, "WTA object must be parallel variable (has type %s)",

SymString (GetSym (Object.Type, NoSym))),

NoKey)) DEPENDS_ON WtaStmt.known;

Elementname.ScopeKey = .Type;

Messag3 (NOTE, "%s %s from type %s",

SymString (GetSym (Elementname.Type, NoSym)),

SymString (Elementname.Sym),

SymString (GetSym (Elementname.ScopeKey, NoSym)));

/* (3): Element type compatible to wta function ? : */

.Type2 = Elementname.Type;

.done1 =

IF (AND (AND (NE (WtaFunctionId.Type, NoKey), NE (.Type2, NoKey)),

NOT (OilIsValidOp (OilIdOp2 (AssignOp,

DefTbl2Oil (WtaFunctionId.Type), DefTbl2Oil(.Type2))))),

Message3 (ERROR, "Type conflict: WTA :%s.%s(%s):",

SymString (GetSym (.Type2, NoSym)),

SymString (WtaFunctionId.Sym),

SymString (GetSym (WtaFunctionId.Type, NoSym))));

/* (4): Object procedure call: */

CHAINSTART ArgumentList.Paramcounter = 0;

ObjectProcedureId.ScopeKey =

IF (OR (EQ (GetKind (Object.Type, UndefinedK), NodeArrayTypeK),

EQ (GetKind (Object.Type, UndefinedK), NodeGroupTypeK)),

GetType (Object.Type, NoKey),

/* else */

Object.Type) DEPENDS_ON WtaStmt.known;

ArgumentList.InhParams = GetParams (ObjectProcedureId.Key, NoKeyArray)

DEPENDS_ON WtaStmt.known;

.nr = KeyArraySize (ArgumentList.InhParams);

WtaStmt.known =

IF (AND (EQ (ObjectProcedureId.Kind, ProcedureK),

NE (.nr, ArgumentList.Paramcounter)),

Message2 (ERROR, "WTA procedure call has %d parameters, expected: %d",

ArgumentList.Paramcounter, .nr))

DEPENDS_ON (.done1, .done2);

/* (5): mark "need a_WTA" */

.done2 =

96 21 STATEMENTS

IF (EQ (.Kind2, NodeTypeK),

SetNeedConWta (Elementname.Type, true, true),

/* else */

IF (EQ (.Kind2, NetTypeK),

SetNeedNodeWta (Elementname.Type, true, true),

/* else */

IF (EQ (Context Kind[111], GlobalSubroutineContext),

SetNeedNetWta (Elementname.Type, true, true))))

END;

RULE rWtaFunctionId :

WtaFunctionId ::= LowercaseIdent

COMPUTE

.Key = WtaFunctionId.Key;

/* (2): check WTA function id */

WtaFunctionId.Type =

IF (NE (GetKind (.Key, UndefinedK), WtaFunctionK),

ORDER (Message1 (ERROR, "%s is no WTA function",

SymString (GetSym (.Key, NoSym))),

NoKey),

/* else */

GetType (WtaFunctionId.Key, NoKey))

DEPENDS_ON WtaFunctionId.known;

WtaFunctionId.known = WtaFunctionId.Type;

END;

g

This macro is invoked in de�nition 124.

21.6 Control
ow

We will discuss the control
ow statements in the following order:

Control Flow Analysis[133] �133

f

Return Statement Analysis[134]
If Statement Analysis[135]
Loop Statement Analysis[136]
Break Statement Analysis[137]
g

This macro is invoked in de�nition 124.

For the RETURN statement, the only thing we have to check is whether the return type is correct: For
procedures, the return statement without an expression has to be used (implicit Void type); for functions,
the return statement with an expression has to be used and the type of that expression must be compatible
with the function's return type. We do not currently check whether a RETURN statement is present at the
end of a function.

Return Statement Analysis[134] �134

f

RULE rReturnStmtVoid :

ReturnStmt ::= 'RETURN'

COMPUTE

ReturnStmt.MayBeRead = NoDefTblKeySet;

ReturnStmt.known =

IF (NOT (EQ (Subroutine Return Type[108], VoidKey)),

21.6 Control
ow 97

Message (ERROR, "No function value given to be RETURNed"))

DEPENDS_ON ReturnStmt.known;

END;

RULE rReturnStmt :

ReturnStmt ::= 'RETURN' Expr

COMPUTE

TRANSFER MayBeRead;

ReturnStmt.known =

IF (EQ (Subroutine Return Type[108], VoidKey),

Message (ERROR, "Cannot RETURN a value from a procedure"),

/* else */

IF (AND (AND (NE (Subroutine Return Type[108], NoKey),

NE (Expr.Type, NoKey)),

NOT (OilIsValidOp (OilIdOp2 (AssignOp,

DefTbl2Oil (Subroutine Return Type[108]),
DefTbl2Oil (Expr.Type))))),

Message2 (ERROR, "wrong RETURN type: %s (expected: %s)",

SymString (GetSym (Subroutine Return Type[108], NoSym)),

SymString (GetSym (Expr.Type, NoSym)))))

DEPENDS_ON ReturnStmt.known;

END;

g

This macro is invoked in de�nition 133.

The thing to check for an IF statement is that all conditional expressions given must have type Bool:

If Statement Analysis[135] � 135

f

RULE rIfStmt :

IfStmt ::= 'IF' Expr 'THEN' Statements ElsePart 'END' OptIF

COMPUTE

IfStmt.MayBeRead = DSunite (Expr.MayBeRead, ElsePart.MayBeRead);

Statements.known =

IF (AND (NE (Expr.Type, NoKey), NE (Expr.Type, BoolKey)),

Message1 (ERROR, "IF condition has wrong type: %s (expected: Bool)",

SymString (GetSym (Expr.Type, NoSym))))

DEPENDS_ON Expr.known;

END;

RULE rElsif :

ElsePart ::= 'ELSIF' Expr 'THEN' Statements ElsePart

COMPUTE

ElsePart[1].MayBeRead = DSunite (Expr.MayBeRead, ElsePart[2].MayBeRead);

Statements.known =

IF (AND (NE (Expr.Type, NoKey), NE (Expr.Type, BoolKey)),

Message1 (ERROR, "ELSIF condition has wrong type: %s (expected: Bool)",

SymString (GetSym (Expr.Type, NoSym))))

DEPENDS_ON Expr.known;

END;

RULE rElse0 :

ElsePart ::=

COMPUTE

ElsePart.MayBeRead = NoDefTblKeySet;

END;

98 21 STATEMENTS

RULE rElse :

ElsePart ::= 'ELSE' Statements

COMPUTE

ElsePart.MayBeRead = NoDefTblKeySet;

END;

g

This macro is invoked in de�nition 133.

To analyze BREAK statements, we compute the attribute LoopNest for each loop and set it to zero in the
root context. A break is rejected if the LoopNest is zero. For the normal loop (WHILE and/or UNTIL)
we only have to check that the conditions given have boolean type. For FOR loops we also have to
compute a value for the step and check that the loop limits are integer.

Loop Statement Analysis[136] �136

f

SYMBOL CupitProgram COMPUTE

INH.LoopNest = 0;

END;

SYMBOL Statements COMPUTE

INH.LoopNest = INCLUDING (CupitProgram.LoopNest, Statements.LoopNest);

/* except for LoopStmt bodies, see below */

END;

RULE rLoopStmt :

LoopStmt ::= OptWhilePart 'REPEAT' Statements OptUntilPart 'END' OptREPEAT

COMPUTE

Statements.LoopNest = ADD (INCLUDING Statements.LoopNest, 1);

LoopStmt.MayBeRead = DSunite (OptWhilePart.MayBeRead, OptUntilPart.MayBeRead);

LoopStmt.MayBeWritten = NoDefTblKeySet;

END;

RULE rForLoopStmt :

LoopStmt ::= 'FOR' Object ':=' Expr ForLoopStep Expr 'REPEAT'

Statements OptUntilPart 'END' OptREPEAT

COMPUTE

Statements.LoopNest = ADD (INCLUDING Statements.LoopNest, 1);

LoopStmt.MayBeRead =

DSunite (DSunite (Expr[1].MayBeRead, Expr[2].MayBeRead),

DSunite (Object.MayBeRead, OptUntilPart.MayBeRead));

LoopStmt.MayBeWritten = Object.MayBeUsed;

Statements.known =

IF (OR (NOT (IsInt (Expr[1].Type)), NOT (IsInt (Expr[2].Type))),

Message3 (ERROR, "'FOR' loop limits have wrong types: %s/%s (expected: %s)",

SymString (GetSym (Expr[1].Type, NoSym)),

SymString (GetSym (Expr[2].Type, NoSym)),

"Integers")) DEPENDS_ON LoopStmt.known;

END;

RULE rOptWhilePart :

OptWhilePart ::= 'WHILE' Expr

COMPUTE

OptWhilePart.MayBeRead = Expr.MayBeRead;

OptWhilePart.known =

IF (NE (Expr.Type, BoolKey),

21.7 Data allocation 99

Message1 (ERROR, "WHILE condition has wrong type: %s (expected: Bool)",

SymString (GetSym (Expr.Type, NoSym))))

DEPENDS_ON OptWhilePart.known;

END;

RULE rOptWhilePart0 :

OptWhilePart ::=

COMPUTE

OptWhilePart.MayBeRead = NoDefTblKeySet;

END;

RULE rOptUntilPart :

OptUntilPart ::= 'UNTIL' Expr

COMPUTE

OptUntilPart.MayBeRead = Expr.MayBeRead;

OptUntilPart.known =

IF (NE (Expr.Type, BoolKey),

Message1 (ERROR, "UNTIL condition has wrong type: %s (expected: Bool)",

SymString (GetSym (Expr.Type, NoSym))))

DEPENDS_ON OptUntilPart.known;

END;

RULE rOptUntilPart0 :

OptUntilPart ::=

COMPUTE

OptUntilPart.MayBeRead = NoDefTblKeySet;

END;

RULE rUpto : ForLoopStep ::= 'UPTO' COMPUTE ForLoopStep.nr = 1; END;

RULE rTo : ForLoopStep ::= 'TO' COMPUTE ForLoopStep.nr = 1; END;

RULE rDownto : ForLoopStep ::= 'DOWNTO' COMPUTE ForLoopStep.nr = NEG(1); END;

g

This macro is invoked in de�nition 133.

Break Statement Analysis[137] � 137

f

RULE rBreakStmt :

BreakStmt ::= 'BREAK'

COMPUTE

BreakStmt.known =

IF (LT (INCLUDING Statements.LoopNest, 1),

Message (ERROR, "This BREAK appears outside of any loop"))

DEPENDS_ON BreakStmt.known;

END;

g

This macro is invoked in de�nition 133.

21.7 Data allocation

The data allocation and deallocation statements are all applicable in certain contexts only. The context
also determines what type the object(s) to work with must have.

For the REPLICATE statement the object must be a network when the statement appears in the central
agent, or it must be a node or connection when the statement appears in an object procedure of the
object's type. In all other contexts, REPLICATE is not allowed. The expression can be an integer (for
networks, nodes, connections) or integer interval (for networks only).

100 21 STATEMENTS

Data allocation Analysis[138] �138

f

RULE rReplicateInto :

DataAllocationStmt ::= 'REPLICATE' Object 'INTO' Expr

COMPUTE

.Kind = GetKind (Object.Type, UndefinedK)

DEPENDS_ON DataAllocationStmt.known;

.Sym = GetSym (Object.Type, NoSym)

DEPENDS_ON DataAllocationStmt.known;

DataAllocationStmt.MayBeRead = Expr.MayBeRead;

DataAllocationStmt.MayBeWritten = NoDefTblKeySet;

.done1 =

IF (NOT (OR (OR (EQ (Expr.Type, NoKey), IsInt (Expr.Type)),

AND (EQ (.Kind, NetTypeK), IsInterval (Expr.Type)))),

Message1 (ERROR, "INTO expression must have integral type (is: %s)",

SymString (GetSym (Expr.Type, NoSym))));

DataAllocationStmt.known =

IF (EQ (.Kind, NetTypeK),

IF (NE (Context Kind[111], GlobalSubroutineContext),

Message1 (ERROR, "REPLICATE %s is allowed in the central agent only",

SymString (.Sym))),

/* else */

IF (OR (EQ (.Kind, ConTypeK), EQ (.Kind, NodeTypeK)),

IF (NE (Subroutine ME Type[109], Object.Type),

Message2 (ERROR, "REPLICATE %s is allowed in %s subroutines only",

SymString (.Sym), SymString (.Sym))),

/* else */

IF (NOT (EQ (Object.Type, NoKey)),

Message1 (ERROR, "REPLICATE is not allowed for objects of type %s",

SymString (.Sym)))))

DEPENDS_ON (TAIL.known, .done1);

END;

g

This macro is de�ned in de�nitions 138, 139, 140, and 141.

This macro is invoked in de�nition 124.

For the EXTEND statement the object must be a node group and the statement must appear in a network
subroutine; everything else is illegal. The expression must be an integer.

Data allocation Analysis[139] �139

f

RULE rExtendBy :

DataAllocationStmt ::= 'EXTEND' Object 'BY' Expr

COMPUTE

.Kind = GetKind (Object.Type, UndefinedK)

DEPENDS_ON DataAllocationStmt.known;

.Sym = GetSym (Object.Type, NoSym)

DEPENDS_ON DataAllocationStmt.known;

DataAllocationStmt.MayBeRead = Expr.MayBeRead;

DataAllocationStmt.MayBeWritten = NoDefTblKeySet;

.done1 =

IF (NOT (OR (EQ (Expr.Type, NoKey), IsInt (Expr.Type))),

Message1 (ERROR, "BY expression must have integral type (is: %s)",

SymString (GetSym (Expr.Type, NoSym))))

DEPENDS_ON DataAllocationStmt.known;

DataAllocationStmt.known =

IF (EQ (.Kind, NodeGroupTypeK),

21.7 Data allocation 101

IF (OR (NE (Context Kind[111], ObjSubroutineContext),

NE (GetKind (Subroutine ME Type[109], NetTypeK), NetTypeK)),

Message (ERROR, "EXTEND is allowed in network subroutines only"),

/* else */

Messag1 (NOTE, "EXTEND %s", SymString (.Sym))),

/* else */

IF (EQ (.Kind, NodeArrayTypeK),

Message (ERROR, "You can EXTEND only GROUPs, not ARRAYs"),

/* else */

IF (NOT (EQ (Object.Type, NoKey)),

Message1 (ERROR, "EXTEND is not allowed for objects of type %s",

SymString (.Sym)))))

DEPENDS_ON (TAIL.known, .done1);

END;

g

This macro is de�ned in de�nitions 138, 139, 140, and 141.

This macro is invoked in de�nition 124.

The CONNECT and DISCONNECT statements are allowed in network subroutines only. The objects given
must be parallel variable selections of connection type.

Data allocation Analysis[140] � 140

f

RULE rConnectTo :

DataAllocationStmt ::= 'CONNECT' Object 'TO' Object

COMPUTE

CONNECT object analysis[142](`CONNECT')
END;

g

This macro is de�ned in de�nitions 138, 139, 140, and 141.

This macro is invoked in de�nition 124.

Data allocation Analysis[141] � 141

f

RULE rDisconnectFrom :

DataAllocationStmt ::= 'DISCONNECT' Object 'FROM' Object

COMPUTE

CONNECT object analysis[142](`DISCONNECT')
END;

g

This macro is de�ned in de�nitions 138, 139, 140, and 141.

This macro is invoked in de�nition 124.

Since the tests for CONNECT and DISCONNECT statements are the same, they are collected in this extra
FunnelWeb macro. The statement type is a parameter which is used in the text of the error messages.

CONNECT object analysis[142](�1) � 142

f

DataAllocationStmt.MayBeRead =

DSunite (Object[1].MayBeRead, Object[2].MayBeRead);

DataAllocationStmt.MayBeWritten =

DSunite (Object[1].MayBeUsed, Object[2].MayBeUsed);

DataAllocationStmt.known =

IF (OR (EQ (Object[1].Type, NoKey), EQ (Object[2].Type, NoKey)),

0, /* do nothing, a message will be generated elsewhere */

/* else */

IF (OR (EQ (Object[1].Kind, ParVariableK),

EQ (Object[2].Kind, ParVariableK)),

102 22 EXPRESSIONS

Message (ERROR, "Cannot �1 parallel variables"),

/* else */

IF (OR (NE (GetKind (Object[1].Type, UndefinedK), ConTypeK),

NE (GetKind (Object[2].Type, UndefinedK), ConTypeK)),

Message (ERROR, "Objects at �1 must be connection interfaces"),

/* else */

ORDER (

IF (NE (Object[1].Mode, OutMode),

Message (ERROR, "Left object must be OUT interface")),

IF (NE (Object[2].Mode, InMode),

Message (ERROR, "Right object must be IN interface")),

IF (NE (Object[1].Type, Object[2].Type),

ORDER (Message2 (ERROR, "Connection type conflict: %s/%s",

SymString (GetSym (Object[1].Type, NoSym)),

SymString (GetSym (Object[2].Type, NoSym))),

NoKey))))))

DEPENDS_ON TAIL.known;

g

This macro is invoked in de�nitions 140 and 141.

21.8 Merge statement

An explicit MERGE statement is allowed only in global subroutines and can be applied only to NETWORK

objects.

Merge Statement Analysis[143] �143

f

RULE rMergeStmt:

MergeStmt ::= 'MERGE' Object

COMPUTE

MergeStmt.nr = 1; /* indicate presence of MERGE */

MergeStmt.known =

ORDER (

IF (NE (Context Kind[111], GlobalSubroutineContext),

Message (ERROR, "MERGE is allowed in the central agent only")),

IF (NE (GetKind (Object.Type, NetTypeK), NetTypeK),

Message (ERROR, "MERGE can be applied to NETWORK objects only")))

DEPENDS_ON Object.known;

END;

g

This macro is invoked in de�nition 124.

22 Expressions

Expression Analysis[144] �144

f

Expression List Analysis[129]
Ternary Expression Analysis[170]
Binary Expression Analysis[171]
Unary Expression Analysis[174]
Type Conversion Expression Analysis[176]
Denoter Expression Analysis[178]
Function Call Analysis[182]

22.1 Operator identi�cation 103

Object Expression Analysis[183]

SYMBOL Expr COMPUTE

SYNT.Operator = OilErrorOp();

SYNT.MayBeUsed = NoDefTblKeySet;

END;

g

This macro is invoked in de�nition 193.

There are several important attributes that an expression may have: First of all, each expression has a
unique type. This type is always determined independent of the expression's context in CuPit.
Second, an expression may be constant. The values of constant expressions are computed at compile
time (\constant folding"). A constant expression can be recognized by the value ConstantK in the
Kind attribute (and always has ConstAcc in the Access attribute). Non-constant expressions have kind
VariableK.
Third, it may be allowed or not allowed to assign to an expression. This property is important to
decide whether an expression may be used as an argument for a VAR or IO formal parameter. Assignable
expressions have an Access attribute value of VarAcc or VarPAcc or of IoAcc or IoPAcc and kind
VariableK.

For expressions consisting of an operator application to one, two, or three other expressions, the Operator
attribute contains the exact Oil identi�cation of the operator used. Since this attribute is not valid for
other types of expressions, we have to set a default. This is done in the symbol attribution for Expr
above.

22.1 Operator identi�cation

To simplify the semantic checking of expressions, we use Eli's Operator Identi�cation Language (OIL).
Although we generate C code, where we could leave many operators unidenti�ed we want to identify
operators in order to be able to perform constant folding. In addition, using Oil saves a lot of work for
performing the type checking of operands.

Since we do not use the Oil representation of types all the time (because we have to store properties of
types, too), we have to de�ne conversion routines between the oil type representation and our de�nition-
table-based type representation. We de�ne one routine DefTbl2Oil to generate oil type identi�ers from
de�nition table keys that identify types and a second routine Oil2DefTbl to generate de�nition table
keys from oil type identi�ers. To announce such a correspondence, DefineOilType must be used.

oil interface.h[145] � 145

f

#ifndef oil_interface_H

#define oil_interface_H

#include "deftbl.h"

#include "oiladt2.h"

#include "pdl_gen.h"

void DefineOilType (DefTableKey d, tOilType o);

tOilType NewSymbolicOilType (DefTableKey d);

tOilType DefTbl2Oil (DefTableKey d);

DefTableKey Oil2DefTbl (tOilType o);

#define IsInt(T) (OR (OR (EQ (T, Int1Key), EQ (T, Int2Key)), \

EQ (T, IntKey)))

#define IsInterval(T) (OR (OR (EQ (T, Interval1Key), EQ (T, Interval2Key)), \

EQ (T, IntervalKey)))

104 22 EXPRESSIONS

#endif

g

This macro is attached to an output �le.

oil interface.c[146] �146

f

#include "cupit.h"

#include "scope.h"

#include "type.h"

#include "oil_interface.h"

#include "OilDecls.h"

De�ne Oil Type[147]
New Symbolic Type In Oil[149]
De�nition Table To Oil[150]
Oil To De�nition Table[151]
g

This macro is attached to an output �le.

When a corresponding pair of a de�nition table key (representing a type name) and a tOilType is given,
we store the oil type as a property in the de�nition table and the de�nition table key as an entry in an
array OilTypeKeys indexed by the oil types. The latter is possible only since OIL guarantees that the
OilTypeName function returns minimal unique integers for the set of de�ned Oil types.

De�ne Oil Type[147] �147

f

#define MaxNrOfTypes 1000

static DefTableKey OilTypeKeys[MaxNrOfTypes];

void DefineOilType (DefTableKey d, tOilType o)

{

SetOilType (d, o, o);

OilTypeKeys[OilTypeName(o)] = d;

}

g

This macro is invoked in de�nition 146.

The standard types have to be announced using this mechanism.

Set Oil Types For Standard Types[148] �148

f

DefineOilType (BoolKey, oilBool);

DefineOilType (IntKey, oilInt);

DefineOilType (Int2Key, oilInt2);

DefineOilType (Int1Key, oilInt1);

DefineOilType (RealKey, oilReal);

DefineOilType (StringKey, oilString);

DefineOilType (IntervalKey, oilInterval);

DefineOilType (Interval2Key, oilInterval2);

DefineOilType (Interval1Key, oilInterval1);

DefineOilType (RealervalKey, oilRealerval);

g

This macro is invoked in de�nition 88.

Whenever a new symbolic type is introduced, we must instantiate the Oil symbolic class, and announce
and return the resulting Oil type indenti�er:

22.1 Operator identi�cation 105

New Symbolic Type In Oil[149] �149

f

tOilType NewSymbolicOilType (DefTableKey d)

{

tOilType result = OilClassInst0 (SymbolicClass, SymbolicClass_name);

DefineOilType (d, result);

return (result);

}

g

This macro is invoked in de�nition 146.

The construction of Oil type identi�ers from type de�nition table keys works by simply recalling the
appropriate property value.

De�nition Table To Oil[150] � 150

f

tOilType DefTbl2Oil (DefTableKey d)

{

return (GetOilType (d, OilErrorType()));

}

g

This macro is invoked in de�nition 146.

The backward conversion from Oil type identi�ers to de�nition table keys is performed by recalling the
appropriate array entry.

Oil To De�nition Table[151] � 151

f

DefTableKey Oil2DefTbl (tOilType o)

{

int nr = OilTypeName(o);

return (nr < 0 ? NoKey : OilTypeKeys[nr]);

}

g

This macro is invoked in de�nition 146.

Given these converion routines, we describe the available operators in Oil:

types.oil[152] � 152

f

Oil Coercions[153]
Oil Operators[154]
Oil Symbolic Class[166]
Oil Structure Class[167]
g

This macro is attached to an output �le.

The set of coercions (implicit type conversions) is very small: The only ones allowed are the promotion
of a small integer type to the next larger integer type.

Oil Coercions[153] � 153

f

COERCION mkInt2 (oilInt1) : oilInt2;

COERCION mkInt (oilInt2) : oilInt;

g

This macro is invoked in de�nition 152.

To describe the set of available operators, we �rst de�ne a number of sets of oil types. We do never
discriminate the integer types.

106 22 EXPRESSIONS

Oil Operators[154] � 154

f

SET Ints = [oilInt, oilInt1, oilInt2];

SET Ariths = Ints + [oilReal];

SET Simples = Ariths + [oilBool, oilString];

SET Intervals = [oilInterval, oilInterval1, oilInterval2];

SET Builtins = Simples + Intervals;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The ternary operator is de�ned for all builtin types if the second and third operand are compatible. (The
�rst operand is tested \by hand").

Oil Operators[155] �155

f

INDICATION TernOp: aTernOp;

OPER aTernOp (Builtins, Builtins) : Builtins;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The boolean operators are de�ned for boolean operands only.

Oil Operators[156] �156

f

INDICATION AndOp: bAndOp;

INDICATION OrOp: bOrOp;

INDICATION XorOp: bXorOp;

OPER bAndOp, bOrOp, bXorOp (oilBool, oilBool) : oilBool;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The tests for equality and inequality are de�ned for all number and interval types, for symbolic types,
and for String. They are, however, not de�ned for Bool. The operators with di�erent operand types
have to be discriminated, though, since the constant folding operations for them are di�erent and for
some variants di�erent code has to be generated.

Oil Operators[157] �157

f

INDICATION EqOp: iEqOp, rEqOp, IntervalEqOp, RealervalEqOp,

StringEqOp, SymbolicEqOp;

INDICATION NeqOp: iNeqOp, rNeqOp, IntervalNeqOp, RealervalNeqOp,

StringNeqOp, SymbolicNeqOp;

OPER iEqOp, iNeqOp (Ints, Ints) : oilBool;

OPER rEqOp, rNeqOp (oilReal, oilReal) : oilBool;

OPER IntervalEqOp, IntervalNeqOp (Intervals, Intervals) : oilBool;

OPER RealervalEqOp, RealervalNeqOp (oilRealerval, oilRealerval) : oilBool;

OPER StringEqOp, StringNeqOp (oilString, oilString) : oilBool;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The comparison operators for greater or less are de�ned for number types and interval types. Again,
discrimination is necessary to enable proper constant folding and code generation.

Oil Operators[158] �158

f

22.1 Operator identi�cation 107

INDICATION LtOp: iLtOp, rLtOp;

INDICATION GtOp: iGtOp, rGtOp;

INDICATION LeOp: iLeOp, rLeOp;

INDICATION GeOp: iGeOp, rGeOp;

OPER iLtOp, iGtOp, iLeOp, iGeOp (Ints, Ints) : oilBool;

OPER rLtOp, rGtOp, rLeOp, rGeOp (oilReal, oilReal) : oilBool;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The operator IN has mixed operand types. It is de�ned in three integer and one real variant, that have
to be discriminated for constant folding and code generation.

Oil Operators[159] � 159

f

INDICATION InOp: IntInOp, IntInOp1, IntInOp2, RealInOp;

OPER IntInOp (oilInt, Intervals) : oilBool;

OPER IntInOp1 (oilInt1, Intervals) : oilBool;

OPER IntInOp2 (oilInt2, Intervals) : oilBool;

OPER RealInOp (oilReal, oilRealerval) : oilBool;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The interval construction operator is available once for each basic number type:

Oil Operators[160] � 160

f

INDICATION IntervalOp: IntIntervalOp, IntIntervalOp1,

IntIntervalOp2, RealIntervalOp;

OPER IntIntervalOp (oilInt, oilInt): oilInterval;

OPER IntIntervalOp1 (oilInt1, oilInt1) : oilInterval1;

OPER IntIntervalOp2 (oilInt2, oilInt2) : oilInterval2;

OPER RealIntervalOp (oilReal, oilReal) : oilRealerval;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The bit operators are de�ned for the integer types only.

Oil Operators[161] � 161

f

INDICATION BitandOp: iBitandOp;

INDICATION BitorOp: iBitorOp;

INDICATION BitxorOp: iBitxorOp;

INDICATION LshiftOp: iLshiftOp;

INDICATION RshiftOp: iRshiftOp;

OPER iBitandOp, iBitorOp, iBitxorOp, iLshiftOp, iRshiftOp (Ints, Ints) : Ints;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The �ve basic arithmetic operators are de�ned for the integer and real types. Two variants have to be
discriminated for proper constant folding.

Oil Operators[162] � 162

f

INDICATION PlusOp: iPlusOp, rPlusOp;

INDICATION MinusOp: iMinusOp, rMinusOp;

108 22 EXPRESSIONS

INDICATION MulOp: iMulOp, rMulOp;

INDICATION DivOp: iDivOp, rDivOp;

INDICATION ModOp: iModOp, rModOp;

OPER iPlusOp, iMinusOp, iMulOp, iDivOp, iModOp (Ints, Ints) : Ints;

OPER rPlusOp, rMinusOp, rMulOp, rDivOp, rModOp (oilReal, oilReal) : oilReal;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

The exponentiation operator comes in exactly three
avors. Note that it is not de�ned separately for
each integer type.

Oil Operators[163] �163

f

INDICATION ExpOp: iExpOp, rExpOp, riExpOp;

OPER iExpOp (oilInt, oilInt) : oilInt;

OPER rExpOp (oilReal, oilReal) : oilReal;

OPER riExpOp (oilReal, oilInt) : oilReal;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

Negation is de�ned for integer and real, Not is de�ned for Bool only, bitwise not is de�ned for integer,
Min, Max and Random are de�ned for each interval type individually.

Oil Operators[164] �164

f

INDICATION NegOp: iNegOp, rNegOp;

INDICATION NotOp: bNotOp;

INDICATION BitnotOp: iBitnotOp;

INDICATION MinOp: iMinOp, iMinOp1, iMinOp2, rMinOp;

INDICATION MaxOp: iMaxOp, iMaxOp1, iMaxOp2, rMaxOp;

INDICATION RandomOp: iRandomOp, iRandomOp1, iRandomOp2, rRandomOp;

OPER iNegOp (Ints) : Ints;

OPER rNegOp (oilReal) : oilReal;

OPER bNotOp (oilBool) : oilBool;

OPER iBitnotOp (Ints) : Ints;

OPER iMinOp (oilInterval) : oilInt;

OPER iMinOp1 (oilInterval1) : oilInt1;

OPER iMinOp2 (oilInterval2) : oilInt2;

OPER rMinOp (oilRealerval) : oilReal;

OPER iMaxOp (oilInterval) : oilInt;

OPER iMaxOp1 (oilInterval1) : oilInt1;

OPER iMaxOp2 (oilInterval2) : oilInt2;

OPER rMaxOp (oilRealerval) : oilReal;

OPER iRandomOp (oilInterval) : oilInt;

OPER iRandomOp1 (oilInterval1) : oilInt1;

OPER iRandomOp2 (oilInterval2) : oilInt2;

OPER rRandomOp (oilRealerval) : oilReal;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

Assignment, including assignmen individualt with arithmetic, is also treated as an operator so that it
can be type-checked by Oil.

Oil Operators[165] �165

f

22.2 Constant folding 109

INDICATION AssignOp: ArithAssign, IntervalAssign, BoolAssign,

StringAssign, SymbolicAssignOp, StructureAssignOp;

INDICATION PlusAssignOp: aPlusAssignOp;

INDICATION MinusAssignOp: aMinusAssignOp;

INDICATION MulAssignOp: aMulAssignOp;

INDICATION DivAssignOp: aDivAssignOp;

INDICATION ModAssignOp: aModAssignOp;

OPER ArithAssign (Ariths, Ariths) : oilVoid;

OPER IntervalAssign (Intervals, Intervals) : oilVoid;

OPER BoolAssign (oilBool, oilBool) : oilVoid;

OPER StringAssign (oilString, oilString) : oilVoid;

OPER aPlusAssignOp (Ariths, Ariths) : oilVoid;

OPER aMinusAssignOp (Ariths, Ariths) : oilVoid;

OPER aMulAssignOp (Ariths, Ariths) : oilVoid;

OPER aDivAssignOp (Ariths, Ariths) : oilVoid;

OPER aModAssignOp (Ariths, Ariths) : oilVoid;

g

This macro is de�ned in de�nitions 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, and 165.

This macro is invoked in de�nition 152.

For each symbolic type we also de�ne its own equality and non-equality comparison and an assignment
operator:

Oil Symbolic Class[166] � 166

f

CLASS SymbolicClass () BEGIN

OPER SymbolicEqOp (SymbolicClass, SymbolicClass) : oilBool;

OPER SymbolicNeqOp (SymbolicClass, SymbolicClass) : oilBool;

OPER SymbolicAssignOp (SymbolicClass, SymbolicClass) : oilVoid;

END;

g

This macro is invoked in de�nition 152.

For structured types, only assignment is de�ned:

Oil Structure Class[167] � 167

f

CLASS StructureClass () BEGIN

OPER StructureAssignOp (StructureClass, StructureClass) : oilVoid;

END;

g

This macro is invoked in de�nition 152.

22.2 Constant folding

The CuPit compiler performs complete constant folding and global constant propagation on boolean,
integer,
oating point, and interval values. For this purpose, a type is needed to express the constant
values. This type must be able to represent one or two integers or one or two real values. The i1

component of this type CupitConst holds the value for the representation of Bool, Int1, Int2, and
Int constants or the interval minimum for the representation of Interval1, Interval2, and Interval

constants. i2 holds the maximum in the integer interval cases.

r1 holds the
oating point value for the representation of Real constants or the interval minimum of
Realerval constants. r2 holds the maximum of Realerval constants.

The folding module has functions to initialize a CupitConst to a non-existing value (SetNothing), to
an integer or real value (SetIval, SetRval), or to an integer or real interval value of integer or real

110 22 EXPRESSIONS

intervals (SetIminmax, SetRminmax). Furthermore, there are functions to read an integer or real value
(GetIval, GetRval), or to read the upper or lower bounds of integer or real intervals (GetImax, GetImin,
GetRmax, GetRmin). An assertion fails, if the requested value is not conforming to the kind of the
constant. The constant folding operations itself are implemented in a single function ComputeConst,
which is parameterized with the operator to compute. For code generation purposes, there is also a
function Const2Str that generates an external string representation from a CupitConst.

folding.h[168] �168

f

#ifndef folding_H

#define folding_H

#include "cupit.h"

#include "oiladt2.h"

/* Constant-types, Intconst is also used for Bool */

typedef enum {

Errorconst, Intconst, Realconst, Intervalconst, Realervalconst

} ConstTag;

typedef struct {

ConstTag tag;

Int i1, i2;

Real r1, r2;

} CupitConst;

#define ErrorConst SetNothing ()

Bool IsErrorConst (CupitConst cc);

CupitConst SetNothing ();

CupitConst SetIval (Int i);

CupitConst SetIminmax (Int i1, Int i2);

CupitConst SetRval (Real r);

CupitConst SetRminmax (Real r1, Real r2);

Int GetIval (CupitConst cc);

Int GetImin (CupitConst cc);

Int GetImax (CupitConst cc);

Real GetRval (CupitConst cc);

Real GetRmin (CupitConst cc);

Real GetRmax (CupitConst cc);

CupitConst ComputeConst (tOilOp op, CupitConst cc1, CupitConst cc2);

char* Const2Str (CupitConst cc);

#endif

g

This macro is attached to an output �le.

This is the implementation of the module:

folding.c[169] �169

f

#include "folding.h"

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "OilDecls.h"

22.2 Constant folding 111

static set_cc_tag (CupitConst *cc, ConstTag tag)

{

/* initialize all fields of a CupitConst and set its tag */

cc->tag = tag;

cc->i1 = cc->i2 = -1;

cc->r1 = cc->r2 = -1.0;

}

Bool IsErrorConst (CupitConst cc)

{

return (cc.tag == Errorconst);

}

CupitConst SetNothing ()

{

CupitConst cc;

set_cc_tag (&cc, Errorconst);

return (cc);

}

CupitConst SetIval (Int i)

{

CupitConst cc;

set_cc_tag (&cc, Intconst);

cc.i1 = i;

return (cc);

}

CupitConst SetIminmax (Int i1, Int i2)

{

CupitConst cc;

set_cc_tag (&cc, Intervalconst);

cc.i1 = i1;

cc.i2 = i2;

return (cc);

}

CupitConst SetRval (Real r)

{

CupitConst cc;

set_cc_tag (&cc, Realconst);

cc.r1 = r;

return (cc);

}

CupitConst SetRminmax (Real r1, Real r2)

{

CupitConst cc;

set_cc_tag (&cc, Realervalconst);

cc.r1 = r1;

cc.r2 = r2;

return (cc);

}

Int GetIval (CupitConst cc)

112 22 EXPRESSIONS

{

_assert (cc.tag == Intconst);

return (cc.i1);

}

Int GetImin (CupitConst cc)

{

_assert (cc.tag == Intervalconst);

return (cc.i1);

}

Int GetImax (CupitConst cc)

{

_assert (cc.tag == Intervalconst);

return (cc.i2);

}

Real GetRval (CupitConst cc)

{

_assert (cc.tag == Realconst);

return (cc.r1);

}

Real GetRmin (CupitConst cc)

{

_assert (cc.tag == Realervalconst);

return (cc.r1);

}

Real GetRmax (CupitConst cc)

{

_assert (cc.tag == Realervalconst);

return (cc.r2);

}

CupitConst ComputeConst (tOilOp op, CupitConst cc1, CupitConst cc2)

{

CupitConst r; /* result */

int nr = OilOpName(op);

#define BoolTag r.tag = Intconst

r.tag = cc1.tag;

switch (nr) {

case bAndOp_name: r.i1 = cc1.i1 && cc2.i1; break;

case bOrOp_name: r.i1 = cc1.i1 || cc2.i1; break;

case bXorOp_name: r.i1 = cc1.i1 != cc2.i1; break;

case iEqOp_name: r.i1 = cc1.i1 == cc2.i1; break;

case iNeqOp_name: r.i1 = cc1.i1 != cc2.i1; break;

case rEqOp_name: r.i1 = cc1.r1 == cc2.r1; BoolTag; break;

case rNeqOp_name: r.i1 = cc1.r1 != cc2.r1; BoolTag; break;

case IntervalEqOp_name:

r.i1 = (cc1.i1 == cc2.i1) && (cc1.i2 == cc2.i2); BoolTag; break;

case IntervalNeqOp_name:

r.i1 = (cc1.i1 != cc2.i1) || (cc1.i2 != cc2.i2); BoolTag; break;

case RealervalEqOp_name:

r.i1 = (cc1.r1 == cc2.r1) && (cc1.r2 == cc2.r2); BoolTag; break;

22.2 Constant folding 113

case RealervalNeqOp_name:

r.i1 = (cc1.r1 != cc2.r1) || (cc1.r2 != cc2.r2); BoolTag; break;

case iLtOp_name: r.i1 = cc1.i1 < cc2.i1; break;

case rLtOp_name: r.i1 = cc1.r1 < cc2.r1; BoolTag; break;

case iGtOp_name: r.i1 = cc1.i1 > cc2.i1; break;

case rGtOp_name: r.i1 = cc1.r1 > cc2.r1; BoolTag; break;

case iLeOp_name: r.i1 = cc1.i1 <= cc2.i1; break;

case rLeOp_name: r.i1 = cc1.r1 <= cc2.r1; BoolTag; break;

case iGeOp_name: r.i1 = cc1.i1 >= cc2.i1; break;

case rGeOp_name: r.i1 = cc1.r1 >= cc2.r1; BoolTag; break;

case IntInOp1_name:

case IntInOp2_name:

case IntInOp_name:

r.i1 = (cc1.i1 >= cc2.i1) && (cc1.i1 <= cc2.i2); BoolTag; break;

case RealInOp_name:

r.i1 = (cc1.r1 >= cc2.r1) && (cc1.r1 <= cc2.r2); BoolTag; break;

case IntIntervalOp1_name:

case IntIntervalOp2_name:

case IntIntervalOp_name:

r.i1 = cc1.i1; r.i2 = cc2.i1; r.tag = Intervalconst; break;

case RealIntervalOp_name:

r.r1 = cc1.r1; r.r2 = cc2.r1; r.tag = Realervalconst; break;

case iBitandOp_name: r.i1 = cc1.i1 & cc2.i1; break;

case iBitorOp_name: r.i1 = cc1.i1 | cc2.i1; break;

case iBitxorOp_name: r.i1 = cc1.i1 ^ cc2.i1; break;

case iLshiftOp_name: r.i1 = cc1.i1 << cc2.i1; break;

case iRshiftOp_name: r.i1 = cc1.i1 >> cc2.i1; break;

case iPlusOp_name: r.i1 = cc1.i1 + cc2.i1; break;

case rPlusOp_name: r.r1 = cc1.r1 + cc2.r1; break;

case iMinusOp_name: r.i1 = cc1.i1 - cc2.i1; break;

case rMinusOp_name: r.r1 = cc1.r1 - cc2.r1; break;

case iMulOp_name: r.i1 = cc1.i1 * cc2.i1; break;

case rMulOp_name: r.r1 = cc1.r1 * cc2.r1; break;

case iDivOp_name: r.i1 = cc1.i1 / cc2.i1; break;

case rDivOp_name: r.r1 = cc1.r1 / cc2.r1; break;

case iModOp_name: r.i1 = cc1.i1 % cc2.i1; break;

case rModOp_name: r.r1 = fmod (cc1.r1, cc2.r1); break;

case iExpOp_name:

r.i1 = 1;

while (cc2.i1 > 0) {

if (cc2.i1 & 1 == 0) /* square */

r.i1 *= r.i1, cc2.i1 >>= 1;

else /* and multiply */

r.i1 *= cc1.i1, cc2.i1--;

}

break;

case riExpOp_name:

r.r1 = 1.0;

while (cc2.i1 > 0) {

if (cc2.i1 & 1 == 0) /* square */

r.r1 *= r.r1, cc2.i1 >>= 1;

else /* and multiply */

r.r1 *= cc1.r1, cc2.i1--;

}

break;

114 22 EXPRESSIONS

case rExpOp_name:

r.r1 = pow (cc1.r1, cc2.r1); break;

case iNegOp_name: r.i1 = -cc1.i1; break;

case rNegOp_name: r.r1 = -cc1.r1; break;

case bNotOp_name: r.i1 = !cc1.i1; break;

case iBitnotOp_name: r.i1 = ~cc1.i1; break;

case iMinOp_name:

case iMinOp1_name:

case iMinOp2_name: r.i1 = cc1.i1; break;

case rMinOp_name: r.r1 = cc1.r1; break;

case iMaxOp_name:

case iMaxOp1_name:

case iMaxOp2_name: r.i1 = cc1.i2; break;

case rMaxOp_name: r.r1 = cc1.r2; break;

default: fprintf (stderr, "Operator number: %d ", nr);

_assert (false);

}

#undef BoolTag

return (r);

}

char* Const2Str (CupitConst cc)

{

char *res = malloc (40);

switch (cc.tag) {

case Intconst: sprintf (res, "%d", cc.i1); break;

case Realconst: sprintf (res, "%g", cc.r1); break;

case Intervalconst: sprintf (res, "%d...%d", cc.i1, cc.i2); break;

case Realervalconst: sprintf (res, "_RealIntervalOp(%g,%g)",

cc.r1, cc.r2); break;

case Errorconst: return ("<CupitConst Errorconst>");

default: _assert (false); return ("<garbage CupitConst>");

}

return (res);

}

g

This macro is attached to an output �le.

22.3 Ternary expressions

For ternary expressions the condition has to have Bool type, and the types of the two result expressions
must be the same.

Ternary Expression Analysis[170] �170

f

RULE rTernaryExpr :

Expr ::= Expr '?' Expr ':' Expr

COMPUTE

Expr[1].Type =

Oil2DefTbl (OilGetArgType (

OilIdOp2 (TernOp, DefTbl2Oil(Expr[3].Type),

DefTbl2Oil (Expr[4].Type)), 0));

Expr[1].Access = ConstAcc;

Expr[1].MayBeRead = DSunite (DSunite (

DSunite (Expr[2].MayBeRead, Expr[2].MayBeUsed),

22.4 Binary expressions 115

DSunite (Expr[3].MayBeRead, Expr[3].MayBeUsed)),

DSunite (Expr[4].MayBeRead, Expr[4].MayBeUsed));

Expr[1].Kind =

IF (AND (AND (EQ (Expr[2].Kind, ConstantK),

EQ (Expr[3].Kind, ConstantK)), EQ (Expr[4].Kind, ConstantK)),

/* then */ ConstantK, /* else */ VariableK);

Expr[1].Val =

IF (EQ (Expr[1].Kind, VariableK),

ErrorConst,

IF (EQ (GetIval (Expr[2].Val), 0),

/* then */ Expr[4].Val, /* else */ Expr[3].Val));

Expr[1].known =

IF (AND (NE (Expr[2].Type, BoolKey), NE (Expr[2].Type, NoKey)),

Message2 (ERROR, "Conditional expression of '?:' has wrong type: %s %s",

SymString (GetSym (Expr[2].Type, NoSym)),

"(expected: Bool)"),

/* else */

IF (AND (AND (EQ (Expr[1].Type, NoKey),

NE (Expr[3].Type, NoKey)), NE (Expr[4].Type, NoKey)),

Message2 (ERROR, "Illegal result type pair %s/%s for '?:' operator",

SymString (GetSym (Expr[3].Type, NoSym)),

SymString (GetSym (Expr[4].Type, NoSym)))))

DEPENDS_ON TAIL.known;

END;

g

This macro is invoked in de�nition 144.

22.4 Binary expressions

The compatibility of operands of binary expressions is checked using the operations provided by the
Oil declarations given in section 22.1. For constant expressions, constant folding is performed using the
ComputeConst operation de�ned in section 22.2.

Binary Expression Analysis[171] � 171

f

RULE rBinaryExpr :

Expr ::= Expr BinOp Expr

COMPUTE

Expr[1].Operator = OilIdOp2 (BinOp.Operator, DefTbl2Oil(Expr[2].Type),

DefTbl2Oil(Expr[3].Type));

Expr[1].Type = Oil2DefTbl (OilGetArgType (Expr[1].Operator, 0));

GETSUBCOORD (2);

Expr[1].Access = ConstAcc;

Expr[1].MayBeRead = DSunite (DSunite (Expr[2].MayBeRead, Expr[2].MayBeUsed),

DSunite (Expr[3].MayBeRead, Expr[3].MayBeUsed));

Expr[1].Kind =

IF (AND (AND (AND (EQ (Expr[2].Kind, ConstantK),

EQ (Expr[3].Kind, ConstantK)),

NE (GetKind (Expr[2].Type, SymbolicTypeK), SymbolicTypeK)),

NE (GetKind (Expr[3].Type, SymbolicTypeK), SymbolicTypeK)),

ConstantK, /* else */ VariableK) DEPENDS_ON Expr[1].known;

Expr[1].Val =

IF (EQ (Expr[1].Kind, ConstantK),

ComputeConst (Expr[1].Operator, Expr[2].Val, Expr[3].Val),

/* no constant folding defined for symbolic types */

116 22 EXPRESSIONS

ErrorConst);

Expr[1].known =

IF (AND (AND (EQ (Expr[1].Type, NoKey),

NE(Expr[2].Type, NoKey)), NE (Expr[3].Type, NoKey)),

ORDER (

Message2 (ERROR, "Illegal operand types %s/%s for binary operator",

SymString (GetSym (Expr[2].Type, NoSym)),

SymString (GetSym (Expr[3].Type, NoSym))),

true)) DEPENDS_ON Expr[1].known;

END;

g

This macro is de�ned in de�nitions 171 and 173.

This macro is invoked in de�nition 144.

The phrases for the individual operators are handled with the following parameterized macro; it is also
used for unary operators below.

Operator Mapping [172](�3) �172

fRULE r�1: �2 ::= �3 COMPUTE

�2.Operator = �1;
END;

g

This macro is invoked in de�nitions 126, 126, 126, 126, 126, 126, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173,

173, 173, 173, 173, 173, 173, 173, 173, 173, 175, 175, 175, 175, 175, and 175.

Binary Expression Analysis[173] �173

f

Operator Mapping [172](`OrOp';` BinOp';` 'OR'')
Operator Mapping [172](`XorOp';` BinOp';` 'XOR'')
Operator Mapping [172](`AndOp';` BinOp';` 'AND'')
Operator Mapping [172](`EqOp';` BinOp';` '='')
Operator Mapping [172](`NeqOp';` BinOp';` '<>'')
Operator Mapping [172](`LtOp';` BinOp';` '<'')
Operator Mapping [172](`GtOp';` BinOp';` '>'')
Operator Mapping [172](`LeOp';` BinOp';` '<='')
Operator Mapping [172](`GeOp';` BinOp';` '>='')
Operator Mapping [172](`InOp';` BinOp';` 'IN'')
Operator Mapping [172](`BitorOp';` BinOp';` 'BITOR'')
Operator Mapping [172](`BitxorOp';` BinOp';` 'BITXOR'')
Operator Mapping [172](`BitandOp';` BinOp';` 'BITAND'')
Operator Mapping [172](`IntervalOp';` BinOp';` '...'')
Operator Mapping [172](`LshiftOp';` BinOp';` 'LSHIFT'')
Operator Mapping [172](`RshiftOp';` BinOp';` 'RSHIFT'')
Operator Mapping [172](`PlusOp';` BinOp';` '+'')
Operator Mapping [172](`MinusOp';` BinOp';` '-'')
Operator Mapping [172](`MulOp';` BinOp';` '*'')
Operator Mapping [172](`DivOp';` BinOp';` '/'')
Operator Mapping [172](`ModOp';` BinOp';` '%'')
Operator Mapping [172](`ExpOp';` BinOp';` '**'')
g

This macro is de�ned in de�nitions 171 and 173.

This macro is invoked in de�nition 144.

22.5 Unary expressions

Unary operators are handled analogous to the binary ones.

22.5 Unary expressions 117

Unary Expression Analysis[174] �174

f

RULE rUnaryExpr :

Expr ::= UnaryOp Expr

COMPUTE

Expr[1].Operator = OilIdOp1 (UnaryOp.Operator, DefTbl2Oil(Expr[2].Type));

Expr[1].Type = Oil2DefTbl (OilGetArgType (Expr[1].Operator, 0));

Expr[1].known =

IF (AND (EQ (Expr[1].Type, NoKey), NE(Expr[2].Type, NoKey)),

Message1 (ERROR, "Illegal operand type %s for unary operator",

SymString (GetSym (Expr[2].Type, NoSym))))

DEPENDS_ON Expr[2].known;

Expr[1].Access = ConstAcc;

Expr[1].MayBeRead = DSunite (Expr[2].MayBeRead, Expr[2].MayBeUsed);

Expr[1].Kind =

IF (AND (EQ (Expr[2].Kind, ConstantK), NE (UnaryOp.Operator, RandomOp)),

ConstantK, /* else */ VariableK);

Expr[1].Val = IF (EQ (Expr[1].Kind, ConstantK),

ComputeConst (Expr[1].Operator, Expr[2].Val, ErrorConst),

ErrorConst);

END;

g

This macro is de�ned in de�nitions 174, 175, and 177.

This macro is invoked in de�nition 144.

Unary Expression Analysis[175] � 175

f

Operator Mapping [172](`NotOp';` UnaryOp';` 'NOT'')
Operator Mapping [172](`BitnotOp';` UnaryOp';` 'BITNOT'')
Operator Mapping [172](`NegOp';` UnaryOp';` '-'')
Operator Mapping [172](`MinOp';` UnaryOp';` 'MIN'')
Operator Mapping [172](`MaxOp';` UnaryOp';` 'MAX'')
Operator Mapping [172](`RandomOp';` UnaryOp';` 'RANDOM'')
g

This macro is de�ned in de�nitions 174, 175, and 177.

This macro is invoked in de�nition 144.

Which type conversions are available is computed by testing the Params property of the type to convert
to: If there is to conversion at all, we emit an error message. If there is a conversion, but with di�erent
arguments, the situation will be handled just like parameter/argument mismatches in a function call.

Type Conversion Expression Analysis[176] � 176

f

RULE rTypeConvExpr :

Expr ::= TypeId '(' ExprList ')'

COMPUTE

CHAINSTART ExprList.Paramcounter = 0;

Expr.Type = TypeId.Key;

Expr[1].Access = ConstAcc;

Expr[1].Kind = VariableK;

Expr[1].Val = ErrorConst;

.MayBeUsed = ExprList CONSTITUENTS Expr.MayBeUsed

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

.MayBeRead = ExprList CONSTITUENTS Expr.MayBeRead

WITH (DefTblKeySet, DSunite, IDENTICAL, DSempty);

Expr[1].MayBeRead = DSunite (.MayBeUsed, .MayBeRead);

ExprList.InhParams = GetParams (TypeId.Key, NoKeyArray)

118 22 EXPRESSIONS

DEPENDS_ON Expr.known;

Expr.known =

IF (EQ (ExprList.InhParams, NoKeyArray),

Message1 (ERROR, "No constructor available for %s",

SymString (TypeId.Sym)))

DEPENDS_ON TAIL.known;

END;

g

This macro is invoked in de�nition 144.

The MAXINDEX expression is de�ned for networks, node groups, arrays, and connection interfaces only:

Unary Expression Analysis[177] �177

f

RULE rMaxindexExpr :

Expr ::= 'MAXINDEX' '(' Object ')'

COMPUTE

.Kind = GetKind (Object.Type, UndefinedK) DEPENDS_ON Expr.known;

Expr.Type = IntKey;

Expr.Access = ConstAcc;

Expr.Kind = VariableK;

Expr.Val = ErrorConst;

Expr.MayBeRead = DSunite (Object.MayBeUsed, Object.MayBeRead);

Expr.known =

IF (AND (AND (AND (AND (NE (GetKind (Object.Type, NetTypeK), NetTypeK),

NE (GetKind (Object.Type, ArrayTypeK), ArrayTypeK)),

NE (GetKind (Object.Type, NodeArrayTypeK), NodeArrayTypeK)),

NE (GetKind (Object.Type, NodeGroupTypeK), NodeGroupTypeK)),

OR (NE (GetKind (Object.Type, ConTypeK), ConTypeK),

NE (Object.Kind, ParVariableK))),

Message (ERROR, "MAXINDEX is not defined for this kind of object"),

/* else */

IF (AND (EQ (GetKind (Object.Type, UndefinedK), NetTypeK),

NE (Context Kind[111], GlobalSubroutineContext)),

Message (ERROR, "MAXINDEX(network) allowed in central agent only")))

DEPENDS_ON Object.known;

END;

g

This macro is de�ned in de�nitions 174, 175, and 177.

This macro is invoked in de�nition 144.

22.6 Denoters

The type of denoters is always determined from their appearance. The access of a denoter is always
CONST.

Denoter Expression Analysis[178] �178

f

RULE rDenoterExpr :

Expr ::= Denoter

COMPUTE

TRANSFER Type, Val;

Expr.Access = ConstAcc;

Expr.Kind = ConstantK;

Expr.MayBeRead = NoDefTblKeySet;

END;

22.7 Function calls 119

g

This macro is de�ned in de�nitions 178, 179, 180, and 181.

This macro is invoked in de�nition 144.

For integer denoters, the exact type is determined from the value denoted: The assigned type is always
the smallest one possible (except for the maximal negative value since negation is an operation, e.g. -128
will have type Int2). The value of an integer denoter is stored in the Sym attribute.

Denoter Expression Analysis[179] � 179

f

RULE rIntDenoter :

Denoter ::= IntegerDenoter

COMPUTE

Denoter.Val = SetIval (IntegerDenoter.Sym);

Denoter.Type =

IF (LE (IntegerDenoter.Sym, 127), Int1Key,

IF (LE (IntegerDenoter.Sym, 32767), Int2Key,

IntKey)) DEPENDS_ON Denoter.known;

END;

g

This macro is de�ned in de�nitions 178, 179, 180, and 181.

This macro is invoked in de�nition 144.

For Real denoters the value has to be computed from the string representation. The Sym attribute
contains a handle to that string.

Denoter Expression Analysis[180] � 180

f

RULE rRealDenoter :

Denoter ::= RealDenoter

COMPUTE

Denoter.Type = RealKey;

Denoter.Val = SetRval (atof (SymString (RealDenoter.Sym)));

END;

g

This macro is de�ned in de�nitions 178, 179, 180, and 181.

This macro is invoked in de�nition 144.

For string denoters nothing special needs to be done at all, the actual value will be retrieved from the
Sym attribute at code generation time.

Denoter Expression Analysis[181] � 181

f

RULE rStringDenoter :

Denoter ::= StringDenoter

COMPUTE

Denoter.Type = StringKey;

Denoter.Val = ErrorConst; /* no computation on strings */

END;

g

This macro is de�ned in de�nitions 178, 179, 180, and 181.

This macro is invoked in de�nition 144.

22.7 Function calls

Function calls are similar to procedure calls except that (1) we have to process the return type and
(2) function calls are restricted to remain on the same level of parallelism, e.g. we may not call a
connection function from a node subroutine.

120 22 EXPRESSIONS

Function Call Analysis[182] � 182

f

RULE rFCallExpr :

Expr ::= FunctionCall

COMPUTE

Expr.Type = FunctionCall.Type;

Expr.Access = ConstAcc;

Expr.Kind = VariableK;

Expr.Val = ErrorConst;

Expr.MayBeRead = FunctionCall.MayBeRead;

END;

RULE rObjFCallExpr:

Expr ::= ObjectFunctionCall

COMPUTE

Expr.Type = ObjectFunctionCall.Type;

Expr.Access = ConstAcc;

Expr.Kind = VariableK;

Expr.Val = ErrorConst;

Expr.MayBeRead = ObjectFunctionCall.MayBeRead;

END;

RULE rFunctionCall :

FunctionCall ::= FunctionId '(' ArgumentList ')'

COMPUTE

CHAINSTART ArgumentList.Paramcounter = 0;

ArgumentList.InhParams = GetParams (FunctionId.Key, NoKeyArray)

DEPENDS_ON FunctionCall.known;

FunctionCall.Type = GetType (FunctionId.Key, NoKey)

DEPENDS_ON FunctionCall.known;

.nr = KeyArraySize (GetParams (FunctionId.Key, NoKeyArray))

DEPENDS_ON FunctionCall.known;

FunctionCall.known =

IF (AND (EQ (FunctionId.Kind, FunctionK),

NE (.nr, ArgumentList.Paramcounter)),

Message2 (ERROR, "Function call has %d parameters, expected: %d",

ArgumentList.Paramcounter, .nr))

DEPENDS_ON (.done1, .done2);

FunctionCall.CentralAgent =

GetCentralAgent (FunctionId.Key, false) DEPENDS_ON FunctionCall.known;

FunctionCall.MayBeRead = ArgumentList.MayBeRead; /* write is forbidden! */

.done1 =

IF (AND (FunctionCall.CentralAgent,

NE (Context Kind[111], GlobalSubroutineContext)),

Message1 (ERROR, "%s belongs to central agent, cannot be called here",

SymString (FunctionId.Sym)));

.IsUsed = IF (FunctionCall.CentralAgent, used, BITOR (used, usedA));

.done2 =

SetIsUsed (FunctionId.Key, .IsUsed,

BITOR (GetIsUsed (FunctionId.Key, used0), .IsUsed));

END;

RULE rFunctionId :

FunctionId ::= LowercaseIdent

COMPUTE

22.7 Function calls 121

FunctionId.Kind = GetKind (FunctionId.Key, UndefinedK)

DEPENDS_ON FunctionId.known;

FunctionId.known =

IF (EQ (FunctionId.Kind, ProcedureK),

Message (ERROR, "Procedure called in value context (i.e. as a function)"),

/* else */

IF (NE (GetKind (FunctionId.Key, FunctionK), FunctionK),

Message1 (ERROR, "%s is called as a global function but it is none",

SymString (FunctionId.Sym))))

DEPENDS_ON FunctionId.known;

END;

RULE rObjectFunctionCall1 :

ObjectFunctionCall ::= Object '.' ObjectFunctionId '(' ArgumentList ')'

COMPUTE

CHAINSTART ArgumentList.Paramcounter = 0;

ObjectFunctionId.ScopeKey = Object.Type;

ArgumentList.InhParams = GetParams (ObjectFunctionId.Key, NoKeyArray)

DEPENDS_ON ObjectFunctionCall.known;

ObjectFunctionCall.Type = GetType (ObjectFunctionId.Key, NoKey)

DEPENDS_ON ObjectFunctionCall.known;

ObjectFunctionCall.MayBeRead =

DSunite (ArgumentList.MayBeRead,

GetMayBeRead (ObjectFunctionId.Key, NoDefTblKeySet))

DEPENDS_ON ObjectFunctionCall.known;

.nr = KeyArraySize (GetParams (ObjectFunctionId.Key, NoKeyArray))

DEPENDS_ON ObjectFunctionCall.known;

ObjectFunctionCall.known =

IF (AND (EQ (ObjectFunctionId.Kind, FunctionK),

NE (.nr, ArgumentList.Paramcounter)),

Message2 (ERROR, "Object function call has %d parameters, expected: %d",

ArgumentList.Paramcounter, .nr))

DEPENDS_ON (.done1, .done2, .done3);

.done1 =

SetIsUsed (ObjectFunctionId.Key, used,

BITOR (GetIsUsed (ObjectFunctionId.Key, used0), used));

.done2 =

IF (OR (EQ (Object.Kind, ParVariableK), EQ (Object.Kind, ParVariableSelK)),

Message (ERROR, "Function calls are impossible for parallel variables"));

.done3 =

IF (AND (NE (Subroutine ME Type[109], Object.Type),

NE (Object.Type, NoKey)),

Message2 (ERROR, "%s function calls are allowed in %s subroutines only",

SymString (GetSym (Object.Type, NoSym)),

SymString (GetSym (Object.Type, NoSym))));

END;

SYMBOL ObjectFunctionId INHERITS FieldUse, NoKeyMsg, NameOccurrence END;

RULE rObjectFunctionId :

ObjectFunctionId ::= LowercaseIdent

COMPUTE

ObjectFunctionId.Kind = GetKind (ObjectFunctionId.Key, UndefinedK)

DEPENDS_ON ObjectFunctionId.known;

ObjectFunctionId.known =

122 23 OBJECTS

IF (EQ (ObjectFunctionId.Kind, ProcedureK),

Message (ERROR, "Procedure called in value context (i.e. as a function)"),

/* else */

IF (NE (ObjectFunctionId.Kind, FunctionK),

Message2 (ERROR, "%s is not a FUNCTION in type %s",

SymString (ObjectFunctionId.Sym),

SymString (GetSym (ObjectFunctionId.ScopeKey, NoSym)))))

DEPENDS_ON ObjectFunctionId.known;

END;

g

This macro is invoked in de�nition 144.

23 Objects

The next few sections discuss the various ways to refer to objects. We �rst describe the use of an object
in an expression and set some defaults for object processing.

Object Expression Analysis[183] �183

f

RULE rObjectExpr :

Expr ::= Object

COMPUTE

TRANSFER Type, Kind, Access, Val;

Expr.MayBeRead = Object.MayBeRead;

Expr.MayBeUsed = Object.MayBeUsed;

Expr.known =

IF (OR (EQ (Object.Kind, ParVariableK), EQ (Object.Kind, ParVariableSelK)),

Message (ERROR, "Parallel variable cannot be used in expression"))

DEPENDS_ON Object.known;

END;

SYMBOL Object COMPUTE /* default values: */

THIS.Val = ErrorConst;

THIS.Kind = VariableK;

THIS.Mode = NoMode;

THIS.ParVarType = NoKey;

THIS.ParVarMode = NoMode;

THIS.MayBeUsed = NoDefTblKeySet;

THIS.MayBeRead = NoDefTblKeySet;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

23.1 ME, YOU, INDEX, and explicit variables

The name of a network variable may be used only in global subroutines (which then automatically become
part of the central agent).

Object Expression Analysis[184] �184

f

RULE rDirectObject :

Object ::= Objectname

COMPUTE

23.1 ME, YOU, INDEX, and explicit variables 123

TRANSFER Access;

Object.Val = Objectname.Val;

Object.Kind = Objectname.Kind;

Object.Type =

IF (AND (EQ (GetKind (Objectname.Type, UndefinedK), NetTypeK),

NE (Context Kind[111], GlobalSubroutineContext)),

ORDER (

Message (ERROR, "Network variables cannot be used explicitly here"),

Messag2 (NOTE, "Context Kind: %d, should be %d",

Context Kind[111], GlobalSubroutineContext),

NoKey),

Objectname.Type)

DEPENDS_ON Object.known;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

The object name itself may be the name of a compile-time constant, in which case we create a ConstantK
object providing the constant value. If the name is not a constant or variable name, we emit an error
message.

Object Expression Analysis[185] � 185

f

RULE rObjectname :

Objectname ::= LowercaseIdent

COMPUTE

.Kind = GetKind (Objectname.Key, UndefinedK) DEPENDS_ON Objectname.known;

Objectname.Kind =

IF (EQ (.Kind, ConstantK),

ConstantK,

/* else */

IF (EQ (.Kind, VariableK),

VariableK,

/* else */

IF (NE (Objectname.Key, NoKey),

ORDER (

Message (ERROR, "Subroutine name used as data object name"),

UndefinedK),

UndefinedK)));

Objectname.Type = GetType (Objectname.Key, NoKey)

DEPENDS_ON Objectname.known;

Objectname.Access = GetAccess (Objectname.Key, VarAcc)

DEPENDS_ON Objectname.known;

Objectname.Val = GetVal (Objectname.Key, ErrorConst)

DEPENDS_ON Objectname.known;

Objectname.CentralAgent =

EQ (GetKind (Objectname.Type, UndefinedK), NetTypeK);

Objectname.known = Objectname.Kind;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

The object ME has CONST access rights in reduction and winner-takes-all functions and VAR rights otherwise.
It is not available in global contexts. YOU is always CONST and is available only in the body of MERGE
procedures and REDUCTION or WTA functions.

124 23 OBJECTS

Object Expression Analysis[186] �186

f

RULE rMeObject :

Object ::= 'ME'

COMPUTE

Object.Type = Subroutine ME Type[109] DEPENDS_ON Object.known;

Object.Access =

IF (OR (EQ (Context Kind[111], ObjSubroutineContext),

EQ (Context Kind[111], MergeContext)),

/* then */ VarPAcc, /* else */ ConstPAcc);

Object.Kind = IF (EQ (Object.Type, VoidKey), UndefinedK, VariableK);

Object.known =

IF (EQ (Object.Type, VoidKey),

Message (ERROR, "'ME' is not available in global procedures"))

DEPENDS_ON Object.known;

END;

RULE rYouObject :

Object ::= 'YOU'

COMPUTE

Object.Type = Subroutine YOU Type[110];
Object.Access = ConstPAcc;

Object.Kind = IF (EQ (Object.Type, VoidKey), UndefinedK, VariableK);

Object.known =

IF (EQ (Object.Type, VoidKey),

Message (ERROR, "'YOU' is available in MERGE/REDUCTION/WTA only"))

DEPENDS_ON Object.known;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

The object INDEX is available in node and network subroutines only, it always has Int type and CONST

access:

Object Expression Analysis[187] �187

f

RULE rIndexObject :

Object ::= 'INDEX'

COMPUTE

.Type = IF (EQ (Context Kind[111], ObjSubroutineContext),

Subroutine ME Type[109], VoidKey) DEPENDS_ON Object.known;

.Kind = GetKind (.Type, UndefinedK);

Object.Type = IntKey;

Object.Access = ConstAcc;

Object.known =

IF (AND (NE (.Kind, NodeTypeK), NE (.Kind, NetTypeK)),

Message(ERROR, "INDEX is available in network and node subroutines only"))

DEPENDS_ON Object.known;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

23.2 Selection 125

23.2 Selection

(1) Selection from an ordinary variable (VariableK) creates an ordinary variable. (2) Selection from a
parallel variable (ParVariableK) creates a parallel variable selection (ParVariableSelK). (3) Selection
from a parallel variable selection is not allowed. (4) Selection returns an object of the type of the element
selected.

Object Expression Analysis[188] � 188

f

RULE rSelectionObject :

Object ::= Object '.' Elementname

COMPUTE

.Kind = GetKind (Object[2].Type, UndefinedK) DEPENDS_ON Object[1].known;

.Kind2 = Object[2].Kind DEPENDS_ON Object[1].known;

Object[1].Kind =

/* (1): */

IF (EQ (.Kind2, VariableK),

VariableK,

/* else (2): */

IF (EQ (.Kind2, ParVariableK),

ParVariableSelK,

/* else (3): */

IF (EQ (.Kind2, ParVariableSelK),

ORDER (

Message (ERROR, "You cannot select from a parallel variable selection"),

UndefinedK),

UndefinedK))) DEPENDS_ON Object[1].known;

/* (4): */

Elementname.ScopeKey = Object[2].Type;

Object[1].Type = Elementname.Type;

Object[1].Access = Object[2].Access;

Object[1].Mode = GetMode (Elementname.Key, NoMode) DEPENDS_ON Object[1].known;

Object[1].ParVarType = Object[2].ParVarType;

Object[1].ParVarMode = Object[2].ParVarMode;

Object[1].MayBeUsed =

IF (EQ (Object[2].Type, Subroutine ME Type[109]),
DSinsert (Object[2].MayBeUsed, Elementname.Key),

Object[2].MayBeUsed);

Object[1].MayBeRead = Object[2].MayBeRead;

Messag3 (NOTE, "%s %s from type %s",

SymString (GetSym (Object[1].Type, NoSym)),

SymString (Elementname.Sym),

SymString (GetSym (Elementname.ScopeKey, NoSym)));

Object[1].known = Object[1].Kind DEPENDS_ON Elementname.known;

END;

SYMBOL Elementname INHERITS FieldUse, NoKeyMsg END;

RULE rElementname :

Elementname ::= LowercaseIdent

COMPUTE

TRANSFER Sym;

Elementname.Type = GetType (Elementname.Key, NoKey)

DEPENDS_ON Elementname.known;

Elementname.Mode = GetMode (Elementname.Key, NoMode)

DEPENDS_ON Elementname.known;

126 23 OBJECTS

Elementname.known =

IF (AND (NE (Elementname.ScopeKey, NoKey), EQ (Elementname.Key, NoKey)),

Message2 (ERROR, "No element %s found in type %s",

SymString (Elementname.Sym),

SymString (GetSym (Elementname.ScopeKey, NoSym))))

DEPENDS_ON Elementname.known;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

23.3 Subscription

(1) For index expressions, the indexed object must be an array or group, an explicit network variable,
or (for the all-slice only) a connection interface. (2) The resulting type is the base type of the array
or group or the type of the network or the connection interface. (3) The subscripts must be integer or
integer interval. (4) Subscription with slices produces parallel variables of network, node, or connection
type and (5) is not allowed for other types. (6) Parallel variables cannot be subscribed, (7) I/O objects
cannot be subscribed.

Object Expression Analysis[189] �189

f

RULE rIndexedObject :

Object ::= Object '[' Expr ']'

COMPUTE

.Kind = /* of object type! */

GetKind (Object[2].Type, ArrayTypeK) DEPENDS_ON Object[1].known;

/* (7): */

IF (IsIoAcc (Object[2].Access),

Message (ERROR, "IO objects cannot be indexed"),

/* else (1): */

IF (NOT (OR (OR (OR (EQ (.Kind, ArrayTypeK), EQ (.Kind, NodeArrayTypeK)),

EQ (.Kind, NodeGroupTypeK)), EQ (.Kind, NetTypeK))),

Message1 (ERROR, "%s is no ARRAY/GROUP/NETWORK type, cannot be indexed",

SymString (GetSym (Object[2].Type, NoSym))),

/* else (6): */

IF (OR (EQ (Object[2].Kind, ParVariableK),

EQ (Object[2].Kind, ParVariableSelK)),

Message (ERROR, "Object is a parallel variable and cannot be indexed"))));

/* (2): */

Object[1].Type =

IF (OR (OR (EQ (.Kind, ArrayTypeK), EQ (.Kind, NodeArrayTypeK)),

EQ (.Kind, NodeGroupTypeK)),

GetType (Object[2].Type, NoKey), /* else */ Object[2].Type)

DEPENDS_ON Object[1].known;

Object[1].Kind =

IF (IsInt (Expr.Type),

VariableK,

/* else (4), (5): */

IF (IsInterval (Expr.Type),

IF (OR (OR (EQ (.Kind, NodeArrayTypeK),

EQ (.Kind, NodeGroupTypeK)), EQ (.Kind, NetTypeK)),

ParVariableK,

/* else */

ORDER (

23.3 Subscription 127

IF (EQ (.Kind, ArrayTypeK),

Message1 (ERROR, "Slice indexing not allowed for type %s",

SymString (GetSym (Object[2].Type, NoSym)))),

VariableK)),

/* else (3): */

IF (EQ (Expr.Type, NoKey),

VariableK,

/* else */

ORDER (

Message1 (ERROR, "Index expression has illegal type: %s",

SymString (GetSym (Expr.Type, NoSym))),

VariableK))))

DEPENDS_ON Object[1].known;

Object[1].Access = Object[2].Access;

Object[1].Mode = Object[2].Mode;

Object[1].ParVarType = IF (EQ (Object[1].Kind, ParVariableK),

Object[1].Type, /* else */ Object[2].ParVarType);

Object[1].ParVarMode = IF (EQ (Object[1].Kind, ParVariableK),

Object[2].Mode, /* else */ Object[2].ParVarMode);

Object[1].MayBeUsed = Object[2].MayBeUsed;

Object[1].MayBeRead = DSunite (Object[2].MayBeRead,

DSunite (Expr.MayBeUsed, Expr.MayBeRead));

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

For the all-slice object the processing is mostly similar although simpler since we do not have to check
the expression type. Connection interfaces are allowed, non-node arrays are not.

Object Expression Analysis[190] � 190

f

RULE rUnindexedObject :

Object ::= Object '[' ']'

COMPUTE

TRANSFER Access;

.Kind = /* of object type! */

GetKind (Object[2].Type, ArrayTypeK) DEPENDS_ON Object[1].known;

Object[1].MayBeUsed = Object[2].MayBeUsed;

Object[1].known =

/* (1): */

IF (NOT (OR (OR (OR (EQ (.Kind, ConTypeK), EQ (.Kind, NodeArrayTypeK)),

EQ (.Kind, NodeGroupTypeK)), EQ (.Kind, NetTypeK))),

Message1 (ERROR, "a %s cannot be turned into a parallel variable",

SymString (GetSym (Object[2].Type, NoSym))),

/* else (6): */

IF (EQ (Object[2].Kind, ParVariableK),

Message1 (ERROR, "A parallel variable cannot be indexed (Type: %s)",

SymString (GetSym (Object[2].Type, NoSym))),

IF (EQ (Object[2].Kind, ParVariableSelK),

Message2 (ERROR, "A parallel variable selection cannot be indexed (%s%s)",

"Type: ", SymString (GetSym (Object[2].Type, NoSym))),

/* else (7): */

IF (IsIoAcc (Object[2].Access),

Message (ERROR, "IO objects cannot be indexed")))))

DEPENDS_ON Object[2].known;

/* (2): */

128 24 PUT IT ALL TOGETHER

Object[1].Type =

IF (OR (EQ (.Kind, NodeArrayTypeK), EQ (.Kind, NodeGroupTypeK)),

GetType (Object[2].Type, NoKey), /* else */ Object[2].Type)

DEPENDS_ON Object[1].known;

Object[1].Kind = ParVariableK;

Object[1].Mode = Object[2].Mode;

Object[1].ParVarType = Object[1].Type;

Object[1].ParVarMode = Object[2].Mode;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

23.4 Connection addressing

A direct-connection-access object is allowed on the left hand side of an assignment statement only, because
it has the side e�ect to create the connection. This restriction is not checked! The two objects mentioned
in the direct-connection-access object must be a OUT connection interface and a IN connection interface
of two single nodes. These interfaces must have the same type.

Object Expression Analysis[191] �191

f

RULE rWeightObject :

Object ::= '{' Object '-->' Object '}'

COMPUTE

Object[1].Type =

IF (OR (NE (GetKind (Object[2].Type, ConTypeK), ConTypeK),

NE (Object[2].Mode, OutMode)),

ORDER (

Message (ERROR, "First object must be an OUT connection interface"),

NoKey),

/* else */

IF (OR (NE (GetKind (Object[3].Type, ConTypeK), ConTypeK),

NE (Object[2].Mode, InMode)),

ORDER (

Message (ERROR, "Second object must be an IN connection interface"),

NoKey),

/* else */

IF (NE (Object[2].Type, Object[3].Type),

ORDER (Message2 (ERROR, "Connection type conflict: %s/%s",

SymString (GetSym (Object[2].Type, NoSym)),

SymString (GetSym (Object[3].Type, NoSym))),

NoKey),

/* else */

Object[2].Type)))

DEPENDS_ON Object[1].known;

Object[1].Access = VarAcc;

END;

g

This macro is de�ned in de�nitions 183, 184, 185, 186, 187, 188, 189, 190, and 191.

This macro is invoked in de�nition 144.

24 Put it all together

All the above speci�cations belong into certain �les, to which they are now assigned:

129

The .pdl (property de�nition language) �le contains the property de�nitions plus include �le names to
make the types of the properties known.

type.pdl[192] � 192

f

"keyarray.h" /* KeyArray */

"type.h" /* tKind */

"oiladt2.h" /* tOilType */

"folding.h" /* CupitConst */

"deftblkeyset.h" /* DefTblKeyset */

Type Analysis Properties[81]
g

This macro is attached to an output �le.

The .lido �le contains the attribute grammar speci�cation for the type analysis.

type.lido[193] � 193

f

Traversal Order Invariant[90]
Type Analysis Attributes[82]
Type De�nition Analysis[91]
Data Object De�nition Analysis[104]
Subroutine De�nition Analysis[106]
Statement Analysis[124]
Expression Analysis[144]
g

This macro is attached to an output �le.

The .c �le implements the function that sets the properties of the prede�ned objects.

type.c[194] � 194

f

#include "cupit.h"

#include "scope.h" /* Declarations of predefined objects' xKey variables */

#include "pdl_gen.h" /* Property manipulation functions and property types */

#include "oiladt2.h"

#include "OilDecls.h"

Set Properties of Prede�ned Objects[88]
g

This macro is attached to an output �le.

The corresponding .h �le declares this function and also declares the enumeration types that are intro-
duced for type analysis.

type.h[195] � 195

f

#ifndef type_H

#define type_H

#include "folding.h"

Kinds Of Objects[80]
Access Rights of Objects[83]
Interface Modes of Connection Elements[85]
Kinds Of Contexts[87]
extern void SetPredefObjProperties ();

130 25 USAGE ANALYSIS

#endif

g

This macro is attached to an output �le.

The .head �le is included when the complete generated attribute grammar evaluator is compiled. There-
fore, it must include the interfaces of all operations used in the attribution.

type.head[196] �196

f

#include "cupit.h"

#include "pdl_gen.h" /* incl. keyarray.h, type.h, envmod.h, folding.h */

#include "oil_interface.h"

#include "OilDecls.h"

#include "deftblkeyset.h"

Parameter Access Handler[84]
IsUsed Values[86]
g

This macro is attached to an output �le.

25 Usage analysis

This section contains two subsections that are concerned with the optimization of the access to remote
connection data. This optimization is computed in two phases: First, we determine which connection
procedures may read or write which elements of a connection object. Second, we decide which of these
elements to fetch or send individually and which to package into a single larger communication operation.

The �rst phase is carried out during type analysis which you have already seen in the previous sections.
The �rst subsection de�nes the abstract data type used by this analysis to store the results, may-be-used
sets.

The second phase is carried out during code generation, when the actual fetch and send code for those
variants of the connection procedures are generated that are used for the remote connection case. The
second subsection de�nes the procedures that make the decision on communication aggregation and
generate the corresponding code.

25.1 May-be-used sets

For the generation of code to access the data pointed to by a remote connection object, we need infor-
mation about which parts of the connection object pointed to are used. Such information is collected
during type analysis and stored in an object of type \set of de�nition table keys" (DefTableKeySet).
This abstract data type is implemented here (in a rather simple fashion).

The operations needed are creation (NoDefTblKeySet, DSempty, DSmk), element insertion (DSinsert), set
untion (DSunite) and set iteration (DSiterate, DSnext). We also implement an element test operation
(DScontains).

deftblkeyset.h[197] �197

f/* RCS: $Id: usage.fw,v 1.8 1994/11/07 10:49:38 prechelt Exp prechelt $ */

#ifndef DefTblKeySet_H

#define DefTblKeySet_H

#include "cupit.h"

#include "deftbl.h"

typedef struct _dtkset {

25.1 May-be-used sets 131

struct _dtkset *next;

DefTableKey key;

} *DefTblKeySet;

#define NoDefTblKeySet ((DefTblKeySet)0)

#define DSempty() ((DefTblKeySet)0)

DefTblKeySet DSmk (DefTableKey k);

DefTblKeySet DSinsert (DefTblKeySet s, DefTableKey k);

DefTblKeySet DSunite (DefTblKeySet s1, DefTblKeySet s2);

Bool DScontains (DefTblKeySet s, DefTableKey k);

void DSiterate (DefTblKeySet s);

DefTableKey DSnext (); /* returns NoKey at end */

void DSprint (FILE *fp, DefTblKeySet s);

#endif

g

This macro is attached to an output �le.

The implementation is trivially done via a linked list, because the typical size of these sets will be below
10. The sets are never destroyed.

deftblkeyset.c[198] � 198

f/* RCS: $Id: usage.fw,v 1.8 1994/11/07 10:49:38 prechelt Exp prechelt $ */

#include <stdio.h> /* for stderr to be used by _assert() */

#include "cupit.h"

#include "deftblkeyset.h"

#include "pdl_gen.h"

static DefTblKeySet iter;

DefTblKeySet DSmk (DefTableKey k)

{

DefTblKeySet new;

new = (DefTblKeySet)malloc (sizeof (struct _dtkset));

_assert (new != NoDefTblKeySet);

new->key = k;

new->next = NoDefTblKeySet;

return (new);

}

DefTblKeySet DSinsert (DefTblKeySet s, DefTableKey k)

{

DefTblKeySet new, run = s;

while (run != NoDefTblKeySet) {

if (run->key == k)

return (s); /* k already in s; no insertion needed */

run = run->next;

}

/* k not already in s; insert it at the beginning: */

new = (DefTblKeySet)malloc (sizeof (struct _dtkset));

_assert (new != NoDefTblKeySet);

new->key = k;

new->next = s;

return (new);

132 25 USAGE ANALYSIS

}

DefTblKeySet DSunite (DefTblKeySet s1, DefTblKeySet s2)

{

DefTblKeySet new = s1;

while (s2 != NoDefTblKeySet) {

new = DSinsert (new, s2->key);

s2 = s2->next;

}

return (new);

}

Bool DScontains (DefTblKeySet s, DefTableKey k)

{

while (s != NoDefTblKeySet) {

if (s->key == k)

return (true);

s = s->next;

}

return (false);

}

void DSiterate (DefTblKeySet s)

{

iter = s;

}

DefTableKey DSnext ()

{

DefTblKeySet olditer = iter;

if (iter != NoDefTblKeySet)

iter = iter->next;

return (olditer == NoDefTblKeySet ? NoKey : olditer->key);

}

void DSprint (FILE *fp, DefTblKeySet s)

{

DefTblKeySet new;

fprintf (fp, "{");

while (s != NoDefTblKeySet) {

new = s->next;

fprintf (fp, "%s%s", SymString (GetSym (s->key, NoSym)),

new != NoDefTblKeySet ? ", " : "");

s = new;

}

fprintf (fp, "} ");

}

g

This macro is attached to an output �le.

25.2 Accessing remote connection objects

By construction of our data distribution scheme, object procedures always work on local data | with one
exception: Connection operations can be called for local data only from either the input or the output
end of the connection. For the other end (called the remote end), data to be read by a procedure has to

25.2 Accessing remote connection objects 133

be fetched before the procedure can be called and data that was changed during the procedure call must
be sent back to the original data portion of the connection object (the so called data end). Fetching and
sending data for the whole procedure call at once simpli�es code generation vastly, because it allows to
use the very same procedures as for the local case, just operating on a pseudo-local object constructed
from the fetched data before the call and updated back into the original object by sending data after the
call.

Which data to fetch and send is determined statically by the may-be-read set of data elements that might
be read by the procedure and the may-be-written set of data elements that may need to be updated.
These sets can be computed by static analysis of the program text using data
ow techniques. In this
compiler we use an extremely simple criterion of \textual presence" for this purpose.

In order to maintain the correct semantics of the call, two conditions must be satis�ed: (1) the may-
be-read and may-be-written sets must be conservative, i.e., must contain all data that is actually read
or written, respectively, during the procedure call and (2) the may-be-written set must not contain
any element that is not also part of the may-be-read set, because otherwise we might write back an
uninitialized value (if the element was not fetched and was not actually written). This means that we
always have to add all elements of the may-be-written set to the may-be-read set even those for which
this is not indicated by the data
ow analysis.

The procedures to generate the code that fetches the may-be-read set and sends the may-be-written
set are implemented in the following module which de�nes the procedures remoteFetchCode and
remoteSendCode:

remoteconcomm.h[199] � 199

f

#ifndef remoteconcomm_H

#define remoteconcomm_H

#include "cupit.h"

#include "deftblkeyset.h"

#include "ptg_gen.h"

void makeRemoteFetchCode (DefTblKeySet read, Bool nonoptimal, DefTableKey type,

Bool hidelatency, Bool highlatency);

void makeRemoteSendCode (DefTblKeySet write, Bool nonoptimal, DefTableKey type,

Bool hidelatency, Bool highlatency);

PTGNode getRemoteFetchCode ();

PTGNode getRemoteSendCode ();

PTGNode getRemoteCommCost ();

#endif

g

This macro is attached to an output �le.

The code generated by this module allows to produce multiple versions of code: optimized code, code that
communicates each data element individually, code that always communicates the complete connection
object, code that simulates higher latency, and code that simulates (from the view of the timerValue

function) latency hiding. The latter version assumes that the code is inserted at the beginning of a block,
because it declares a variable.

To generate e�cient code, this module makes decisions about when to fetch or send individual elements
and when to clump together the fetch or send operations for several elements into one communication
procedure call. Such aggregation is often useful because it avoids the constant cost of a communication
call (the communication latency). Obviously we should always aggregate the communication of those
elements that are neighbours in the underlying data structure. But even if there is a gap containing data
that need not be transfered between two data elements that must be transfered, it might be more e�cient
to transfer that gap instead of setting up a separate communication operation of each of the elements.

The above procedures can generate three di�erent versions of the code: (1) with nonoptimal false, code
with optimally aggregated communication operations is generated. (2) With nonoptimal true and type

134 25 USAGE ANALYSIS

= NoKey, the procedures generate code to fetch or send each used element of the data type individually.
(3) Otherwise, type must be the key of the connection type for which the procedures are called and the
procedures generate code to fetch or send the whole connection object.

To decide which communication packets to aggregate, the module needs a model of the machine's com-
munication cost. This model is constructed based on the results obtained by running the following
measurement program:

MasPar Communication Measurement[200] �200

f

#define samples 10

plural char buf[1024];

plural char* plural pbuf = buf;

visible program ()

{

int i, lxN, lyN;

int tsend1, tsend1024, tfetch1, tfetch1024;

dpuTimerStart();

sp_rsend (iproc, buf, pbuf, 1); /* strange behavior of first dpuTimer call */

dpuTimerTicks2();

for (lxN = 0; lxN <= lxprocN; lxN++) {

for (lyN = lxN; lyN <= lyprocN && lyN <= lxN+1; lyN++) {

plural int your_xPE, your_yPE, your_PE;

plural int x0 = (plural _bint)ixproc & (plural _bint)~_M(lxN),

y0 = (plural _bint)iyproc & (plural _bint)~_M(lyN);

int segsize = _S(lxN+lyN);

int tsend1 = 0, tsend128 = 0, tsend1024 = 0,

tfetch1 = 0, tfetch128 = 0, tfetch1024 = 0;

for (i = 0; i < samples; i++) {

your_xPE = x0 + p_iRandomOp (p_IntIntervalOp (0, _S(lxN)));

your_yPE = y0 + p_iRandomOp (p_IntIntervalOp (0, _S(lyN)));

your_PE = your_xPE + (your_yPE << lxprocN);

dpuTimerStart (); sp_rsend (your_PE, buf, pbuf, 1);

tsend1 += dpuTimerTicks2 ();

dpuTimerStart (); ps_rfetch (your_PE, pbuf, buf, 1);

tfetch1 += dpuTimerTicks2 ();

dpuTimerStart (); sp_rsend (your_PE, buf, pbuf, 1024);

tsend1024 += dpuTimerTicks2 ();

dpuTimerStart (); ps_rfetch (your_PE, pbuf, buf, 1024);

tfetch1024 += dpuTimerTicks2 ();

}

printf ("%5d %2d %5d %5d %5d %5d\n",

segsize, _log2(segsize), tsend1/samples, tfetch1/samples,

(tsend1024-tsend1)/1023/samples, (tfetch1024-tfetch1)/1023/samples);

}

}

}

g

This macro is NEVER invoked.

These are the results obtained by running the above program (�rst two lines added for readability). A
visualization can be found in �gure 2.

MasPar Communication Measurement Results[201] �201

25.2 Accessing remote connection objects 135

0

5000

10000

15000

20000

0 2 4 6 8 10 12 14

la
te

nc
y

[ti
ck

s]

log2(segmentsize)

sp_rsend
ps_rfetch

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14

tim
e

ne
ed

ed
 p

er
 b

yt
e

[ti
ck

s]

log2(segmentsize)

sp_rsend
ps_rfetch

These pictures show how long it takes on the MP-1 to send or fetch a 1-byte packet (latency time, left picture) and 1

additional byte in a large packet (right picture), depending on the size size of the machine segments, when each processor

sends/fetches one packet to/from a random target processor in the same nice-rectangular machine segment.

Figure 2: Latency and asymptotic time consumption of MP-1 router communication

f

Segmentsize Latency time per byte

n log n send fetch send fetch

1 0 10967 10849 915 918

2 1 11030 10904 921 923

4 2 12051 11902 1011 1014

8 3 13138 12969 1108 1111

16 4 13817 13636 1168 1171

32 5 15950 15728 1358 1362

64 6 17194 16949 1468 1472

128 7 17158 16920 1465 1469

256 8 18392 18135 1575 1579

512 9 16011 15789 1363 1367

1024 10 15857 15642 1349 1353

2048 11 16043 15826 1366 1370

4096 12 15763 15544 1341 1345

8192 13 15517 15312 1319 1323

16384 14 15301 15099 1300 1304

g

This macro is NEVER invoked.

As we see, both latency and time per byte vary with the segment size (in a weird, di�cult-to-explain
fashion). Both, however, vary in almost exactly the same pattern so that the quotient Lequiv of latency
and time per byte is almost constant for all segment sizes and is also almost the same for both sending
and fetching. This quotient Lequiv could be called the latency equivalent , because it answers the question
\How many bytes to transfer is one latency worth?"; it can directly be used to decide which gaps to
transfer and at which to start a new communication operation: all gaps of not more than Lequiv bytes
should be transfered. From the above data, Lequiv can be computed to be in the range 11.5 to 12. We
thus decide to tell the module to aggregate all packets that have gaps of not more than 12 bytes between
them, and happily discard the thought to optimize this gap length based on the segment size, which is not
statically known. A second factor besides segment size also in
uences latency and bandwith: The amount
of load (tra�c) in the network, expressed as percentage of PEs participating. The above considerations
hold for 100 percent load. Additional experiments show that Lequiv gets higher when the load is reduced.
For example it is about 13.5 for 20 percent load and about 20 for 1 percent load. Since for CuPit programs
the load will usually be high, we can allow ourselves to ignore this fact and just stay with the value of
12.

These code templates are used by the module:

136 25 USAGE ANALYSIS

usage.ptg[202] �202

f

remoteFetchCode:

[IndentNewLine] "ps_rfetch (_ME->_oe.pe, ((plural char* plural)_ME->_oe.a"

" + " $1 "),"

[IndentNewLine] " ((plural char*)ME + " $1 "), " $2 ");"

remoteSendCode:

[IndentNewLine] "sp_rsend (_ME->_oe.pe, ((plural char*)ME + " $1 "),"

[IndentNewLine] " ((plural char* plural)_ME->_oe.a + " $1 "), "

$2 ");"

hideLatency:

[IndentNewLine] "unsigned _ticksbefore_ = dpuTimerTicks2();"

$1

[IndentNewLine] "timerUnuseTicks (dpuTimerTicks2()-_ticksbefore_-700);"

spendTime:

[IndentNewLine] "_spendTicks (" $1 ");"

g

This macro is attached to an output �le.

The implementation of the module consists of four parts: (1) Some auxiliary procedures to handle the
pairs of o�set and size that represent the elements to fetch or send, (2) the procedure that computes the
communication aggregation, (3) the procedure that generates the fetch code, and (4) the procedure that
generates the send code. Algorithmically all these operations are quite ine�cient, but we don't care since
almost always the problem size is very small (below 10).

remoteconcomm.c[203] �203

f

#include "remoteconcomm.h"

#include "pdl_gen.h" /* Property manipulation functions and property types */

O�set/Size Block Handling [204]
#define L_equiv 12

Communication Aggregation[205]
Send/Fetch Code Construction[206]
g

This macro is attached to an output �le.

The �rst thing the code generation procedures do is to convert the de�nition table key set to an ordered
array of pairs. Each of these pairs describes the element indicated by one de�nition table key by its o�set
in the connection object and its size. The pairs are ordered by increasing o�set. To to this, a number of
auxiliary procedures and macros and an array of integers are de�ned that support the conversion. These
operations number the pairs from 0 on.

O�set/Size Block Handling [204] �204

f

#define maxpairs 100

static int os[2*maxpairs]; /* storage for pairs of offset and size */

#define offset(i) (os[2*(i)])

#define size(i) (os[2*(i)+1])

static int pairsN;

static void free_entry (int i)

{

/* makes room for a new entry at position i by shifting

entries i to (pairsN-1) one position up.

*/

int j;

25.2 Accessing remote connection objects 137

_assert (i >= 0 && i <= pairsN);

for (j = pairsN-1; j >= i; j--) {

offset(j+1) = offset(j);

size(j+1) = size(j);

}

pairsN++;

_assert (pairsN <= maxpairs);

}

static void delete_entry (int i)

{

/* deletes the entry at position i and shifts

entries (i+1) to (pairsN-1) one position down.

*/

int j;

_assert (i >= 0 && i < pairsN);

for (j = i; j < pairsN; j++) {

offset(j) = offset(j+1);

size(j) = size(j+1);

}

pairsN--;

_assert (pairsN >= 0);

}

static void insert_entry (int off, int sz)

{

/* inserts a new pair of offset and at the correct place

*/

int i;

for (i = 0; i < pairsN; i++) {

_assert (i == 0 || offset(i-1) < off);

if (offset(i) > off) {

free_entry (i);

offset(i) = off;

size(i) = sz;

return;

}

}

/* off is larger than any currently known offset: insert at end */

offset(pairsN) = off;

size(pairsN) = sz;

pairsN++;

_assert (pairsN <= maxpairs);

}

static void combine_entries (int i)

{

/* combines entries i and (i+1) into entry i

*/

int firstafter = offset(i+1)+size(i+1); /* first address after entry (i+1) */

delete_entry (i+1);

size(i) = firstafter - offset(i);

}

static int gapsize (int i)

138 25 USAGE ANALYSIS

{

/* returns the size of the gap between

end of entry i and begin of entry (i+1)

*/

return (offset(i+1) - offset(i) - size(i));

}

g

This macro is invoked in de�nition 203.

With these basics, we can formulate a procedure that takes a may-be-used set as input and massages it into
the o�set/size pair representation with the optimal aggregation of elements into communication packets.
Thus this procedure embodies the optimization strategy for the remote connection data communication
optimization. Here is it:

Communication Aggregation[205] �205

f

static void aggregateCommunication (DefTblKeySet elements, Bool nonoptimal)

{

/* if nonoptimal is true, we don't actually aggregate, just sort. */

DefTableKey key;

int i, j;

int off, sz;

pairsN = 0; /* reset packet list */

DSiterate (elements);

while ((key = DSnext()) != NoKey) {

off = GetOffset (key, 0);

sz = GetSize (GetType (key, NoKey), 0);

insert_entry (off, sz);

#ifdef debug

fprintf (stderr, "%s@%d[%d] ", SymString (GetSym (key, NoSym)), off, sz);

#endif

}

#ifdef debug

fprintf (stderr, "-->\n");

for (j = 0; j <= pairsN-1; j++) /* for all pairs */

fprintf (stderr, "%d/%d ", offset(j), size(j));

#endif

for (i = 0; i < pairsN-1;) { /* for all pairs but the last */

/* see whether we should combine this pair with the next */

if (gapsize (i) <= L_equiv && !nonoptimal)

combine_entries (i);

else

i++;

#ifdef debug

fprintf (stderr, "--> ");

for (j = 0; j <= pairsN-1; j++) /* for all pairs */

fprintf (stderr, "%d/%d ", offset(j), size(j));

#endif

}

#ifdef debug

fprintf (stderr, "\n");

#endif

/* now the offset(i)/size(i) pairs for i in 0...(pairsN-1) represent

the optimal communication aggregation for 'elements'

*/

#undef debug

25.2 Accessing remote connection objects 139

}

g

This macro is invoked in de�nition 203.

These operations are now used to formulate the code generation for remote connection data fetching. After
calling aggregateCommunication, we do an ugly thing: We access the o�set and size values directly to
produce the rfetch calls.

Send/Fetch Code Construction[206] � 206

f

#define artificial_latency 20000 /* ticks */

static PTGNode FetchCode;

static int FetchCost;

void makeRemoteFetchCode (DefTblKeySet read, Bool nonoptimal, DefTableKey type,

Bool hidelatency, Bool highlatency)

{

int i;

FetchCode = PTGNULL;

if (nonoptimal && type != NoKey) { /* fetch always the WHOLE con object */

int Size = GetSize(type, 0);

FetchCode = PTGremoteFetchCode (PTGInt (0), PTGInt (Size));

FetchCost = 1600 + 80*Size;

}

else {

/* nonoptimal means fetch all elements individually */

aggregateCommunication (read, nonoptimal);

FetchCost = 0;

for (i = 0; i < pairsN; i++) {

FetchCode = PTGSeq (FetchCode, PTGremoteFetchCode (PTGInt (offset(i)),

PTGInt (size(i))));

FetchCost += 1600 + 80*size(i);

}

}

if (highlatency) {

FetchCode = PTGSeq (FetchCode,

PTGspendTime (PTGInt (artificial_latency)));

FetchCost += artificial_latency;

}

if (hidelatency) {

FetchCode = PTGhideLatency (FetchCode);

FetchCost = 0;

}

}

PTGNode getRemoteFetchCode ()

{

return (FetchCode);

}

g

This macro is de�ned in de�nitions 206, 207, and 208.

This macro is invoked in de�nition 203.

The generation of send code is analogous to the generation of fetch code above:

Send/Fetch Code Construction[207] � 207

f

140 25 USAGE ANALYSIS

static PTGNode SendCode;

static int SendCost;

void makeRemoteSendCode (DefTblKeySet write, Bool nonoptimal, DefTableKey type,

Bool hidelatency, Bool highlatency)

{

int i;

SendCode = PTGNULL;

if (nonoptimal && type != NoKey) {

int Size = GetSize(type, 0);

SendCode = PTGremoteSendCode (PTGInt (0), PTGInt (Size));

SendCost = 1600 + 80*Size;

}

else {

aggregateCommunication (write, nonoptimal);

SendCost = 0;

for (i = 0; i < pairsN; i++) {

SendCode = PTGSeq (SendCode, PTGremoteSendCode (PTGInt (offset(i)),

PTGInt (size(i))));

SendCost += 1600 + 80*size(i);

}

}

if (highlatency) {

SendCode = PTGSeq (SendCode,

PTGspendTime (PTGInt (artificial_latency)));

SendCost += artificial_latency;

}

if (hidelatency) {

SendCode = PTGhideLatency (SendCode);

SendCost = 0;

}

}

PTGNode getRemoteSendCode ()

{

return (SendCode);

}

g

This macro is de�ned in de�nitions 206, 207, and 208.

This macro is invoked in de�nition 203.

Finally, we need a function that returns that part of the cost of the send and fetch operations, that
does not scale with the amount of tra�c in the communication network. This value is needed for the
work measurement of the compiler. This fraction of the total cost is the run time (in ticks) that is to
be expected when there is minimal tra�c in the network. Just like the other two get operations of
this module, getRemoteCommCost also relies on the values of internal variables set upon execution of the
makeRemoteXCode procedures.

Send/Fetch Code Construction[208] �208

f

PTGNode getRemoteCommCost ()

{

return (PTGInt (FetchCost + SendCost));

}

g

This macro is de�ned in de�nitions 206, 207, and 208.

This macro is invoked in de�nition 203.

141

PART III: Code Generation A | Introduction and Code-

Templates

In this part I will describe in prose what the optimization goals of the compiler are and how they are
achived. Rules for the data distribution and the name generation are given.

I also de�ne a few header �les that will be used by the MPL code generated by the CuPit compiler plus,
more important, a number of large code generation templates in the form of include �les, which contain
generic procedures.

26 Code generation strategy

The next few sections serve to give a general introduction into the design of the code generation for
the MPL CuPit compiler. They will describe what the overall optimization goals are at which the code
generation aims (and what, on the other hand, it is not concerned about), what assumptions on the
behavior of CuPit programs are used (and why), and what techniques are employed in order to achieve
the goals (based on the assumptions). In subsequent sections, rough descriptions are given of how these
techniques work.

26.1 Optimization Goals

(Introductory remarks: It turns out that most of this section says what are not optimization goals of the compiler.

So please use the Sherlock Holmes way of thinking | what remains after all wrong has been eliminated is the

searched-for truth. The now following thoughts apply to massively parallel machines with physically distributed

memory attached to the individual processors where accesses to local memory is many (about 10 to 10000) times

faster than accesses to remote memory.)

The optimizations implemented in the MPL CuPit compiler do not cover any of the aspects usually tar-
geted by optimizations in modern compilers for sequential machines, such as register allocation, peephole
optimization, automatic inlining, instruction scheduling, etc. Since our compiler translates into MPL, we
can leave most of these optimizations to the MPL compiler; the others are simply ignored for requiring
too much e�ort compared to the negligible scienti�c bene�t they have in the context of the study the
compiler was created for (see section 1).

The optimizations do also not cover many of the aspects targeted by modern compilers for parallel
machines, such as automatic parallelization, vectorization, elimination of synchronization points, or over-
lapping communication with computation. Some of these optimizations are not applicable at all to CuPit,
some are not applicable on the MasPar, some are of little or no use on the Maspar, and others are again
ignored.

The main optimization goals of the MPL CuPit compiler are (1) intra-object locality and

(2) static load balancing.

Intra-object locality means that whenever an operation is performed that accesses only the data of a
single compound data object (such as a connection or a node), all this data is available at the processor
performing the operation without any interprocessor communication. As we will see, this requirement can
easily always be ful�lled for nodes. For connections, however, it can only be ful�lled in roughly half of the
cases: Connection operations can be called from either of the nodes at their two ends (the node, where
they are attached to an input interface, and the node where they are attached to an output interface),
but their actual data can only be allocated at one of the two ends. Thus only parts of the connection
operations can maintain locality. However, a correct decision as to at which end of a connection to store
the connection's data guarantees that at least half of the work can be performed locally.

Static load balancing means to achieve load balancing with only static work distribution decisions. Load
balancing means that in any parallel section as many processors should do useful work as the parallism

142 26 CODE GENERATION STRATEGY

inherent in the problem allows. Or, put the other way round: As few processors as possible should wait for
others at any time during the program run while these others perform work they could have shared with
the waiting ones. Static work distribution decisions means that whenever a parallel work section is started
during the program run, the decision which processors perform which part of the work is �xed. \Static"
does not mean the decisions have to be made at compile-time; they may be computed immediately before
the actual work begins | they only must not change during the execution of any single parallel work
section. The rationale for this de�nition lies in the maintenance of data locality: Completely dynamic
work distribution is inherently unable to guarantee data locality (unless you move the data along with
the work, but that is just as expensive as non-local data access). Work distribution in the \static" sense
above, though, can exploit data locality if the data distribution was chosen in anticipation of the work
distribution decision. This means that static load balancing is able to maintain data locality if the work
distribution decisions do not change too often. In the CuPit compiler, we take the inverse approach: We
guarantee data locality a priori; all work distribution decisions are made upon data distribution time and
data distribution does not change too often.

The realization of these optimization goals depends on certain assumptions which are discussed in the
next section.

26.2 Assumptions

The techniques used to achive the above optimization goals are based on a set of assumptions that are
justi�ed by the properties of the application domain \neural algorithms". The following assumptions are
used:

Assumption 1: For any one parallel call of a connection operation, the work to be performed is roughly
the same for all participating connections. Utility: This assumption allows to relinquish load balancing
e�orts on a sub-connection level. It also allows to use the number of connections as a measure of work
size within any single call. Justi�cation: In neural algorithms, connections are usually very primitive
objects. The operations performed on them hardly ever involve loops at all. Without loops, however, the
work to be done will not di�er too much between di�erent connections.

Assumption 2: For any one parallel call of a node operation, the work to be performed is roughly the
same for all participating nodes, i.e., work per node (except for connection work) is constant within
one node group within any one call. Utility: With this assumption we can limit load balancing e�orts
on the node level to connection work balancing. Justi�cation: To justify this assumption, we basically
use the same argumentation as for the connections above. But the fact that the work needed for the
connections is embedded in the work for nodes makes the situation more complicated: Should some of
the nodes inactivate themselves for most of the operation, the assumption does not hold. However, if
such inactivation decisions are data-driven and cannot be anticipated individually by the programmer, it
is hardly possible to achieve load-balancing with any static method. Thus the assumption is acceptable,
although we recognize that it may be a signi�cant simpli�cation for certain programs.

Assumption 3: The data distribution has to be changed not too often, i.e., the work needed for computing
a new data distribution and executing the reallocation accounts for only a small fraction of the overall
run time. Utility: Rare data distribution change allows to invest a lot of resources into doing it cleverly,
since the amortization period for such resource investment is long. Justi�cation: In neural algorithms,
network topology changes usually occur only after one or even several epochs of training. Assuming that
the amounts of training data are not too small, topology change will occur not too often. Due to the next
assumption below, though, data distribution changes are usually necessary only during network topology
changes.

Assumption 4: The behavior of the algorithm in respect to the load at individual data objects changes
only smoothly (if at all). Utility: Smooth evolution of behavior means that decisions based on data from
the execution history that were good when they were made degrade only slowly. In particular, the load
balancing provided by a certain data distribution will not get very bad from one moment to the next
(unless the topology is changed). Justi�cation: Neural algorithms are iterative local search processes.
The behavior of the algorithm itself does usually not change much during the whole learning process,

26.3 Techniques 143

i.e., almost the same program code is used all the time. The behavior of the data (the network) only
sometimes changes erratically in a well-balanced neural algorithm; most of the time the evolution is
almost continuous.

Assumption 5: Trying to optimize extra-object locality does not pay o�. Extra-object locality means that
nodes which communicate with each other (i.e. have a connection and use it) are allocated on the same
processor (are \co-located"). Utility: Not optimizing for co-location saves a complicated connectivity
analysis and allows to design the data distribution for other e�ciency-enhancing properties that could
not be achieved when co-locality was required. Justi�cation: The validity of this assumption strongly
depends on two factors: The target machine and the topology of the neural networks to train. As far
as the machine is concerned, the assumption holds on the MasPar, because (1) the MasPar is very �ne
grained, so that the number of co-local nodes is very small anyway, compared to the number of non-local
nodes, (2) communication cost on the MasPar is relatively well-balanced compared to computation cost,
(3) communication cost does hardly depend on distance. As to how much co-locality not utilized by a
random distribution is available in a network topology is very di�cult to say.

26.3 Techniques

Locality is achieved by using a class of data distributions that guarantees local node operations in all cases
and local connection operations in a part of the cases (as given by the at-which-end-should-the-data-be
dilemma, see below). The central idea of this data distribution is to allocate not only one processor per
node but a whole processor block. The node is replicated across this block and the connections attached
to the node are distributed across it.

Load balance is achieved by adjusting the parameters of this data distribution cleverly. The most im-
portant aspect of this parameter optimization is to allocate a number of processors for each node that is
proportional to the connection work load of the node.

The next three sections will describe the basic ideas of the data distribution and the data distribution
parameter adjustment.

27 The code generation types

This compiler can generate code in three di�erent versions.

1. A plain version . This version has data locality but does not perform any load balancing.

2. A statically optimized version . This version is statically optimized solely based on the analysis of
the program source text and a machine model. It performs load balancing based on the assumption
that the work performed is the same for each connection at each interface.

3. A run time information collection version (or short rti version). The rti version contains additional
code to measure the actual run time of connection operations. Based on these measurements, the
data distribution can be optimized to the actual behavior of the program instead of just a static
estimation. Such optimization is done dynamically when the rti version is run.

Which of the three versions of code to generate is selected at compile time by compiler options:
-dumbbalance selects the statically optimized version, -nobalance selects the plain version, by default
the compiler generates the rti version. In the generated code, the preprocessor symbol codetype has
the value 0 for the plain version and 1 for the run time information version.

28 The data distributions

Any data distribution used may have the following useful properties to a higher or lower degree: Locality,
load balancing, direct addressability, dynamic extendability, dynamic reducability, propagation of infor-
mation about dynamic changes from connections to nodes and from nodes to nets, index computation,
maxindex computation.

144 28 THE DATA DISTRIBUTIONS

We use two di�erent data distributions because not all of these goals can e�ciently be achieved with a
single one. Topology change operations are done only in one of the forms, all others in both. The criterion
for deciding when to switch from one distribution to the other is the generation of replicates: While the
number of replicates is 1 (i.e. changes in topology are possible) we usually use a data distribution we call
form 0 . While there are several network replicates (and changes in network topology are not allowed),
we use a data distribution we call form A. The major di�erence between the two forms is that form A
achieves load balancing while form 0 gives up load balancing in order to achieve direct addressability and
ease dynamic change.

In the following we will describe the two data distributions, using the following terminology: Let net be a
network variable having r replicates. nodes is a node group of net consisting of n nodes. con1, con2,...

are connection interfaces of a node and have c1, c2, ... connections attached. Nice-rectangular means
a rectangle whose sides have lengths 2i and 2j, respectively, with �i � j ��1, i.e, side lengths are powers of
two and either are equal or di�er by factor two.

28.1 Form A

The basic idea behind the form A data distribution is to allocate not only a single processor for each node
of a node group, but a whole block of processors; the connections attached to this node are distributed
accross this processor block. Replicating the node data accross the processors in the block allows for
locality between a connection and the node is it attached to. Chosing the size of the node's processor
block in proportion to the amount of work required by the connections results in balanced load. For
replicated networks we use the same method after dividing the machine into segments, one for each
replicate. Here is a somewhat more detailed description:

The processor array is segmented into r nice-rectangular parts (calledmachine segments or just segments).
Either r is a power of two or we round it up to a power of two and do not use all allocated replicates.3

The exactly same data distribution is used within each machine segment. Each node group is allocated
separately. For each node in a node group, we allocate a nice-rectangular subsegment (called a processor

block or node block or just block). Processor blocks for nodes belonging to replicate a are always allocated
to lie completely within the segment a. Connections are distributed accross the processors of the block
in a \cycle" fashion: on a block of size b, connection i is located on processor (i mod b) within the block.
The size of the processor block is chosen for each node individually so as to achieve optimal load balancing
for the connection operations.

The local data of each replicate of the network variable is allocated on the processor at the upper left
corner of the corresponding machine segment. The local data of each replicate of a node object is allocated
on the processor at the upper left corner of the corresponding processor block. The other processors of the
same segment or block all carry duplicates of the same data, called shadow duplicates; these duplicates
have identical values at any time during the program, i.e., whenever this invariant is violated it will be
reinstantiated before any other operation occurs. The local data of a connection is stored at either its
input or its output end. At the other end, allocating a connection means allocating a pointer to the
actual data. The decision whether to store the connection data at the input end or the output end is
made for each connection type individually.

Virtualization is never necessary for network replicates, since we never allocate more network replicates
than there are processors.4 Node groups are subject to virtualization when the sum of the numbers of
processors in its nodes' processor blocks exceeds the number of processors of the machine (or machine
segment). For each node group, the number of nodes (primary plus shadow) allocated on one physical
processor is always the same for all processors of the machine; some of these nodes may be marked as
non-existing, meaning they are not actually used. Individual nodes are not subject to virtualization; a

3The reason for always working with powers of two (here as well as in other contexts) is that it makes many computations
much more e�cient, in particular address computations and boundary tests.

4Justi�cation: Having more replicates than processors cannot achieve higher e�ciency but will make data management

more complicated. We can thus save this e�ort for sake of easy implementation without losing an important feature. Given
the large amount of processors and the small amount of memory per processor available on the MasPar, it is hardly possible
to use more than one replicate per processor, anyway.

28.2 Form 0 145

processor block is always allocated on a physically contiguous block of processors. Within each virtual-
ization layer of a node group, the number of connections attached to the same connection interface and
allocated on one physical processor is always the same for all processors of the machine; some of these
connections may be marked as non-existing, meaning they are not actually used. Node virtualization
may either be done such that in any virtualization layer of a particular node group there are only nodes
with subsequent indices, i.e., each virtualization layer contains exactly a complete subrange of the total
index range of the node group (linear block arrangement) or it may be done such that any virtualization
layer may contain nodes with arbitrarily mixed indices (random block arrangement). Random block ar-
rangement has the advantage to allow minimal waste of virtual processors by optimizing the block layout
globally across all virtualization layers. Linear block arrangement has the advantage that it is easier
to construct than an optimal random block arrangement and that it allows more e�cient execution of
operations on slices of the node group when the virtualization factor is large. Since the maximumwaste
of virtual processors can be limited by restricting the fraction of a segment occupied by the largest node
block, the compiler uses linear block ordering.

28.2 Form 0

The main di�erences to form A is (1) that the processor blocks of each node have the same size and are
always arranged linearly across the PE array and (2) that there is always only a single network replicate.
Property (1) destroys load balance if di�erent amounts of work are required at di�erent nodes, but it also
has advantages: It is possible to address the upper left corner of any node block directly. We can (and
do) always work without node level virtualization and we can preallocate room for dynamic extension
of node groups. Direct addressing is very valuable for easy formulation of data structure modi�cations
(addition and deletion of nodes or connections). The connections are allocated accross any node block in
the same fashion as in form A, still in no particular order. The block size is still a power of two.

29 Data distribution parameter decisions

29.1 The run time measurements

The individual data distribution parameter decisions described below are based on empirical (i.e. run-
time) data about the behavior of the program. The only type of cost considered is run-time. The compiler
uses the following basic measures:

1. measured per node group, per connection interface: total work (i.e., e�ective run-time) at each
connection interface. Purpose: used to compute relative node block sizes from numbers of connections
at each interface. Caveat: This value depends on whether connection data is remote or not. The
measurement thus interferes with measurements trying to decide whether connection objects should
be placed at input or at output interfaces.

2. measured per node group, per connection interface, per replication/non-replication phase: total work
(i.e., e�ective run-time) at each connection interface. Purpose: auxiliary measurement to compute
the correct information for measurement 1, which is possible only indirectly, because phases during
which topology changes can be made (and thus the data distribution has unoptimized form) have to
be taken out of account.

3. measured per node, per connection interface, per replication phase: total number of connection
operations called. Purpose: compute absolute node block sizes necessary for good load balance
despite parial non-activity in the nodes. (The optimization that uses this second measurement and
the measurement itself is not implemented completely.)

29.2 Where to put connection data

The actual data portion of a connection can be put at either its input or its output end. The other
end contains just a pointer. This decision can be made for each connection type independently and is

146 29 DATA DISTRIBUTION PARAMETER DECISIONS

stored in the Dataloc property of the connection type. Which way is best depends on the distribution
of connection operations.

To make the decision, the code generation could implementmeasurement code to compute the cost of both
versions at once for the test run. During the test run the total cost of each alternative is measured and
the decision is made accordingly in the generation of the �nal code. Computing the cost of the alternative
would work in the following fashion: During each form A phase, we collect for each connection procedure
call the total communication cost and the total computation cost. The communication cost (time used
for fetching and sending remote data) is computed for the data end as well as for the remote end of
the connection by inserting a dummy communication operation at the data end. These costs are then
accumulated per connection type over all connection procedure calls that happened in the test run for
connections of this connection type, giving total communication costs for the data end and for the remote
end (Commd , Commr) and total computation costs for the data end and for the remote end (Compd,
Compr). The data end should be changed to the remote end, if

Commd +Compd +Compr < Commr +Compd +Compr

or kept where it is otherwise.

The problem with this approach is that it interferes severely with node block size optimization: When
the numbers of connections at di�erent interfaces of a node di�er signi�cantly, the node block size will
change dramatically depending on which interfaces are data ends and which are remote ends. Di�erent
node block sizes however, will result in di�erent degrees of virtualization and this, in turn, will change the
value of total communication costs. This problem stems from the fact that we need to know the absolute
costs, not the relative per-connection cost. Absolute costs however, can be known only after node block
size decisions are made.

Because of this problem, this compiler does not implement an automatic optimization of connection data
localization. Instead, a compile-time switch (-conatout) can be used to change the localization decision
by hand; the user must try both variants and use the one that is better. Since most programs have only
one connection type, the compiler switch changes the localization of all connection types at once.

29.3 How to fetch remote connection data

A second problem resulting from the fact that connection data can be used at two addresses but can be
allocated only at one is the following: What is the most e�cient way to access remote connection data
in a connection operation5 called for a remote connection ?

There are several di�erent methods: (1) communicate exactly what is needed exactly when it is needed
on a per-element basis, i.e., communicate for each individual element access. (2) dito, but use cacheing
to optimize multiple reads and/or write-behind to optimize multiple writes. (3) at the beginning of the
operation, fetch any element that might be read during the operation and at the end of the operation
send any element that might have been written to during the operation; the set of elements possibly
read or written is determined statically. (4) at the beginning of the operation fetch the whole connection
object if any element may be read and at the end of the operation send back the whole connection object
if any element may have changed.

Method (1) will be very ine�cient if some elements are accessed often within one connection operation.
Method (2) is prohibitively expensive on the MasPar because it has a large management overhead which
can not be amortized on the MasPar since communication is relatively e�cient and the objects are
rather small. Method (3) will be ine�cient if the fraction of elements used is large and their number
is not negligible, because the constant e�orts for each fetch or send operation involved will sum up to
exceed the time saved by not fetching or sending unused elements. Packing the used �elds into a single
communication packet is also not feasible due to the overlarge management cost compared to object size.
Method (4) will be ine�cient if only a small fraction of the connection object is used. Of course the
method can be selected independently for reading and writing: we might want to chose (3) for reading
but (4) for writing.

5A connection operation is one call of a connection procedure from a node procedure

29.4 Decision about node block size 147

The approach taken by the compiler is a modi�ed version of method (3). Type analysis computes the
may-be-read and may-be-written set of elements, along with their size and o�set. A static cost model of
bandwith and latency then computes which of these elements should be fetched or sent individually and
which should be aggregated into larger communication packets. Such larger packets may fetch or send
super
uous elements if this is cheaper than starting a separate communication operation.

Note that the analysis treats each element as atomic, i.e., record and array elements are always fetched
or sent as a whole.

29.4 Decision about node block size

The selection of node block sizes is done for each node group separately and has two di�erent aspects:
(1) The relative size of the node blocks is responsible for load balancing among the nodes in a group.
The size of each node block should be proportional to the total amount of work that must be done
for the connections attached to the node. (2) The total absolute size of node blocks is responsible for
machine-wide load balancing when there are node operations that have to be executed only for a subset
of the nodes in the group: The larger the node groups, the smaller is the fraction of the group that is in
one virtualization layer (i.e. executes concurrently). Such small numbers of nodes executing concurrently
reduce the expected amount lost computing power due to inactive processors. On the other hand, the large
node blocks that are necessary to �ll the machine with a small number of nodes have three disadvantages:
(a) they increase the memory overhead for node replicates, (b) they reduce the degree of freedom for
node block size variation to achieve relative load balancing, and (c) they make connection reductions and
broadcast over the node block more expensive due to the increased total communication distance.

In this compiler, we focus on aspect (1) from above. The absolute size of the blocks (aspect (2)) is always
chosen so as to �ll the machine exactly once (or, in certain cases, twice). The compiler can �nd the
optimal relative size of the node blocks if it has the following knowledge: At the end of a form 0 phase,
it knows for each interface of each node in each node group, how much work will be done per connection
at this interface on the average of the next form A phase6. For a practical implementation, this ideal of
the available knowledge has to be reduced: We cannot really know the future work needed, so we have
to estimate a prediction based on the previous phases, if any.

Given these restrictions, we can dynamically collect information during form A phases in order to make
good decisions on block sizes for the next form A phase. An additional restriction is imposed in our
implementation: All node blocks have sizes that are powers of two. Thus, relative load balancing is
imperfect within a bandwith of factor two. This decision was made because many computations get so
much simpler when block sizes are powers of two (in particular all address computations).

29.5 Decision about node virtualization

Given the above considerations, one important open question is how to handle new nodes. There are two
ways to handle nodes that were created during the last form 0 phase. (1) We can just treat them like
any other. This means to assume they will need the same work per connection as the older nodes at each
interface. Under this assumption it is sensible to put all nodes in one virtualization layer (except when
the number of connections at some nodes is so large that this reduces the load balancing capabilities too
much).

The alternative is (2) to assume that all new nodes will behave the same but not necessarily the same as
the old nodes7. Under this assumption, it would be clever to have one (or several) virtualization layers
that contain only the new nodes and one (or several) others containing the old nodes. Block sizes for
the old nodes should be chosen based on the already known work per connection values of the interfaces,
while block sizes on the new nodes should be chosen based on the assumption that connections at all
interfaces need the same amount of work.

6Remember that we assume that the work for each connection is the same for all connections at the same interface of

the same node.
7This assumption is true for algorithms that train only or mostly these new nodes in the next phase.

148 29 DATA DISTRIBUTION PARAMETER DECISIONS

In this compiler, we select the one of these assumptions that seems to have higher validity during the
test run: If the new nodes regularly have much higher (or much lower) work per connection than the old
nodes, we prefer assumption (2), otherwise we use assumption (1). The decision is made on a per group
basis. Not implemented completely.

29.6 Decision about number of network replicates

Using a larger number of replicates has the following advantages: (1) the segment of each replicate is
smaller, reducing the non-locality of communication, (2) the number of di�erent nodes active at the
same time tends to decrease, possibly enhancing load balance if not all nodes are active during all of
a node operation and increasing machine utilization if the absolute number of active nodes is small,
(3) the number of corresponding nodes active at the same time increases, enhancing the machine usage
for winner-takes-all statements (this is almost the same as (2)).

The disadvantages of a larger number of replicates are: (1) on the average more replicates will be unused at
the end of the epoch when the number of examples is not divisible by the number of replicates, (2) more
memory is required leaving less room for training data or even overloading the machine completely,
(3) replicating and merging takes longer, (4) the possible variance in node block size is lower (since the
segments are smaller), perhaps hampering good load balance.

Proper decision about the number of network replicates is not implemented in this compiler. Instead,
the compiler uses a very simple method to select the number of replicates: It uses the maximum power
of two that is less than or equal to the maximum allowed number of replicates. Should this number be
less than the minimum allowed number of replicates, the maximum allowed number is used. Since all
node block sizes are powers of two, the machine can only be used completely if the number of replicates
is also a power of two (because then and only then will the number of processors in the machine segment
of each replicate be a number of two, as is shown in the next section).

29.7 Segment and block layout

The computation of segments is straightforward for two reasons: (1) segmentation is regular and (2) the
segments always �ll the machine exactly because the number of segments, the size of each segment, and
the size of the machine are all powers of two (and segments are always nice-rectangular). The same
statement is true for the computation of block layout in form 0.

Form A block layout (given the required size of each block) is essentially a variant of the two-dimensional
bin-packing problem with the following formulation: Pack B nice-rectangular objects into several nice-
rectangular bins of identical size; use as few bins as at all possible.

The above is the formulation for optimal random block arrangement. For the linear block arrangement
case, the B objects are ordered into a sequence. We pack the longest possible subsequence beginning
with object 0 that �ts into one bin before beginning to �ll the next bin with the same method applied to
the rest of the sequence.

It turns out that the nice-rectangularness of bins (virtual segments) and objects (node blocks) together
makes the problem so easy that it can be solved in time proportional to B � log2(B) (while the general
problem requires exponential time). The suggested algorithm is also parallelizable and works in time
proportional to log22(B) on B processors.

The algorithm is based on the observation that there are only log2(B) di�erent possible object sizes and
works roughly as follows:

1. sort the blocks by their size

2. Do the following for each existing blocksize b from maximum to minimum:

3. mark all bin positions that (according to their position within the segment) might hold upper left
corners of b-sized blocks with `here', all other positions with `no, here not'.

4. change all `here' marks on already-occupied positions to `no, here not'.

29.8 Reorganization scheduling 149

5. enumerate the `here' marks, i.e., store the value i � 1 at the ith `here' mark. The order is through
rows �rst, columns next, segments last.

6. allocate block number i at the position holding value i.

The sorting of blocks by size needs not really be done. Instead, it is also su�cient to enumerate the
blocks of the just-to-be-positioned size just before positioning them.

29.8 Reorganization scheduling

Reorganization of the network representation (or parts of it) occurrs in the following situations:

1. When REPLICATE network is called.

2. When CONNECT is called and there it not enough room for the new connections in the relevant local
connection arrays (only the a�ected connection arrays are reorganized).

3. When EXTEND is called and there are not enough free node blocks left in the current representation
of the respective node group (only the a�ected node group and its connections are reorganized).

4. When REPLICATE node INTO 0 is called (only the a�ected node group and its connections are reor-
ganized).

This means in particular that no automatic reorganization is done after any number of REPLICATE

connection INTO 0 or DISCONNECT calls. If such reorganization is needed, the programmer must call
REPLICATE network INTO 1 explicitly.

30 The topology-changing operations

The next few sections give a very rough overview of the steps involved in the individual topology-changing
operations. All these operations can only be applied while the network is in form 0 representation.

30.1 Connect

CONNECT a[x...y].out TO b[v...w].in

Count how many yet-unused connections are allocated for each node in the a�ected parts of groups a
and b. If there is at least one node where there are not enough of them, reorganize and make enough
room by allocating a new, larger connection array. Generate and initialize the connection objects and
their descriptors. The number of connections stored in the interface descriptor is not kept current.

30.2 Disconnect

Mark the connection objects as unused (at both ends!). No reorganization is done. The number of
connections stored in the interface descriptor is not kept current.

30.3 Extend

Extending a node group by a negative number of nodes means marking all connections of the to-be-deleted
nodes and the nodes itself as non-existing. Update the node group descriptor.

Extending a node group by a positive number of nodes means: Test whether they �t into the yet-unused
space in the node group. If not, reorganize and make room accordingly, i.e., compute the new block size
needed to �t all nodes onto the machine without virtualization and move all nodes and their connections
into these new blocks. Initialize the new nodes and update the node group descriptor.

150 30 THE TOPOLOGY-CHANGING OPERATIONS

30.4 Replicate network

There are four cases, described by the status before the replication (one replicate or many replicates) and
the requested status after the replication (one replicate or (possibly) many replicates). These cases are
discussed individually.

30.4.1 One into one

There are four subcases, depending on whether the old and new data distribution, respectively, are form
0 or form A: Form 0 to form 0 is just a reorganization. Form 0 to form A works like `one into many',
except that the last step (copying segment 0 into segments 1 to n) is void. Form A to form 0 is just
like `many into one', except that no merging is needed. Form A to form A is impossible because it is
equivalent to `many into many'.

30.4.2 One into many

If the \many" is an interval we �rst determine the optimal number of replicates from the interval. If
necessary, the number is rounded to a power of two (additional replicates, if any, will be marked as non-
existing). We physically always use a number of replicates that is a power of two, because this simpli�es
address computations and computation of boundary conditions signi�cantly.

In the next step, the machine is segmented into replicate segments and the network is reorganized from
form 0 on the whole machine into form A in segment 0. Last, segment 0 is copied onto all the other
segments and the descriptors are updated accordingly.

The reorganization from form 0 into form A works roughly as follows:

1. Make a copy of the network variable: old net := net.

2. For each node group g in the old network do the following 3 steps:

3. | decide which block size to use for each node

4. | compute block layout

5. | allocate the new nodes and connections and copy the node and connection data of the group

6. For each node group g' in the new network do the following step:

7. | compute the correct remote pointer of each connection

The construction of the correct remote pointers is done in two steps, the �rst of which is done during
connection copying. Consider one connection con1 and its corresponding remote connection con2. At
the beginning these two objects have remote pointers oe1 and oe2, respectively, that satisfy the invariant
oe1 = &con2 AND oe2 = &con1. The goal of the pointer computation is to assert the corresponding
invariant for the new connections con3 and con4 (corresponding to con1 and con2, respectively).

In step 1 we set oe3 := oe1; oe4 := oe2; oe1 := &con3; oe2 := &con4, in this order, i.e., we copy
the old remote pointer values into the new remote pointer objects and then reset the old remote pointers
to point to the new corresponding connection objects. Now the old remote pointers so to say point to
their new self and the new ones point to the old remote connections. In step 2 we follow these latter
pointers to compute the new pointers: oe3 := oe3->oe; oe4 := oe4->oe. The two steps cannot be
done in one, because con1 and con2 may (and usually will) belong to di�erent groups and are thus not
generally handled at the same time.

30.4.3 Many into one

Apply the MERGE procedure, compute the appropriate node block size for each node group, reorganize
form A into form 0 using the whole machine to distribute the form 0 data. The reorganization can be
done in a way very similar to that used for the reorganization from form 0 into form A and is in fact
implemented in the same procedure.

30.5 Replicate node 151

30.4.4 Many into many

This replication is not allowed according to the language de�nition. Instead, the programmer must
explicitly write a replication into one �rst.

30.5 Replicate node

Replicating a node into several nodes is not implemented. It is quite di�cult to implement, because the
connections have to be cloned. Replicating connections is not easy because it requires adding connections
at possibly many foreign node groups at once (and must avoid cloning intra-group connections twice).

Replicating a node into null replicates meansmarking all its connections and the node itself as non-existing
and then reorganizing the node group with new indices computed for the nodes.

30.6 Replicate connection

Replicating a connection into several connections is not allowed by the language de�nition, because
connections must be identi�able uniquely by the pair of interfaces they are attached to.

Replicating a connection into null works much like a DISCONNECT: The connections are just marked as
non-existing.

31 Name generation rules

Since the generated code is MPL source code, a lot of MPL identi�ers have to be generated. The
scoping rules of CuPit were chosen to conform with those of MPL, so no special treatment is necessary
for names that directly correspond to names in the CuPit program.8 However, a lot of additional names
are needed, in particular because many CuPit objects are implemented as a multitude of objects in the
MPL program (for instance a parallel object procedure as a simple plural procedure and as a virtualized
plural procedure). A second reason is that we need names for some objects that have no name in a CuPit

program (e.g. the MERGE procedures).

The names of these objects are created systematically using the rules described in this section.

The basic technique to avoid name clashes between a name that was generated from a CuPit name A (or
from nothing) and a CuPit name B is to use the underscore character as a separator between the parts
of a generated name. Since the underscore is not allowed in CuPit identi�ers, this technique will always
generate a name that cannot be a plain CuPit name.

31.1 Type de�nitions

Type names are used directly in the generated program. For connection, node, and network types, there
is a second version of the type that contains only the local data of the type (i.e. no connection interfaces
for nodes, no nodes for networks, and no descriptors in any case) and is named by appending 0 to the
type name.

31.2 Named procedures and functions

The names of global procedures and functions are used directly in the generated program for the singular
version of the subroutine. For the plural version we prepend p . This is the same naming convention

8Note that this way no identi�ers may be used in a CuPit program that are keywords in MPL. See appendix B

152 31 NAME GENERATION RULES

that the MPL library uses. A plural version is generated only for free subroutines, not for those in the
central agent, because these cannot be called in a plural context.

REDUCTION and WTA functions are always plural; their names always have p prepended.

Since the same name can be used in CuPit for a global and an object subroutine or for two object
subroutines in di�erent types, we append the name of the type to the subroutine name of an object
subroutine, i.e. use the form subroutinename typename. Although object subroutines are always plural,
we do not prepend a p pre�x here. For object procedures, though, we need an additional virtualized
version of the procedure. This version is named by prepending an a (Mnemonic: all).

31.3 Unnamed procedures, operators, and builtin objects

Unnamed procedures are the initialization procedures for structured types, the procedures that imple-
ment the input and output assignment operators, and the MERGE procedures. (Unnamed means that
no name for them is mentioned in the CuPit program.) They have names of the form INIT typename,
INPUT typename, OUTPUT typename, and MERGE typename, respectively. While the INIT , INPUT , and
OUTPUT procedures already include all virtualization activities, there is an additional wrapper needed for
the MERGE procedures. This wrapper is named a MERGE typename.

The names of the operators are the same as used in the operator identi�cation process (see section 22.1 on
page 103�), unless the operator has an equivalent in MPL in which case this equivalent is used directly.
ME and YOU are used as object names in the MPL program directly. For the names of the run time system
procedures and functions see part \Run Time System".

31.4 Structure elements and desriptors

The names of elements of record, connection, node, and network types are used directly. This is possible,
because each struct has its own scope in MPL. The names of descriptors that correspond to some
element x have the form x D.

Within the descriptors, the following naming conventions hold: Elements holding integral numbers that
are always powers of two and are represented in logarithmic form have names that begin with l. Elements
representing ordinal numbers (indices, always beginning at zero) have names ending in I. Elements
representing cardinal numbers have names ending in N. These conventions apply to many local variables
used in the generated code as well.

31.5 Data objects

The names of global and local data objects of the CuPit program are used directly. Data objects introduced
by the compiler are guarded against name clashes by always choosing names that begin with an underscore
character. The rules for l pre�x and for I or N su�x described above also apply.

31.6 Run time information

Parts of the generated code and data structures are not necessary to implement the semantics of the CuPit
program but have the purpose to collect run time information. As far as the above rules are concerned,
this run time information collection code (short: rti code) is also structured like ordinary code. To
suppress the rti code when it is not needed, two di�erent approaches are used at di�erent points in the
code generation: At some places, the compiler generates di�erent code when it is in rti code generation
mode than when it is not. At other places, the rti code only needs to be omitted and this is achieved by
enclosing it in an #if section.

153

32 Data types

We need a number of data types to be used in the generated code: The builtin types of CuPit, the data
structure descriptors, and a few auxiliary types. These types are de�ned in two header �les that are
given in the next sections: cupittypes.h contains the MPL de�nitions for the builtin types of CuPit,
descriptors.h contains the descriptor and auxiliary types.

32.1 CuPit builtin types

Well, there is not much to say about these declarations, so here we go:

lib/cupittypes.h[209] � 209

f/*

File: cupittypes.h, typedefs for CuPit builtin types

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

#ifndef CUPITTYPES_H

#define CUPITTYPES_H

typedef unsigned char Bool;

typedef int Int;

typedef short Int2;

typedef char Int1;

typedef float Real;

typedef char* String;

typedef struct { Int min, max; } Interval;

typedef struct { Int2 min, max; } Interval2;

typedef struct { Int1 min, max; } Interval1;

typedef struct { Real min, max; } Realerval;

#define true ((char)1)

#define false ((char)0)

#define VAR

#define CONST const

#endif

g

This macro is attached to an output �le.

32.2 Descriptor types

The descriptor types carry all administrative information related to the individual parts of a network,
i.e., the network and its replicates (network D), the node arrays and node groups (node group D), the
individual nodes in each replicate and their shadows (node D), the connection interfaces (interface D)
at each node, local connections (connection D), and remote connections (remote connection). In fact,
remote connection is not really a descriptor type, because there is no data object that it describes; all
remote connections of whichever connection type are represented solely by a remote connection object.

The tasks that must be solved by the descriptors are the following:

1. Address computation for the standard object procedure calls, reductions, and winner-takes-all state-
ments.

2. Address computation and memory management guiding for topology change operations and data
distribution reorganizations.

154 32 DATA TYPES

3. Storing of the run time information collected by the rti code.

The term \address computation" is used loosely here and includes activity checks and the computation
of iteration spaces (boundaries, index ranges, etc.).

All descriptors are allocated as plural, i.e., on each processor. Some of the information in a descriptor
may be a priori identical on many or even all processors; replicating it, though, makes the information
available locally, simplifying code generation and improving e�ciency. The memory overhead induced by
such replication is practically irrelevant unless the values are always equal on all processors: Since we
are unable to balance memory consumption across the processors, the maximum of the memory needs
at any single processor determines the e�ective overall memory consumption and would not sink if the
replication was not made, because in the chosen data distribution scheme at least processor 0 has to hold
a copy of each descriptor. Some of the descriptor data, though is guaranteed to be the same on each
processor in any case. Such data could be represented by singular data objects, we call it quasi-singular .
The reason for not actually implementing it as singular data is that the management of descriptor data
would then become considerably more complicated in the compiler: Since MPL does not allow to mix
singular and plural components in a single struct, we had to carry two data objects (one singular and
one plural) all through the code generation instead of only one that we need now.

Descriptors may carry the following information, although not all of this information is present in each
descriptor type. The descriptor of an object A may contain:

1. Self-existence indicator (exists)

2. Self-identi�cation of A (meI)

3. Description of the part of the processor �eld used for sub-objects of A

4. Degree of virtualization (localsizeN, con ls)

5. A backpointer to the descriptor of the object A is a part of (boss)

6. Run time information about the usage of A

Descriptors so to say answer the questions \Am I ?", \Who am I ?", \Where are my subordinates ?", \Where is my boss ?",

\What am I doing ?". Note that this compiler is a world in which \Am I ?" is not a yes/no question due to shadow nodes.

Now follow the actual data structure declarations for the descriptor types. Note that the ordering of the
elements is chosen so as to minimize the total size of the type by avoiding alignment gaps as much as
possible.

lib/descriptors.h[210] �210

f/*

File: descriptors.h, type definitions for cupit data structure descriptors

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

#ifndef DESCRIPTORS_H

#define DESCRIPTORS_H

Machine Descriptors[222]
Auxiliary Types[217]
Network Descriptor Type[211]
Node Group Descriptor Type[212]
Node Descriptor Type[213]
Interface Descriptor Type[214]
Connection Descriptor Type[215]
Remote Connection Type[216]

#endif

g

This macro is attached to an output �le.

Exactly one network descriptor is allocated on each processor for each network used. The network
descriptors carry mostly quasi-singular information: formA, repN, lrepN, lxN, and lyN are guaranteed

32.2 Descriptor types 155

to be the same on all processors. Note that repN is the logical number of replicates while lrepN is the
physical number (the l means logarithmic, not logical); actually, lrepN is redundant, because it always
equals lprocN - (lxN+lyN).

Network Descriptor Type[211] � 211

f

/* one per processor per network */

typedef struct {

_realness exists; /* Whether this Network replicate is actually used or not */

_bool formA; /* Whether the network is currently in formA or form0 */

_sint meI; /* My own replicate number */

_sint repN; /* number of logical replicates of network */

_bint lrepN; /* log number of physical replicates of network */

_bint lxN, lyN; /* logarithm of size of my machine segment */

} _network_D;

g

This macro is invoked in de�nition 210.

One node group descriptor is allocated on each processor for each node group in each network used. All
node group descriptor data is quasi-singular: For nodesN this is necessarily so, because all these values
in a plural representation refer to the number of nodes in the same node group. For localsizeN and
boss the values are the same since all dynamic data allocation is done with p malloc; this procedure
always allocates the same amount of memory on each processor at the same address on each processor.
better2virt is used to accumulate evidence points for or against the decision to use two virtualization
layers for this node group (one for the `old' nodes and one for the `new' nodes) as opposed to using just
one. These evidence points are collected during the rti version run and are used for the decision in the
optimized code version. One evidence point is added for each formA phase with old and new nodes in
which the new nodes have signi�cantly more or less work per connection than the old nodes, and one
evidence point is subtracted for each such formA phase, where this is not the case. Two virtualization
layers are used for the node group in the optimized code when at the end of the rti version run the number
of evidence points as stored in better2virt is strictly positive, and one layer otherwise. The value is
valid only in replicate 0. newnodesN is the number of nodes that are currently considered new ; these are
always the nodes with the largest indices. New nodes without old nodes are no newnodes! Node groups
always exist, so no exists indicator is needed.

Node Group Descriptor Type[212] � 212

f

/* one per processor per node group. */

typedef struct {

_sint nodesN; /* number of nodes currently in the node group */

_sint localsizeN; /* nr of Nodes allocated per PE */

_sint newnodesN;

short better2virt; /* evidence points for "2 virt layers is better" */

plural _network_D *boss;

} _node_group_D;

g

This macro is invoked in de�nition 210.

One node descriptor is allocated on each processor for each virtualization layer of each node group in
each network used. Only the boss pointer is quasi-singular | for the reason mentioned above. lxN and
lyN describe the logarithmic size of the node block; they are quasi-singular while the network is in form
0.

Node Descriptor Type[213] � 213

f

/* one per node object. */

typedef struct {

156 32 DATA TYPES

_realness exists; /* Whether this Node is actually used or not */

_bint lxN; /* number of PEs in the node block in x-direction */

_bint lyN; /* dito, y-direction */

plural _node_group_D *boss;

_sint meI; /* my own node number */

} _node_D;

g

This macro is invoked in de�nition 210.

One interface descriptor is allocated on each processor for each connection interface in each virtualization
layer of each node group in each network used. The boss pointer and the localsize of the connection
array (con ls) are quasi-singular. The conN �eld holds the number of connections that are attached to
this interface. When this �eld is temporarily invalid, as after a REPLICATE con INTO 0, CONNECT, or
DISCONNECT, it holds the sint equivalent of -1. It is lazily updated when needed. The quasi-singular
work per con �eld holds the work per connection done for the connections at this interface averaged over
all nodes in the node group and accumulated over whole program run; it is valid only in replicate 0. The
wpc contains the work per connection that is actually measured for each node in the current replication
phase (during formA phases only).

Interface Descriptor Type[214] �214

f

/* one per connection interface per node object */

typedef struct {

_sint con_ls; /* local size of the connection array */

_sint conN; /* number of connections at this interface */

plural _node_D *boss;

_work work_per_con; /* accumulated work per connection average */

_work wpc; /* work per connection (this node and replication phase) */

} _interface_D;

#define invalid_conN ((_sint)(short)-1)

g

This macro is invoked in de�nition 210.

One connection descriptor is allocated on each processor for each element of the local connection array
described by each connection interface in each virtualization layer of each node group in each network
used. This means one for each physically existing connection; a physically existing connection, though,
may be logically non-existing because (a) it is in an unused machine segment or (b) it is in an unused
part of a machine segment or (c) it is in an unused portion of a local connection array or (d) it has been
deleted. The boss pointer is quasi-singular. The meI �eld is not always kept current; it is used only
during the REPLICATE operation.

Connection Descriptor Type[215] �215

f

/* one per (local) connection object */

typedef struct {

plural _interface_D *boss;

_sint meI; /* only valid within REPLICATE procedure */

_realness exists;

} _connection_D;

g

This macro is invoked in de�nition 210.

The following type is used as the object type of the remote part of connections of any type. Its structure
is identical to that of a connection type without any data elements. This fact enables the compiler to
handle remote connections exactly like objects of \yet another connection type" in many situations.

Remote Connection Type[216] �216

32.3 Auxiliary types and machine description 157

f

typedef struct {

_Gptr _oe; /* opposite end */

_connection_D _me_D;

} _remote_connection;

g

This macro is invoked in de�nition 210.

32.3 Auxiliary types and machine description

The following integer types bool, sint, and bint are just shorthands and are used almost everywhere.
It is reasonable to always use the smallest possible integer type in the generated code, because operations
on smaller types are more e�cient on the PEs (although not on the ACU).

Auxiliary Types[217] � 217

f

typedef unsigned char _bool;

typedef unsigned short _sint; /* "short int" */

typedef unsigned char _bint; /* "byte int" */

g

This macro is de�ned in de�nitions 217, 218, 219, 220, and 221.

This macro is invoked in de�nition 210.

Gptr (Mnemonic: Global pointer) is a type that can represent the address of any byte in the PE array
memory. It cannot address the ACU.

Auxiliary Types[218] � 218

f

typedef struct {

plural char *a; /* local address on PE */

_sint pe; /* PE number */

} _Gptr; /* machine-global pointer (PE array only) */

g

This macro is de�ned in de�nitions 217, 218, 219, 220, and 221.

This macro is invoked in de�nition 210.

realness is the type that is used to indicate the status of network, node, or connection data objects:
nonexisting (false) means \this is no network, node, or connection"; existing (true) means \this is
a real network/node/connection"; shadow (true) means \this is in a block of an existing node or in a
segment of an existing network replicate, but not the �rst PE", i.e., it is not the primary node but a
shadow node. Often the distinction between existing and shadow is ignored and the realness is used
simply as a boolean value.

Auxiliary Types[219] � 219

f

typedef unsigned char _realness;

#define _existing 1

#define _shadow 2

#define _nonexisting 0

g

This macro is de�ned in de�nitions 217, 218, 219, 220, and 221.

This macro is invoked in de�nition 210.

Another auxiliary type, called work, is used to represent the work being performed at connec-
tions/nodes/etc. Since that work is measured in \ticks" (which are 80 nanoseconds each), we need
an integer representation that can hold very large numbers.

Auxiliary Types[220] � 220

158 33 AUXILIARY MPL HEADER FILES

f

typedef unsigned long long _work; /* 64-bit integer */

g

This macro is de�ned in de�nitions 217, 218, 219, 220, and 221.

This macro is invoked in de�nition 210.

Finally, the auxiliary type replication type is used to represent which combination of old and new
form (formA, form0) the data has during a topology changing operation.

Auxiliary Types[221] �221

f

typedef enum { _0_to_0, _0_to_A, _A_to_0, _A_to_A } _replication_type;

g

This macro is de�ned in de�nitions 217, 218, 219, 220, and 221.

This macro is invoked in de�nition 210.

We also need some constants that describe the size of the MasPar used according to our naming conven-
tions. Here they are:

Machine Descriptors[222] �222

f

#define debug

#ifdef debug

#define procN nproc

#define xprocN nxproc

#define yprocN nyproc

#define lprocN lnproc

#define lxprocN lnxproc

#define lyprocN lnyproc

#else

#define procN 16384

#define xprocN 128

#define yprocN 128

#define lprocN 14

#define lxprocN 7

#define lyprocN 7

#endif

g

This macro is invoked in de�nition 210.

33 Auxiliary MPL header �les

This section contains a few more header �les containing miscellaneous auxiliary material.

33.1 Forgotten MPL library routine prototypes

There are some procedures in the MPL library for which no prototype exists anywhere in the header �les
(MasPar Software Version 3.0). The �le mplforgotten.h contains these missing de�nitions.

lib/mplforgotten.h[223] �223

f/*

File: mplforgotten.h, prototypes for functions missing in MasPar header files

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

33.2 Miscellaneous utility stu� 159

#ifndef MPLFORGOTTEN_H

#define MPLFORGOTTEN_H

void ss_xfetch (int dy, int dx, plural void *src,

plural void *dest, int nbytes);

void sp_xfetch (int dy, int dx, plural void *src,

plural void* plural dest, int nbytes);

void ps_xfetch (int dy, int dx, plural void* plural src,

plural void *dest, int nbytes);

void pp_xfetch (int dy, int dx, plural void* plural src,

plural void* plural dest, int nbytes);

void ss_xsend (int dy, int dx, plural void *src,

plural void *dest, int nbytes);

void sp_xsend (int dy, int dx, plural void *src,

plural void* plural dest, int nbytes);

void ps_xsend (int dy, int dx, plural void* plural src,

plural void *dest, int nbytes);

void pp_xsend (int dy, int dx, plural void* plural src,

plural void* plural dest, int nbytes);

#endif

g

This macro is attached to an output �le.

33.2 Miscellaneous utility stu�

The �le libmisc.h contains various small de�nitions that have no other place to go to.

The assert macro is to be used in the MPL code generated by the compiler for assertion testing. The
TRACEmacro can be used to generate tracing output; its behavior is controlled by the variable tracelevel
(de�ned at the top of the main program): the higher the tracelevel, the more output is generated,
tracelevel 0 means trace output is switched o�. Each call of the macro must supply a parameter l

between 0 and 5.

The cat macros implement token concatenation using the preprocessor. This is needed for the templates.

The macro sgl implements casts from plural to singular. The result is a random one of the values
supplied by the plural argument, i.e., for a unique result the argument has to have the same value on all
active processors.

lib/libmisc.h[224] � 224

f/*

File: libmisc.h, miscellaneous stuff

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

#ifndef LIBMISC_H

#define LIBMISC_H

/* _assert(bool) macro: */

#ifndef NDEBUG

#define _assert(e) ((e)?1:fprintf(stderr,"\nOOPS !! '%s', line %d\n",\

__FILE__,__LINE__))

#else

#define _assert(e) 1

#endif NDEBUG

#ifndef NOTRACE

160 34 THE TEMPLATE METHOD

extern int _tracelevel;

#define _TRACE(l,a) ((l<=_tracelevel) ? (printf a, fflush(stdout)) : 0)

#else

#define _TRACE(l,a)

#endif

#define _min(a,b) ((a)<(b)?(a):(b))

#define _max(a,b) ((a)>(b)?(a):(b))

#define _sgl(a) (proc[selectOne()].(a))

/* The way the ANSI C preprocessor works is absolutely weird...: */

#define _cat2(a,b) _cat2aux(a,b)

#define _cat3(a,b,c) _cat3aux(a,b,c)

#define _cat4(a,b,c,d) _cat4aux(a,b,c,d)

#define _cat2aux(a,b) a##b

#define _cat3aux(a,b,c) a##b##c

#define _cat4aux(a,b,c,d) a##b##c##d

#endif

g

This macro is attached to an output �le.

34 The template method

34.1 Why ?

There are several cases in the CuPit code generation on the MasPar where over a considerably large
amount of code there is only very little variation that is induced by the user program. Since there is
some variation, the code pieces cannot be made part of the run time system but must be emitted by the
actual code generation. Since they are large and have so little variation, on the other hand, it would be
quite ugly to put them in ordinary LIDO and PTG rules. So we use the template method to generate
these code pieces without cluttering the LIDO code.

34.2 What ?

The idea behind the template method is to generate the whole code piece in a way that resembles a
procedure call: The type of code piece is given a name and everything that has to be varied within it is
made a parameter. The C preprocessor is used to implement this pseudo code generation procedures.

34.3 How ?

For each type of code piece, we have an include �le (with name su�x .tpl) that contains the text of
the code piece. The parameters are implemented as preprocessor #defines so that parameter evaluation
occurs automatically when the preprocessor processes the include �le. The actual code generation must
only de�ne the parameters and include the include �le; the preprocessor does the rest of the work when
the generated MPL code is compiled. The �les de�ned below have name su�x .tplr because they are
written using C-Re�ne and have to be converted to .tpl �les via the crefine preprocessor before they
are included in a program generated by the compiler. This conversion is done by the make�les de�ned
on page 54.3�.

34.4 Example 161

34.4 Example

Think of using a template to generate the code for a simple integer or
oat addition. Of course this
application is much too small for the template method to be sensible to implement it | it is for illustration
only. The parameters in this case are the two operands (called a and b). The template �le add.tpl
might look like this

example add.tpl[225] � 225

f

a + _b_

#undef _a_

#undef _b_

g

This macro is NEVER invoked.

and in the code generation rule, for instance the following code might be generated

example add.tpl code[226] � 226

f

#define _a_ nrOfErrors

#define _b_ 1

#include "add.tpl"

g

This macro is NEVER invoked.

and the resulting code would be

example add.tpl result[227] � 227

f

nrOfErrors + 1

g

This macro is NEVER invoked.

35 INIT templates

Procedures to create the initial representation of data objects are needed for all types (one each). For
networks and node groups (or node arrays) these are called only once at the beginning of the program
run. For nodes, connections, and records they may be called during the rest of the program run, too.
Most of these initialization procedures are generated directly by the code generation; the exceptions are
intialization of a node group or node array and initialization of an ordinary array. For these two cases,
templates are given here.

35.1 INIT node array

The procedure for node array initialization is generic in the type name of the node type. The same
procedure is used for the initialization of node groups which are initially just arrays of size 0.

The procedure usually allocates as many PEs for each node as �t onto the machine without virtualization.

lib/NodeArrayInit.tplr[228] � 228

f/* File: NodeArrayInit.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat3(INIT_,_type_,_group) (plural _type_* plural* arr,

162 35 INIT TEMPLATES

plural _node_group_D *descr,

plural _network_D* net_D, int arrsizeN)

{

/* precondition:

net_D is set up correctly and describes a network in form 0.

postcondition:

*arr is allocated with arrsizeN nodes, the nodes and all descriptors

are initialized correctly.

*/

int blocksN;

_bint lxblocksize, lyblocksize, lrowsN, lcolsN;

_assert (!net_D->formA && arrsizeN >= 0);

_TRACE (1, ("INITNodeGroup(%x, %d)\n", (int)arr, arrsizeN));

descr->boss = net_D;

descr->nodesN = arrsizeN;

descr->newnodesN = 0; /* the initial nodes are not 'new' nodes */

if (arrsizeN == 0) {

descr->localsizeN = 0;

*arr = 0;

}

else {

compute_block_size0 (net_D, descr, &lxblocksize, &lyblocksize);

_assert (descr->localsizeN == 1);

`allocate and initialize nodes;

}

`allocate and initialize nodes:

/* network is in form 0 */

arr = (plural _type_ plural)_getmem (sizeof(_type_), true);

lcolsN = lxprocN - lxblocksize;

lrowsN = lyprocN - lyblocksize;

blocksN = _S(lcolsN + lrowsN);

/* me_D.work is already 0 (initialized by _getmem) */

`me_D.boss = descr;

`me_D.lxN = lxblocksize;

`me_D.lyN = lyblocksize;

`me_D.meI = (ixproc >> lxblocksize) +

(iyproc >> lyblocksize << lcolsN);

/* the following is correct since in form0 always all PEs are used: */

if (`me_D.meI >= arrsizeN)

`me_D.exists = _nonexisting;

else

`me_D.exists = `is upper left block corner ? _existing : _shadow;

if (`me_D.exists)

cat2(INIT,_type_) (_sgl(*arr));

`me_D:

(*arr)->_me_D

`is upper left block corner:

(ixproc & _M(lxblocksize)) == 0 &&

(iyproc & _M(lyblocksize)) == 0

}

#undef _type_

35.2 INIT non-node arrays 163

g

This macro is attached to an output �le.

This initialization lays out the node blocks in a way that assigns node indices from left to right (increasing
x coordinate), then top to bottom (increasing y coordinate), then increasing virtualization layer index.
Unused node blocks may occur in the uppermost virtualization layer only.

35.2 INIT non-node arrays

The procedure for non-node array initialization is generic in the type name type of the array type, in
the base type of the array basetype , and in the size of the array (maximum index plus one).

lib/ArrayInit.tplr[229] � 229

f-

/* File: ArrayInit.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(INIT_,_type_) (plural _basetype_ * ME)

{

int i;

_TRACE (2, ("INITArray(%x, %d)\n", (int)ME, _size));

for (i = 0; i < _size_; i++)

cat2(INIT,_basetype_) (ME+i);

}

#undef _type_

#undef _basetype_

#undef _size_

g

This macro is attached to an output �le.

36 REDUCTION templates

Procedures to implement the REDUCTION operation are needed for connections, nodes, and networks. A
di�erent procedure is needed for each of the categories. These procedures are generic in the type type

of the value to be reduced but not in the type of connection etc., since the objects that contain the value
to be reduced and the actual reduction operation can be described universally by a number of integer
and pointer parameters.

36.1 REDUCTION connections

For REDUCTION operations on connections, a generic procedure needs the following static parameters:
nd D is a node descriptor that tells on which PEs there is an existing node and how large its node block
is. interf D is an interface descriptor that tells the number of connections to access locally in each PE
(note that this \local" access involves communication if the connection is a remote connection). base is
the local base address of the connection array. field offset is the o�set of the value to reduce within
a connection object. exists offset is the o�set of the realness indicator within a connection object.
con size is the size of the connection type. is remote indicates whether the actual connection objects
must be accessed remotely or can be accessed locally. cmb is a pointer to the actual REDUCTION function.
result is the address of the variable where the reduction result is to be stored; it must be plural, because
a plurally indexed array may be used in the user program.

lib/ReductionCon.tplr[230] � 230

f

164 36 REDUCTION TEMPLATES

/* File: ReductionCon.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat3(p_REDUCTION_,_type_,_connections) (

plural _node_D* nd_D, plural _interface_D* interf_D,

register plural char* base, _sint field_offset, _sint exists_offset,

register _sint con_size, _bool is_remote,

plural _type_ (*cmb)(plural _type_*, plural _type_*),

plural _type_* plural result)

{

/* For each '_existing' node with at least one '_existing' connection,

puts reduced value into *result on each shadow of that node.

For nodes without connections, *result remains unchanged.

active set: active existing and shadow nodes.

Strategy: (1) First of all, reduce locally.

(2) Then, since for every node block we can locally identify

only the upper left corner, send boundary indicators

to the right edge and lower left corner,

(3) then reduce horizontally, (4) then from the

upper left corner send boundary information to the lower left corner

and mark all PEs in between as relevant for the next step,

(5) then reduce vertically, (6) last, redistribute reduced value

to all shadow nodes and assign it to *result.

*/

plural _bool result_computed = false;

register _sint step, i;

plural _realness node_exists = nd_D->exists;

plural _realness connection_exists;

plural _bool boundary_x = false, boundary_y = false;

plural _bint lxN = nd_D->lxN;

plural _bint lyN = nd_D->lyN;

plural _bint xshadowI = ixproc & _M(lxN);

plural _bint yshadowI = iyproc & _M(lyN);

register plural _sint localsize = interf_D->con_ls;

plural _type_ val, val2;

_TRACE (4, ("ReductionCon (%x)\n", (int)base));

if (is_remote)

`do remote local reduction;

else

`do true local reduction;

/* now result_computed shows whether local result is present in val */

`set boundary indicators;

`do reduction in x direction;

if (xshadowI == 0)

`do reduction in y direction;

`redistribute reduced values;

`place result;

`do remote local reduction:

/* reduce into val,result_computed */

for (i = 0; i < localsize; i++, base += con_size) {

connection_exists = *(plural _realness*)(base+exists_offset);

if (connection_exists) {

ps_rfetch (`target con pe, `target con addr,

(plural void*)&val2, sizeof(_type_));

36.1 REDUCTION connections 165

if (result_computed)

`reduce the local values;

else

`take the first local value;

}

}

`target con pe:

((plural _remote_connection*)base)->_oe.pe

`target_con_addr:

((plural _remote_connection*)base)->_oe.a + field_offset

`do true local reduction:

/* reduce into val,result_computed */

for (i = 0; i < localsize; i++, base += con_size) {

connection_exists = *(plural _realness*)(base+exists_offset);

if (connection_exists) {

val2 = *(plural _type_*)(base+field_offset);

if (result_computed)

`reduce the local values;

else

`take the first local value;

}

}

`reduce the local values:

/* call the reduction procedure: */

val = (*cmb)(&val, &val2);

`take the first local value:

result_computed = true;

val = val2;

`set boundary indicators:

/* mark rightmost column of each node block as boundary_x and mark

PE yN-1 below existing node as boundary_y:

*/

if (node_exists) {

boundary_x = xshadowI == _M(lxN);

boundary_y = yshadowI == _M(lyN);

}

`do reduction in x direction:

step = 1;

while (step < _S(lxN)) {

if (boundary_x)

xnetW[step].boundary_x = true;

else

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_fetchx (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

166 36 REDUCTION TEMPLATES

connection_exists = xnetE[step].result_computed;

if (connection_exists) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`reduce the remote and local values:

/* call the reduction procedure: */

val = (*cmb)(&val, &val2);

`use the remote value:

result_computed = true;

val = val2;

`do reduction in y direction:

/* active set: leftmost column of each node block */

step = 1;

while (step < _S(lyN)) {

if (boundary_y)

xnetN[step].boundary_y = true;

else

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_fetchy (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

connection_exists = xnetS[step].result_computed;

if (connection_exists) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`redistribute reduced values:

ss_xsendc (lyN, lxN, &val, sizeof (_type_),

result_computed && node_exists == _existing);

ss_xsendc (lyN, lxN, &result_computed, sizeof (_bool),

result_computed && node_exists == _existing);

`place result:

/* set '*result' only where connections were actually present: */

if (result_computed)

*result = val;

}

#undef _type_

g

This macro is attached to an output �le.

36.2 REDUCTION nodes 167

36.2 REDUCTION nodes

For REDUCTION operations on nodes, a generic procedure needs the following static parameters: group D

is a node group descriptor. base is the base address of the local node array. field offset is the o�set
of the value to reduce within each node object. descr offset is the o�set of the node descriptor within
each node object. node size is the size of the node type. cmb is a pointer to the actual REDUCTION
function. result is the address of the variable where the reduction result is to be stored.

The problem for this procedure is the di�erent blocksize of each node in form A. This makes it impossible
to directly compute the address of a partner node for a reduction step. Instead, all objects-to-reduce
are sent to a vector that is distributed evenly on each segment and which is then reduced directly. The
reduction is computed from the existing nodes of each node block only. Each existing node computes
the PE and address to send its value-to-be-reduced to from its own index and the segment size given
in its boss' boss' descriptor. This method could be improved for reductions called while the network is
in form 0 representation; they could use direct address computation instead of the indirection via the
temporary vector.

lib/ReductionNode.tplr[231] � 231

f

/* File: ReductionNode.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat3(p_REDUCTION_,_type_,_nodes) (plural _node_group_D* group_D,

plural Interval slice,

plural char* base, _sint field_offset, _sint descr_offset, _sint node_size,

plural _type_ (*cmb)(plural _type_*, plural _type_*),

plural _type_* plural result)

{

/* active set: all PEs belonging to active segments

*/

plural _type_ *x, val;

_sint x_localsize;

_sint i, step;

plural _sint nodesN;

plural _bool result_computed = false;

plural _bool boundary_x = false, boundary_y = false;

int lxN = _sgl(`net_D.lxN),

lyN = _sgl(`net_D.lyN);

plural _bint x_in_seg_I = ixproc & _M(lxN),

y_in_seg_I = iyproc & _M(lyN);

_TRACE (3, ("ReductionNode (%x)\n", (int)base));

`adjust slice;

nodesN = slice.max - slice.min + 1;

if (nodesN == 0 || !`net_D.exists)

return; /* if slice is empty, there is nothing to reduce */

`allocate x vector;

`send values to x vectors;

`reduce x vectors;

`redistribute reduced values;

`place result;

`adjust slice:

/* slice must contain only existing node indices: */

if (slice.min < 0)

slice.min = 0;

if (slice.max >= group_D->nodesN)

168 36 REDUCTION TEMPLATES

slice.max = (plural int)group_D->nodesN - 1;

`allocate x vector:

int xtarget, ytarget, itarget;

if (`descr.exists == _existing)

_lfold3 (_sgl(group_D->nodesN-1), lxN, lyN, xtarget, ytarget, itarget);

x_localsize = itarget + 1; /* smaller slices don't use all this room */

x = (plural _type_*)p_alloca (sizeof(_type_) * x_localsize);

_assert (x != 0);

`send values to x vectors:

plural _sint xtarget, ytarget, itarget,

meI;

int localsize = proc[0].group_D->localsizeN;

for (i = 0; i < localsize; i++, base += node_size) {

if (`descr.exists == _existing &&

`descr.meI >= slice.min && `descr.meI <= slice.max) {

meI = `descr.meI - slice.min;

_lfold3 (meI, lxN, lyN, xtarget, ytarget, itarget);

sp_rsend (`target PE, base+field_offset, `target addr, sizeof(_type_));

}

}

`descr:

(plural _node_D)(base+descr_offset)

`target PE:

((ixproc & ~_M(lxN)) + xtarget) +

(((iyproc & ~_M(lyN)) + ytarget) << lxprocN)

`net_D:

*group_D->boss

`target addr:

(plural void* plural)(x + itarget)

`reduce x vectors:

`reduce locally;

/* now result_computed shows whether local result is present in x[0] */

`set boundary indicators;

`do reduction in x direction;

if (x_in_seg_I == 0)

`do reduction in y direction;

`reduce locally:

i = 0;

result_computed = `my slice node index < nodesN;

for (i = 1; i < x_localsize; i++)

if (`my slice node index < nodesN)

x[0] = (*cmb)(x, x+i);

`my slice node index:

_unlfold3 (lxN, lyN, ixproc & _M(lxN), iyproc & _M(lyN), i)

`set boundary indicators:

36.2 REDUCTION nodes 169

/* mark rightmost column of each node block as boundary_x and mark

PE yN-1 below existing node as boundary_y:

*/

if (`net_D.exists) {

boundary_x = x_in_seg_I == _M(lxN);

boundary_y = y_in_seg_I == _M(lyN);

}

`do reduction in x direction:

step = 1;

while (step < _S(lxN)) {

if (boundary_x)

xnetW[step].boundary_x = true;

else

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_fetchx (step, (plural void*)x, (plural void*)&val, sizeof(_type_));

if (xnetE[step].result_computed) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`reduce the remote and local values:

/* call the reduction procedure: */

x[0] = (*cmb)(x, &val);

`use the remote value:

result_computed = true;

x[0] = val;

`do reduction in y direction:

step = 1;

while (step < _S(lyN)) {

if (boundary_y)

xnetN[step].boundary_y = true;

else

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_fetchy (step, (plural void*)x, (plural void*)&val, sizeof(_type_));

if (xnetS[step].result_computed) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`redistribute reduced values:

170 36 REDUCTION TEMPLATES

ss_xsendc (lyN, lxN, (plural void*)x, sizeof (_type_),

result_computed && x_in_seg_I + y_in_seg_I == 0);

ss_xsendc (lyN, lxN, (plural void*)&result_computed, sizeof (_bool),

result_computed);

`place result:

if (result_computed)

*result = x[0];

}

#undef _type_

g

This macro is attached to an output �le.

36.3 REDUCTION networks

For REDUCTION operations on networks, a generic procedure needs the following static parameters: net D

is the network descriptor. field is the address of the objects to be reduced. cmb is a pointer to the actual
REDUCTION function. result is the address of the variable where the reduction result is to be stored.

This procedure is fairly simple, because no virtualization occurs and all segments have the same size.
The reduction is computed from the existing networks only.

lib/ReductionNet.tplr[232] �232

f

/* File: ReductionNet.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat3(p_REDUCTION_,_type_,_networks) (plural _network_D *net_D,

Interval slice, plural _type_* field,

plural _type_ (*cmb)(plural _type_*, plural _type_*),

type* result)

{

/* active set: all

*/

plural _type_ val, val2;

_sint step;

plural _bool result_computed = false;

_TRACE (2, ("ReductionNet (%x)\n", (int)field));

`reduce networks;

*result = proc[0].val;

`reduce networks:

result_computed = net_D->exists == _existing &&

net_D->meI >= slice.min && net_D->meI <= slice.max;

if (result_computed)

val = *field;

`do reduction in x direction;

if (ixproc == 0)

`do reduction in y direction;

`do reduction in x direction:

step = _sgl(_S(net_D->lxN));

while (step < xprocN) {

if (ixproc + step < xprocN)

171

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

if (xnetE[step].result_computed) {

ss_fetchx (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`reduce the remote and local values:

/* call the reduction procedure: */

val = (*cmb)(&val, &val2);

`use the remote value:

result_computed = true;

val = val2;

`do reduction in y direction:

step = _sgl(_S(net_D->lyN));

while (step < yprocN) {

if (iyproc + step < yprocN)

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

if (xnetS[step].result_computed) {

ss_fetchy (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

}

#undef _type_

g

This macro is attached to an output �le.

37 WTA templates

The winner-takes-all procedures are very similar to the corresponding reduction procedures. Procedures
to implement the WTA operation are needed for connections, nodes, and networks. A di�erent procedure
is needed for each of the categories. These procedures are generic in the type type of the value to be
reduced but not in the type of connection etc., since the objects that contain the value to be reduced
and the actual reduction operation can be described universally by a number of integer and pointer
parameters. These procedures are more complicated than the reduction procedures in that not only a
value must be propagated, but also the location it stems from.

172 37 WTA TEMPLATES

37.1 WTA connections

For WTA operations on connections, a generic procedure needs the following static parameters: nd D is a
node descriptor that tells on which PEs there is an existing node and how large its node block is. interf D

is an interface descriptor that tells the number of connections to access locally in each PE (note that this
\local" access involves communication if the connection is a remote connection). base is the local base
address of the connection array. field offset is the o�set of the value to reduce within a connection
object. exists offset is the o�set of the realness indicator within a connection object. con size is the
size of the connection type. is remote indicates whether the actual connection objects must be accessed
remotely or can be accessed locally. wta is a pointer to the actual WTA function. The function returns
the address of the winning connection objects on all PEs containing a winning connection as a plural

void* plural and zero on all others.

lib/WtaCon.tplr[233] �233

f

/* File: WtaCon.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void* plural _cat3(p_WTA_,_type_,_connections) (

plural _node_D* plural nd_D,

plural _interface_D* plural interf_D,

plural char* base, _sint field_offset, _sint exists_offset,

_sint con_size, _bool is_remote,

plural _type_ (*wta)(plural _type_*, plural _type_*))

{

/* For each '_existing' node with at least one '_existing' connection,

puts reduced value into *result on each shadow of that node.

For nodes without connections, *result remains unchanged.

active set: active existing and shadow nodes.

Strategy: (1) First of all, reduce locally.

(2) Then, since for every node block we can locally identify

only the upper left corner, send boundary indicators

to the right edge and lower left corner,

(3) then reduce horizontally, (4) then from the

upper left corner send boundary information to the lower left corner

and mark all PEs in between as relevant for the next step,

(5) then reduce vertically, (6) last, redistribute reduced value

to all shadow nodes and assign it to *result.

*/

typedef struct winner {

type val;

_Gptr where;

};

plural _bool result_computed = false;

_sint step, i;

plural _realness node_exists = nd_D->exists;

plural _realness connection_exists;

plural _bool boundary_x = false, boundary_y = false, relevant = false;

plural _bint lxN = nd_D->lxN;

plural _bint lyN = nd_D->lyN;

plural _bint xshadowI = ixproc & _M(lxN);

plural _bint yshadowI = iyproc & _M(lyN);

plural _sint localsize = interf_D->con_ls;

plural struct winner val, val2;

_TRACE (4, ("WtaCon (%x)\n", (int)base));

if (is_remote)

37.1 WTA connections 173

`do remote local reduction;

else

`do true local reduction;

/* now result_computed shows whether local result is present in val */

`set boundary indicators;

`do reduction in x direction;

if (xshadowI == 0)

`do reduction in y direction;

`redistribute winner descriptors;

return (result_computed && val.where.pe == iproc ? val.where.a

: (plural void* plural)0);

`do remote local reduction:

/* reduce into val,result_computed */

val.where.pe = iproc;

val.where.a = base;

val2.where.pe = iproc;

for (i = 0; i < localsize; i++, base += con_size) {

connection_exists = *(plural _realness* plural)(base+exists_offset);

if (connection_exists) {

ps_rfetch (`target con pe, `target con addr,

(plural void*)&val2, sizeof(_type_));

val2.where.a = base;

if (result_computed)

`reduce the local values;

else

`take the first local value;

}

}

`target con pe:

((plural _remote_connection* plural)base)->_oe.pe

`target_con_addr:

((plural _remote_connection* plural)base)->_oe.a + field_offset

`do true local reduction:

/* reduce into val,result_computed */

val.where.pe = iproc;

val.where.a = base;

val2.where.pe = iproc;

for (i = 0; i < localsize; i++, base += con_size) {

connection_exists = *(plural _realness* plural)(base+exists_offset);

if (connection_exists) {

val2.val = *(plural _type_* plural)(base+field_offset);

val2.where.a = base;

if (result_computed)

`reduce the local values;

else

`take the first local value;

}

}

`reduce the local values:

/* call the winner-takes-all procedure and store the new winner in 'val': */

174 37 WTA TEMPLATES

if (!(*wta)(&val.val, &val2.val))

val = val2;

`take the first local value:

result_computed = true;

val = val2;

`set boundary indicators:

/* mark rightmost column of each node block as boundary_x and mark

PE yN-1 below existing node as boundary_y:

*/

if (node_exists) {

boundary_x = xshadowI == _M(lxN);

boundary_y = yshadowI == _M(lyN);

}

`do reduction in x direction:

step = 1;

while (step < _S(lxN)) {

if (boundary_x)

xnetW[step].boundary_x = true;

else

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_fetchx (step, (plural void*)&val, (plural void*)&val2,

sizeof(struct winner));

connection_exists = xnetE[step].result_computed;

if (connection_exists) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`reduce the remote and local values:

/* call the winner-takes-all procedure and store the new winner in 'val': */

if (!(*wta)(&val.val, &val2.val))

val = val2;

`use the remote value:

result_computed = true;

val = val2;

`do reduction in y direction:

step = 1;

while (step < _S(lyN)) {

if (boundary_y)

xnetN[step].boundary_y = true;

else

`get and reduce y remote value;

step <<= 1;

}

37.2 WTA nodes 175

`get and reduce y remote value:

ss_fetchy (step, (plural void*)&val, (plural void*)&val2,

sizeof(struct winner));

connection_exists = xnetS[step].result_computed;

if (connection_exists) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`redistribute winner descriptors:

ss_xsendc (lyN, lxN, &val.where, sizeof (_Gptr),

result_computed && node_exists == _existing);

ss_xsendc (lyN, lxN, &result_computed, sizeof (_bool),

result_computed && node_exists == _existing);

}

#undef _type_

g

This macro is attached to an output �le.

37.2 WTA nodes

For WTA operations on nodes, a generic procedure needs the following static parameters: group D is a
node group descriptor. base is the base address of the local node array. field offset is the o�set of
the value to reduce within each node object. descr offset is the o�set of the node descriptor within
each node object. node size is the size of the node type. wta is a pointer to the actual WTA function.
The function returns the address of the winning node objects on all PEs of the winning nodes' blocks
and zero on all others.

The problem for this procedure is the di�erent blocksize of each node in form A. This makes it impossible
to directly compute the address of a partner node for a competition step. Instead, all objects-to-compare
are sent to a vector that is distributed evenly on each segment and which is then reduced directly. The
competition is computed from the existing nodes of each node block only. Each existing node computes
the PE and address to send its value-to-be-compared to from its own index and the segment size given in
its boss' boss' descriptor. This method could be improved for WTAs called while the network is in form
0 representation; they could use direct address computation instead of the indirection via the temporary
vector.

lib/WtaNode.tplr[234] � 234

f

/* File: WtaNode.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void* plural _cat3(p_WTA_,_type_,_nodes) (plural _node_group_D* group_D,

plural Interval slice,

plural char* base, _sint field_offset, _sint descr_offset, _sint node_size,

plural Bool (*wta)(plural _type_*, plural _type_*))

{

/*

active set: all PEs belonging to active segments

*/

typedef struct winner {

176 37 WTA TEMPLATES

type val;

Gptr where;

};

plural struct winner *x, val;

_sint x_localsize;

_sint i, step;

plural _sint nodesN;

plural _bool result_computed = false;

plural _bool boundary_x = false, boundary_y = false;

int lxN = proc[0].`net_D.lxN,

lyN = proc[0].`net_D.lyN;

plural _bint x_in_seg_I = ixproc & _M(lxN),

y_in_seg_I = iyproc & _M(lyN);

_TRACE (3, ("WtaNode (%x)\n", (int)base));

`adjust slice;

nodesN = slice.max - slice.min + 1;

if (nodesN == 0 || !`net_D.exists)

return; /* if slice is empty, there is nothing to reduce */

`allocate x vector;

`send values to x vectors;

`reduce x vectors;

`redistribute winner descriptors;

return (`descr.nodesN > 0 &&

iproc == x[0].where.pe ? x[0].where.a : (plural void* plural)0);

`adjust slice:

/* slice must contain only existing node indices: */

if (slice.min < 0)

slice.min = 0;

if (slice.max >= group_D->nodesN)

slice.max = (plural int)group_D->nodesN - 1;

`allocate x vector:

int xtarget, ytarget, itarget;

if (`descr.exists == _existing)

_lfold3 (_sgl(group_D->nodesN-1), lxN, lyN, xtarget, ytarget, itarget);

x_localsize = itarget + 1;

x = (plural _type_*)p_alloca (sizeof(struct winner) * x_localsize);

_assert (x != 0);

`send values to x vectors:

plural _sint xtarget, ytarget, itarget;

val.where.pe = iproc;

for (i = 0; i < group_D->localsizeN; i++, base += node_size) {

if (`descr.exists == _existing &&

`descr.meI >= slice.min && `descr.meI <= slice.max) {

_lfold3 (`descr.meI, lxN, lyN, xtarget, ytarget, itarget);

val.where.a = base+field_offset;

val.val = *(plural _type_ *plural)(base+field_offset);

sp_rsend (`target PE, (plural void*)&val, `target addr,

sizeof(struct winner));

}

}

`descr:

37.2 WTA nodes 177

(plural _node_D)(base+descr_offset)

`target PE:

((ixproc & ~_M(lxN)) + xtarget) +

((iyproc & ~_M(lyN)) + ytarget) << lxprocN)

`net_D:

*group_D->boss

`target addr:

(plural void* plural)(x + itarget)

`reduce x vectors:

`reduce locally;

/* now result_computed shows whether local result is present in x[0] */

`set boundary indicators;

`do reduction in x direction;

if (x_in_seg_I == 0)

`do reduction in y direction;

`reduce locally:

i = 0;

result_computed = `my node index < group_D->nodesN;

for (i = 1; i < x_localsize; i++)

if (`my node index < group_D->nodesN && !(*wta)(&x[0].val, &x[i].val))

x[0] = x[i];

`my node index:

_unlfold3 (lxN, lyN, ixproc & _M(lxN), iyproc & _M(lyN), i)

`set boundary indicators:

/* mark rightmost column of each node block as boundary_x and mark

PE yN-1 below existing node as boundary_y:

*/

if (node_exists) {

boundary_x = x_in_seg_I == _M(lxN);

boundary_y = y_in_seg_I == _M(lyN);

}

`do reduction in x direction:

step = 1;

while (step < _S(lxN)) {

if (boundary_x)

xnetW[step].boundary_x = true;

else

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_fetchx (step, (plural void*)x, (plural void*)&val, sizeof(struct winner));

if (xnetE[step].result_computed) {

if (result_computed)

`reduce the remote and local values;

else

178 37 WTA TEMPLATES

`use the remote value;

}

`reduce the remote and local values:

/* call the winner-takes-all procedure and store the new winner in x[0]: */

if (!(*wta)(&x[0].val, &val.val))

x[0] = val;

`use the remote value:

result_computed = true;

x[0] = val;

`do reduction in y direction:

step = 1;

while (step < _S(`net_D.lyN)) {

if (boundary_y)

xnetN[step].boundary_y = true;

else

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_fetchy (step, (plural void*)x, (plural void*)&val, sizeof(struct winner));

if (xnetS[step].result_computed) {

if (result_computed)

`reduce the remote and local values;

else

`use the remote value;

}

`redistribute winner descriptors:

ss_xsendc (lyN, lxN, (plural void*)&x[0].where, sizeof (_Gptr),

result_computed && `net_D.exists == _existing);

/* superfluous!:

ss_xsendc (lyN, lxN, (plural void*)&result_computed, sizeof (_bool),

result_computed); */

}

#undef _type_

g

This macro is attached to an output �le.

37.3 WTA networks

For WTA operations on networks, a generic procedure needs the following static parameters: net D is the
network descriptor. field is the address of the objects that compete. wta is a pointer to the actual WTA
function. The function returns true on all PEs of the winning segment and false on all others.

This procedure is fairly simple, because no virtualization occurs and all segments have the same size.
The winner is computed from the existing networks only.

lib/WtaNet.tplr[235] �235

f

/* File: WtaNet.tpl

37.3 WTA networks 179

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural _bool _cat3(p_WTA_,_type_,_networks) (plural _network_D net_D,

Interval slice, plural _type_* field,

plural Bool (*wta)(plural _type_* plural, plural _type_* plural))

{

/* active set: all

*/

plural _type_ val, val2;

_sint step;

plural _sint winnerI, winnerI2;

plural _bool result_computed = false;

_TRACE (2, ("WtaNet (%x)\n", (int)field));

`reduce networks;

return (net_D.meI == winnerI);

`reduce networks:

result_computed = net_D.exists == _existing &&

net_D.meI >= slice.min && net_D.meI <= slice.max;

if (result_computed) {

val = *field;

winnerI = net_D.meI;

}

`do reduction in x direction;

if (ixproc == 0)

`do reduction in y direction;

`do reduction in x direction:

step = _S(net_D.lxN);

while (step < xprocN) {

if (ixproc + step < xprocN)

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

if (xnetE[step].result_computed) {

ss_fetchx (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

ss_fetchx (step, (plural void*)&winnerI, (plural void*)&winnerI2,

sizeof(winnerI));

if (!result_computed || !(*wta)(&val, &val2))

`use the remote as winner;

}

`use the remote as winner:

result_computed = true;

val = val2;

ss_fetchx (step, (plural void*)&winnerI, (plural void*)&winnerI,

sizeof(winnerI));

`do reduction in y direction:

step = _S(net_D.lyN);

while (step < yprocN) {

if (iyproc + step < yprocN)

`get and reduce y remote value;

180 38 CONNECT TEMPLATE

step <<= 1;

}

`get and reduce y remote value:

if (xnetS[step].result_computed) {

ss_fetchy (step, (plural void*)&val, (plural void*)&val2, sizeof(_type_));

ss_fetchy (step, (plural void*)&winnerI, (plural void*)&winnerI2,

sizeof(winnerI));

if (!result_computed || !(*wta)(&val, &val2))

`use the remote as winner;

}

}

#undef _type_

g

This macro is attached to an output �le.

38 CONNECT template

The connect template is generic in the type type of connection made. The same version is used
for arbitrary node types. The network is described via its network descriptor. The node groups are
described by their base addresses, node sizes, slices used, and node descriptors. The nodes are described
by a descriptor o�set, interface o�set, and interface descriptor o�set.

When a reorganization of the network is necessary during the connect operation, neither the network as a
whole, nor the node groups can possibly need reorganization. Only the interfaces a�ected by the connect
statement may need to have their local connection arrays reallocated enlarged. Such reorganization is
performed per node layer.

The procedure must always be called such that the remote part of the connections is placed at group
2. The procedure assumes that (1) all node blocks in each group are identically shaped, (2) memory
allocation is singular for the node layers and the node's interfaces, (3) the interface array is and must be
initialized to all non-existing and the localsize be set correctly even at non-existing nodes. No assumptions
about holeless arrangement or linear numbering of nodes within groups are made.

lib/Connect.tplr[236] �236

f

/* File: Connect.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(CONNECT_,_type_) (plural _network_D* net_D,

plural char* base1, int node_size1, plural Interval slice1,

plural _node_group_D* group_D1,

int nd_D_offset1, int interf_D_offset1, int interf_offset1,

plural char* base2, int node_size2, plural Interval slice2,

plural _node_group_D* group_D2,

int nd_D_offset2, int interf_D_offset2, int interf_offset2)

{

int slice1size, /* how many relevant nodes in group 1 */

slice2size; /* dito, for group 2 */

int cons_neededN, /* total nr of cons to be made */

cons_per_node1, /* nr of cons to be made per node of group 1 */

cons_per_node2, /* dito, for group 2 */

min_cons_freeN1, /* minimum nr of unused con objects per PE */

min_cons_freeN2; /* dito, for node group 2 */

181

int localsize1, /* localsize of group 1 */

localsize2; /* dito, group 2 */

int lxblocksize1, /* log2 of width of node block in group 1 */

lxblocksize2, /* dito, for group 2 */

lyblocksize1, /* log2 of height of node block in group 1 */

lyblocksize2, /* dito, for group 2 */

lblocksize1, /* log2 of nr of PEs per node block */

lblocksize2; /* dito, for node group 2 */

plural char* basebase1;

plural char* basebase2; /* original value of base2 (base2 iterates) */

int i, i_limit; /* iteration variables */

`check for form A;

`adjust slices;

_TRACE (2, ("CONNECT (%x %d..%d, %x %d..%d)\n",

(int)base1, _sgl(slice1.min), _sgl(slice1.max),

(int)base2, _sgl(slice2.min), _sgl(slice2.max)));

`set variables;

`find or make room for new connections;

`make connections;

`check for form A:

if (net_D->exists && net_D->formA) {

fprintf (stderr, "CONNECT called while network is replicated\n");

exit (14);

}

`adjust slices:

/* make slice1 and slice2 adhere to the following invariant:

slice.min >= 0 && slice.max <= groupsize &&

real_slice_size = slice.max - slice.min + 1

*/

if (slice1.min < 0) slice1.min = 0;

if (slice1.max >= group_D1->nodesN) slice1.max =

(plural int)group_D1->nodesN - 1;

if (slice1.min > slice1.max) slice1.max = slice1.min - 1;

slice1size = (proc[0].slice1.max - proc[0].slice1.min + 1);

if (slice2.min < 0) slice2.min = 0;

if (slice2.max >= group_D2->nodesN) slice2.max =

(plural int)group_D2->nodesN - 1;

if (slice2.min > slice2.max) slice2.max = slice2.min - 1;

slice2size = (proc[0].slice2.max - proc[0].slice2.min + 1);

`set variables:

basebase1 = base1;

if (`nd_D1.exists) {

/* make casts plural -> singular from existing nodes only! */

localsize1 = _sgl(group_D1->localsizeN);

cons_per_node1 = slice2size;

lxblocksize1 = _sgl(`nd_D1.lxN);

lyblocksize1 = _sgl(`nd_D1.lyN);

lblocksize1 = lxblocksize1 + lyblocksize1;

}

basebase2 = base2;

if (`nd_D2.exists) {

182 38 CONNECT TEMPLATE

/* make casts plural -> singular from existing nodes only! */

localsize2 = _sgl(group_D2->localsizeN);

cons_per_node2 = slice1size;

lxblocksize2 = _sgl(`nd_D2.lxN);

lyblocksize2 = _sgl(`nd_D2.lyN);

lblocksize2 = lxblocksize2 + lyblocksize2;

}

cons_neededN = cons_per_node1 * cons_per_node2;

`find or make room for new connections:

/* the reorganization does not redistribute connections accross PEs,

only reallocate them on the same PE.

No connection changes its home processor.

*/

for (i = 0; i < localsize1; i++, base1 += node_size1) {

min_cons_freeN1 = `cons needed per PE 1; /* as many as we may ever want */

if (`nd_D1.exists && p_IntervalInOp (`nd_D1.meI, slice1))

`determine minimum number of free connections1;

if (min_cons_freeN1 < `cons needed per PE 1)

`reorganize1;

}

base1 = basebase1;

for (i = 0; i < localsize2; i++, base2 += node_size2) {

min_cons_freeN2 = `cons needed per PE 2; /* as many as we may ever want */

if (`nd_D2.exists && p_IntervalInOp (`nd_D2.meI, slice2))

`determine minimum number of free connections2;

if (min_cons_freeN2 < `cons needed per PE 2)

`reorganize2;

}

base2 = basebase2;

`determine minimum number of free connections1:

plural _sint freeN = 0;

plural _type_* cons;

int k, k_limit = _sgl(`interf_D1.con_ls);

cons = _sgl(`interf1);

for (k = 0; k < k_limit; k++, cons++)

if (!cons->_me_D.exists)

freeN++;

k = reduceMin16u (freeN);

min_cons_freeN1 = _min (k, min_cons_freeN1);

`reorganize1:

/* reallocate all connections at `interf1:

(1) get new memory, (2) copy all connections, (3) store new pointers at

remote ends, (4) release old memory, (5) initialize unused connections,

(6) update interface descriptor, (7) update interface pointer

*/

int new_con_ls = _sgl(`interf_D1.con_ls) +

(`cons needed per PE 1 - min_cons_freeN1);

plural _type_ *new_interf = _getmem (new_con_ls * sizeof(_type_),

true); /*(1),(5)*/

plural _type_ *cons; /* loop through connection array of a node */

plural _type_* plural new_cons; /* dito, for reorganization */

int k, k_limit = _sgl(`interf_D1.con_ls);

183

cons = _sgl(`interf1);

new_cons = new_interf;

for (k = 0; k < k_limit; k++, cons++) {

/* (2),(3): copy connection and store new remote pointer: */

if (cons->_me_D.exists) {

*new_cons = *cons;

sp_rsend (cons->_oe.pe, (plural char*)&new_cons,

(plural char* plural)(cons->_oe.a +

offsetof(_remote_connection,_oe.a)),

sizeof (plural _type_* plural));

new_cons++;

}

}

_freemem (_sgl(`interf1)); /*(4)*/

`interf_D1.con_ls = new_con_ls; /*(6)*/

`interf_D1.conN = invalid_conN; /*(6)*/

`interf1 = new_interf; /*(7)*/

`determine minimum number of free connections2:

plural _sint freeN = 0;

plural _remote_connection* rcons;

int k, k_limit = _sgl(`interf_D2.con_ls);

rcons = _sgl(`interf2);

for (k = 0; k < k_limit; k++, rcons++)

if (!rcons->_me_D.exists)

freeN++;

k = reduceMin16u (freeN);

min_cons_freeN2 = _min (k, min_cons_freeN2);

`reorganize2:

/* reallocate all _remote_connections at `interf2:

(1) get new memory, (2) copy all _remote_connections,

(3) store new pointers at all data ends, (4) release old memory,

(5) initialize new _remote_connections,

(6) update interface descriptor, (7) update interface pointer

*/

int new_con_ls = _sgl(`interf_D2.con_ls) +

(`cons needed per PE 2 - min_cons_freeN2);

plural _remote_connection *new_interf =

_getmem (new_con_ls * sizeof(_remote_connection), true); /*(1),(5)*/

plural _remote_connection *rcons;

plural _remote_connection* plural new_rcons;

int k, k_limit = _sgl(`interf_D2.con_ls);

rcons = _sgl(`interf2);

new_rcons = new_interf;

for (k = 0; k < k_limit; k++, rcons++) {

/* (2),(3): copy _remote_connection and store new pointer at data: */

if (rcons->_me_D.exists) {

*new_rcons = *rcons;

sp_rsend (rcons->_oe.pe, (plural char*)&new_rcons,

(plural char* plural)(rcons->_oe.a + offsetof(_type_,_oe.a)),

sizeof (plural _remote_connection* plural));

new_rcons++;

}

}

184 38 CONNECT TEMPLATE

_freemem (_sgl(`interf2)); /*(4)*/

`interf_D2.con_ls = new_con_ls; /*(6)*/

`interf_D2.conN = invalid_conN; /*(6)*/

`interf2 = new_interf; /*(7)*/

`make connections:

/* We reserve memory for the remote and the data connection addresses

and store the addresses of the free connections there. The other end

picks the address of its partner from this globally addressable

memory. The address is computed as a cycle distribution over

the connection number. The connection number is

n = (nodeI1-slice1.min)*size(slice2) + (nodeI2-slice2.min)

We always distribute the new connections evenly within each node block,

no matter how uneven the overall connection distribution within

this block may be. See 'find or make room' above.

*/

int meet_localsize = cons_neededN/procN + ((cons_neededN & _M(lprocN)) != 0);

plural _Gptr meet_cons[meet_localsize];

plural _Gptr meet_rcons[meet_localsize];

plural _Gptr meet_data; /* object used for meetings */

int nbpnI; /* normalized base partner_node index */

plural int norm_p_nodeI; /* normalized partner_node index */

plural int global_conI; /* global connection number */

plural _sint meet_PE, /* computed meeting point, PE number */

meetI; /* computed meeting point, local index */

for (i = 0; i < localsize1; i++, base1 += node_size1)

if (`nd_D1.exists && p_IntervalInOp (`nd_D1.meI, slice1))

`write meet_cons;

base1 = basebase1;

for (i = 0; i < localsize2; i++, base2 += node_size2)

if (`nd_D2.exists && p_IntervalInOp (`nd_D2.meI, slice2))

`write meet_rcons and read meet_cons;

base2 = basebase2;

for (i = 0; i < localsize1; i++, base1 += node_size1)

if (`nd_D1.exists && p_IntervalInOp (`nd_D1.meI, slice1))

`read meet_rcons;

base1 = basebase1;

`write meet_cons:

/* active set: node1 blocks within slice1

i is number of node1 virtualization layer, base1 points to these nodes.

*/

plural _type_* plural cons = `interf1;

plural j, j_limit = `cons needed per PE 1;

nbpnI = 0; /* within 0...(slice.max-slice.min) */

for (j = 0; j < j_limit; j++, nbpnI += _S(lblocksize1)) {

norm_p_nodeI = nbpnI + _unlfold2(lxblocksize1,

ixproc & _M(lxblocksize1),

iyproc & _M(lyblocksize1));

global_conI = (`nd_D1.meI-slice1.min) * slice2size + norm_p_nodeI;

if (global_conI < cons_neededN && norm_p_nodeI < slice2size) {

while (cons->_me_D.exists)

cons++; /* find next free con */

_fold2 (global_conI, procN, meet_localsize, meet_PE, meetI);

meet_data.pe = iproc;

185

meet_data.a = (plural char* plural)cons;

sp_rsend (meet_PE, (plural char*)&meet_data,

(plural char* plural)(meet_cons + meetI), sizeof (_Gptr));

cons++; /* so that we don't find the same free con again and again */

}

}

_TRACE (3, (" group 1: %x con_array at %x, ls=%d\n", (int)base1,

(int)_sgl(`interf1), _sgl(`interf_D1.con_ls)));

`write meet_rcons and read meet_cons:

/* active set: node2 blocks within slice2

i is number of node2 virtualization layer, base2 points to these nodes.

*/

plural _remote_connection* plural rcons = `interf2;

plural j, j_limit = `cons needed per PE 2;

nbpnI = 0; /* within 0...(slice.max-slice.min) */

for (j = 0; j < j_limit; j++, nbpnI += _S(lblocksize2)) {

norm_p_nodeI = nbpnI + _unlfold2(lxblocksize2,

ixproc & _M(lxblocksize2),

iyproc & _M(lyblocksize2));

global_conI = norm_p_nodeI * slice2size + (`nd_D2.meI - slice2.min);

if (global_conI < cons_neededN && norm_p_nodeI < slice1size) {

while (rcons->_me_D.exists)

rcons++; /* find next free rcon */

_fold2 (global_conI, procN, meet_localsize, meet_PE, meetI);

meet_data.pe = iproc;

meet_data.a = (plural char* plural)rcons;

sp_rsend (meet_PE, (plural char*)&meet_data,

(plural char* plural)(meet_rcons + meetI), sizeof (_Gptr));

`make rcon;

}

}

_TRACE (3, (" group 2: %x con_array at %x, ls=%d\n", (int)base2,

(int)_sgl(`interf2), _sgl(`interf_D2.con_ls)));

`make rcon:

ps_rfetch (meet_PE, (plural char* plural)(meet_cons + meetI),

(plural char*)&meet_data, sizeof (_Gptr));

rcons->_oe = meet_data;

rcons->_me_D.exists = _existing;

rcons->_me_D.boss = &`interf_D2;

/* no need to set conI: memory is initialized with zeroes */

`read meet_rcons:

/* active set: node1 blocks within slice1

i is number of node1 virtualization layer, base1 points to these nodes.

*/

plural _type_* plural cons = `interf1;

plural j, j_limit = `cons needed per PE 1;

nbpnI = 0; /* within 0...(slice.max-slice.min+1) */

for (j = 0; j < j_limit; j++, nbpnI += _S(lblocksize1)) {

norm_p_nodeI = nbpnI + _unlfold2(lxblocksize1,

ixproc & _M(lxblocksize1),

iyproc & _M(lyblocksize1));

global_conI = (`nd_D1.meI-slice1.min) * slice2size + norm_p_nodeI;

186 39 I/O TEMPLATES

if (global_conI < cons_neededN && norm_p_nodeI < slice2size) {

while (cons->_me_D.exists)

cons++; /* find next free con */

_fold2 (global_conI, procN, meet_localsize, meet_PE, meetI);

`make con;

}

}

`make con:

ps_rfetch (meet_PE, (plural char* plural)(meet_rcons + meetI),

(plural char*)&meet_data, sizeof (_Gptr));

cons->_oe = meet_data;

cons->_me_D.exists = _existing;

cons->_me_D.boss = &`interf_D1;

cat2(INIT,_type_) (cons);

`cons needed per PE 1:

(cons_per_node1 >> lblocksize1) + ((cons_per_node1 & _M(lblocksize1)) != 0)

`cons needed per PE 2:

(cons_per_node2 >> lblocksize2) + ((cons_per_node2 & _M(lblocksize2)) != 0)

`interf_D1:

(plural _interface_D)(base1+interf_D_offset1)

`interf_D2:

(plural _interface_D)(base2+interf_D_offset2)

`interf1:

(plural _type_ plural*)(base1+interf_offset1)

`interf2:

(plural _remote_connection plural*)(base2+interf_offset2)

`nd_D1:

(plural _node_D)(base1+nd_D_offset1)

`nd_D2:

(plural _node_D)(base2+nd_D_offset2)

}

#undef _type_

g

This macro is attached to an output �le.

39 I/O templates

This section contains the templates that de�ne the operations implementing the <-- and --> operators.
The only generic parameter needed is again the type type of the value to be transfered.

39.1 Input

The memory layout of the I/O area x is as follows: use one PE for each node to address (0..n), address
node i of replicate 0 on PE number i, this is repeated for each replicate (0..k) by increasing the PE

39.1 Input 187

numbers consecutively. If the physical PEs do not su�ce, begin again at proc[0].x[1]. The data at x must
be laid out as if slice.min...slice.max was 0...n.

lib/Input.tplr[237] � 237

f

/* File: Input.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(INPUT_,_type_) (

plural _node_group_D* group_D, plural char* base, Interval slice,

_sint field_offset, _sint descr_offset, _sint node_size, plural _type_ *x)

{

/* active set: all.

The '_existing' nodes fetch the value from x and send it to

the shadow nodes of their block.

*/

plural _type_ val;

plural int vPE; /* virtual-PE number */

plural _realness ex;

int localsizeN = _sgl(group_D->localsizeN),

nodesN = _sgl(group_D->nodesN);

int i;

`adjust slice;

_TRACE (3, ("INPUT (%x %d..%d <-- %x)\n", (int)base, slice.min, slice.max,

(int)x));

for (i = 0; i < localsizeN; i++, base += node_size) {

ex = `node_D.exists;

if (p_IntervalInOp(`node_D.meI, slice)) {

if (ex == _existing)

`fetch value from x;

`send value to shadow nodes;

if (ex != _nonexisting)

/* store val in existing or shadow node fields: */

(plural _type_)(base+field_offset) = val;

}

}

`adjust slice:

/* make the slice adhere to the following invariant:

slice.min >= 0 && slice.max <= groupsize &&

real_slice_size = slice.max - slice.min + 1

*/

if (slice.min < 0) slice.min = 0;

if (slice.max >= nodesN) slice.max = nodesN - 1;

if (slice.min > slice.max) slice.max = slice.min - 1;

nodesN = slice.max - slice.min + 1;

`fetch value from x:

vPE = nodesN * `net_D.meI + (`node_D.meI - slice.min);

ps_rfetch (vPE & _M(lprocN) /* = vPE % procN */,

(plural void* plural)(x+(vPE>>lprocN)),

(plural void*)&val, sizeof(_type_));

`send value to shadow nodes:

ss_xsendc (`node_D.lyN, `node_D.lxN, &val, sizeof (_type_),

ex == _existing);

188 39 I/O TEMPLATES

`node_D:

(plural _node_D)(base+descr_offset)

`net_D:

*group_D->boss

}

#undef _type_

g

This macro is attached to an output �le.

39.2 Output

This procedure uses the I/O area in the same way as mentioned for the input procedure above.

lib/Output.tplr[238] �238

f

/* File: Output.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(OUTPUT_,_type_) (

plural _node_group_D* group_D, plural char* base, Interval slice,

_sint field_offset, _sint descr_offset, _sint node_size, plural _type_ *x)

{

/* active set: all.

The '_existing' nodes send the value to x.

*/

plural _type_ val;

plural int vPE;

int localsizeN = _sgl(group_D->localsizeN),

nodesN = _sgl(group_D->nodesN);

int i;

`adjust slice;

_TRACE (3, ("OUTPUT (%x %d..%d --> %x)\n", (int)base, slice.min, slice.max,

(int)x));

for (i = 0; i < localsizeN; i++, base += node_size)

if (`node_D.exists == _existing && p_IntervalInOp(`node_D.meI, slice))

`send value to x;

`adjust slice:

/* make the slice adhere to the following invariant:

slice.min >= 0 && slice.max <= groupsize &&

real_slice_size = slice.max - slice.min + 1

*/

if (slice.min < 0) slice.min = 0;

if (slice.max >= nodesN) slice.max = nodesN - 1;

if (slice.min > slice.max) slice.max = slice.min - 1;

nodesN = slice.max - slice.min + 1;

`send value to x:

vPE = nodesN * `net_D.meI + (`node_D.meI - slice.min);

val = *(plural _type_*)(base+field_offset);

sp_rsend (vPE & _M(lprocN) /* = vPE % procN */,

(plural void*)&val, (plural void* plural)(x+(vPE>>lprocN)),

189

sizeof(_type_));

`node_D:

(plural _node_D)(base+descr_offset)

`net_D:

*group_D->boss

}

#undef _type_

g

This macro is attached to an output �le.

40 MERGE templates

These templates are instantiated for each connection type, node type, and network type used in the
program. The resulting procedure, a MERGE X, is for calling the merging operations de�ned for the type
X (and its components) | thus merging the network replicates | and for distributing the data from
the �rst replicate to the others. The former is done, if the procedure is called with parameter merge
equals true, the latter when it is called with parameter distribute equals true. Both can be chosen
independently. An additional parameter create replicates selects whether the distribution operation
only re-distributes the data or creates replicates by distributing and modifying the descriptors as well.
create replicates has no meaning if distribute equals false. The only descriptor data that needs to
be modi�ed in the create replicates case is the processor number of the oe pointers of all connections
and remote connections. The change consists of adding the processor number of the upper left corner of
the machine segment to the processor number already given in the oe.

Merging and (re-)distributing network, node, or connection data is relatively simple in the regular-
machine-segmentation-network-replicate-data-layout (imagine smiley face here) the compiler uses, since the
addresses of all pairs of corresponding objects are di�erent only by multiples of constant di�erences in x
and y processor numbers: For any object x in a network net, its correspondents in neighboring replicates
of net can be found at the same local address S(net. me D.lxN processors to the left and to the right
and S(net. me D.lyN processors up and down (given these neighboring replicates exist).

40.1 MERGE connections

The only generic parameter is the type type of the connection objects to be merged.

lib/MergeCon.tplr[239] � 239

f

/* File: MergeCon.tpl

$Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(MERGE_,_type_) (plural _type_* ME,

plural _type_ *YOU); /* this prototype may be needed */

plural void _cat2(a_MERGE_,_type_) (plural _network_D *net_D,

plural _sint con_ls, plural _type_ *objs,

_bool merge, _bool redistribute, _bool create_replicates)

{

/* active set: all

*/

/* The whole connection array could be fetched at once. The resulting

large communication packets may be more efficient although the

190 40 MERGE TEMPLATES

descriptors have then to be moved also. But then we had to allocate

additional memory (although only on the stack).

*/

_sint step, i;

_sint repN = _sgl(net_D->repN);

int lxN = _sgl(net_D->lxN),

lyN = _sgl(net_D->lyN);

_TRACE (4, ("MERGE_Con (%x, %d/%d/%d)\n", (int)objs, (int)merge,

(int)redistribute, (int)create_replicates));

for (i = 0; i < con_ls; i++, objs++)

`merge and redistribute this connection;

`merge and redistribute this connection:

if (merge) {

plural _cat2(_type_,_0) obj2;

plural _bool result_computed = net_D->exists;

if (objs->_me_D.exists) {

`do reduction in x direction;

if (ixproc < _S(lxN))

`do reduction in y direction;

}

}

if (redistribute) {

plural _bool result_computed = net_D->exists && net_D->meI == 0 &&

objs->_me_D.exists;

if (ixproc < _S(lxN))

`do redistribution in y direction;

`do redistribution in x direction;

if (create_replicates)

objs->_oe.pe += (ixproc & ~_M(lxN)) + ((iyproc & ~_M(lyN)) << lxprocN);

}

`do reduction in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && xnetE[step].result_computed)

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_xfetch (0, step, (plural void*)objs, (plural void*)&obj2,

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (objs, (plural _type_*)&obj2);

`do reduction in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && xnetS[step].result_computed)

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_xfetch (-step, 0, (plural void*)objs, (plural void*)&obj2,

40.2 MERGE nodes 191

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (objs, (plural _type_*)&obj2);

`do redistribution in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && result_computed && `y_neighbor_I < repN)

`put y remote value;

step <<= 1;

}

`put y remote value:

ss_xsend (-step, 0, (plural void*)objs, (plural void*)objs,

create_replicates ? sizeof(_type_) : sizeof(_cat2(_type_,_0)));

xnetS[step].result_computed = true;

`do redistribution in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && result_computed && `x_neighbor_I < repN)

`put x remote value;

step <<= 1;

}

`put x remote value:

ss_xsend (0, step, (plural void*)objs, (plural void*)objs,

create_replicates ? sizeof(_type_) : sizeof(_cat2(_type_,_0)));

xnetE[step].result_computed = true;

`x_neighbor_I:

((ixproc+step) >> lxN) + ((iyproc >> lyN) << (lxprocN-lxN))

`y_neighbor_I:

((ixproc) >> lxN) + (((iyproc+step) >> lyN) << (lxprocN-lxN))

}

#undef _type_

g

This macro is attached to an output �le.

40.2 MERGE nodes

The node merge procedure template is signi�cantly more tricky than the other templates above. It is
generic not only in the type type of the network variable, but also in a macro called INTERFACES .
When the template is to be instantiated, this macro must consist of a list of entries of the form I(t,o,i).
One entry must be present for each connection interface i of the node type; t is the type of the respective
interface and o is the type of the opposite end of the connections at this interface (i.e., one of o and i is
always remote connection and the other is a user-declared connection type). This macro INTERFACES

is used in the procedure wherever an iteration over the connection interfaces of the node is necessary.
Before each use, an appropriate macro I is de�ned so that each list entry will evaluate into a declaration,
(partial) expression, procedure call, or whatever is needed. These macro expansions implement most of
the functionality of the node merge procedure. An additional feature of this merge template is that it
implementsmerging of the wpc values in the interface descriptors for the formA to form 0 transition in the
rti code version; this merging is an averaging (summing and then dividing by the number of replicates).

192 40 MERGE TEMPLATES

lib/MergeNode.tplr[240] �240

f

/* File: MergeNode.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(MERGE_,_type_) (plural _type_ *ME,

plural _type_ *YOU); /* this prototype may be needed */

plural void _cat2(a_MERGE_,_type_) (plural _network_D *net_D,

plural _sint nd_ls, plural _type_ *objs,

_bool merge, _bool redistribute, _bool create_replicates)

{

/* active set: all

*/

_sint step, i;

_bint lxN = _sgl(net_D->lxN),

lyN = _sgl(net_D->lyN);

_sint repN = _sgl(net_D->repN);

_TRACE (3, ("MERGE_Node (%x, %d/%d/%d)\n", (int)objs, (int)merge,

(int)redistribute, (int)create_replicates));

for (i = 0; i < nd_ls; i++, objs++)

`merge and redistribute this node and its connections;

`merge and redistribute this node and its connections:

if (merge) {

plural _cat2(_type_,_0) obj2;

plural _bool result_computed = net_D->exists;

`do reduction in x direction;

if (ixproc < _S(lxN))

`do reduction in y direction;

#define _I(_t,_o,_i) objs->_cat2(_i,_D).wpc /= repN;

if (!redistribute) {

INTERFACES

}

#undef _I

}

if (redistribute) {

plural _bool result_computed = net_D->exists && net_D->meI == 0;

if (ixproc < _S(lxN))

`do redistribution in y direction;

`do redistribution in x direction;

}

#define _I(_t,_o,_i) _cat2(a_MERGE_,_t)(net_D,objs->_cat2(_i,_D).con_ls,\

_sgl(objs->_i), merge, redistribute, create_replicates);

INTERFACES

#undef _I

`do reduction in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && xnetE[step].result_computed)

`get and reduce x remote value;

step <<= 1;

}

40.2 MERGE nodes 193

`get and reduce x remote value:

ss_xfetch (0, step, (plural void*)objs, (plural void*)&obj2,

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (objs, (plural _type_*)&obj2);

#if _codetype_ == 1

#define _I(_t,_o,_i) objs->_cat2(_i,_D).wpc +=\

xnetE[step].objs->_cat2(_i,_D).wpc;

if (merge && !redistribute) {

INTERFACES

}

#undef _I

#endif

`do reduction in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && xnetS[step].result_computed)

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_xfetch (-step, 0, (plural void*)objs, (plural void*)&obj2,

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (objs, (plural _type_*)&obj2);

#if _codetype_ == 1

#define _I(_t,_o,_i) objs->_cat2(_i,_D).wpc +=\

xnetS[step].objs->_cat2(_i,_D).wpc;

if (merge && !redistribute) {

INTERFACES

}

#undef _I

#endif

`do redistribution in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && result_computed && `y_neighbor_I < repN)

`put y remote value;

step <<= 1;

}

`put y remote value:

ss_xsend (-step, 0, (plural void*)objs, (plural void*)objs,

create_replicates ? sizeof(_type_) : sizeof(_cat2(_type_,_0)));

xnetS[step].result_computed = true;

`do redistribution in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && result_computed && `x_neighbor_I < repN)

`put x remote value;

step <<= 1;

}

194 40 MERGE TEMPLATES

`put x remote value:

ss_xsend (0, step, (plural void*)objs, (plural void*)objs,

create_replicates ? sizeof(_type_) : sizeof(_cat2(_type_,_0)));

xnetE[step].result_computed = true;

`x_neighbor_I:

((ixproc+step) >> lxN) + ((iyproc >> lyN) << (lxprocN-lxN))

`y_neighbor_I:

((ixproc) >> lxN) + (((iyproc+step) >> lyN) << (lxprocN-lxN))

}

#undef _type_

#undef _INTERFACES_

g

This macro is attached to an output �le.

40.3 MERGE networks

The merge network procedure template uses a technique analogous to that used by the node merge
template: It is generic not only in the type type of the network variable, but also in a macro called
GROUPS . When the template is to be instantiated, this macro must consist of a list of entries of the form
G(t,g). One entry must be present for each node group or node array g of the network type; t is the
base type of the respective group or array type. This macro GROUPS is used in the procedure wherever
an iteration over the node groups of the network is necessary.

lib/MergeNet.tplr[241] �241

f

/* File: MergeNet.tpl

RCS: $Id: code1.fw,v 1.16 1994/11/07 10:51:26 prechelt Exp prechelt $

*/

plural void _cat2(MERGE_,_type_) (plural _type_ *ME,

plural _type_ *YOU); /* this prototype may be needed */

plural void _cat2(a_MERGE_,_type_) (plural _type_ *net,

_bool merge, _bool redistribute, _bool create_replicates)

{

/* active set: all

*/

_sint step;

_sint repN = _sgl(net->_me_D.repN);

_bint lxN = _sgl(net->_me_D.lxN),

lyN = _sgl(net->_me_D.lyN);

_TRACE (3, ("MERGE_Net (%x, %d/%d/%d)\n", (int)net, (int)merge,

(int)redistribute, (int)create_replicates));

if (merge) {

plural _cat2(_type_,_0) obj2;

plural _bool result_computed = net->_me_D.exists;

`do reduction in x direction;

if (ixproc < _S(lxN))

`do reduction in y direction;

}

if (redistribute) {

plural _bool result_computed = net->_me_D.exists && net->_me_D.meI == 0;

if (ixproc < _S(lxN))

40.3 MERGE networks 195

`do redistribution in y direction;

`do redistribution in x direction;

if (create_replicates)

`modify meI;

}

#define _G(_t,_g) _cat2(a_MERGE_,_t)(&net->_me_D,\

net->_cat2(_g,_D).localsizeN,_sgl(net->_g),merge,redistribute,\

create_replicates);

GROUPS

#undef _G

`do reduction in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && xnetE[step].result_computed)

`get and reduce x remote value;

step <<= 1;

}

`get and reduce x remote value:

ss_xfetch (0, step, (plural void*)net, (plural void*)&obj2,

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (net, (plural _type_*)&obj2);

`do reduction in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && xnetS[step].result_computed)

`get and reduce y remote value;

step <<= 1;

}

`get and reduce y remote value:

ss_xfetch (-step, 0, (plural void*)net, (plural void*)&obj2,

sizeof(_cat2(_type_,_0)));

cat2(MERGE,_type_) (net, (plural _type_*)&obj2);

`do redistribution in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && result_computed && `y_neighbor_I < repN)

`put y remote value;

step <<= 1;

}

`put y remote value:

ss_xsend (-step, 0, (plural void*)net, (plural void*)net,

create_replicates ? sizeof (_type_) : sizeof(_cat2(_type_,_0)));

xnetS[step].result_computed = true;

`do redistribution in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && result_computed && `x_neighbor_I < repN)

`put x remote value;

196 41 EXTEND TEMPLATE

step <<= 1;

}

`put x remote value:

ss_xsend (0, step, (plural void*)net, (plural void*)net,

create_replicates ? sizeof (_type_) : sizeof(_cat2(_type_,_0)));

xnetE[step].result_computed = true;

`modify meI:

/* although the meI and exists descriptors had been set correctly

for all replicates in REPLICATE_, we have to recompute it now,

because it was overwritten during `put remote value above.

*/

if (`meI < repN)

net->_me_D.meI = `meI;

else

net->_me_D.exists = _nonexisting;

`x_neighbor_I:

((ixproc+step) >> lxN) + ((iyproc >> lyN) << (lxprocN-lxN))

`y_neighbor_I:

((ixproc) >> lxN) + (((iyproc+step) >> lyN) << (lxprocN-lxN))

`meI:

(ixproc >> lxN) + ((iyproc >> lyN) << (lxprocN-lxN))

}

#undef _type_

#undef _GROUPS_

g

This macro is attached to an output �le.

41 EXTEND template

The EXTEND procedure template is generic in the type of the node it works for and the list of interfaces
of that node type. There are four cases within this procedure: (1) shrinking a group is done by simply
marking all nodes that shall be deleted and all their connections as non-existing, (2) extending a group
of size 0 is the same as initialization, (3) extending a group that has enough free node blocks left is done
by initializing these node blocks appropriately, and (4) extending a group that does not have enough free
node blocks in its current representation requires a complete reorganization.

lib/Extend.tplr[242] �242

f

plural void _cat2(EXTEND_,_type_) (plural _network_D *net_D,

plural _type_* plural* group, plural _node_group_D* group_D,

plural Int n)

{

_TRACE (1, ("EXTEND %x@%x BY %d\n", (int)group, (int)_sgl(*group), _sgl(n)));

if (net_D->formA) {

fprintf (stderr, "EXTEND not allowed for replicated networks\n");

exit (15);

}

_assert (group_D->localsizeN <= 1); /* no node virtualization in form0 ! */

197

_assert (n == _sgl(n)); /* n must in fact be singular */

if (n < 0)

`shrink group;

else if (n > 0)

`extend group;

`shrink group:

if ((plural int)group_D->nodesN + n < 0) {

fprintf (stderr, "EXTEND BY %d called, but group has only %d nodes\n",

_sgl(n), (plural int)_sgl(group_D->nodesN));

exit (16);

}

group_D->nodesN += n;

`mark nodes and all their connections as free;

/* if no nodes left, free memory: */

if ((plural int)group_D->nodesN == 0) {

_freemem ((plural void*)_sgl(*group));

*group = 0;

group_D->localsizeN = 0;

}

group_D->newnodesN = 0; /* deleting nodes makes new nodes old */

`mark nodes and all their connections as free:

plural _bool must_vanish = `me_D.exists &&

`me_D.meI >= group_D->nodesN;

if (must_vanish) {

(*group)->_me_D.exists = _nonexisting;

#define _I(_t,_o,_i) delete_connections (\

(plural char*)_sgl(_cat2((*group)->,_i)), sizeof(_t),\

_sgl(_cat3((*group)->,_i,_D).con_ls),\

offsetof(_t,_oe), offsetof(_t,_me_D), offsetof(_o,_me_D));

INTERFACES

#undef _I

}

`extend group:

if (group_D->nodesN == 0)

`init group;

else {

/* there is always a node at PE 0: */

_bint lxblocksize = proc[0].(*group)->_me_D.lxN,

lyblocksize = proc[0].(*group)->_me_D.lyN,

lcolsN = lxprocN - lxblocksize,

lrowsN = lyprocN - lyblocksize;

int blocksN = _S(lcolsN + lrowsN);

group_D->newnodesN = n;

if (`enough free node blocks)

`add new nodes;

else

`reorganize and add new nodes;

}

`init group:

/* release old memory, if any: */

if (*group != 0) {

198 42 REPLICATE TEMPLATES

_assert (group_D->localsizeN != 0);

_freemem ((plural void*)_sgl(*group));

*group = 0;

group_D->localsizeN = 0;

}

/* Create the node group: */

_assert (n == _sgl (n));

cat3(INIT,_type_,_group) (group, group_D, net_D, _sgl(n));

`enough free node blocks:

blocksN >= group_D->nodesN + n

`add new nodes:

plural _sint meI = (ixproc >> lxblocksize) +

(iyproc >> lyblocksize << lcolsN);

plural _bool new = meI >= group_D->nodesN && meI < group_D->nodesN+n;

group_D->nodesN += n;

if (new) {

`me_D.boss = group_D;

`me_D.lxN = lxblocksize;

`me_D.lyN = lyblocksize;

`me_D.meI = meI;

`me_D.exists = `is upper left block corner ? _existing : _shadow;

cat2(INIT,_type_) (_sgl(*group));

}

`is upper left block corner:

(ixproc & _M(lxblocksize)) == 0 &&

(iyproc & _M(lyblocksize)) == 0

`reorganize and add new nodes:

plural _type_ *plural old_group = *group;

plural _node_group_D old_group_D = *group_D;

group_D->nodesN += n;

_cat2(layout__,_type_) (_sgl(old_group_D.boss), _sgl(old_group_D.boss),

&old_group, &old_group_D, group, group_D, _0_to_0);

_cat2(reconnect__,_type_) (_sgl(old_group_D.boss), _sgl(old_group_D.boss),

&old_group, &old_group_D, group, group_D);

_cat2(release__,_type_) (_sgl(old_group_D.boss), _sgl(old_group_D.boss),

&old_group, &old_group_D, group, group_D);

`me_D:

(*group)->_me_D

}

#undef _type_

#undef _INTERFACES_

g

This macro is attached to an output �le.

42 REPLICATE templates

Templates for the REPLICATE operation are needed only for node and network types. Connection repli-
cation manipulates the descriptor of individual connection objects only and is thus implemented in the

42.1 REPLICATE node 199

run time system.

42.1 REPLICATE node

The replicate node procedure template is generic in the type type of the node variable and in a macro
INTERFACES . The latter is used in the same way as in the MERGE node template above. This procedure
implements only the cases of node replication INTO 0 and INTO 1, since replication into many is extremely
complicated. The procedure works in the following steps: (1) check that the situation is legal (and exit
with an error message if it is not), (2) mark the node itself as nonexisting, (3) delete all the connections of
the node, (4) compute the new node numbers (INDEX values), (5) reorganize the group according to these
new node numbers. For this last step, we would very much like to use the layout and reconnect

procedure to do most of the work. This is, however, not directly possible, because they expect to get the
address of the pointer to the node array (since they allocate a new node array), which is not available to
the REPLICATE node procedures. We use the following trick instead: We make a local copy of the node
objects before we call layout and tell it not to allocate a new node array (in fact, it is implemented to
behave this way automatically when it �nds the number of nodes to have decreased from the old group
to the new.).

lib/ReplicateNode.tplr[243] � 243

f

plural void _cat2(REPLICATE_,_type_) (plural _type_ *ME, plural int into)

{

plural _realness ex;

plural _bool delete_me;

_sint new_nodesN;

_TRACE (1, ("REPLICATE_Node %x INTO %d\n", (int)ME, _sgl(into)));

`check legality;

if (into == 1)

return;

/* now we are sure to have form0 and into=0. We must now include into the

active set also those nodes that shall not be deleted:

*/

all {

delete_me = false;

ex = ME->_me_D.exists;

}

delete_me = true; /* on those PEs that were originally active */

all {

if (delete_me) {

`delete node;

`delete connections;

}

`compute new node numbers;

`reorganize group;

}

`check legality:

if (ME->_me_D.boss->boss->formA) {

fprintf (stderr, "REPLICATE node not allowed in replicated networks\n");

exit (17);

}

if (into < 0 || into > 1) {

fprintf (stderr, "REPLICATE node INTO x only allowed for x=0 and x=1\n");

exit (18);

}

200 42 REPLICATE TEMPLATES

`delete node:

ME->_me_D.exists = _nonexisting;

`delete connections:

#define _I(_t,_o,_i) delete_connections (\

(plural char*)_sgl(_cat2(ME->,_i)), sizeof(_t),\

_sgl(_cat3(ME->,_i,_D).con_ls),\

offsetof(_t,_oe), offsetof(_t,_me_D), offsetof(_o,_me_D));

INTERFACES

#undef _I

`compute new node numbers:

plural _sint newI;

if (ME->_me_D.exists == _existing) {

newI = enumerate();

new_nodesN = reduceMax16u (newI) + 1;

}

if (ME->_me_D.exists) {

ss_xsendc (ME->_me_D.lyN, ME->_me_D.lxN, &newI, sizeof (_sint),

ME->_me_D.exists == _existing);

ME->_me_D.meI = newI;

}

`reorganize group:

plural _type_ old_nd = *ME; /* copy of the nodes */

plural _type_ *plural group = ME; /* plural pointer to nodes */

plural _type_ *plural old_group = &old_nd; /* plural pointer to copy */

plural _node_group_D old_group_D;

old_group_D = *ME->_me_D.boss;

ME->_me_D.boss->nodesN = new_nodesN;

ME->_me_D.boss->newnodesN = 0; /* deleting nodes makes new nodes old */

_cat2(layout__,_type_) (_sgl(old_group_D.boss), _sgl(old_group_D.boss),

&old_group, &old_group_D, &group, _sgl(ME->_me_D.boss), _0_to_0);

_cat2(reconnect__,_type_) (_sgl(old_group_D.boss), _sgl(old_group_D.boss),

&old_group, &old_group_D, &group, _sgl(ME->_me_D.boss));

}

#undef _type_

#undef _INTERFACES_

g

This macro is attached to an output �le.

42.2 REPLICATE network

The replicate network procedure template is generic in the type type of the network variable and in a
macro GROUPS . The latter is used in the same way as in the MERGE network template above. Note that
this procedure does not actually construct multiple replicates: It only constructs replicate 0 in the correct
way; all other replicates are then created as relocated copies of replicate 0 by the MERGE procedure.

lib/ReplicateNet.tplr[244] �244

f

plural void _cat2(REPLICATE_,_type_) (plural _type_* net,

Interval repls, _bool to_formA)

{

42.2 REPLICATE network 201

/* precondition: *net represents valid network in either form 0 or form A.

postcondition: *net represents valid network in new form with

requested number of replicates. Individual exemplars are equivalent

to input net or merged input net, respectively.

*/

_replication_type replication_type;

int i;

plural _type_ old_net;

_TRACE (1, ("REPLICATE_Net (%x --> %d..%d (to_formA = %d))\n", (int)net,

repls.min, repls.max, (int)to_formA));

`compute replication parameters;

if (replication_type == _A_to_0)

_cat2(a_MERGE_,_type_) (net, true, false, false);

old_net = *net; /* shallow copy, boss pointers corrected during layout__ */

`ensure that always one net is formA and one form0;

`decide number of replicates to use and make segments;

/* foreach group: decide block sizes, layout, copy nodes and connections */

#define _G(_t,_g) _cat2(layout__,_t) (&old_net._me_D,&net->_me_D,\

&old_net._g,&old_net._cat2(_g,_D),&net->_g,&net->_cat2(_g,_D),\

replication_type);

GROUPS

#undef _G

/* foreach group: reconnect connections */

#define _G(_t,_g) _cat2(reconnect__,_t) (&old_net._me_D,&net->_me_D,\

&old_net._g,&old_net._cat2(_g,_D),&net->_g,&net->_cat2(_g,_D));

GROUPS

#undef _G

/* foreach group: release old_net memory */

#define _G(_t,_g) _cat2(release__,_t) (&old_net._me_D,&net->_me_D,\

&old_net._g,&old_net._cat2(_g,_D),&net->_g,&net->_cat2(_g,_D));

GROUPS

#undef _G

/* distribute data to replicates,

modify net_D.meI and connection oe pointers: */

if (net->_me_D.repN > 1)

_cat2(a_MERGE_,_type_) (net, false, true, true);

`compute replication parameters:

/* here `D still represents the old net */

if (to_formA)

`check to A replication;

else

`check to 0 replication;

`check to A replication:

if (`D.formA) {

replication_type = _A_to_A;

fprintf (stderr, "REPLICATE net called for replicated network\n");

exit (19);

}

else

replication_type = _0_to_A;

`check to 0 replication:

if (`D.formA)

202 42 REPLICATE TEMPLATES

replication_type = _A_to_0;

else

replication_type = _0_to_0; /* pure reorganization */

`ensure that always one net is formA and one form0:

if (replication_type == _0_to_0 || replication_type == _A_to_0) {

old_net._me_D.formA = true; /* a little cheating for _0_to_0 */

net->_me_D.formA = false;

}

else {

_assert (replication_type == _0_to_A);

net->_me_D.formA = true;

}

if (repls.min <= 0 || repls.max <= 0) {

fprintf (stderr,

"number of network replicates must be positive\n");

exit (10);

}

`decide number of replicates to use and make segments:

/* this refinement could as well be a run time system procedure */

if (replication_type == _A_to_0 || replication_type == _0_to_0) {

/* there is exactly one segment, covering the whole machine: */

`D.exists = _existing;

`D.meI = 0;

`D.repN = 1;

`D.lrepN = 0;

`D.lxN = lxprocN;

`D.lyN = lyprocN;

}

else { /* make many segments */

/* no sophisticated decision implemented yet.

Should at least limit the replicates to fit into memory.

*/

plural _bint me_xI, me_yI;

_bint lxrepN;

_bint lsegmentsize;

_assert (replication_type == _0_to_0 || replication_type == _0_to_A);

`D.lrepN = _log2(repls.max); /* rounds UP! */

`D.lrepN -= (_S(`D.lrepN) > repls.max);

`D.repN = _S(`D.lrepN);

if (`D.repN < repls.min) { /* if rounded-down power of two is too small */

`D.repN = repls.max; /* use repls.max logically and */

`D.lrepN++; /* rounded-up power of two physically */

}

_assert (`D.repN >= repls.min && `D.repN <= repls.max);

_assert (_S(`D.lrepN) >= `D.repN);

lsegmentsize = lprocN - _sgl(`D.lrepN);

`D.lyN = lsegmentsize >> 1;

`D.lxN = lsegmentsize - `D.lyN;

_assert (`D.lxN <= lxprocN && `D.lyN <= lyprocN);

me_xI = ixproc >> `D.lxN;

me_yI = iyproc >> `D.lyN;

lxrepN = lxprocN - _sgl(`D.lxN);

`D.meI = (me_yI << lxrepN) + me_xI;

42.2 REPLICATE network 203

`D.exists = `D.meI < `D.repN ? _existing : _nonexisting;

}

`D:

net->_me_D

}

#undef _GROUPS_

#undef _type_

g

This macro is attached to an output �le.

The procedures called by the G constructs embedded in the GROUPS macro above have to be de�ned
per node type. Therefore, a second template for the network replication is needed, to be instantiated for
each node type. This template uses a technique similar to the one employed for GROUPS above in order
to handle iteration over connection interfaces; the generic parameter is called INTERFACES (see also the
replicate node and merge node templates above).

Three di�erent procedures are needed, because there are three phases that must not overlap: The second
part of the remote pointer handling can only be done if the �rst part has been done for the remote end of
each connections. In the general case this can only be guaranteed by �rst performing the �rst part on all
node groups before beginning with the second part (phase 1 and 2). Memory of the old node group and
its connections must not be released before the remote pointers are completely established (phase 3).

lib/ReplicateNetNodes.tplr[245] � 245

f

Layout Nodes[246]
Reconnect Nodes[247]
Release Node Memory [248]
#undef _INTERFACES_

#undef _type_

g

This macro is attached to an output �le.

The tasks to be solved by each layout nodetype procedure are: (1) decide for each node in the group
what its new node block size will be, (2) �nd a layout for the node blocks in segment 0 of the network,
(3) set the group descriptor for the new node group, and (4) allocate memory and copy the nodes
and their connections into their new node blocks. The remote pointers of the connections are handled
as described in section 30.4.2. Most parts of the code are the same for form 0 and form A as target
representation, although the form 0 case could be simpli�ed.

The procedure can be used in three contexts:(1) during network replication, (2) during node group
extension, and (3) during node replication (i.e., node deletion). In context (1), the old net is form A
and the new is form 0 or vice versa and the number of nodes in the old and new group (nodesN) is the
same. In context (2), both nets are form 0 and the old nodesN is always smaller than the new nodesN;
the procedure has to create new nodes that not yet exist. In context (3), both nets are form 0 and the
old nodesN is always larger than the new nodesN, but these additional old nodes do not actually exist
anymore.

All three cases can be handled in mostly the same fashion, but di�er in a few points. Most prominently, in
context (3) there is no memory allocation for the new node array (see at REPLICATE nodes template).
Another important di�erence is the handling of work per con and wpc measurement in context (1):
work per con of the interfaces is used to compute the relative block sizes of the form A node blocks. In
the rti version, wpc is used to update work per con and to count evidence points in the group descriptor's
better2virt. All this is ignored in contexts (2) and (3).

Layout Nodes[246] � 246

f

204 42 REPLICATE TEMPLATES

plural void _cat2(layout__,_type_) (plural _network_D *old_net_D,

plural _network_D *net_D,

plural _type_* plural *old_nodes, plural _node_group_D *old_group_D,

plural _type_* plural *nodes, plural _node_group_D *group_D,

_replication_type replication_type)

{

/* the following variables hold data for node i in proc[i]: */

plural _sint size; /* size of node block of new node i */

plural _work work; /* work of old node i's connections */

plural _bint layer; /* virtualization layer of new node i */

plural _bint x0, y0; /* upper left corner of node block of new node i */

plural _bint lxN, lyN;/* log x and y size of node block of new node i */

_bint layersN; /* number of new virtualization layers */

_bint lxblocksize, lyblocksize; /* form 0 node block sizes */

plural _bool is_replicate0 = old_net_D->exists && old_net_D->meI == 0;

plural _bool willbe_replicate0 = net_D->exists && net_D->meI == 0;

_sint new_nodesN = _sgl(group_D->nodesN), /* nodesN in new layout */

newnodesN = _sgl(old_group_D->newnodesN), /* `young' nodes */

old_nodesN = _sgl(old_group_D->nodesN), /* nodesN in old layout */

existing_nodesN = old_nodesN > new_nodesN ? new_nodesN : old_nodesN;

_sint layernodesN[2] = { old_nodesN-newnodesN, newnodesN };

#define _I(_t,_o,_i) plural _sint _cat2(_i,_conN) = 0;\

_sint _cat2(_i,_con_ls);\

_work _cat2(_i,_wpc)[2] = {0, 0};

INTERFACES

#undef _I

#define _normalizer 10000

_assert (old_nodesN <= procN && new_nodesN <= procN);

_assert (old_net_D->formA != net_D->formA ||

old_nodesN != new_nodesN);

_TRACE (2, ("layout__ (%x,%x)\n", (int)old_net_D, (int)_sgl(*old_nodes)));

if (new_nodesN == 0) {

if (old_nodesN == 0) {

group_D->localsizeN = 0;

*nodes = 0;

}

group_D->nodesN = 0;

return;

}

/* most of the following logic is used for transformation into form A

as well as transformation into form 0, although form 0 could be

computed more efficiently. However, we decide to chose simpler

code instead of faster execution here.

*/

`prepare block information and correct boss pointers;

if (replication_type == _A_to_0)

`collect run time information;

`compute block sizes;

`compute block layout;

`allocate and copy nodes;

`prepare block information and correct boss pointers:

/* computes 'size', work, interface_D.conN, _i_conN, con_D.meI */

int i;

42.2 REPLICATE network 205

plural _type_ *old_nd = _sgl(*old_nodes);

old_group_D->boss = old_net_D; /* because old_net is a copy! */

for (i = 0; i < _sgl(old_group_D->localsizeN); i++, old_nd++) {

old_nd->_me_D.boss = old_group_D; /* because old_net is a copy! */

if (old_nd->_me_D.exists)

`handle this node layer;

}

old_nd = _sgl(*old_nodes);

`handle this node layer:

if (is_replicate0) {

`compute wpc sum and conN and conI;

if (old_nd->_me_D.exists == _existing) {

/* send conN values to _i_conN (which is initialized with 0): */

#define _I(_t,_o,_i) router[old_nd->_me_D.meI]._cat2(_i,_conN) =\

old_nd->_cat2(_i,_D).conN;

INTERFACES

#undef _I

}

#if 0

if (replication_type == _A_to_0) {

printf ("in_wpc: %d/%d out_wpc: %d/%d work_per_con: %d,%d\n",

(int)in_wpc[0]/_normalizer, (int)in_wpc[1]/_normalizer,

(int)out_wpc[0]/_normalizer, (int)out_wpc[1]/_normalizer,

(int)proc[0].old_nd->in_D.work_per_con/_normalizer,

(int)proc[0].old_nd->out_D.work_per_con/_normalizer);

}

if (replication_type == _0_to_A) {

printf ("conN:");

all {if (iproc < old_nodesN)

p_printf (" %2d/%2d", in_conN, out_conN);}

printf ("\n");

}

#endif

}

`compute wpc sum and conN and conI:

/* we must compute conN even when coming from formA, because it

is too expensive to put the conN values into formA data upon creation

*/

#define _I(_t,_o,_i) update_conI_conN((plural char*)_sgl(old_nd->_i),\

sizeof(_t), offsetof(_t,_me_D), &old_nd->_cat2(_i,_D));

INTERFACES

#undef _I

if (replication_type == _A_to_0) {

#if _codetype_ == 1

#define _I(_t,_o,_i) _cat2(_i,_wpc)[i] =\

wpc_sum (&old_nd->_cat2(_i,_D)) / layernodesN[i];

INTERFACES

#undef _I

#else

;

#endif

}

206 42 REPLICATE TEMPLATES

`collect run time information:

/* executed for _A_to_0 only.

1. collect better2virt evidence and adjust work_per_con.

in codetype=1, formA there are always exactly two virt layers

when new nodes exist and one virt layer otherwise

We collect one evidence point in favor of separating new and

old nodes for each time we find an interface whose wpc of new

nodes differs by more than 20% from that of the old nodes;

one point against if the difference is smaller.

2. _i_wpc[0] := weighted_average (_i_wpc[0...1]);

(to be written into new nodes' interface_Ds later)

*/

#if _codetype_ == 1

_work q;

#define _I(_t,_o,_i) q = (100*_cat2(_i,_wpc)[0]) / (_cat2(_i,_wpc)[1]+1);\

group_D->better2virt = old_group_D->better2virt + (q>120||q<80)?1:-1;\

_cat2(_i,_wpc)[0] = (layernodesN[0]*_cat2(_i,_wpc)[0] + \

layernodesN[1]*_cat2(_i,_wpc)[1])/(layernodesN[0]+layernodesN[1]);

if (newnodesN > 0) {

INTERFACES

}

#undef _I

#else

;

#endif

`compute block sizes:

if (net_D->formA) {

plural _work work = 0;

plural _type_ *old_nd = _sgl(*old_nodes);

`compute work for each node;

size = compute_block_sizesA (work, new_nodesN, `layer2 nodesN,

procN>>_sgl(net_D->lrepN));

if (_tracelevel >= 1) {

printf ("blocksizeA:");

if (iproc < old_nodesN)

p_printf (" %d", (plural int)size);

printf ("\n");

}

lxblocksize = proc[0].(old_nd->_me_D.lxN);

lyblocksize = proc[0].(old_nd->_me_D.lyN);

}

else {

compute_block_size0 (net_D, group_D, &lxblocksize, &lyblocksize);

size = iproc < group_D->nodesN ? _S(lxblocksize+lyblocksize) : 0;

}

`layer2 nodesN:

!_sgl(net_D->formA) ||

(_codetype_ == 2 && _sgl(old_group_D->better2virt) <= 0) ? 0 : newnodesN

`compute work for each node:

/* executed for _0_to_A only */

#if _noBalance_

/* all nodes pretend to have the same work: */

42.2 REPLICATE network 207

work = 100000;

#elif _dumbBalance_

/* work depends only on number of connections: */

#define _I(_t,_o,_i) + _cat2(_i,_conN)

work = 0 _INTERFACES_;

#undef _I

#else

/* the REAL work computation: */

#define _I(_t,_o,_i) + (proc[0].old_nd->_cat2(_i,_D).work_per_con *\

_cat2(_i,_conN))

work = 0 _INTERFACES_;

#undef _I

#endif

`compute block layout:

/* Precondition: 'size' reflects the block size of each node */

compute_block_layout (size, new_nodesN, `layer2 nodesN,

_sgl(net_D->lxN), _sgl(net_D->lyN), _log2 (reduceMax16u(size)),

&x0, &y0, &lxN, &lyN, &layer, &layersN);

group_D->localsizeN = layersN;

`allocate and copy nodes:

plural _type_ *nd, *old_nd;

/* now either clear or allocate new nodes: */

if (new_nodesN < old_nodesN) /* called from `REPLICATE node' context */

p_memset (_sgl(*nodes), (plural int)0, sizeof(_type_));

else

/* _getmem() initializes .exists to false ! */

nodes = (plural _type_ plural)_getmem (sizeof(_type_) * layersN, true);

old_nd = _sgl(*old_nodes);

nd = _sgl(*nodes);

`init _me_D of new _existing nodes;

if (_sgl(!net_D->formA)) /* if new net is in form 0 */

`send _existing old node to each new node and allocate connection arrays;

else

`fetch _existing old node to each new node and allocate connection arrays;

`set work_per_con values;

`send old connections to new connections;

`init _me_D of new _existing nodes:

/* first init ALL nodes (existing, shadow, nonexisting) with

neutral values, so that _sgl will never yield garbage.

*/

plural _node_D nd_D;

int i;

nd_D.exists = _nonexisting;

nd_D.boss = group_D;

for (i = 0; i < layersN; i++, nd++)

nd->_me_D = nd_D;

nd = _sgl(*nodes);

if (iproc < group_D->nodesN) {

nd_D.exists = _existing;

nd_D.meI = iproc;

nd_D.lxN = lxN;

nd_D.lyN = lyN;

208 42 REPLICATE TEMPLATES

sp_rsend (x0 + (y0 << lxprocN), (plural char*)&nd_D,

((plural char* plural)&nd[layer]) + offsetof (_type_, _me_D),

sizeof (_node_D));

}

`send _existing old node to each new node and allocate connection arrays:

plural _realness ex;

int i;

for (i = 0; i < _sgl(old_group_D->localsizeN); i++, old_nd++) {

ex = old_nd->_me_D.exists;

if (ex == _existing) {

plural _sint xI, yI, layerI;

plural _bint lxblocksN = lxprocN - lxblocksize,

lyblocksN = lyprocN - lyblocksize;

_lfold3 (old_nd->_me_D.meI, lxblocksN, lyblocksN, xI, yI, layerI);

if (is_replicate0)

`send node;

}

}

old_nd = _sgl(*old_nodes);

for (i = 0; i < layersN; i++, nd++) {

if (willbe_replicate0)

`distribute _existing new node to rest of node block;

`allocate connection arrays and set interfaces boss pointer;

}

nd = _sgl(*nodes);

`send node:

plural int PE = (xI<<lxblocksize) + (yI<<(lyblocksize+lxprocN));

sp_rsend (PE, (plural char*)old_nd, (plural char* plural)&nd[layerI],

sizeof (_cat2(_type_,_0)));

`distribute _existing new node to rest of node block:

ex = nd->_me_D.exists;

_assert (nd->_me_D.exists != _shadow);

if (ex == _existing)

nd->_me_D.exists = _shadow; /* change temporarily for copy */

ss_xsendc (nd->_me_D.lyN, nd->_me_D.lxN, nd, sizeof (_type_),

ex == _existing); /* don't need interface data but _me_D !!! */

if (ex == _existing)

nd->_me_D.exists = _existing;

`allocate connection arrays and set interfaces boss pointer:

#define _I(_t,_o,_i) if (iproc < new_nodesN && layer == i) \

_cat2(_i,_con_ls) = reduceMax16u ((_cat2(_i,_conN)+_M(lxN+lyN)) >>\

(lxN+lyN));\

nd->_i = (plural _t* plural)_getmem(_cat2(_i,_con_ls)*sizeof(_t), true);\

nd->_cat2(_i,_D).con_ls = _cat2(_i,_con_ls);\

nd->_cat2(_i,_D).conN = invalid_conN;\

nd->_cat2(_i,_D).boss = &nd->_me_D;

INTERFACES

#undef _I

`fetch _existing old node to each new node and allocate connection arrays:

plural _realness ex;

42.2 REPLICATE network 209

int i;

for (i = 0; i < layersN; i++, nd++) {

ex = nd->_me_D.exists;

if (ex == _existing) {

plural _sint xI, yI, layerI;

plural _bint lxblocksN = lxprocN - lxblocksize,

lyblocksN = lyprocN - lyblocksize;

_lfold3 (nd->_me_D.meI, lxblocksN, lyblocksN, xI, yI, layerI);

if (willbe_replicate0)

`fetch or init the node;

}

if (willbe_replicate0)

`distribute _existing new node to rest of node block;

`allocate connection arrays and set interfaces boss pointer;

}

nd = _sgl(*nodes);

`fetch or init the node:

plural int PE = (xI<<lxblocksize) + (yI<<(lyblocksize+lxprocN));

if (nd->_me_D.meI < existing_nodesN)

ps_rfetch (PE, (plural char* plural)&old_nd[layerI],

(plural char*)nd, sizeof (_cat2(_type_,_0)));

else

cat2(INIT,_type_) (nd);

`set work_per_con values:

int i;

#define _I(_t,_o,_i) nd->_cat2(_i,_D).work_per_con =\

_cat2(_i,_wpc)[0] + proc[0].old_nd->_cat2(_i,_D).work_per_con;

for (i = 0; i < _sgl(group_D->localsizeN); i++, nd++) {

INTERFACES

}

#undef _I

nd = _sgl(*nodes);

`send old connections to new connections:

/* in order to be able to send the connections to their correct formA

place, we use the con_D.meI at each connection and compute its new

place using the global x0, y0, lxN, lyN, and layer.

*/

int i;

#define _I(_t,_o,_i) copy_connections((plural char*)old_nd,\

(plural char*)nd, sizeof(_type_), offsetof(_type_,_me_D),\

offsetof(_type_,_i), offsetof(_type_,_cat2(_i,_D)), sizeof(_t),\

offsetof(_t,_me_D), offsetof(_t,_oe), x0, y0, lxN, lyN, layer, \

is_replicate0);

for (i = 0; i < _sgl(old_group_D->localsizeN); i++, old_nd++) {

INTERFACES

}

#undef _I

old_nd = _sgl(*old_nodes);

}

g

This macro is invoked in de�nition 245.

210 42 REPLICATE TEMPLATES

The task to be solved by each reconnect nodetype procedure is to execute the second phase of the
remote connection pointer handling as described in section 30.4.2. Most of the parameters are not used
in this procedure; they are present to maintain a common interface to all of the layout , reconnect

and release procedures.

The procedure can be used in three di�erent contexts just like layout above. See there for a descrip-
tion. In the EXTEND and REPLICATE node contexts, reconnecting is more di�cult because intra-group
connections have to be treated di�erently.

Reconnect Nodes[247] �247

f

plural void _cat2(reconnect__,_type_) (plural _network_D *old_net_D,

plural _network_D *net_D,

plural _type_* plural *old_nodes, plural _node_group_D *old_group_D,

plural _type_* plural *nodes, plural _node_group_D *group_D)

{

int i;

plural _type_ *nd = _sgl(*nodes);

_TRACE (2, ("reconnect__ (%x,%x)\n", (int)old_net_D, (int)_sgl(*old_nodes)));

if (net_D->meI != 0)

return; /* reconnect only on replicate 0 */

if (old_group_D->nodesN == group_D->nodesN)

`reconnect accross multiple groups; /* for REPLICATE network */

else

`reconnect in one group; /* for EXTEND and REPLICATE node */

`reconnect accross multiple groups:

for (i = 0; i < _sgl(group_D->localsizeN); i++, nd++) {

if (nd->_me_D.exists) {

#define _I(_t,_o,_i) reconnect_connections ((plural char*)_sgl(nd->_i),\

sizeof(_t), _sgl(nd->_cat2(_i,_D).con_ls),\

offsetof(_t,_oe), offsetof (_t, _me_D), offsetof(_o,_oe));

INTERFACES

#undef _I

}

}

`reconnect in one group:

_assert ((net_D->formA | old_net_D->formA) == 0); /* both in form0 */

_assert (group_D->localsizeN == 1); /* no virtualization in form0 */

if (nd->_me_D.exists) {

plural _type_ *old_nd = _sgl(*old_nodes);

#define _I(_t,_o,_i) reconnect1_connections (\

(plural char*)_sgl(old_nd->_i), (plural char*)_sgl(nd->_i),\

sizeof(_t),\

_sgl(old_nd->_cat2(_i,_D).con_ls),_sgl(nd->_cat2(_i,_D).con_ls),\

offsetof(_t,_oe), offsetof (_t, _me_D), offsetof(_o,_oe));

INTERFACES

#undef _I

}

}

g

This macro is invoked in de�nition 245.

The task to be solved by each release nodetype procedure is to release the memory allocated for the
old node group and its connections. Again, most parameters are not used by this procedure.

42.2 REPLICATE network 211

Release Node Memory [248] � 248

f

plural void _cat2(release__,_type_) (plural _network_D *old_net_D,

plural _network_D *net_D,

plural _type_* plural *old_nodes, plural _node_group_D *old_group_D,

plural _type_* plural *nodes, plural _node_group_D *group_D)

{

int i;

plural _type_ *old_nd = _sgl(*old_nodes);

_TRACE (2, ("release__ (%x,%x)\n", (int)old_net_D, (int)_sgl(*old_nodes)));

for (i = 0; i < old_group_D->localsizeN; i++, old_nd++) {

#define _I(_t,_o,_i) _freemem (_sgl(old_nd->_i));

INTERFACES

#undef _I

}

_freemem (_sgl(*old_nodes));

*old_nodes = 0;

}

g

This macro is invoked in de�nition 245.

212 43 GENERAL CODE GENERATION DEFINITIONS

PART IV: Code Generation B | Now We Really Do It

This part describes the actual code generation. It is based on the strategies described above and uses
the templates de�ned in part III and the run time system de�ned in part V.

43 General code generation de�nitions

43.1 Attributes and properties

Code Generation Attributes[249] �249

f

ATTR code, seqcode, parcode,

datacode, moredatacode, descriptorcode,

initcode, printcode, proccode, moreproccode, rticode,

fetchcode, sendcode,

smallcode, largecode, seqslicecode, parslicecode,

paramlist, arglist,

Ptg : PTGNode SYNT;

ATTR InhPtg : PTGNode INH;

ATTR Interfaces,

Groups : PTGNode SYNT;

ATTR Size,

Alignment : int SYNT;

ATTR InhAlignment

: int INH;

CHAIN Offset : int;

g

This macro is invoked in de�nition 334.

Code Generation Properties[250] �250

f

Size,

Alignment,

Offset : int;

g

This macro is invoked in de�nition 337.

The code attribute carries the unique total code product of symbols that have one. At many symbols
however, several variants of code are needed (to be used in di�erent contexts). In particular, most symbols
have one form of code for a parallel context (attribute parcode) and a second one for a sequential context
(attribute seqcode).

The code generation for data structures generates several code parts in parallel that are combined in
multiple ways to generate to overall code: Declarations for \data elements" are generated in datacode,
those for connection interface or node group element data are generated in moredatacode. The descriptors
for the latter are generated in descriptorcode. Initialization code for the data elements is generated
in the initcode attribute to be used for the generation of an initialization procedure for the type. The
printcode attribute collects code generated for output procedures for the various types; these output
procedures print the address, the data, and the descriptors of an object to standard output | procedures
for the basic types are provided by the run time system. Note that calling these output procedures makes
sense only with exactly one PE active.

The proccode attribute is used to collect the code for the several object subroutines in a type.
moreproccode contains code generated \from nothing" that is needed to implement default cases.
rticode contains code needed for the generation and collection of run-time information. fetchcode

43.2 Properties of prede�ned types 213

and sendcode contain the code for fetching and sending of the appropriate parts of a remote connection,
respectively, and are used only in connection procedure generation.

The smallcode and largecode are used for reduction, winner-takes-all, and object procedures and for
selection and subscription objects. For reduction and winner-takes-all functions, smallcode contains the
actual reduction or WTA operator function while largecode contains the corresponding a REDUCTION

or a WTA procedure(s) that actually carry out the respective operation over a set of values. For object
procedures, smallcode contains the procedure itself and largecode contains the virtualized version
(which calls the other). For selections, smallcode is the element selected and largecode is the smallcode
of the object selected from. Both is to be used in the case of ParVariableSelK only. For subscriptions
(with and without expression), smallcode is the object that is subscribed. This is to be used for
ParVariableK objects only.

seqslicecode and parslicecode are used for objects to return the slice of a subscription on a named
network object or a node group or node array object. This code is needed to produce the code of an
object procedure call and the code for a CONNECT statement. The code always represents an object of
type Interval.

paramlist and arglist are used to pass the formal parameter list and a corresponding actual parameter
list (argument list) from a subroutine description to the ObjProcedureDef to be used for the generation
of the virtualized a version of the procedure.

Ptg and InhPtg are used to pass the PTG representations of identi�ers (type identi�ers in the latter
case).

The attribute Interfaces stores a piece of program text that represents the list of connection interfaces
of a node type. This list is represented as a number of entries of the form I(t,o,n) separated by
spaces. n is the name of a connection interface, t is its type and o is the type of the opposite end of the
connections. Groups is a similar list representing the node groups and node arrays of a network type in
the form G(bt,n) where bt is the basetype(!) of the node group or node array.

The attribute and property Size stores for every basic, record, non-node array, and connection type t the
value of sizeof(t) of the �nal implementation. The attribute and property Alignment stores for every
basic, record, non-node array, and connection type its alignment requirements a. It means that objects
of this type have to be stored at addresses divisible by a. The attribute is also used on the elements of
record and connection types to compute the overall alignment. The chain Offset is used to compute the
addresses of elements of record and connection types relative to the start of the object. The corresponding
property stores this o�set. Size, Alignment, and Offset are needed to compute optimal communication
operations for fetching and sending the may-be-read and may-be-written sets of connection elements for
remote connection operations. The alignment of a record is the maximumalignment of any of its elements.
The actual alignment operation is computed as follows: The aligned address of an object with alignment
align that has the proposed address addr is computed by align(align,addr) as follows (alignments
are always powers of two!):
alignment computation[251] �

251
f

#define aligned(align,addr) ((addr&~(align-1))+((addr&(align-1))?align:0))

g

This macro is invoked in de�nition 335.

43.2 Properties of prede�ned types

For the prede�ned types, the Size and Alignment properties must be set by the compiler before the code
generation begins. This is done in a way similar to that used to de�ne the prede�ned objects in section
16.3.

Set Properties of Prede�ned Types[252] � 252

f

214 43 GENERAL CODE GENERATION DEFINITIONS

extern void SetPredefTypeSizeAlign ()

{

SetSize (BoolKey, 1, 1);

SetAlignment (BoolKey, 1, 1);

SetSize (IntKey, 4, 4);

SetAlignment (IntKey, 4, 4);

SetSize (Int1Key, 1, 1);

SetAlignment (Int1Key, 1, 1);

SetSize (Int2Key, 2, 2);

SetAlignment (Int2Key, 2, 2);

SetSize (RealKey, 4, 4);

SetAlignment (RealKey, 4, 4);

SetSize (StringKey, 4, 4);

SetAlignment (StringKey, 4, 4);

SetSize (IntervalKey, 8, 8);

SetAlignment (IntervalKey, 4, 4);

SetSize (Interval1Key, 2, 2);

SetAlignment (Interval1Key, 1, 1);

SetSize (Interval2Key, 4, 4);

SetAlignment (Interval2Key, 2, 2);

SetSize (RealervalKey, 8, 8);

SetAlignment (RealervalKey, 4, 4);

}

g

This macro is invoked in de�nition 339.

43.3 Auxiliary PTG de�nitions

codehelp.ptg[253] �253

f

Seq: $ $

Seq3: $ $ $

Seq4: $ $ $ $

Seq5: $ $ $ $ $

Seq6: $ $ $ $ $ $

List: $ ", " $

Comment:" /* " $ " */"

Str: string []

Int: int []

g

This macro is attached to an output �le.

43.4 General traversal order

Some of the CuPit code generation (exactly: PTG tree generation) is done in a text-order traversal of the
syntax tree. We thus de�ne a CHAIN coded that indicates how far we have gotten in that tree traversal.

Coding Order[254] �254

f

SYMBOL CupitProgram: allknown : VOID INH;

SYMBOL CupitProgram: _allknown : VOID SYNT;

CHAIN coded: VOID;

43.5 Overall program structure 215

SYMBOL CupitProgram COMPUTE

CHAINSTART HEAD.coded = THIS.allknown;

INH.allknown = THIS._allknown;

SYNT._allknown =

ORDER (SetPredefTypeSizeAlign (),

Messag (NOTE, "coding starts")) DEPENDS_ON TAIL.known;

Messag (NOTE, "everything is 'coded' now ") DEPENDS_ON TAIL.coded;

END;

g

This macro is invoked in de�nition 334.

43.5 Overall program structure

Due to the de�ned-before-applied rule in the CuPit lanugage de�nition, the individual CupitParts can
be implemented in the same order as they appear in the CuPit program. The code attribute is used in
each of the parts to deliver the union of all code pieces generated from that part.

Cupit Program PTG[255] � 255

f

Program:

"/* MPL implementation of CuPit program.\n"

" Generated by cupit.exe (code2.fw $Revision: 1.15 $)\n"

"*/\n\n"

"#include \"rts.h\"\n"

"#define _dumbBalance_ " $5 "\n"

"#define _noBalance_ " $6 "\n"

"#define _wrongNodeVirt_ " $7 "\n"

"#define _codetype_ " $4 "\n\n"

"/************************** start of body **************************/\n\n"

"visible int _tracelevel = 0; /* tracing-output controller */\n"

"visible int _randominit = 0; /* random number generator init value */\n"

"visible int _argsN; /* number of float command line arguments */\n"

"visible float _args[20]; /* the numeric command line arguments */\n"

"visible int _namesN; /* number of string command line arguments */\n"

"visible int _nameoffsets[10]; /* string command line arg position */\n"

"visible char _names[210]; /* the string command line arguments */\n"

"visible void program (); /* main procedure, visible for driver */\n"

"visible void INIT (); /* global INIT procedure, dito */\n"

"void dump (String s); /* debugging aid */\n\n"

"visible void print_rusage ()\n"

"{\n"

" struct mpRUsage_s ru;\n"

" mpGetRUsage (RUSAGE_SELF, &ru);\n"

" fprintf (stderr, \"dputime: %ds imempgflts: %d vcsw: %d "

"ivcsw: %d\\n\",\n"

" ru.dpu.dr_dputime.tv_sec, ru.dpu.dr_imempgflt,\n"

" ru.dpu.dr_vcsw, ru.dpu.dr_vcsw);\n"

"}\n"

$1/*I/O procedures (this is wrong place if not for builtin type!)*/

$2/*CupitParts*/

$3/*INIT*/

"\n/* end of compiler-generated MPL CuPit code */\n"

GlobInit:

"\nvoid INIT ()\n"

"{\n" [IndentIncr]

216 43 GENERAL CODE GENERATION DEFINITIONS

" dpuTimerStart ();"

" _INITRANDOM (_randominit);"

" _initgetmem (0);"

" dpuTimerTicks2 ();" /* because something goes wrong(?) on first call */

$ [IndentDecr]

"\n}\n"

NetInitCall: [IndentNewLine] "INIT_" $1 " (&" $2 ");"

g

This macro is de�ned in de�nitions 255 and 258.

This macro is invoked in de�nition 336.

The code generated from a CuPit program consists of a �xed prologue, then the input and output
assignment procedures for the types that need them, then the code generated from the program text itself,
and last the global procedure that initializes all network variables,. The networks-initialization code is
generated by a procedure globINITgen and the code for the input and output assignment procedures is
generated by a procedure IOprocgen. Both will be de�ned below.

Overall Program Generation[256] �256

f

RULE rCupitProgram :

CupitProgram ::= CupitParts

COMPUTE

.initcode = PTGGlobInit (globINITgen (CONSTITUENTS InitDataId.NetVar

WITH (DefTblKeySet, DSunite, DSmk, DSempty)));

.proccode =

IOprocgen (CONSTITUENTS InputAssignment.Type

WITH (DefTblKeySet, DSunite, DSmk, DSempty),

CONSTITUENTS OutputAssignment.Type

WITH (DefTblKeySet, DSunite, DSmk, DSempty));

CupitProgram.code =

PTGOut (PTGProgram (.proccode, CupitParts.code, .initcode,

PTGInt (GetValue (codetype, 0)), PTGInt (dumbBalance),

PTGInt (noBalance), PTGInt (wrongNodeVirt)));

END;

RULE rCupitParts0:

CupitParts ::=

COMPUTE

CupitParts.code = PTGNULL;

END;

RULE rCupitParts:

CupitParts ::= CupitParts CupitPart ';'

COMPUTE

CupitParts[1].code =

PTGSeq3 (CupitParts[2].code, PTGStr ("\n"),

CupitPart CONSTITUENT (TypeDef.code, DataObjectDef.code,

ProcedureDef.code, FunctionDef.code,

ReductionFunctionDef.code,

WtaFunctionDef.code)

SHIELD (TypeDef, DataObjectDef, ProcedureDef,

FunctionDef, ReductionFunctionDef,

WtaFunctionDef));

END;

g

This macro is invoked in de�nition 334.

43.5 Overall program structure 217

To produce code for the input and output procedures, we take the set of types for which an input assign-
ment (or output assignment, respectively) is found in the program and iterate it. The same technique is
used to produce the initialization calls for all network variables in the program. The following module
implements this functionality:

divgen.h[257] � 257

f

#include "deftblkeyset.h"

#include "ptg_gen.h"

PTGNode IOprocgen (DefTblKeySet in, DefTblKeySet out);

PTGNode globINITgen (DefTblKeySet netvars);

g

This macro is attached to an output �le.

The code actually generated to produce an input or output procedure is just a template instantiation.
Here is the PTG procedure PTGIOProc that describes how this template instantiation is created:

Cupit Program PTG[258] � 258

f

IOProc: "\n#define _type_ " $1

"\n#include \"" $2 ".tpl\"\n"

g

This macro is de�ned in de�nitions 255 and 258.

This macro is invoked in de�nition 336.

Given this, the procedure IOprocgen is a pretty simple iteration over the type lists:

divgen.c[259] � 259

f

#include "divgen.h"

#include "pdl_gen.h"

static PTGNode IOprocgen1 (DefTblKeySet s, PTGNode input_or_output)

{

PTGNode result = PTGNULL;

DefTableKey key;

int sym;

DSiterate (s);

key = DSnext ();

while (key != NoKey) {

sym = GetSym (key, NoSym);

_assert (sym != NoSym);

result = PTGSeq (result,

PTGIOProc (PTGStr (SymString (sym)), input_or_output));

key = DSnext ();

}

return (result);

}

PTGNode IOprocgen (DefTblKeySet in, DefTblKeySet out)

{

return (PTGSeq (IOprocgen1 (in, PTGStr ("Input")),

IOprocgen1 (out, PTGStr ("Output"))));

}

218 44 TYPE DEFINITIONS

PTGNode globINITgen (DefTblKeySet netvars)

{

/* Attention: netvars contains NoKey as an element! */

PTGNode result = PTGNULL;

DefTableKey key;

int namesym, typesym;

/* Generate the calls to the INITs for the individual network variables: */

DSiterate (netvars);

key = DSnext ();

if (key == NoKey)

key = DSnext (); /* skip NoKey element if this is not the end of the set */

while (key != NoKey) {

namesym = GetSym (key, NoSym);

typesym = GetSym (GetType (key, NoKey), NoSym);

_assert (namesym != NoSym);

_assert (typesym != NoSym);

result = PTGSeq (result,

PTGNetInitCall (PTGStr (SymString (typesym)),

PTGStr (SymString (namesym))));

key = DSnext ();

if (key == NoKey)

key = DSnext (); /* skip NoKey element if this is not the end of the set */

}

return (result);

}

g

This macro is attached to an output �le.

44 Type de�nitions

From a type de�nition a whole lot of code sections may be generated: First of all the data type declaration
itself (for any type), then the bare type without descriptors (for connection, node, and network types),
then an initialization procedure (for record, connection, node, array, group, and network types), and the
object procedures and object functions, if any, in a just-for-one-plural and in a for-all-local-plurals (i.e.
virtualized) version. A constructor should also be generated, but this is not implemented.

Type De�nition PTG[260] �260

f

TypeDef: "\ntypedef " $2 $1 ";\n"

TypeDefHead: [IndentNewLine] "/************************* " $1

" *************************/" [IndentNewLine]

Symbolic Type PTG[263]
Record Type PTG[265]
Node Type PTG[267]
Connection Type PTG[269]
Array Type PTG[271]
Group Type PTG[273]
Network Type PTG[275]
g

This macro is invoked in de�nition 336.

Type De�nition Generation[261] �261

f

44.1 Symbolic types 219

RULE rTypeDef :

TypeDef ::= 'TYPE' NewTypeId 'IS' TypeDefBody 'END' OptTYPE

COMPUTE

TypeDefBody.InhPtg = NewTypeId.Ptg;

TypeDef.code = PTGSeq (PTGTypeDefHead (NewTypeId.Ptg),

Type Def Body Code[262]);
END;

Symbolic Type Generation[264]
Record Type Generation[266]
Node Type Generation[268]
Connection Type Generation[270]
Array Type Generation[272]
Group Type Generation[274]
Network Type Generation[276]
g

This macro is invoked in de�nition 334.

Type Def Body Code[262] � 262

fTypeDefBody CONSTITUENT (SymbolicTypeDef.code, RecordTypeDef.code,

NodeTypeDef.code, ConnectionTypeDef.code,

ArrayTypeDef.code, GroupTypeDef.code, NetworkTypeDef.code)

g

This macro is invoked in de�nition 261.

44.1 Symbolic types

Symbolic types are coded straightforwardly as enum types.

Symbolic Type PTG[263] � 263

f

SymbolicTypeDef: "enum { " [IndentIncr] [IndentNewLine]

$ [IndentDecr] [IndentNewLine] "} "

g

This macro is invoked in de�nition 260.

Symbolic Type Generation[264] � 264

f

RULE rSymbolicTypeDef :

SymbolicTypeDef ::= 'SYMBOLIC' NewEnumIdList OptSEMICOLON

COMPUTE

SymbolicTypeDef.code =

PTGTypeDef (INCLUDING TypeDefBody.InhPtg,

PTGSymbolicTypeDef (NewEnumIdList.code));

SymbolicTypeDef.coded = ORDER (

SetSize (.Type, 4, 0),

SetAlignment (.Type, 4, 0));

END;

RULE rNewEnumIdList1 :

NewEnumIdList ::= NewEnumId

COMPUTE

NewEnumIdList.code = NewEnumId.Ptg;

END;

220 44 TYPE DEFINITIONS

RULE rNewEnumIdList :

NewEnumIdList ::= NewEnumIdList ',' NewEnumId

COMPUTE

NewEnumIdList[1].code = PTGList (NewEnumIdList[2].code, NewEnumId.Ptg);

END;

g

This macro is invoked in de�nition 261.

44.2 Record types

Some of the rules given here for record types are also used by connection, node, and network types. Note
that this implies that the rules must make special considerations for node groups, because these need
additional descriptors (as opposed to ordinary data elements which do not).

Record Type PTG[265] �265

f

RecordTypeDef: "struct { /* RECORD */ " [IndentIncr]

$ [IndentDecr] [IndentNewLine] "} "

RecordTypeInit: "\nplural void INIT_" $1 " (plural " $1 "* plural ME)"

"\n{" [IndentIncr] $2 [IndentDecr] "\n}\n"

RecordTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* plural ME)"

"\n{" [IndentIncr]

[IndentNewLine] "printf (\"%s@%x=(\", name, (int)_sgl(ME));"

$2

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

Print: [IndentNewLine] "p_pr" $1 "(\"" $2 "\", &ME->" $2 ");"

PrintGroup: [IndentNewLine] "p_pr" $1 "(\"" $2 "\", &ME->" $2 ", "

"&ME->" $2 "_D);"

DataElemDef: [IndentNewLine] $1 " " $2 ";"

InitElem: [IndentNewLine] "ME->" $1 " = " $2 ";"

InitRecordElem: [IndentNewLine] "INIT_" $2 " (&ME->" $1 ");"

InitNodeArrayElem: [IndentNewLine] "INIT_" $2 " (&ME->" $1 ", &ME->" $1 "_D, "

"&ME->_me_D, " $3 ");"

NodeGroupDescr: [IndentNewLine] "_node_group_D " $1 "_D;"

GroupAbbr: "_G(" $1 "," $2 ") "

g

This macro is de�ned in de�nitions 265.

This macro is invoked in de�nition 260.

The code generated from a CuPit record type de�nition consists of four parts: the datacode is what will
appear inside the type declaration itself, the initcode is the body of the initialization procedure for the
type, the printcode is the kernel of the print procedure for the type, and the proccode consists of the
complete code for the object subroutines of the record type.

Record Type Generation[266] �266

f

RULE rRecordTypeDef :

RecordTypeDef ::= 'RECORD' RecordElemDefList

COMPUTE

.datacode = CONSTITUENTS RecordDataElemDef.datacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.initcode = CONSTITUENTS RecordDataElemDef.initcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.printcode = CONSTITUENTS RecordDataElemDef.printcode

44.2 Record types 221

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.proccode = CONSTITUENTS (ObjProcedureDef.code, ObjFunctionDef.code)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

RecordTypeDef.code =

PTGSeq4 (PTGTypeDef (INCLUDING TypeDefBody.InhPtg,

PTGRecordTypeDef (.datacode)),

PTGRecordTypeInit (INCLUDING TypeDefBody.InhPtg, .initcode),

IF (ProducePrintcode,

PTGRecordTypePrint (INCLUDING TypeDefBody.InhPtg, .printcode),

PTGNULL),

.proccode);

RecordTypeDef.coded = ORDER (

SetSize (.Type, RecordElemDefList.Offset, 0),

SetAlignment (.Type, RecordElemDefList.Alignment, 1));

CHAINSTART RecordElemDefList.Offset = 0;

END;

RULE rRecordElemDefList1 :

RecordElemDefList ::= RecordElemDef ';'

COMPUTE

RecordElemDefList.Alignment = RecordElemDef.Alignment;

END;

RULE rRecordElemDefList :

RecordElemDefList ::= RecordElemDefList RecordElemDef ';'

COMPUTE

RecordElemDefList[1].Alignment =

IF (GT (RecordElemDefList[2].Alignment, RecordElemDef.Alignment),

RecordElemDefList[2].Alignment, RecordElemDef.Alignment);

END;

SYMBOL RecordElemDef COMPUTE

THIS.Alignment = 1; /* for MERGE, FUNCTION, and PROCEDURE defs */

END;

RULE rRecordElemDef :

RecordElemDef ::= RecordDataElemDef

COMPUTE

RecordElemDef.Alignment = RecordDataElemDef.Alignment;

END;

RULE rRecordDataElemDef :

RecordDataElemDef ::= TypeId InitElemIdList

COMPUTE

RecordDataElemDef.datacode =

PTGDataElemDef (TypeId.Ptg, InitElemIdList.datacode);

RecordDataElemDef.initcode = InitElemIdList.initcode;

RecordDataElemDef.printcode = InitElemIdList.printcode;

RecordDataElemDef.Alignment =

GetAlignment (TypeId.Key, 1) DEPENDS_ON RecordDataElemDef.coded;

InitElemIdList.InhAlignment = RecordDataElemDef.Alignment;

END;

RULE rInitElemIdList :

222 44 TYPE DEFINITIONS

InitElemIdList ::= InitElemIdList ',' InitElemId

COMPUTE

TRANSFER InhAlignment;

InitElemIdList[1].datacode =

PTGList (InitElemIdList[2].datacode, InitElemId.datacode);

InitElemIdList[1].descriptorcode =

IF (EQ (InitElemId.descriptorcode, PTGNULL),

PTGNULL,

PTGSeq (InitElemIdList[2].descriptorcode, InitElemId.descriptorcode));

InitElemIdList[1].initcode =

PTGSeq (InitElemIdList[2].initcode, InitElemId.initcode);

InitElemIdList[1].printcode =

PTGSeq (InitElemIdList[2].printcode, InitElemId.printcode);

END;

RULE rInitElemIdList1 :

InitElemIdList ::= InitElemId

COMPUTE

TRANSFER datacode, descriptorcode, initcode, printcode, InhAlignment;

END;

RULE rInitElemId1 :

InitElemId ::= NewElemId ':=' Expr

COMPUTE

.Offset = aligned (InitElemId.InhAlignment, InitElemId.Offset);

InitElemId.datacode = NewElemId.Ptg;

InitElemId.descriptorcode = PTGNULL; /* initialized nodes not allowed */

InitElemId.initcode = PTGSeq (

IF (EQ (INCLUDING InitElemIdList.InhKind, RecordTypeK),

PTGSeq (

PTGInitRecordElem (NewElemId.Ptg, PTGKey (InitElemId.InhType)),

PTGStr ("/* ERROR: Explicit Record initialization not implemented */")),

PTGNULL),

PTGInitElem (NewElemId.Ptg, Expr.parcode));

InitElemId.printcode =

IF (OR (EQ (InitElemId.InhKind, NodeArrayTypeK),

EQ (InitElemId.InhKind, NodeGroupTypeK)),

PTGPrintGroup (PTGKey (InitElemId.InhType), NewElemId.Ptg),

PTGPrint (PTGKey (InitElemId.InhType), NewElemId.Ptg));

InitElemId.Groups =

IF (OR (EQ (InitElemId.InhKind, NodeArrayTypeK),

EQ (InitElemId.InhKind, NodeGroupTypeK)),

PTGGroupAbbr (PTGKey (InitElemId.InhType), NewElemId.Ptg),

PTGNULL);

NewElemId.coded = ORDER (

Messag2 (NOTE, "Offset(%s)=%d", SymString (NewElemId.Sym), .Offset),

SetOffset (NewElemId.Key, .Offset, 0));

InitElemId.Offset =

ADD (.Offset, GetSize (InitElemId.InhType, 0)) DEPENDS_ON InitElemId.coded;

END;

RULE rInitElemId0 :

InitElemId ::= NewElemId

COMPUTE

.Offset = aligned (InitElemId.InhAlignment, InitElemId.Offset);

44.3 Node types 223

InitElemId.datacode = NewElemId.Ptg;

InitElemId.descriptorcode =

IF (OR (EQ (InitElemId.InhKind, NodeArrayTypeK),

EQ (InitElemId.InhKind, NodeGroupTypeK)),

PTGNodeGroupDescr (NewElemId.Ptg), /* see below */

PTGNULL);

InitElemId.initcode =

IF (EQ (INCLUDING InitElemIdList.InhKind, RecordTypeK),

PTGInitRecordElem (NewElemId.Ptg, PTGKey (InitElemId.InhType)),

/* else */

IF (EQ (INCLUDING InitElemIdList.InhKind, NodeArrayTypeK),

PTGInitNodeArrayElem (

NewElemId.Ptg, PTGKey (InitElemId.InhType),

PTGInt (GetIval (GetVal (InitElemId.InhType, ErrorConst)))),

/* else */

IF (EQ (INCLUDING InitElemIdList.InhKind, NodeGroupTypeK),

PTGInitNodeArrayElem (NewElemId.Ptg, PTGKey (InitElemId.InhType),

PTGInt (0)),

/* else */

PTGNULL)));

InitElemId.printcode =

IF (OR (EQ (InitElemId.InhKind, NodeArrayTypeK),

EQ (InitElemId.InhKind, NodeGroupTypeK)),

PTGPrintGroup (PTGKey (InitElemId.InhType), NewElemId.Ptg),

PTGPrint (PTGKey (InitElemId.InhType), NewElemId.Ptg));

InitElemId.Groups =

IF (OR (EQ (InitElemId.InhKind, NodeArrayTypeK),

EQ (InitElemId.InhKind, NodeGroupTypeK)),

PTGGroupAbbr (PTGKey (GetType (InitElemId.InhType, NoKey)), NewElemId.Ptg),

PTGNULL);

NewElemId.coded = ORDER (

Messag2 (NOTE, "Offset(%s)=%d", SymString (NewElemId.Sym), .Offset),

SetOffset (NewElemId.Key, .Offset, 0));

InitElemId.Offset =

ADD (.Offset, GetSize (InitElemId.InhType, 0)) DEPENDS_ON InitElemId.coded;

END;

g

This macro is de�ned in de�nitions 266.

This macro is invoked in de�nition 261.

44.3 Node types

Node Type PTG[267] � 267

f

NodeTypeDef: "struct { /* NODE */ " [IndentIncr]

$1

[IndentNewLine] "/* Interfaces: */" $2

[IndentNewLine] "/* Descriptors: */" $3

[IndentNewLine] "_node_D _me_D;"

[IndentDecr] [IndentNewLine] "} "

NodeTypeInit: "\nplural void INIT_" $1 " (plural " $1 "* ME)"

"\n{" [IndentIncr] $2 [IndentDecr] "\n}\n"

NodeArrayTypeInit:

"\n#define _type_ " $1

"\n#include \"NodeArrayInit.tpl\"\n"

224 44 TYPE DEFINITIONS

NodeTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* plural ME)"

"\n{" [IndentIncr]

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)_sgl(ME));"

[IndentNewLine] "p_pr_node_D (\"_me_D\", &ME->_me_D);"

[IndentNewLine] "if (ME->_me_D.exists) {"

[IndentIncr] $2 [IndentDecr]

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

InterfaceDef: [IndentNewLine] "plural " $1 " " $2 ";"

remoteInterfaceDef: [IndentNewLine] "plural _remote_connection " $2 ";"

InterfaceDescr: [IndentNewLine] "_interface_D " $2 ";"

InitInterfaceElem: [IndentNewLine] "ME->" $1 "_D.work_per_con = 1;"

[IndentNewLine] "ME->" $1 "_D.boss = &ME->_me_D;"

PrintInterfaceElem:

[IndentNewLine] "p_pr" $1 "_interface (\"" $2 "\", ME->" $2 ", "

"&ME->" $2 "_D);"

InterfaceAbbr: "_I(" $1 ",_remote_connection," $2 ") "

remoteInterfaceAbbr: "_I(_remote_connection," $1 "," $2 ") "

MergeNodeTpl: "\n#define _type_ " $1

"\n#define _INTERFACES_ " $2

"\n#include \"MergeNode.tpl\"\n"

ReplicateNetNodeTpl: "\n#define _type_ " $1

"\n#define _INTERFACES_ " $2

"\n#include \"ReplicateNetNodes.tpl\"\n"

ExtendTpl: "\n#define _type_ " $1

"\n#define _INTERFACES_ " $2

"\n#include \"Extend.tpl\"\n"

ReplicateNodeTpl: "\n#define _type_ " $1

"\n#define _INTERFACES_ " $2

"\n#include \"ReplicateNode.tpl\"\n"

g

This macro is de�ned in de�nitions 267.

This macro is invoked in de�nition 260.

The code generated from a CuPit node type de�nition consists of six parts: The datacode (for data
elements), moredatacode, (for connection interfaces) and descriptorcode (for connection interface de-
scriptors) together form the variable parts of the body of the actual type declaration (the datacode

alone is used for the 0 version of the type); the initcode is the body of the initialization procedure
for the type; the printcode is the kernel of the print procedure for the type; the proccode consists of
the complete code for the object subroutines of the node type; �nally, moreproccode contains a dummy
a MERGE procedure de�nition if there is no MERGE procedure de�ned for this type. The data declarations
for the connection interfaces are separated in moredatacode in order to arrange the elements in a way
that makes the 0 type a pre�x of the whole type.

Node Type Generation[268] �268

f

RULE rNodeTypeDef :

NodeTypeDef ::= 'NODE' NodeElemDefList

COMPUTE

.datacode = CONSTITUENTS NodeDataElemDef.datacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.moredatacode = CONSTITUENTS NodeInterfaceElemDef.moredatacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.descriptorcode = CONSTITUENTS NodeInterfaceElemDef.descriptorcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.initcode = CONSTITUENTS (NodeDataElemDef.initcode,

44.3 Node types 225

NodeInterfaceElemDef.initcode)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.printcode = CONSTITUENTS (NodeDataElemDef.printcode,

NodeInterfaceElemDef.printcode)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.proccode = CONSTITUENTS (MergeProcDef.code, ObjProcedureDef.code,

ObjFunctionDef.code)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.moreproccode =

IF (EQ (GetMergeDefs (INCLUDING TypeDefBody.InhKey, 0), 0),

PTGMergeProcDef (INCLUDING TypeDefBody.InhPtg,

PTGStr ("\n /* dummy */")),

PTGNULL) DEPENDS_ON NodeTypeDef.coded;

.paramlist = CONSTITUENTS (InterfaceIdList.Interfaces)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

NodeTypeDef.code =

PTGSeq3 (

PTGSeq (/* typedefs: */

PTGTypeDef (PTGSeq (INCLUDING TypeDefBody.InhPtg, PTGStr("_0")),

PTGRecordTypeDef (.datacode)),

PTGTypeDef (INCLUDING TypeDefBody.InhPtg,

PTGNodeTypeDef (.datacode, .moredatacode,

.descriptorcode))),

PTGSeq5 (/* functions A: */

PTGNodeTypeInit (INCLUDING TypeDefBody.InhPtg, .initcode),

PTGNodeArrayTypeInit (INCLUDING TypeDefBody.InhPtg),

IF (ProducePrintcode,

PTGNodeTypePrint (INCLUDING TypeDefBody.InhPtg, .printcode),

PTGNULL),

PTGMergeNodeTpl (INCLUDING TypeDefBody.InhPtg, .paramlist),

.moreproccode),

PTGSeq4 (/* functions B: */

PTGReplicateNetNodeTpl (INCLUDING TypeDefBody.InhPtg, .paramlist),

PTGExtendTpl (INCLUDING TypeDefBody.InhPtg, .paramlist),

PTGReplicateNodeTpl (INCLUDING TypeDefBody.InhPtg, .paramlist),

.proccode));

/* dummy CHAINSTART (for InitElemId), chain is not actually needed: */

CHAINSTART NodeElemDefList.Offset = 0;

END;

RULE rNodeDataElemDef :

NodeDataElemDef ::= TypeId InitElemIdList

COMPUTE

NodeDataElemDef.datacode =

PTGDataElemDef (TypeId.Ptg, InitElemIdList.datacode);

/* InitElemIdList.moredatacode cannot occur */

NodeDataElemDef.initcode = InitElemIdList.initcode;

NodeDataElemDef.printcode = InitElemIdList.printcode;

InitElemIdList.InhAlignment = 1; /* dummy to satisfy InitElemIdList */

END;

RULE rNodeInterfaceElemDef :

NodeInterfaceElemDef ::= InterfaceMode TypeId InterfaceIdList

COMPUTE

.Dataloc = GetDataloc (TypeId.Key, NoMode)

226 44 TYPE DEFINITIONS

DEPENDS_ON INCLUDING CupitProgram.allknown;

NodeInterfaceElemDef.moredatacode =

IF (EQ (InterfaceIdList.InhMode, .Dataloc),

PTGInterfaceDef (TypeId.Ptg, InterfaceIdList.moredatacode),

PTGremoteInterfaceDef (TypeId.Ptg, InterfaceIdList.moredatacode));

NodeInterfaceElemDef.descriptorcode =

PTGInterfaceDescr (TypeId.Ptg, InterfaceIdList.descriptorcode);

NodeInterfaceElemDef.initcode = InterfaceIdList.initcode;

NodeInterfaceElemDef.printcode = InterfaceIdList.printcode;

END;

RULE rInterfaceModeIn :

InterfaceMode ::= 'IN'

COMPUTE

END;

RULE rInterfaceModeOut :

InterfaceMode ::= 'OUT'

COMPUTE

END;

RULE rInterfaceIdList1 :

InterfaceIdList ::= NewInterfaceId

COMPUTE

.Dataloc = GetDataloc (InterfaceIdList.InhType, NoMode)

DEPENDS_ON INCLUDING CupitProgram.allknown;

InterfaceIdList.moredatacode =

PTGSeq (PTGStr ("*"), NewInterfaceId.Ptg);

InterfaceIdList.descriptorcode =

PTGSeq (NewInterfaceId.Ptg, PTGStr ("_D"));

InterfaceIdList.initcode = PTGInitInterfaceElem (NewInterfaceId.Ptg);

InterfaceIdList.printcode =

IF (EQ (InterfaceIdList.InhMode, .Dataloc),

PTGPrintInterfaceElem (PTGKey (InterfaceIdList.InhType),

NewInterfaceId.Ptg),

PTGPrintInterfaceElem (PTGStr ("_remote_connection"),

NewInterfaceId.Ptg));

InterfaceIdList.Interfaces =

IF (EQ (InterfaceIdList.InhMode, .Dataloc),

PTGInterfaceAbbr (PTGKey (InterfaceIdList.InhType), NewInterfaceId.Ptg),

PTGremoteInterfaceAbbr (PTGKey (InterfaceIdList.InhType),

NewInterfaceId.Ptg));

END;

RULE rInterfaceIdList :

InterfaceIdList ::= InterfaceIdList ',' NewInterfaceId

COMPUTE

.Dataloc = GetDataloc (InterfaceIdList[2].InhType, NoMode)

DEPENDS_ON INCLUDING CupitProgram.allknown;

InterfaceIdList[1].moredatacode =

PTGList (InterfaceIdList[2].moredatacode,

PTGSeq (PTGStr ("*"), NewInterfaceId.Ptg));

InterfaceIdList[1].descriptorcode =

PTGList (InterfaceIdList[2].moredatacode,

PTGSeq (NewInterfaceId.Ptg, PTGStr ("_D")));

44.4 Connection types 227

InterfaceIdList[1].initcode = /* Dummy !!! */

PTGSeq (InterfaceIdList[2].initcode, PTGComment (NewInterfaceId.Ptg));

InterfaceIdList[1].printcode =

PTGSeq (InterfaceIdList[2].printcode,

IF (EQ (InterfaceIdList[2].InhMode, .Dataloc),

PTGPrintInterfaceElem (PTGKey (InterfaceIdList[2].InhType),

NewInterfaceId.Ptg),

PTGPrintInterfaceElem (PTGStr ("_remote_connection"),

NewInterfaceId.Ptg)));

InterfaceIdList[1].Interfaces =

PTGSeq (InterfaceIdList[2].Interfaces,

IF (EQ (InterfaceIdList[2].InhMode, .Dataloc),

PTGInterfaceAbbr (PTGKey (InterfaceIdList[2].InhType),

NewInterfaceId.Ptg),

PTGremoteInterfaceAbbr (PTGKey (InterfaceIdList[2].InhType),

NewInterfaceId.Ptg)));

END;

g

This macro is de�ned in de�nitions 268.

This macro is invoked in de�nition 261.

44.4 Connection types

Connection Type PTG[269] � 269

f

ConTypeDef: "struct { /* CONNECTION */ " [IndentIncr]

$1

[IndentNewLine] "/* Descriptors: */" $2

[IndentDecr] [IndentNewLine] "} "

ConTypeDescr: [IndentNewLine] "_Gptr _oe;"

[IndentNewLine] "_connection_D _me_D;"

ConnectProcDef: "\n#define _type_ " $1

"\n#include \"Connect.tpl\"\n"

MergeConTpl: "\n#define _type_ " $1

"\n#include \"MergeCon.tpl\"\n"

ConTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* plural ME)"

"\n{" [IndentIncr]

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)_sgl(ME));"

[IndentNewLine] "p_pr_connection_D (\"_me_D\", &ME->_me_D);"

[IndentNewLine] "if (ME->_me_D.exists) {"

[IndentNewLine] " p_pr_Gptr (\"_oe\", &ME->_oe);"

[IndentIncr] $2 [IndentDecr]

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}"

"\n"

"\nplural void p_pr" $1 "_interface (String name, plural " $1 "* plural ME,"

[IndentNewLine] " plural _interface_D* plural descr)"

"\n{" [IndentIncr]

[IndentNewLine] "char* n = \"0\";"

[IndentNewLine] "int i;"

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)_sgl(ME));"

[IndentNewLine] "p_pr_interface_D (\"_D\", descr);"

[IndentNewLine] "for (i = 0; i < descr->con_ls; i++, ME++) {"

[IndentNewLine] " *n = (i % 64) + '0';"

228 44 TYPE DEFINITIONS

[IndentNewLine] " p_pr" $1 " (n, ME);"

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

g

This macro is de�ned in de�nitions 269.

This macro is invoked in de�nition 260.

The code generated from a connection type de�nition consists of �ve parts: the datacode is what will
appear inside the type declaration itself, the constant descriptorcode is what distinguishes the full type
from the 0 type, the initcode is the body of the initialization procedure for the type, the printcode

is the kernel of the print procedure for the type, and the proccode consists of the complete code for the
object subroutines of the record type. moreproccode is used for a dummy a MERGE procedure de�nition
if necessary, just like for the node types above.

Connection Type Generation[270] �270

f

RULE rConnectionTypeDef :

ConnectionTypeDef ::= 'CONNECTION' ConElemDefList

COMPUTE

.datacode = CONSTITUENTS ConDataElemDef.datacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.descriptorcode = PTGConTypeDescr();

.initcode = CONSTITUENTS ConDataElemDef.initcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.printcode = CONSTITUENTS ConDataElemDef.printcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.proccode = CONSTITUENTS (MergeProcDef.code, ObjProcedureDef.code,

ObjFunctionDef.code)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.moreproccode =

IF (EQ (GetMergeDefs (INCLUDING TypeDefBody.InhKey, 0), 0),

PTGMergeProcDef (INCLUDING TypeDefBody.InhPtg,

PTGStr ("/* dummy */")),

PTGNULL) DEPENDS_ON ConnectionTypeDef.coded;

ConnectionTypeDef.code =

PTGSeq (

PTGSeq (/* typedefs: */

PTGTypeDef (PTGSeq (INCLUDING TypeDefBody.InhPtg, PTGStr("_0")),

PTGRecordTypeDef (.datacode)),

PTGTypeDef (INCLUDING TypeDefBody.InhPtg,

PTGConTypeDef (.datacode, .descriptorcode))),

PTGSeq6 (

PTGRecordTypeInit (INCLUDING TypeDefBody.InhPtg, .initcode),

IF (ProducePrintcode,

PTGConTypePrint (INCLUDING TypeDefBody.InhPtg, .printcode),

PTGNULL),

PTGConnectProcDef (INCLUDING TypeDefBody.InhPtg),

PTGMergeConTpl (INCLUDING TypeDefBody.InhPtg),

.moreproccode,

.proccode));

ConnectionTypeDef.coded = ORDER (

SetSize (.Type, ConElemDefList.Offset, 0),

SetAlignment (.Type, ConElemDefList.Alignment, 1));

CHAINSTART ConElemDefList.Offset = 0;

END;

44.5 Array types 229

RULE rConElemDefList1 :

ConElemDefList ::= ConElemDef ';'

COMPUTE

ConElemDefList.Alignment = ConElemDef.Alignment;

END;

RULE rConElemDefList :

ConElemDefList ::= ConElemDefList ConElemDef ';'

COMPUTE

ConElemDefList[1].Alignment =

IF (GT (ConElemDefList[2].Alignment, ConElemDef.Alignment),

ConElemDefList[2].Alignment, ConElemDef.Alignment);

END;

SYMBOL ConElemDef COMPUTE

THIS.Alignment = 0; /* for MERGE, FUNCTION, and PROCEDURE defs */

END;

RULE rConElemDef :

ConElemDef ::= ConDataElemDef

COMPUTE

ConElemDef.Alignment = ConDataElemDef.Alignment;

END;

RULE rConDataElemDef :

ConDataElemDef ::= TypeId InitElemIdList

COMPUTE

ConDataElemDef.datacode =

PTGDataElemDef (TypeId.Ptg, InitElemIdList.datacode);

ConDataElemDef.initcode = InitElemIdList.initcode;

ConDataElemDef.printcode = InitElemIdList.printcode;

ConDataElemDef.Alignment =

GetAlignment (TypeId.Key, 1) DEPENDS_ON ConDataElemDef.coded;

InitElemIdList.InhAlignment = ConDataElemDef.Alignment;

END;

g

This macro is de�ned in de�nitions 270.

This macro is invoked in de�nition 261.

44.5 Array types

Node arrays are represented as pointers (since they are allocated dynamically); other arrays are repre-
sented as plain MPL arrays. In both cases we also generate an initialization procedure.

Array Type PTG[271] � 271

f

NodeArrayDef: [IndentNewLine] "typedef plural " $2 "* " $1 ";"

ArrayDef: [IndentNewLine] "typedef " $2 " " $1 "[" $3 "];"

NodeArrayTypeInitAlias:

"\n#define INIT_" $1 "(a,b,c,d) INIT_" $2 "_group(a,b,c,d)\n"

NodeArrayTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* ME,"

[IndentNewLine] " plural _node_group_D* descr)"

"\n{" [IndentIncr]

[IndentNewLine] "char* n = \"0\";"

230 44 TYPE DEFINITIONS

[IndentNewLine] "int i;"

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)ME);"

[IndentNewLine] "p_pr_node_group_D (\"_D\", descr);"

[IndentNewLine] "for (i = 0; i < descr->localsizeN; i++) {"

[IndentNewLine] " *n = (i % 64) + '0';"

[IndentNewLine] " p_pr" $2 " (n, (*ME)+i);"

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

ArrayTypeInit:

"\n#define _type_ " $1

"\n#define _basetype_ " $2

"\n#define _size_ " $3

"\n#include \"ArrayInit.tpl\"\n"

ArrayTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* plural ME)"

"\n{" [IndentIncr]

[IndentNewLine] "int i;"

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)_sgl(ME));"

[IndentNewLine] "for (i = 0; i < " $3 "; i++) {"

[IndentNewLine] " printf (\"%d\", i);"

[IndentNewLine] " p_pr" $2 " (\"\", (*ME)+i);"

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

g

This macro is de�ned in de�nitions 271.

This macro is invoked in de�nition 260.

Array Type Generation[272] �272

f

RULE rArrayTypeDef :

ArrayTypeDef ::= 'ARRAY' '[' ArraySize ']' 'OF' TypeId

COMPUTE

.datacode =

IF (EQ (TypeId.Kind, NodeTypeK),

PTGNodeArrayDef (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg),

PTGArrayDef (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg,

PTGStr (Const2Str (ArraySize.Val))));

.initcode =

IF (EQ (TypeId.Kind, NodeTypeK),

PTGNodeArrayTypeInitAlias (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg),

IF (EQ (TypeId.Kind, RecordTypeK),

PTGArrayTypeInit (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg,

PTGInt (GetIval (ArraySize.Val))),

/* else */

PTGNULL));

.printcode =

IF (EQ (TypeId.Kind, NodeTypeK),

PTGNodeArrayTypePrint (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg),

/* else */

IF (EQ (TypeId.Kind, RecordTypeK),

PTGArrayTypePrint (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg,

PTGInt (GetIval (ArraySize.Val))),

/* else */

PTGNULL));

ArrayTypeDef.code = PTGSeq3 (.datacode, .initcode,

IF (ProducePrintcode, .printcode, PTGNULL));

44.6 Group types 231

ArrayTypeDef.coded = ORDER (

SetSize (INCLUDING TypeDefBody.InhKey,

MUL(GetIval(ArraySize.Val),GetSize(TypeId.Key,0)), 0),

SetAlignment (INCLUDING TypeDefBody.InhKey,

GetAlignment (TypeId.Key, 1), 1))

DEPENDS_ON ArrayTypeDef.coded;

END;

g

This macro is de�ned in de�nitions 272.

This macro is invoked in de�nition 261.

44.6 Group types

Group types are handled just like node arrays of size 0.

Group Type PTG[273] � 273

f

/* nothing special needed for GROUPS */

g

This macro is de�ned in de�nitions 273.

This macro is invoked in de�nition 260.

Group Type Generation[274] � 274

f

RULE rGroupTypeDef :

GroupTypeDef ::= 'GROUP' 'OF' TypeId

COMPUTE

.datacode = PTGNodeArrayDef (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg);

.initcode = PTGNodeArrayTypeInitAlias (INCLUDING TypeDefBody.InhPtg,

TypeId.Ptg);

.printcode = PTGNodeArrayTypePrint (INCLUDING TypeDefBody.InhPtg, TypeId.Ptg);

GroupTypeDef.code = PTGSeq3 (.datacode, .initcode,

IF (ProducePrintcode, .printcode, PTGNULL));

END;

g

This macro is de�ned in de�nitions 274.

This macro is invoked in de�nition 261.

44.7 Network types

Network Type PTG[275] � 275

f

NetType: "struct { /* NETWORK */" [IndentIncr]

$1

[IndentNewLine] "/* Node groups: */" $2

[IndentNewLine] "/* Descriptors: */" $3

[IndentNewLine] "_network_D _me_D;"

[IndentDecr] [IndentNewLine] "} "

NetTypeInit: "\nplural void INIT_" $1 " (plural " $1 "* ME)"

"\n{" [IndentIncr] $2 [IndentDecr] "\n}\n"

NetInit: [IndentNewLine] "ME->_me_D.exists = _existing;"

[IndentNewLine] "ME->_me_D.formA = false;"

[IndentNewLine] "ME->_me_D.meI = 0;"

232 44 TYPE DEFINITIONS

[IndentNewLine] "ME->_me_D.repN = 1;"

[IndentNewLine] "ME->_me_D.lrepN = 0;"

[IndentNewLine] "ME->_me_D.lxN = lxprocN;"

[IndentNewLine] "ME->_me_D.lyN = lyprocN;"

$1/*data element init*/

NetTypePrint:

"\nplural void p_pr" $1 " (String name, plural " $1 "* ME)"

"\n{" [IndentIncr]

[IndentNewLine] "printf (\"\\n%s@%x=(\", name, (int)ME);"

[IndentNewLine] "p_pr_network_D (\"_me_D\", &ME->_me_D);"

[IndentNewLine] "if (ME->_me_D.exists) {"

[IndentIncr] $2 [IndentDecr]

[IndentNewLine] "}"

[IndentNewLine] "printf (\")\");" [IndentDecr] "\n}\n"

MergeNetTpl: "\n#define _type_ " $1

"\n#define _GROUPS_ " $2

"\n#include \"MergeNet.tpl\"\n"

ReplicateNetTpl: "\n#define _type_ " $1

"\n#define _GROUPS_ " $2

"\n#include \"ReplicateNet.tpl\"\n"

g

This macro is de�ned in de�nitions 275.

This macro is invoked in de�nition 260.

The code generation for network types is structured along the same lines as that of record, node, and
connection types.

Network Type Generation[276] �276

f

RULE rNetworkTypeDef :

NetworkTypeDef ::= 'NETWORK' NetElemDefList

COMPUTE

.datacode = CONSTITUENTS NetDataElemDef.datacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.moredatacode = CONSTITUENTS NetDataElemDef.moredatacode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.descriptorcode = CONSTITUENTS NetDataElemDef.descriptorcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.initcode = CONSTITUENTS NetDataElemDef.initcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.printcode = CONSTITUENTS NetDataElemDef.printcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.proccode = CONSTITUENTS (MergeProcDef.code, ObjProcedureDef.code,

ObjFunctionDef.code)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

.moreproccode =

IF (EQ (GetMergeDefs (INCLUDING TypeDefBody.InhKey, 0), 0),

PTGMergeProcDef (INCLUDING TypeDefBody.InhPtg,

PTGStr ("/* dummy */")),

PTGNULL) DEPENDS_ON NetworkTypeDef.coded;

NetworkTypeDef.code =

PTGSeq (

PTGSeq (/* typedefs: */

PTGTypeDef (PTGSeq (INCLUDING TypeDefBody.InhPtg, PTGStr("_0")),

PTGRecordTypeDef (.datacode)),

PTGTypeDef (INCLUDING TypeDefBody.InhPtg,

PTGNetType (.datacode, .moredatacode, .descriptorcode))),

233

PTGSeq6 (/* functions: */

PTGNetTypeInit (INCLUDING TypeDefBody.InhPtg, PTGNetInit(.initcode)),

IF (ProducePrintcode,

PTGNetTypePrint (INCLUDING TypeDefBody.InhPtg, .printcode),

PTGNULL),

PTGMergeNetTpl (INCLUDING TypeDefBody.InhPtg, NetworkTypeDef.Groups),

.moreproccode,

PTGReplicateNetTpl (INCLUDING TypeDefBody.InhPtg,

NetworkTypeDef.Groups),

.proccode));

NetworkTypeDef.Groups = CONSTITUENTS (InitElemId.Groups)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

/* dummy CHAINSTART (for InitElemId), chain is not actually needed: */

CHAINSTART NetElemDefList.Offset = 0;

END;

RULE rNetDataElemDef :

NetDataElemDef ::= TypeId InitElemIdList

COMPUTE

.code = PTGDataElemDef (TypeId.Ptg, InitElemIdList.datacode);

NetDataElemDef.datacode =

IF (OR (EQ (TypeId.Kind, NodeArrayTypeK),

EQ (TypeId.Kind, NodeGroupTypeK)),

PTGNULL, /* else */ .code);

NetDataElemDef.moredatacode =

IF (OR (EQ (TypeId.Kind, NodeArrayTypeK),

EQ (TypeId.Kind, NodeGroupTypeK)),

.code, /* else */ PTGNULL);

NetDataElemDef.descriptorcode = InitElemIdList.descriptorcode;

NetDataElemDef.initcode = InitElemIdList.initcode;

NetDataElemDef.printcode = InitElemIdList.printcode;

InitElemIdList.InhAlignment = 1; /* dummy to satisfy InitElemIdList */

END;

g

This macro is de�ned in de�nitions 276.

This macro is invoked in de�nition 261.

45 Data object de�nitions

For each object in a de�nition list, we generate a complete MPL declaration.

Data Object De�nition PTG[277] � 277

f

VarDef: [IndentNewLine] $1/*type*/ " " $2/*name*/ $3/*initialization*/ ";"

ParVarDef: [IndentNewLine] "plural " $1 " " $2 $3 ";"

IoDef: [IndentNewLine] "plural " $1 " *" $2 ";"

g

This macro is de�ned in de�nitions 277.

This macro is invoked in de�nition 336.

Data objects have to be generated in di�erent forms for sequential and parallel contexts. For each object
in a CuPit declaration list we generate an individual MPL declaration since this is a bit easier. I/O
objects are implemented as pointers.

Data Object De�nition Generation[278] � 278

234 45 DATA OBJECT DEFINITIONS

f

RULE rDataObjectDef:

DataObjectDef ::= TypeId AccessType InitDataIdList

COMPUTE

InitDataIdList.InhPtg = TypeId.Ptg;

DataObjectDef.seqcode = CONSTITUENTS InitDataId.seqcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

DataObjectDef.parcode = CONSTITUENTS InitDataId.parcode

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull);

DataObjectDef.code = /* used for global defs only */

IF (EQ (TypeId.Kind, NetTypeK),

DataObjectDef.parcode, /* else */ DataObjectDef.seqcode);

END;

g

This macro is de�ned in de�nitions 278, 279, 280, and 281.

This macro is invoked in de�nition 334.

Data Object De�nition Generation[279] �279

f

RULE rInitDataIdList :

InitDataIdList ::= InitDataIdList ',' InitDataId

COMPUTE

TRANSFER InhPtg;

END;

g

This macro is de�ned in de�nitions 278, 279, 280, and 281.

This macro is invoked in de�nition 334.

Data identi�ers without an initializer may be VAR or IO in sequential context, but only VAR in parallel
context.

Data Object De�nition Generation[280] �280

f

RULE rInitDataId0 :

InitDataId ::= NewDataId

COMPUTE

InitDataId.seqcode =

IF (IsVarAcc (INCLUDING InitDataIdList.InhAccess),

PTGVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg, PTGNULL),

/* else */

IF (IsIoAcc (INCLUDING InitDataIdList.InhAccess),

PTGIoDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */")));

InitDataId.parcode =

IF (IsVarAcc (INCLUDING InitDataIdList.InhAccess),

PTGParVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg, PTGNULL),

PTGStr ("/* ERROR: Illegal access value !!! */"));

END;

g

This macro is de�ned in de�nitions 278, 279, 280, and 281.

This macro is invoked in de�nition 334.

Data identi�ers with an initializer may be VAR or CONST in either sequential or parallel context. They are
currently handled in exactly the same way.

Data Object De�nition Generation[281] �281

f

235

RULE rInitDataId1 :

InitDataId ::= NewDataId ':=' Expr

COMPUTE

InitDataId.seqcode =

IF (IsVarAcc (INCLUDING InitDataIdList.InhAccess),

PTGVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg,

PTGSeq (PTGStr (" = "), Expr.seqcode)),

/* else */

IF (IsConstAcc (INCLUDING InitDataIdList.InhAccess),

PTGVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg,

PTGSeq (PTGStr (" = "), Expr.seqcode)),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */")));

InitDataId.parcode =

IF (IsVarAcc (INCLUDING InitDataIdList.InhAccess),

PTGParVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg,

PTGSeq (PTGStr (" = "), Expr.parcode)),

/* else */

IF (IsConstAcc (INCLUDING InitDataIdList.InhAccess),

PTGParVarDef (INCLUDING InitDataIdList.InhPtg, NewDataId.Ptg,

PTGSeq (PTGStr (" = "), Expr.parcode)),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */")));

END;

g

This macro is de�ned in de�nitions 278, 279, 280, and 281.

This macro is invoked in de�nition 334.

46 Subroutine de�nitions

Free global subroutines and object subroutines of RECORD types are generated in a sequential as well
as a parallel version. Global subroutines that belong to the central agent are generated in a sequential
version only. Object subroutines of CONNECTION, NODE, and NETWORK types as well as MERGE procedures,
REDUCTION functions, and WTA functions are generated in parallel versions only | but two of them: a
direct implementation of the CuPit procedure or function as a straightforward plural MPL function plus
an additional wrapper function that implements the virtualization.

Subroutine De�nition PTG[282] � 282

f

SubroutineDef: [IndentNewLine] $1/*type*/ " " $2/*name*/ $3/*params&body*/

SubroutineExt: " (" [IndentIncr] $1 [IndentDecr] ");"

SubroutineDescr: " (" [IndentIncr] $1 [IndentDecr] ")"

[IndentNewLine] "{" [IndentIncr] $2 [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

aObjProcedureDef:

[IndentNewLine] "plural void a_" $1 "_" $2 " ("

"plural " $2 "* ME," [IndentIncr]

[IndentNewLine] "_sint _localsize, plural Interval slice"

$3 ")" [IndentDecr]

[IndentNewLine] "{" [IndentIncr]

[IndentNewLine] "_sint _i;"

[IndentNewLine] "plural Int _first = slice.min, _last = slice.max;"

[IndentNewLine] "_TRACE (3, (\"a_" $1 "_" $2 " (%x %d...%d)\\n\", (int)ME, "

"_sgl(_first), _sgl(_last)));"

236 46 SUBROUTINE DEFINITIONS

[IndentNewLine] "for (_i = 0; _i < _localsize; _i++, ME++)" [IndentIncr]

[IndentNewLine] "if (ME->_me_D.exists && "

[IndentNewLine] " ME->_me_D.meI >=_first && ME->_me_D.meI <=_last)"

[IndentNewLine] " " $1 "_" $2 " (" $4 ");" [IndentDecr] [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

ObjSubroutineName: $1 "_" $2

ObjMeDef: "plural " $1 "* ME"

ParName: "p_" $1

Paramlist: $1 "," [IndentNewLine] $2

VarParam: $1 " *" $2

ConstParam: $1 " " $2

IoParam: "plural " $1 " **" $2

ParVarParam: "plural " $1 "* plural " $2

ParConstParam: "plural " $1 " " $2

ParIoParam: "plural " $1 " **" $2

g

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

The virtualized local connection procedures have to postprocess each call to the non-virtualized connection
procedure: Should the connection delete itself during the call, the value of the connections' remote end
exists indicators must be changed and the conN values of the interface descriptors be invalidated. This
is done by a call to the procedure delete connection postprocessing.

Subroutine De�nition PTG[283] �283

f

aConProcedureDef:

/* arguments: $1=procedure name, $2=type name, $3=parameter list,

$4=argument list, $5=dummy send/fetch-code (if any)

*/

[IndentNewLine] "plural void a_" $1 "_" $2 " (" [IndentIncr]

[IndentNewLine] "register plural " $2 "* ME, register _sint _localsize"

$3 ")" [IndentDecr]

[IndentNewLine] "{" [IndentIncr]

[IndentNewLine] "register int _i;"

[IndentNewLine] "_TRACE (4, (\"a_" $1 "_" $2 " (%x)\\n\", (int)ME));"

[IndentNewLine] "dpuTimerStart ();"

[IndentNewLine] "for (_i = 0; _i < _localsize; _i++, ME++)" [IndentIncr]

[IndentNewLine] "if (ME->_me_D.exists) {" [IndentIncr]

[IndentNewLine] $1 "_" $2 " (" $4 ");"

$5

[IndentNewLine] "if (!ME->_me_D.exists) {" [IndentIncr]

[IndentNewLine] "delete_connection_postprocessing (&ME->_me_D, &ME->_oe,"

[IndentNewLine] " offsetof(_remote_connection,_me_D));" [IndentDecr]

[IndentNewLine] "}" [IndentDecr]

[IndentNewLine] "}" [IndentDecr]

"\n#if _codetype_ == 1"

[IndentNewLine] "ME -= _localsize;"

[IndentNewLine] "if (_localsize && ME->_me_D.exists && "

"ME->_me_D.boss->boss->boss->boss->formA) {"

[IndentNewLine] " unsigned ticks = dpuTimerTicks2() - 300;"

[IndentNewLine] " ME->_me_D.boss->wpc += ticks/_localsize;"

[IndentNewLine] "}"

"\n#endif" [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

dummySendFetchCode:

[IndentNewLine] "{ plural " $3 " _buf; plural " $3 "* _ME = ME, *ME = &_buf;"

237

$1 $2 " }"

g

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

The virtualized remote connection procedures have to pre- and postprocess each call to the non-virtualized
connection procedure: Before the call, an appropriate local connection object has to be constructed. To
do this, all relevant (i.e. may-be-read) parts of the connection object have to be fetched (done by the
code $5). After the call there are two possibilities: Should the connection have deleted itself during the
call, the exists indicators and interface descriptor's conN values must be changed at both ends of the
connection (using delete connection postprocessing just like for the local case above). Should the
connection still exist after the call, those parts of it that (may) have changed must be written back to
the data end of the connection (done by code $6).

Subroutine De�nition PTG[284] � 284

f

arConProcedureDef:

[IndentNewLine] "plural void a_" $1 "_remote_" $2 " (" [IndentIncr]

[IndentNewLine] "register plural _remote_connection* _ME, "

"register _sint _localsize"

$3 ")" [IndentDecr]

[IndentNewLine] "{" [IndentIncr]

[IndentNewLine] "register int _i; _work cost = 0;"

[IndentNewLine] "plural " $2 " _buffer;"

[IndentNewLine] "register plural " $2 " *ME = &_buffer;"

[IndentNewLine] "_TRACE (4, (\"a_" $1 "_remote_" $2 " (%x)\\n\", (int)_ME));"

[IndentNewLine] "for (_i = 0; _i < _localsize; _i++, _ME++)" [IndentIncr]

[IndentNewLine] "if (_ME->_me_D.exists) {" [IndentIncr]

$5 /* fetch */

[IndentNewLine] "ME->_me_D.exists = true;"

[IndentNewLine] "dpuTimerStart ();"

[IndentNewLine] $1 "_" $2 " (" $4 ");"

"\n#if _codetype_ == 1"

[IndentNewLine] "cost += dpuTimerTicks2();"

"\n#endif"

[IndentNewLine] "if (ME->_me_D.exists) {" [IndentIncr]

$6 /* send */ [IndentDecr]

[IndentNewLine] "}"

[IndentNewLine] "else {" [IndentIncr]

[IndentNewLine] "delete_connection_postprocessing (&_ME->_me_D, &_ME->_oe,"

[IndentNewLine] " offsetof(" $2 ",_me_D));" [IndentDecr]

[IndentNewLine] "}" [IndentDecr]

[IndentNewLine] "}" [IndentDecr]

"\n#if _codetype_ == 1"

[IndentNewLine] "_ME -= _localsize;"

[IndentNewLine] "if (_localsize && _ME->_me_D.exists && "

"_ME->_me_D.boss->boss->boss->boss->formA) {"

[IndentNewLine] " _ME->_me_D.boss->wpc += cost/_localsize-300+" $7 ";"

[IndentNewLine] "}"

"\n#endif" [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

g

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

238 46 SUBROUTINE DEFINITIONS

46.1 Procedures and functions

For global functions and free global procedures we generate a sequential and a parallel version. For
procedures of the central agent, we generate a sequential version only. No virtualization wrapper for the
parallel version is needed because free parallel subroutines can only be called from (connection, node,
or network) contexts that are already virtualized but they can never themselves introduce additional
parallelism that could need virtualization. For unused procedures, no code is generated; individual
versions (sequential/parallel or parallel/virtualized/remote) are suppressed if possible.

Subroutine De�nition Generation[285] �285

f

RULE rProcedureDef :

ProcedureDef ::= 'PROCEDURE' NewProcedureId SubroutineDescription

OptPROCEDURE

COMPUTE

ProcedureDef.code =

PTGSeq (

IF (OR (ProcedureDef.CentralAgent,

EQ (BITAND (GetIsUsed (NewProcedureId.Key, used0), used), used)),

PTGSubroutineDef (PTGStr ("void"), NewProcedureId.Ptg,

SubroutineDescription.seqcode),

PTGNULL), /* no sequential version */

IF (OR (ProcedureDef.CentralAgent,

NE (BITAND (GetIsUsed(NewProcedureId.Key,used0), usedA), usedA)),

PTGNULL, /* no parallel version */

PTGSubroutineDef (PTGStr ("plural void"),

PTGParName (NewProcedureId.Ptg),

SubroutineDescription.parcode)))

DEPENDS_ON INCLUDING CupitProgram.allknown;

SubroutineDescription.InhPtg = PTGNULL; /* no ME type name */

END;

RULE rFunctionDef :

FunctionDef ::= TypeId 'FUNCTION' NewFunctionId SubroutineDescription

OptFUNCTION

COMPUTE

FunctionDef.code =

PTGSeq (

IF (OR (FunctionDef.CentralAgent,

EQ (BITAND (GetIsUsed (NewFunctionId.Key, used0), used), used)),

PTGSubroutineDef (TypeId.Ptg, NewFunctionId.Ptg,

SubroutineDescription.seqcode),

PTGNULL), /* no sequential version */

IF (OR (FunctionDef.CentralAgent,

NE (BITAND (GetIsUsed(NewFunctionId.Key,used0), usedA), usedA)),

PTGNULL, /* no parallel version */

PTGSubroutineDef (PTGSeq (PTGStr ("plural "), TypeId.Ptg),

PTGParName (NewFunctionId.Ptg),

SubroutineDescription.parcode)))

DEPENDS_ON INCLUDING CupitProgram.allknown;

SubroutineDescription.InhPtg = PTGNULL; /* no ME type name */

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

For object functions, we generate a simple parallel version only, because it is impossible to call a function

46.1 Procedures and functions 239

that introduces additional parallelism. For object procedures, we generate (1) a parallel version, (2) a
virtualized parallel version (unless the object type is a network type), and perhaps (3) a remote virtualized
version (if the object type is a connection type).

Subroutine De�nition Generation[286] � 286

f

RULE rObjProcedureDef :

ObjProcedureDef ::= 'PROCEDURE' NewObjProcedureId SubroutineDescription

OptPROCEDURE

COMPUTE

.parcode = /* the non-virtualized parallel version */

IF (EQ (GetIsUsed(NewObjProcedureId.Key,used0), used0),

PTGNULL, /* is an unused object procedure */

PTGSubroutineDef (PTGStr ("plural void"),

PTGObjSubroutineName (NewObjProcedureId.Ptg,

INCLUDING TypeDefBody.InhPtg),

SubroutineDescription.parcode))

DEPENDS_ON INCLUDING CupitProgram.allknown;

.sendcode =

IF (NE (.Kind, ConTypeK),

PTGNULL,

ORDER (makeRemoteSendCode (

GetMayBeWritten (NewObjProcedureId.Key, NoDefTblKeySet),

OR (conIndividual, conWhole),

IF (conIndividual, NoKey, INCLUDING TypeDefBody.InhKey),

hideLatency, highLatency),

getRemoteSendCode ())) DEPENDS_ON ObjProcedureDef.coded;

.fetchcode =

IF (NE (.Kind, ConTypeK),

PTGNULL,

ORDER (makeRemoteFetchCode (

DSunite (GetMayBeRead (NewObjProcedureId.Key, NoDefTblKeySet),

GetMayBeWritten (NewObjProcedureId.Key, NoDefTblKeySet)),

OR (conIndividual, conWhole),

IF (conIndividual, NoKey, INCLUDING TypeDefBody.InhKey),

hideLatency, highLatency),

getRemoteFetchCode ())) DEPENDS_ON ObjProcedureDef.coded;

.rticode = getRemoteCommCost () DEPENDS_ON (.sendcode, .fetchcode);

.smallcode = /* the virtualized a_-version, if needed */

IF (EQ (.Kind, ConTypeK),

IF (NE (BITAND (GetIsUsed(NewObjProcedureId.Key,used0), usedA), usedA),

PTGNULL, /* virtualized connection procedure never used */

PTGaConProcedureDef (NewObjProcedureId.Ptg,

INCLUDING TypeDefBody.InhPtg,

WithComma (SubroutineDescription.paramlist),

SubroutineDescription.arglist,

IF (noDataLocality,

PTGdummySendFetchCode (.fetchcode, .sendcode,

INCLUDING TypeDefBody.InhPtg),

PTGNULL))),

/* else */

IF (EQ (.Kind, NodeTypeK),

IF (NE (BITAND (GetIsUsed(NewObjProcedureId.Key,used0), usedA), usedA),

PTGNULL, /* virtualized node procedure never used */

PTGaObjProcedureDef (NewObjProcedureId.Ptg,

INCLUDING TypeDefBody.InhPtg,

240 46 SUBROUTINE DEFINITIONS

WithComma (SubroutineDescription.paramlist),

SubroutineDescription.arglist)),

/* else */

PTGNULL)) /* no virtualization for NETWORK or RECORD objects */

DEPENDS_ON INCLUDING CupitProgram.allknown;

.largecode = /* the virtualized a_remote-version, if needed */

IF (OR (NE (.Kind, ConTypeK),

NE (BITAND (GetIsUsed(NewObjProcedureId.Key,used0), usedAR), usedAR)),

PTGNULL, /* remote procedures only for CONNECTIONs, where used */

PTGarConProcedureDef (NewObjProcedureId.Ptg,

INCLUDING TypeDefBody.InhPtg,

WithComma (SubroutineDescription.paramlist),

SubroutineDescription.arglist,

.fetchcode, .sendcode, .rticode))

DEPENDS_ON ObjProcedureDef.coded;

ObjProcedureDef.code = PTGSeq3 (.parcode, .smallcode, .largecode);

ObjProcedureDef.coded = ObjProcedureDef.code;

SubroutineDescription.InhPtg = INCLUDING TypeDefBody.InhPtg; /* ME type */

END;

RULE rObjFunctionDef :

ObjFunctionDef ::= TypeId 'FUNCTION' NewObjFunctionId SubroutineDescription

OptFUNCTION

COMPUTE

ObjFunctionDef.code =

IF (EQ (GetIsUsed (NewObjFunctionId.Key, used0), used0),

PTGNULL, /* function is not used */

PTGSubroutineDef (PTGSeq (PTGStr ("plural "), TypeId.Ptg),

PTGObjSubroutineName (NewObjFunctionId.Ptg,

INCLUDING TypeDefBody.InhPtg),

SubroutineDescription.parcode));

SubroutineDescription.InhPtg = INCLUDING TypeDefBody.InhPtg; /* ME type */

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

46.2 Parameter lists

The now following parameter list handling is no doubt long, but also relatively regular in its structure.
(I suggest that you skip this section or otherwise you might fall asleep.)

Subroutine De�nition Generation[287] �287

f

RULE rSubroutineDescription :

SubroutineDescription ::= ParamList 'IS' SubroutineBody 'END'

COMPUTE

.parcode = /* ParamList with ME prepended if necessary */

IF (EQ (SubroutineDescription.Context, ObjSubroutineContext),

IF (EQ (ParamList.parcode, PTGNULL), /* no parameters ? */

PTGObjMeDef (SubroutineDescription.InhPtg), /* then ME only */

PTGParamlist (PTGObjMeDef (SubroutineDescription.InhPtg),

ParamList.parcode)), /* else ME + others */

ParamList.parcode); /* or pure paramlist for non-object subroutines */

SubroutineDescription.seqcode =

46.2 Parameter lists 241

PTGSubroutineDescr (ParamList.seqcode, SubroutineBody.seqcode);

SubroutineDescription.parcode =

PTGSubroutineDescr (.parcode, SubroutineBody.parcode);

SubroutineDescription.paramlist = ParamList.parcode;

SubroutineDescription.arglist = ParamList.arglist;

END;

RULE rSubroutineDescription0 :

SubroutineDescription ::= ParamList 'IS' 'EXTERNAL'

COMPUTE

.parcode = /* ParamList with ME prepended if necessary */

IF (EQ (SubroutineDescription.Context, ObjSubroutineContext),

PTGParamlist (PTGObjMeDef (SubroutineDescription.InhPtg),

ParamList.parcode),

ParamList.parcode);

SubroutineDescription.seqcode = PTGSubroutineExt (ParamList.seqcode);

SubroutineDescription.parcode = PTGSubroutineExt (.parcode);

SubroutineDescription.paramlist = ParamList.parcode;

SubroutineDescription.arglist = ParamList.arglist;

END;

RULE rParamList0 :

ParamList ::= '(' ')'

COMPUTE

ParamList.seqcode = PTGNULL; /* nothing needed */

ParamList.parcode = PTGNULL;

ParamList.arglist =

IF (EQ (INCLUDING SubroutineDescription.Context, ObjSubroutineContext),

PTGStr ("ME"), /* else */ PTGNULL);

END;

RULE rParamList :

ParamList ::= '(' Parameters ')'

COMPUTE

ParamList.seqcode = Parameters.seqcode;

ParamList.parcode = Parameters.parcode;

ParamList.arglist =

IF (EQ (INCLUDING SubroutineDescription.Context, ObjSubroutineContext),

PTGList (PTGStr ("ME"), Parameters.arglist),

Parameters.arglist);

END;

RULE rParameters1 :

Parameters ::= ParamsDef

COMPUTE

Parameters.seqcode = ParamsDef.seqcode;

Parameters.parcode = ParamsDef.parcode;

Parameters.arglist = ParamsDef.arglist;

END;

RULE rParameters :

Parameters ::= Parameters ';' ParamsDef

COMPUTE

Parameters[1].seqcode =

PTGParamlist (Parameters[2].seqcode, ParamsDef.seqcode);

242 46 SUBROUTINE DEFINITIONS

Parameters[1].parcode =

PTGParamlist (Parameters[2].parcode, ParamsDef.parcode);

Parameters[1].arglist = PTGList (Parameters[2].arglist, ParamsDef.arglist);

END;

RULE rParamsDef :

ParamsDef ::= TypeId AccessType ParamIdList

COMPUTE

ParamIdList.InhPtg = TypeId.Ptg;

ParamsDef.seqcode = ParamIdList.seqcode;

ParamsDef.parcode = ParamIdList.parcode;

ParamsDef.arglist = ParamIdList.arglist;

END;

RULE rParamIdList1 :

ParamIdList ::= NewParamId

COMPUTE

ParamIdList.seqcode =

IF (IsVarAcc (ParamIdList.InhAccess),

PTGVarParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

IF (IsConstAcc (ParamIdList.InhAccess),

PTGConstParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

IF (IsIoAcc (ParamIdList.InhAccess),

PTGIoParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */"))));

ParamIdList.parcode =

IF (IsVarAcc (ParamIdList.InhAccess),

PTGParVarParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

IF (IsConstAcc (ParamIdList.InhAccess),

PTGParConstParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

IF (IsIoAcc (ParamIdList.InhAccess),

PTGParIoParam (ParamIdList.InhPtg, NewParamId.Ptg),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */"))));

ParamIdList.arglist = NewParamId.Ptg;

END;

RULE rParamIdList :

ParamIdList ::= ParamIdList ',' NewParamId

COMPUTE

TRANSFER InhPtg WITH ParamIdList[2];

ParamIdList[1].seqcode =

IF (IsVarAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].seqcode,

PTGVarParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

IF (IsConstAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].seqcode,

PTGConstParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

46.3 Reduction functions 243

IF (IsIoAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].seqcode,

PTGIoParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */"))));

ParamIdList[1].parcode =

IF (IsVarAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].parcode,

PTGParVarParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

IF (IsConstAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].parcode,

PTGParConstParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

IF (IsIoAcc (ParamIdList[2].InhAccess),

PTGParamlist (ParamIdList[2].parcode,

PTGParIoParam (ParamIdList[2].InhPtg, NewParamId.Ptg)),

/* else */

PTGStr ("/* ERROR: Illegal access value !!! */"))));

ParamIdList[1].arglist = PTGList (ParamIdList[2].arglist, NewParamId.Ptg);

END;

RULE rSubroutineBody :

SubroutineBody ::= Statements

COMPUTE

TRANSFER seqcode, parcode;

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

46.3 Reduction functions

For reduction functions, we have to generate two parts of code. First, the reduction function (imple-
menting the actual reduction operator) itself; this is handled much like an object function. Second, the
corresponding virtualization procedure(s); these have to be implemented individually for connections (if
needed), nodes (if needed), and networks (if needed), but each of these three kinds may be implemented
only once for each reduction function result type, independent of how many reduction functions with the
same return type exist. The virtualization procedures are implemented as templates.

Subroutine De�nition PTG[288] � 288

f

ReductionFunctionDef: [IndentNewLine] "plural " $1 " p_" $2

" (plural " $1 "* ME, plural " $1 "* YOU)"

[IndentNewLine] "{" [IndentIncr]

$3 [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

ReductionTplDef: [IndentNewLine] [IndentNewLine] "#define _type_ " $1

[IndentNewLine] "#include \"Reduction" $2 ".tpl\""

[IndentNewLine] [IndentNewLine]

g

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

Subroutine De�nition Generation[289] � 289

244 46 SUBROUTINE DEFINITIONS

f

RULE rReductionFunctionDef :

ReductionFunctionDef ::= TypeId 'REDUCTION' NewReductionFunctionId 'IS'

ReductionFunctionBody 'END' OptREDUCTION

COMPUTE

.smallcode = /* the reduction function itself */

PTGReductionFunctionDef (TypeId.Ptg, NewReductionFunctionId.Ptg,

ReductionFunctionBody.parcode);

.largecode = /* the a_REDUCTION function(s) (if needed) */

PTGSeq3 (

IF (GetNeedConReduction (TypeId.Key, false),

ORDER (Messag1 (NOTE, "NeedConReduction(%s)=true",

SymString (TypeId.Sym)),

SetNeedConReduction (TypeId.Key, false, false),

PTGReductionTplDef(TypeId.Ptg, PTGStr ("Con"))),

ORDER (Messag1 (NOTE, "NeedConReduction(%s)=false",

SymString (TypeId.Sym)),

PTGNULL)),

IF (GetNeedNodeReduction (TypeId.Key, false),

ORDER (SetNeedNodeReduction (TypeId.Key, false, false),

PTGReductionTplDef(TypeId.Ptg, PTGStr ("Node"))),

PTGNULL),

IF (GetNeedNetReduction (TypeId.Key, false),

ORDER (SetNeedNetReduction (TypeId.Key, false, false),

PTGReductionTplDef(TypeId.Ptg, PTGStr ("Net"))),

PTGNULL))

DEPENDS_ON ReductionFunctionDef.coded;

ReductionFunctionDef.code = PTGSeq (.smallcode, .largecode);

END;

RULE rReductionFunctionBody :

ReductionFunctionBody ::= Statements

COMPUTE

ReductionFunctionBody.parcode = Statements.parcode;

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

46.4 Winner-takes-all functions

The structure of the code generation for winner-takes-all functions corresponds directly to that for re-
duction functions.

Subroutine De�nition PTG[290] �290

f

WtaFunctionDef: [IndentNewLine] "plural Bool p_" $2

" (plural " $1 "* ME, plural " $1 "* YOU)"

[IndentNewLine] "{" [IndentIncr]

$3 [IndentDecr]

[IndentNewLine] "}" [IndentNewLine]

WtaTplDef: [IndentNewLine] [IndentNewLine] "#define _type_ " $1

[IndentNewLine] "#include \"Wta" $2 ".tpl\""

[IndentNewLine] [IndentNewLine]

g

46.5 Merge procedures 245

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

Subroutine De�nition Generation[291] � 291

f

RULE rWtaFunctionDef :

WtaFunctionDef ::= TypeId 'WTA' NewWtaFunctionId 'IS'

WtaFunctionBody 'END' OptWTA

COMPUTE

.smallcode = /* the wta function itself */

PTGWtaFunctionDef (TypeId.Ptg, NewWtaFunctionId.Ptg,

WtaFunctionBody.parcode);

.largecode = /* the a_WTA function(s) (if needed) */

PTGSeq3 (

IF (GetNeedConWta (TypeId.Key, false),

ORDER (SetNeedConWta (TypeId.Key, false, false),

PTGWtaTplDef(TypeId.Ptg, PTGStr ("Con"))),

PTGNULL),

IF (GetNeedNodeWta (TypeId.Key, false),

ORDER (SetNeedNodeWta (TypeId.Key, false, false),

PTGWtaTplDef(TypeId.Ptg, PTGStr ("Node"))),

PTGNULL),

IF (GetNeedNetWta (TypeId.Key, false),

ORDER (SetNeedNetWta (TypeId.Key, false, false),

PTGWtaTplDef(TypeId.Ptg, PTGStr ("Net"))),

PTGNULL))

DEPENDS_ON WtaFunctionDef.coded;

WtaFunctionDef.code = PTGSeq (.smallcode, .largecode);

END;

RULE rWtaFunctionBody :

WtaFunctionBody ::= Statements

COMPUTE

WtaFunctionBody.parcode = Statements.parcode;

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

46.5 Merge procedures

For MERGE procedures, we have to implement a normal and a virtualized version (much like for other
object procedures). The virtualized version is implemented with a template. If no merge procedure is
de�ned for a connection, node, or network type, we generate a dummy version (plus the full virtualized
version) in the rule of the type de�nition body; we cannot save the virtualized version, because we also
use it to help construct the replicates in the network replication operation.

Subroutine De�nition PTG[292] � 292

f

MergeProcDef:

[IndentNewLine] "plural void MERGE_" $1 "(plural " $1 " *ME, "

"plural " $1 " *YOU)"

[IndentNewLine] "{" [IndentIncr]

$2/*body*/ [IndentDecr]

[IndentNewLine] "}"

246 47 STATEMENTS

[IndentNewLine] [IndentNewLine]

g

This macro is de�ned in de�nitions 282, 283, 284, 288, 290, and 292.

This macro is invoked in de�nition 336.

Subroutine De�nition Generation[293] �293

f

RULE rMergeProcDef :

MergeProcDef ::= 'MERGE' 'IS' MergeProcedureBody 'END' OptMERGE

COMPUTE

MergeProcDef.code =

PTGMergeProcDef (INCLUDING TypeDefBody.InhPtg, MergeProcedureBody.parcode);

END;

RULE rMergeProcedureBody :

MergeProcedureBody ::= Statements

COMPUTE

MergeProcedureBody.parcode = Statements.parcode;

END;

g

This macro is de�ned in de�nitions 285, 286, 287, 289, 291, and 293.

This macro is invoked in de�nition 334.

47 Statements

In statement code generation we always have the distinction between code generated for a sequential
context (attribute seqcode) and code generated for a parallel context (attribute parcode).

Statement PTG[294] �294

f

Assignment PTG[296]
I/O Assignment PTG[298]
Procedure Call PTG[300]
Reduction Statement PTG[304]
Winner-Takes-All Statement PTG[306]
Control Flow PTG[308]
Data Allocation Statement PTG[312]
Merge Statement PTG[314]
g

This macro is de�ned in de�nitions 294.

This macro is invoked in de�nition 336.

Statement Generation[295] �295

f

RULE rStatements :

Statements ::= DataObjectDefList StatementList

COMPUTE

Statements.seqcode =

PTGSeq (DataObjectDefList CONSTITUENTS DataObjectDef.seqcode SHIELD ()

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS (Assignment.seqcode,

InputAssignment.seqcode, OutputAssignment.seqcode,

ProcedureCall.seqcode, ObjectProcedureCall.seqcode,

ReductionStmt.seqcode, WtaStmt.seqcode,

ReturnStmt.seqcode, IfStmt.seqcode,

47.1 Assignment 247

LoopStmt.seqcode, BreakStmt.seqcode,

DataAllocationStmt.seqcode, MergeStmt.seqcode)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull));

Statements.parcode =

PTGSeq (DataObjectDefList CONSTITUENTS DataObjectDef.parcode SHIELD ()

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS (Assignment.parcode,

InputAssignment.parcode, OutputAssignment.parcode,

ProcedureCall.parcode, ObjectProcedureCall.parcode,

ReductionStmt.parcode, WtaStmt.parcode,

ReturnStmt.parcode, IfStmt.parcode,

LoopStmt.parcode, BreakStmt.parcode,

DataAllocationStmt.parcode, MergeStmt.parcode)

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull));

END;

Assignment Generation[297]
I/O Assignment Generation[299]
Procedure Call Generation[301]
Reduction Statement Generation[305]
Winner-Takes-All Statement Generation[307]
Control Flow Generation[309]
Data Allocation Statement Generation[313]
Merge Statement Generation[315]
g

This macro is invoked in de�nition 334.

47.1 Assignment

All assignment operators are implemented in a straightforward manner. Note, though, that the %=

assignment does not work for
oats in MPL.

Assignment PTG[296] � 296

f

Assign: [IndentNewLine] $1 $2 $3 ";"

g

This macro is invoked in de�nition 294.

Assignment Generation[297] � 297

f

RULE rAssignment :

Assignment ::= Object AssignOperator Expr

COMPUTE

Assignment.seqcode =

PTGAssign (Object.seqcode, AssignOperator.code, Expr.seqcode);

Assignment.parcode =

PTGAssign (Object.parcode, AssignOperator.code, Expr.parcode);

END;

RULE rAssignOp: AssignOperator ::= ':=' COMPUTE

AssignOperator.code = PTGStr (" = ");

END;

RULE rPlusAssignOp: AssignOperator ::= '+=' COMPUTE

AssignOperator.code = PTGStr (" += ");

248 47 STATEMENTS

END;

RULE rMinusAssignOp: AssignOperator ::= '-=' COMPUTE

AssignOperator.code = PTGStr (" -= ");

END;

RULE rMulAssignOp: AssignOperator ::= '*=' COMPUTE

AssignOperator.code = PTGStr (" *= ");

END;

RULE rDivAssignOp: AssignOperator ::= '/=' COMPUTE

AssignOperator.code = PTGStr (" /= ");

END;

RULE rModAssignOp: AssignOperator ::= '%=' COMPUTE

AssignOperator.code = PTGStr (" %= "); /* doesn't work for float !!! */

END;

g

This macro is invoked in de�nition 295.

47.2 I/O assignment

The I/O assignment operators are implemented as a call to the corresponding input or output procedure.

I/O Assignment PTG[298] �298

f

IOAssign:

[IndentNewLine] $/*IN/OUT*/ $/*type*/ "(&" $/*group_D*/ "_D, "

"(plural char*)_sgl(" $/*base*/ "), " [IndentIncr]

[IndentNewLine] $/*slice*/ ", offsetof(" $/*nd_type*/ "," $/*field*/ "),"

[IndentNewLine] "offsetof (" $/*nd_type*/ ",_me_D), "

"sizeof(" $/*nd_type*/ "), " $/*IOvar*/ ");" [IndentDecr]

g

This macro is invoked in de�nition 294.

I/O Assignment Generation[299] �299

f

RULE rInputAssignment :

InputAssignment ::= Object '<--' Object

COMPUTE

InputAssignment.seqcode =

PTGIOAssign (PTGStr ("INPUT_"), PTGKey (Object[2].Type),

Object[1].largecode,

Object[1].largecode, Object[1].seqslicecode,

PTGKey (Object[1].ParVarType), Object[1].smallcode,

PTGKey (Object[1].ParVarType), PTGKey (Object[1].ParVarType),

Object[2].seqcode);

InputAssignment.parcode = PTGNULL; /* cannot occur */

END;

RULE rOutputAssignment :

OutputAssignment ::= Object '-->' Object

COMPUTE

OutputAssignment.seqcode =

PTGIOAssign (PTGStr ("OUTPUT_"), PTGKey (Object[2].Type),

47.3 Procedure call 249

Object[1].largecode,

Object[1].largecode, Object[1].seqslicecode,

PTGKey (Object[1].ParVarType), Object[1].smallcode,

PTGKey (Object[1].ParVarType), PTGKey (Object[1].ParVarType),

Object[2].seqcode);

OutputAssignment.parcode = PTGNULL; /* cannot occur */

END;

g

This macro is invoked in de�nition 295.

47.3 Procedure call

Procedure calls to global procedures are translated one to one.

Procedure Call PTG[300] � 300

f

ProcedureCall: [IndentNewLine] $1 " (" $2 ");"

g

This macro is de�ned in de�nitions 300 and 302.

This macro is invoked in de�nition 294.

Procedure Call Generation[301] � 301

f

RULE rProcedureCall :

ProcedureCall ::= ProcedureId '(' ArgumentList ')'

COMPUTE

ProcedureCall.seqcode =

PTGProcedureCall (ProcedureId.Ptg, ArgumentList.seqcode);

ProcedureCall.parcode =

PTGProcedureCall (PTGParName (ProcedureId.Ptg), ArgumentList.parcode);

END;

g

This macro is de�ned in de�nitions 301 and 303.

This macro is invoked in de�nition 295.

Object procedure calls have to be treated di�erently not only depending on whether we call from sequential
or parallel context. We must also discriminate whether we call within the same level of parallelism (e.g.
a node procedure from within a node procedure) or to a level that extends the parallelism (e.g. a
connection procedure from within a node procedure or a network procedure from sequential context).
Another discrimination to be made is that between local and remote connection procedure calls.

Procedure Call PTG[302] � 302

f

RecProcedureCall:

[IndentNewLine] $1 "_" $2 " (" $3 [IndentIncr] $4 [IndentDecr] ");"

pRecProcedureCall:

[IndentNewLine] "p_" $1 "_" $2 " (" $3 [IndentIncr] $4 [IndentDecr] ");"

ConProcedureCall:

[IndentNewLine] $1 "_" $2 " (&" $3 [IndentIncr] $4 [IndentDecr] ");"

aConProcedureCall:

[IndentNewLine] "a_" $1 "_" $2 " (_sgl(" $3 "), _sgl(" $4 "_D.con_ls)"

[IndentIncr] $5 [IndentDecr] ");"

arConProcedureCall:

[IndentNewLine] "a_" $1 "_remote_" $2 " (_sgl(" $3 "), _sgl(" $4 "_D.con_ls)"

[IndentIncr] $5 [IndentDecr] ");"

NodeProcedureCall:

250 47 STATEMENTS

[IndentNewLine] $1 "_" $2 " (&" $3 [IndentIncr] $4 [IndentDecr] ");"

aNodeProcedureCall:

[IndentNewLine] "a_" $1 "_" $2 " (_sgl(" $3 ")," [IndentIncr]

[IndentNewLine] "_sgl(" $3 "_D.localsizeN), " $4 $5 [IndentDecr] ");"

NetProcedureCall:

[IndentNewLine] $1 "_" $2 " (&" $3 [IndentIncr] $4 [IndentDecr] ");"

aNetProcedureCall:

[IndentNewLine] "if (_IntervalInOp (" $3 "._me_D.meI, " $4 "))" [IndentIncr]

[IndentNewLine] $1 "_" $2 " (&" $3 [IndentIncr]

$5 [IndentDecr] [IndentDecr] ");"

g

This macro is de�ned in de�nitions 300 and 302.

This macro is invoked in de�nition 294.

Procedure Call Generation[303] �303

f

RULE rObjectProcedureCall :

ObjectProcedureCall ::= Object '.' ObjectProcedureId '(' ArgumentList ')'

COMPUTE

.code = PTGKey (Object.Type) DEPENDS_ON Object.known;

.Dataloc = GetDataloc (Object.Type, NoMode) /* relevant for con only */

DEPENDS_ON INCLUDING CupitProgram.allknown;

ObjectProcedureCall.seqcode =

IF (EQ (.Kind, RecordTypeK),

PTGRecProcedureCall (ObjectProcedureId.Ptg, .code, Object.seqcode,

WithComma (ArgumentList.seqcode)),

/* else */

IF (EQ (.Kind, ConTypeK),

PTGStr ("/* ERROR: sequential call of connection procedure !!! */"),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGStr ("/* ERROR: sequential call of node procedure !!! */"),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGaNetProcedureCall (ObjectProcedureId.Ptg, .code, Object.seqcode,

Object.parslicecode,

WithComma (ArgumentList.seqcode)),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at seqObjectProcedureCall", .Kind),

PTGNULL)))));

ObjectProcedureCall.parcode =

IF (EQ (.Kind, RecordTypeK),

PTGpRecProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

WithComma (ArgumentList.parcode)),

/* else */

IF (EQ (.Kind, ConTypeK),

IF (EQ (Object.Kind, ParVariableK),

IF (EQ (Object.Mode, .Dataloc),

PTGaConProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

Object.smallcode,

WithComma (ArgumentList.parcode)),

PTGarConProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

Object.smallcode,

WithComma(ArgumentList.parcode))),

PTGConProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

47.4 Reduction statement 251

WithComma (ArgumentList.parcode))),

/* else */

IF (EQ (.Kind, NodeTypeK),

IF (EQ (Object.Kind, ParVariableK),

PTGaNodeProcedureCall (ObjectProcedureId.Ptg, .code, Object.smallcode,

Object.parslicecode,

WithComma (ArgumentList.parcode)),

PTGNodeProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

WithComma (ArgumentList.parcode))),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGNetProcedureCall (ObjectProcedureId.Ptg, .code, Object.parcode,

WithComma (ArgumentList.parcode)),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at parObjectProcedureCall", .Kind),

PTGNULL)))));

END;

g

This macro is de�ned in de�nitions 301 and 303.

This macro is invoked in de�nition 295.

No code generation for MultiObjProcedureCalls is necessary, because they are treated in exactly the
same way as a sequence of calls on the SIMDmachine. We make no attempts whatsoever to parallelize this
stu� (not even if it is just several calls to di�erent slices of the same node group). The sequentialization
of MultiObjProcedureCalls is covered by the CONSTITUENTS construct at statements above.

47.4 Reduction statement

Reductions from sequential context are possible for networks only. Reductions from parallel context may
be for nodes or for connections. Reductions on connections may be local or remote. However, we must
not generate an error message for other cases (e.g. for a sequential connection reduction) because code
for these cases can legitimately be produced in this rule here as long as it is not used later! Therefore,
the code generated in these cases is just a comment saying what case it is.

The number of arguments for the PTG functions is so large for the reduction statements that we prefer to
repeat some of them but be allowed to give them in the same order in which they appear in the generated
code.

Reduction Statement PTG[304] � 304

f

ConReductionStmt:

[IndentNewLine] "p_REDUCTION_" $/*rtype*/ "_connections (" [IndentIncr]

[IndentNewLine] "&ME->_me_D, &" $/*interf_D*/ "_D, "

"(plural char*)_sgl(" $/*base*/ "),"

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(" $/*type*/ ",_me_D.exists),"

[IndentNewLine] "sizeof(" $/*type*/ "), false/*is_remote*/,"

[IndentNewLine] "p_" $/*op*/ ", &" $/*into*/ ");" [IndentDecr]

rConReductionStmt:

[IndentNewLine] "p_REDUCTION_" $/*rtyp*/ "_connections (" [IndentIncr]

[IndentNewLine] "&ME->_me_D, &" $/*interf_D*/ "_D, "

"(plural char*)_sgl(" $/*base*/ "),"

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(_remote_connection,_me_D.exists),"

[IndentNewLine] "sizeof(_remote_connection), true/*is_remote*/,"

252 47 STATEMENTS

[IndentNewLine] "p_" $/*op*/ ",& " $/*into*/ ");" [IndentDecr]

NodeReductionStmt:

[IndentNewLine] "p_REDUCTION_" $/*rtype*/ "_nodes (" [IndentIncr]

[IndentNewLine] "&" $/*group_D*/ "_D, " $/*slice*/ ", "

"(plural char*)_sgl(" $/*base*/ "), "

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(" $/*type*/ ",_me_D),"

[IndentNewLine] "sizeof(" $/*type*/ "),"

[IndentNewLine] "p_" $/*op*/ ", &" $/*into*/ ");" [IndentDecr]

NetReductionStmt:

[IndentNewLine] "p_REDUCTION_" $/*rtype*/ "_networks (" [IndentIncr]

[IndentNewLine] "&" $/*net*/ "._me_D, " $/*slice*/ ", "

"&" $/*net*/ "." $/*field*/ ","

[IndentNewLine] "p_" $/*op*/ ", &" $/*into*/ ");" [IndentDecr]

g

This macro is invoked in de�nition 294.

Reduction Statement Generation[305] �305

f

RULE rReductionStmt :

ReductionStmt ::= 'REDUCTION' Object ':' ReductionFunctionId 'INTO' Object

COMPUTE

.Dataloc = GetDataloc (Object[1].ParVarType, NoMode)

DEPENDS_ON INCLUDING CupitProgram.allknown;

.Ptg = PTGKey (Object[1].ParVarType);

ReductionStmt.seqcode =

IF (EQ (.Kind, ConTypeK),

PTGStr ("/* ERROR: sequential call of connection reduction !!! */"),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGStr ("/* ERROR: sequential call of node reduction !!! */"),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGNetReductionStmt (PTGKey (Object[2].Type),

Object[1].largecode, Object[1].seqslicecode,

Object[1].largecode, Object[1].smallcode,

ReductionFunctionId.Ptg, Object[2].seqcode),

/* else */

ORDER (

Message1 (FATAL, "Object kind %d at seqReductionStmt", .Kind),

PTGNULL))));

ReductionStmt.parcode =

IF (EQ (.Kind, ConTypeK),

IF (EQ (Object[1].ParVarMode, .Dataloc),

PTGConReductionStmt (PTGKey (Object[2].Type),

Object[1].largecode, Object[1].largecode,

.Ptg, Object[1].smallcode, .Ptg, .Ptg,

ReductionFunctionId.Ptg, Object[2].seqcode),

PTGrConReductionStmt (PTGKey (Object[2].Type),

Object[1].largecode, Object[1].largecode,

.Ptg, Object[1].smallcode,

ReductionFunctionId.Ptg, Object[2].seqcode)),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGNodeReductionStmt (PTGKey (Object[2].Type),

Object[1].largecode, Object[1].parslicecode,

47.5 Winner-takes-all statement 253

Object[1].largecode, .Ptg, Object[1].smallcode, .Ptg, .Ptg,

ReductionFunctionId.Ptg, Object[2].seqcode),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGStr ("/* ERROR: parallel call of network reduction !!! */"),

/* else */

ORDER (

Message1 (FATAL, "Object kind %d at parReductionStmt", .Kind),

PTGNULL))));

END;

g

This macro is invoked in de�nition 295.

47.5 Winner-takes-all statement

The remarks given above for reduction statements also apply for winner-takes-all statements. In addition,
we have to act according to the result of the WTA function call: On those PEs where the WTA call
returned a non-zero result, the generated code has to call the object procedure given in the original WTA
statement.

Winner-Takes-All Statement PTG[306] � 306

f

ConWtaStmt:

/* Procedure call: copy _w_ into local object _x_ for the call and either

restore it afterwards or set local and remote 'exists' marker to false.

Copying is necessary to have a singular object pointer to work on. !!!

You might use the a_* procedure to achieve remote exists marker setting.

*/

[IndentNewLine] "{ plural void* plural _w_;"

[IndentNewLine] " _w_=p_WTA_" $/*rtype*/ "_connections ("

[IndentIncr] [IndentIncr]

[IndentNewLine] "&ME->_me_D, &" $/*interf_D*/ "_D, "

"(plural char*)_sgl(" $/*base*/ "),"

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(" $/*type*/ ",_me_D.exists),"

[IndentNewLine] "sizeof(" $/*type*/ "), false/*is_remote*/, "

"p_" $/*op*/ ");" [IndentDecr] [IndentDecr]

[IndentNewLine] " if (_w_ != 0)" [IndentIncr]

[IndentNewLine] $/*proc*/ "_" $/*type*/

"((plural " $/*type*/ "* plural)_w_, "

[IndentIncr] $/*args*/ [IndentDecr] ");" [IndentDecr]

[IndentNewLine] "}"

rConWtaStmt:

/* see above !!! */

[IndentNewLine] "{ plural void* plural _w_;"

[IndentNewLine] " _w_=p_WTA_" $/*rtype*/ "_connections ("

[IndentIncr] [IndentIncr]

[IndentNewLine] "&ME->_me_D, &" $/*interf_D*/ "_D, "

"(plural char*)_sgl(" $/*base*/ "),"

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(_remote_connection,_me_D.exists),"

[IndentNewLine] "sizeof(_remote_connection), true/*is_remote*/, "

"p_" $/*op*/ ");" [IndentDecr] [IndentDecr]

[IndentNewLine] " if (_w_ != 0)" [IndentIncr]

[IndentNewLine] "a_" $/*proc*/ "_remote_" $/*type*/

254 47 STATEMENTS

"((plural _remote_connection* plural)_w_, 1, "

[IndentIncr] $/*args*/ [IndentDecr] ");" [IndentDecr]

[IndentNewLine] "}"

NodeWtaStmt:

/* procedure call cannot be performed directly because object pointer must be

singular. We therefore perform a loop similar to that used in the

a_* procedure. !!! How handle REPLICATE 0 within ???

*/

[IndentNewLine] "{ plural void* plural _w_;"

[IndentNewLine] " _w_=p_WTA_" $/*rtype*/ "_nodes ("

[IndentIncr] [IndentIncr]

[IndentNewLine] $/*group_D*/ "_D, " $/*slice*/ ", "

"(plural char*)_sgl(" $/*base*/ "),"

[IndentNewLine] "offsetof(" $/*type*/ "," $/*field*/ "), "

"offsetof(" $/*type*/ ",_me_D),"

[IndentNewLine] "sizeof(" $/*type*/ "),"

[IndentNewLine] "p_" $/*op*/ ");" [IndentDecr] [IndentDecr]

[IndentNewLine] " if (_w_ != 0)" [IndentIncr]

[IndentNewLine] $/*proc*/ "_" $/*type*/

"((plural " $/*type*/ "* plural)_w_, "

[IndentIncr] $/*args*/ [IndentDecr] ");" [IndentDecr]

[IndentNewLine] "}"

NetWtaStmt:

[IndentNewLine] "{ plural _bool _w_;"

[IndentNewLine] " _w_=p_WTA_" $/*rtype*/ "_networks ("

[IndentIncr] [IndentIncr]

[IndentNewLine] $/*net*/ "._me_D, " $/*slice*/ ", "

"(plural char*)&" $/*net*/ "." $/*field*/ ","

[IndentNewLine] "p_" $/*op*/ ");" [IndentDecr] [IndentDecr]

[IndentNewLine] " if (_w_)" [IndentIncr]

[IndentNewLine] $/*proc*/ "_" $/*type*/ "(&" $/*net*/ ", "

[IndentIncr] $/*args*/ [IndentDecr] ");" [IndentDecr]

[IndentNewLine] "}"

g

This macro is invoked in de�nition 294.

Winner-Takes-All Statement Generation[307] �307

f

RULE rWtaStmt :

WtaStmt ::= 'WTA' Object ':' Elementname '.' WtaFunctionId ':'

ObjectProcedureId '(' ArgumentList ')'

COMPUTE

.Dataloc = GetDataloc (Object[1].ParVarType, NoMode)

DEPENDS_ON INCLUDING CupitProgram.allknown;

.Ptg = PTGKey (Object[1].ParVarType);

WtaStmt.seqcode =

IF (EQ (.Kind, ConTypeK),

PTGStr ("/* ERROR: sequential call of connection WTA !!! */"),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGStr ("/* ERROR: sequential call of node WTA !!! */"),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGNetWtaStmt (PTGKey (Elementname.Type),

Object[1].smallcode, Object[1].seqslicecode,

Object[1].smallcode, Elementname.Ptg,

47.6 Control
ow 255

WtaFunctionId.Ptg, ObjectProcedureId.Ptg, .Ptg,

Object[1].smallcode, ArgumentList.parcode),

/* else */

ORDER (

Message1 (FATAL, "Object kind %d at seqWtaStmt", .Kind),

PTGNULL))));

WtaStmt.parcode =

IF (EQ (.Kind, ConTypeK),

IF (EQ (Object[1].ParVarMode, .Dataloc),

PTGConWtaStmt (PTGKey (Elementname.Type),

Object[1].parcode, Object[1].parcode,

.Ptg, Elementname.Ptg, .Ptg, .Ptg,

WtaFunctionId.Ptg, ObjectProcedureId.Ptg, .Ptg, .Ptg,

ArgumentList.parcode),

PTGrConWtaStmt (PTGKey (Elementname.Type),

Object[1].parcode, Object[1].parcode, .Ptg, Elementname.Ptg,

WtaFunctionId.Ptg, ObjectProcedureId.Ptg, .Ptg,

ArgumentList.parcode)),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGNodeWtaStmt (PTGKey (Elementname.Type),

Object[1].smallcode, Object[1].parslicecode,

Object[1].smallcode, .Ptg, Elementname.Ptg, .Ptg, .Ptg,

WtaFunctionId.Ptg, ObjectProcedureId.Ptg, .Ptg, .Ptg,

ArgumentList.parcode),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGStr ("/* ERROR: parallel call of network WTA !!! */"),

/* else */

ORDER (

Message1 (FATAL, "Object kind %d at parWtaStmt", .Kind),

PTGNULL))));

END;

g

This macro is invoked in de�nition 295.

47.6 Control
ow

The translation of control
ow statements is more or less straightforward. As usual, we must discriminate
a sequential and a parallel version. All loops are implemented as MPL while loops. If the actual WHILE
part is missing in the CuPit program, we must nevertheless generate a plural condition in the dummy
while of the parallel version (or otherwise no BREAK in a plural if while be allowed).

The translation of the FOR loop is done using the equivalent code pattern given in the language de�nition.
Since this is a little more complicated, it is discussed separately below.

Control Flow PTG[308] � 308

f

Return0: [IndentNewLine] "return;"

Return: [IndentNewLine] "return (" $1 ");"

IfStmt: [IndentNewLine] "if (" $1 ") {" [IndentIncr]

$2 [IndentDecr] [IndentNewLine] "}" $3

ElsifPart: [IndentNewLine] "else if (" $1 ") {" [IndentIncr]

$2 [IndentDecr] [IndentNewLine] "}" $3

ElsePart: [IndentNewLine] "else {" [IndentIncr]

256 47 STATEMENTS

$1 [IndentDecr] [IndentNewLine] "}"

WhileLoop: $1 "{" [IndentIncr] $2 [IndentDecr] [IndentNewLine] "}"

While: [IndentNewLine] "while (" $1 ") "

While0S: [IndentNewLine] "while (1) "

While0P: [IndentNewLine] "while ((plural int) 1) "

Until: [IndentNewLine] "/* UNTIL: */ if (" $1 ") break;"

Break: [IndentNewLine] "break;"

g

This macro is de�ned in de�nitions 308 and 310.

This macro is invoked in de�nition 294.

Control Flow Generation[309] �309

f

RULE rReturnStmtVoid :

ReturnStmt ::= 'RETURN'

COMPUTE

ReturnStmt.seqcode = PTGReturn0 ();

ReturnStmt.parcode = PTGReturn0 ();

END;

RULE rReturnStmt :

ReturnStmt ::= 'RETURN' Expr

COMPUTE

ReturnStmt.seqcode = PTGReturn (Expr.seqcode);

ReturnStmt.parcode = PTGReturn (Expr.parcode);

END;

RULE rIfStmt :

IfStmt ::= 'IF' Expr 'THEN' Statements ElsePart 'END' OptIF

COMPUTE

IfStmt.seqcode = PTGIfStmt (Expr.seqcode, Statements.seqcode,

ElsePart.seqcode);

IfStmt.parcode = PTGIfStmt (Expr.parcode, Statements.parcode,

ElsePart.parcode);

END;

RULE rElsif :

ElsePart ::= 'ELSIF' Expr 'THEN' Statements ElsePart

COMPUTE

ElsePart[1].seqcode =

PTGElsifPart (Expr.seqcode, Statements.seqcode, ElsePart[2].seqcode);

ElsePart[1].parcode =

PTGElsifPart (Expr.parcode, Statements.parcode, ElsePart[2].parcode);

END;

RULE rElse0 :

ElsePart ::=

COMPUTE

ElsePart.seqcode = PTGNULL;

ElsePart.parcode = PTGNULL;

END;

RULE rElse :

ElsePart ::= 'ELSE' Statements

COMPUTE

ElsePart.seqcode = PTGElsePart (Statements.seqcode);

47.6 Control
ow 257

ElsePart.parcode = PTGElsePart (Statements.parcode);

END;

RULE rLoopStmt :

LoopStmt ::= OptWhilePart 'REPEAT' Statements OptUntilPart 'END' OptREPEAT

COMPUTE

LoopStmt.seqcode = PTGWhileLoop (OptWhilePart.seqcode,

PTGSeq (Statements.seqcode, OptUntilPart.seqcode));

LoopStmt.parcode = PTGWhileLoop (OptWhilePart.parcode,

PTGSeq (Statements.parcode, OptUntilPart.parcode));

END;

RULE rOptWhilePart :

OptWhilePart ::= 'WHILE' Expr

COMPUTE

OptWhilePart.seqcode = PTGWhile (Expr.seqcode);

OptWhilePart.parcode = PTGWhile (Expr.parcode);

END;

RULE rOptWhilePart0 :

OptWhilePart ::=

COMPUTE

OptWhilePart.seqcode = PTGWhile0S ();

OptWhilePart.parcode = PTGWhile0P ();

END;

RULE rOptUntilPart :

OptUntilPart ::= 'UNTIL' Expr

COMPUTE

OptUntilPart.seqcode = PTGUntil (Expr.seqcode);

OptUntilPart.parcode = PTGUntil (Expr.parcode);

END;

RULE rOptUntilPart0 :

OptUntilPart ::=

COMPUTE

OptUntilPart.seqcode = PTGNULL;

OptUntilPart.parcode = PTGNULL;

END;

RULE rBreakStmt :

BreakStmt ::= 'BREAK'

COMPUTE

BreakStmt.seqcode = PTGBreak ();

BreakStmt.parcode = PTGBreak ();

END;

g

This macro is de�ned in de�nitions 309 and 311.

This macro is invoked in de�nition 295.

To implement the translation pattern for FOR loops as given in the language de�nition, we need an
additional variable of the same type as the count variable. The name of this variable is created in
the ForLoopStep symbol (simply because it only appears in the FOR loop context) by inheriting from
the symbols GenName and IdPtg from the Eli tech speci�cation module library. To allow this variable
declaration in the target code, we have to surround the whole code segment by braces. The code and
smallcode symbols in ForLoopStep are used to deliver the value to be added to the loop count variable

258 47 STATEMENTS

and the test to apply to loop count variable and loop limit, respectively.

Control Flow PTG[310] �310

f

/* parameters: $1:loop variable, $2:startexpression, $3:step, $4:endexpression,

$5:statements, $6:until-test, $7:comparison-operator, $8:endconstant,

$9:loopvariabletype, $10:plural-or-not

*/

ForLoop: [IndentNewLine] "{ " $10 $9 " " $8 "; /* FOR-limit container */"

[IndentNewLine] $1 " = " $2 "; /* initialization */"

[IndentNewLine] $8 " = " $4 "; /* limit computation */"

[IndentNewLine] "while (" $1 $7 $8 ") { /* FOR termination test */"

[IndentIncr] $5 " /* statements */"

$6 /* UNTIL test, if any */

[IndentNewLine] $1 " += " $3 "; /* count step */"

[IndentDecr] [IndentNewLine] "}} /* End of FOR */"

g

This macro is de�ned in de�nitions 308 and 310.

This macro is invoked in de�nition 294.

Control Flow Generation[311] �311

f

RULE rForLoopStmt :

LoopStmt ::= 'FOR' Object ':=' Expr ForLoopStep Expr 'REPEAT'

Statements OptUntilPart 'END' OptREPEAT

COMPUTE

LoopStmt.seqcode =

PTGForLoop (Object.seqcode, Expr[1].seqcode, ForLoopStep.code,

Expr[2].seqcode, Statements.seqcode, OptUntilPart.seqcode,

ForLoopStep.smallcode, ForLoopStep.Ptg, PTGKey (Object.Type),

PTGStr (""));

LoopStmt.parcode =

PTGForLoop (Object.parcode, Expr[1].parcode, ForLoopStep.code,

Expr[2].parcode, Statements.parcode, OptUntilPart.parcode,

ForLoopStep.smallcode, ForLoopStep.Ptg, PTGKey (Object.Type),

PTGStr ("plural "));

END;

SYMBOL ForLoopStep INHERITS GenName, IdPtg END;

RULE rUpto : ForLoopStep ::= 'UPTO'

COMPUTE

ForLoopStep.code = PTGStr ("1");

ForLoopStep.smallcode = PTGStr (" <= ");

END;

RULE rTo : ForLoopStep ::= 'TO'

COMPUTE

ForLoopStep.code = PTGStr ("1");

ForLoopStep.smallcode = PTGStr (" <= ");

END;

RULE rDownto : ForLoopStep ::= 'DOWNTO'

COMPUTE

ForLoopStep.code = PTGStr ("-1");

ForLoopStep.smallcode = PTGStr (" >= ");

47.7 Data allocation 259

END;

g

This macro is de�ned in de�nitions 309 and 311.

This macro is invoked in de�nition 295.

47.7 Data allocation

The connection replicate and disconnect data allocation statements are compiled into calls to the run time
system functions for the respective operations. The other data allocation statements are implemented as
calls to procedures that are individually de�ned for the respective type.

Data Allocation Statement PTG[312] � 312

f

ReplicateConStmt:

[IndentNewLine] "REPLICATE_connection (&ME->_me_D, " $1 ");"

ReplicateNodeStmt:

[IndentNewLine] "REPLICATE_" $1 " (ME, " $2 ");"

ReplicateNetStmt:

[IndentNewLine] "REPLICATE_" $ " (&" $ ", " $ ", true);"

ReplicateNetInterval2Stmt:

[IndentNewLine] "REPLICATE_" $ " (&" $ ", _CanonicInterval2 (" $ "), true);"

ReplicateNetInterval1Stmt:

[IndentNewLine] "REPLICATE_" $ " (&" $ ", _CanonicInterval1 (" $ "), true);"

ReplicateNetIntStmt:

[IndentNewLine] "REPLICATE_" $1 " (&" $2

", _CanonicIntervalInt ((Int)(" $3 ")), " $3 " != 1);"

ExtendStmt:

[IndentNewLine] "EXTEND_" $1 " (&ME->_me_D, &" $2 ", &" $2 "_D, " $3 ");"

ConnectStmt:

/* Procedure parameters: contype, network_D,

nodes1, ndsize1, slice1, group_D1, nd_D_off1, interf_D_off1, interf_off1,

nodes2, ndsize2, slice2, group_D2, nd_D_off2, interf_D_off2, interf_off2

Template parameters: 1:contype,

2:node_group1, 3:node_type1, 4:slice1, 5:interf1,

6:node_group2, 7:node_type2, 8:slice2, 9:interf2

*/

[IndentNewLine] "CONNECT_" $1 " (&ME->_me_D," [IndentIncr]

[IndentNewLine] "(plural char*)_sgl(" $2 "), sizeof(" $3 "), "

$4 ", &" $2 "_D, "

[IndentNewLine] "offsetof(" $3 ",_me_D), offsetof (" $3 "," $5 "_D), "

"offsetof (" $3 "," $5 "), "

[IndentNewLine] "(plural char*)_sgl(" $6 "), sizeof(" $7 "), "

$8 ", &" $6 "_D, "

[IndentNewLine] "offsetof(" $7 ",_me_D), offsetof (" $7 "," $9 "_D), "

"offsetof (" $7 "," $9 "));" [IndentDecr]

DisconnectStmt:

/* Procedure parameters: contype, network_D,

nodes1, slice1, group_D1, nd_D_off1, interf_D_off1, interf_off1,

nodes2, slice2, group_D2, nd_D_off2, interf_D_off2, interf_off2,

consize1, oe_offset1, exists_offset1,

consize2, exists_offset2

Template parameters: 1:contype,

2:node_group1, 3:node_type1, 4:slice1, 5:interf1,

6:node_group2, 7:node_type2, 8:slice2, 9:interf2

*/

260 47 STATEMENTS

[IndentNewLine] "DISCONNECT (&ME->_me_D," [IndentIncr]

[IndentNewLine] "(plural char*)_sgl(" $2 "), "

$4 ", &" $2 "_D, "

[IndentNewLine] "offsetof(" $3 ",_me_D), offsetof (" $3 "," $5 "_D), "

"offsetof (" $3 "," $5 "), "

[IndentNewLine] "(plural char*)_sgl(" $6 "), "

$8 ", &" $6 "_D, "

[IndentNewLine] "offsetof(" $7 ",_me_D), offsetof (" $7 "," $9 "_D), "

"offsetof (" $7 "," $9 "), "

[IndentNewLine] "sizeof(" $1 "), offsetof(" $1 ",_oe), "

"offsetof(" $1 ",_me_D.exists)"

[IndentNewLine] "sizeof(_remote_connection), "

"offsetof(_remote_connection,_me_D.exists));" [IndentDecr]

g

This macro is invoked in de�nition 294.

Data Allocation Statement Generation[313] �313

f

RULE rReplicateInto :

DataAllocationStmt ::= 'REPLICATE' Object 'INTO' Expr

COMPUTE

DataAllocationStmt.seqcode =

IF (EQ (.Kind, ConTypeK),

PTGStr ("/* ERROR: sequential call of connection replication */"),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGStr ("/* ERROR: sequential call of node replication */"),

/* else */

IF (EQ (.Kind, NetTypeK),

IF (EQ (Expr.Type, IntervalKey),

PTGReplicateNetStmt (PTGKey (Object.Type), Object.seqcode,

Expr.seqcode),

IF (EQ (Expr.Type, Interval2Key),

PTGReplicateNetInterval2Stmt (PTGKey (Object.Type), Object.seqcode,

Expr.seqcode),

IF (EQ (Expr.Type, Interval1Key),

PTGReplicateNetInterval1Stmt (PTGKey (Object.Type), Object.seqcode,

Expr.seqcode),

IF (IsInt (Expr.Type),

PTGReplicateNetIntStmt (PTGKey (Object.Type), Object.seqcode,

Expr.seqcode),

/* else */

ORDER (

Message (DEADLY, "Impossible Expr.Type at REPLICATE"),

PTGNULL))))),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at seqReplicateStmt", .Kind),

PTGNULL))));

DataAllocationStmt.parcode =

IF (EQ (.Kind, ConTypeK),

PTGReplicateConStmt (Expr.parcode),

/* else */

IF (EQ (.Kind, NodeTypeK),

PTGReplicateNodeStmt (PTGKey (Object.Type), Expr.parcode),

/* else */

47.7 Data allocation 261

IF (EQ (.Kind, NetTypeK),

PTGStr ("/* ERROR: parallel call of network replication */"),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at parReplicateStmt", .Kind),

PTGNULL))));

END;

RULE rExtendBy :

DataAllocationStmt ::= 'EXTEND' Object 'BY' Expr

COMPUTE

DataAllocationStmt.seqcode =

PTGStr ("/* ERROR: sequential call of EXTEND */");

DataAllocationStmt.parcode =

PTGExtendStmt (PTGKey (GetType (Object.Type, NoKey)),

Object.parcode, Expr.parcode)

DEPENDS_ON INCLUDING CupitProgram.allknown;

END;

RULE rConnectTo :

DataAllocationStmt ::= 'CONNECT' Object 'TO' Object

COMPUTE

DataAllocationStmt.seqcode =

PTGStr ("/* ERROR: sequential call of CONNECT */");

DataAllocationStmt.parcode =

IF (EQ (GetDataloc (Object[1].Type, NoMode), OutMode),

PTGConnectStmt (PTGKey (Object[1].Type),

Object[1].largecode, PTGKey (Object[1].ParVarType),

Object[1].parslicecode, Object[1].smallcode,

Object[2].largecode, PTGKey (Object[2].ParVarType),

Object[2].parslicecode, Object[2].smallcode),

PTGConnectStmt (PTGKey (Object[1].Type),

Object[2].largecode, PTGKey (Object[2].ParVarType),

Object[2].parslicecode, Object[2].smallcode,

Object[1].largecode, PTGKey (Object[1].ParVarType),

Object[1].parslicecode, Object[1].smallcode))

DEPENDS_ON INCLUDING CupitProgram.allknown;

END;

RULE rDisconnectFrom :

DataAllocationStmt ::= 'DISCONNECT' Object 'FROM' Object

COMPUTE

DataAllocationStmt.seqcode =

PTGStr ("/* ERROR: sequential call of DISCONNECT */");

DataAllocationStmt.parcode =

IF (EQ (GetDataloc (Object[1].Type, NoMode), OutMode),

PTGDisconnectStmt (PTGKey (Object[1].Type),

Object[1].largecode, PTGKey (Object[1].ParVarType),

Object[1].parslicecode, Object[1].smallcode,

Object[2].largecode, PTGKey (Object[2].ParVarType),

Object[2].parslicecode, Object[2].smallcode),

PTGDisconnectStmt (PTGKey (Object[1].Type),

Object[2].largecode, PTGKey (Object[2].ParVarType),

Object[2].parslicecode, Object[2].smallcode,

Object[1].largecode, PTGKey (Object[1].ParVarType),

262 48 EXPRESSIONS

Object[1].parslicecode, Object[1].smallcode))

DEPENDS_ON INCLUDING CupitProgram.allknown;

END;

g

This macro is invoked in de�nition 295.

47.8 Merge statement

The MERGE statement is simply translated into a call to the a MERGE procedure de�ned for the respective
network type.

Merge Statement PTG[314] �314

f

MergeStmt:

[IndentNewLine] "a_MERGE_" $1 " (&" $2 ", true, true, false);"

g

This macro is invoked in de�nition 294.

Merge Statement Generation[315] �315

f

RULE rMergeStmt:

MergeStmt ::= 'MERGE' Object

COMPUTE

MergeStmt.seqcode = PTGMergeStmt (PTGKey (Object.Type), Object.seqcode);

MergeStmt.parcode = PTGStr ("/* ERROR: parallel call of MERGE */");

END;

g

This macro is invoked in de�nition 295.

48 Expressions

Expression PTG[316] �316

f

VarArg: "&(" $1 ")"

g

This macro is de�ned in de�nitions 316, 321, and 323.

This macro is invoked in de�nition 336.

Expression Generation[317] �317

f

RULE rObjectExpr :

Expr ::= Object

COMPUTE

Expr.seqcode = Object.seqcode;

Expr.parcode = Object.parcode;

END;

RULE rDenoterExpr :

Expr ::= Denoter

COMPUTE

Expr.seqcode = Denoter.seqcode;

Expr.parcode = Denoter.parcode;

END;

263

RULE rIntDenoter :

Denoter ::= IntegerDenoter

COMPUTE

Denoter.seqcode = IntegerDenoter.Ptg;

Denoter.parcode = Denoter.seqcode;

END;

RULE rRealDenoter :

Denoter ::= RealDenoter

COMPUTE

Denoter.seqcode = RealDenoter.Ptg;

Denoter.parcode = Denoter.seqcode;

END;

RULE rStringDenoter :

Denoter ::= StringDenoter

COMPUTE

Denoter.seqcode = StringDenoter.Ptg;

Denoter.parcode = Denoter.seqcode; /* cast necessary !!!? */

END;

g

This macro is de�ned in de�nitions 317, 318, 322, and 324.

This macro is invoked in de�nition 334.

In argument passing, we use the address of arguments to VAR and IO parameters and the object itself
otherwise:

Expression Generation[318] � 318

f

RULE rActParam :

ActParam IS Expr

COMPUTE

ActParam.seqcode =

IF (OR (IsVarAcc (.Access), IsIoAcc (.Access)),

PTGVarArg (Expr.seqcode),

Expr.seqcode);

ActParam.parcode =

IF (OR (IsVarAcc (.Access), IsIoAcc (.Access)),

PTGVarArg (Expr.parcode),

Expr.parcode);

END;

RULE rArgumentList :

ArgumentList ::= ExprList

COMPUTE

TRANSFER seqcode, parcode;

END;

RULE rArgumentList0 :

ArgumentList ::=

COMPUTE

ArgumentList.seqcode = PTGNULL;

ArgumentList.parcode = PTGNULL;

END;

RULE rExprList1 :

264 48 EXPRESSIONS

ExprList ::= ActParam

COMPUTE

TRANSFER seqcode, parcode;

END;

RULE rExprList :

ExprList ::= ExprList ',' ActParam

COMPUTE

ExprList[1].seqcode = PTGList (ExprList[2].seqcode, ActParam.seqcode);

ExprList[1].parcode = PTGList (ExprList[2].parcode, ActParam.parcode);

END;

g

This macro is de�ned in de�nitions 317, 318, 322, and 324.

This macro is invoked in de�nition 334.

48.1 Operators

The code for expressions with operators is generated in two di�erent forms: Those CuPit operators that
have a direct MPL equivalent are turned into exactly analog MPL code. The others are implemented as
function or macro calls (see the header �le of the run time system rts.h). The textual representations
of the operators and the distinction between builtin representations are implemented in the following
module in the two functions OpRepresentation and IsBuiltin.

operatorgen.h[319] �319

f

#ifndef operatorgen_H

#define operatorgen_H

#include "cupit.h"

#include "oiladt2.h"

Bool IsBuiltin (char *operator_representation);

char* OpRepresentation (tOilOp op, tOilOp indication);

#endif

g

This macro is attached to an output �le.

operatorgen.c[320] �320

f

#include <stdio.h>

#include "operatorgen.h"

#include "OilDecls.h"

Bool IsBuiltin (char *operator_representation)

{

/* idea: all non-builtin operator names begin with an underscore */

_assert (operator_representation != 0 && *operator_representation != 0);

return (*operator_representation != '_');

}

char* OpRepresentation (tOilOp op, tOilOp indication)

{

int nr = OilOpName(op),

ind;

48.1 Operators 265

switch (nr) {

case bAndOp_name: return ("&&");

case bOrOp_name: return ("||");

case bXorOp_name: return ("!=");

case iEqOp_name:

case rEqOp_name: return ("==");

case iNeqOp_name:

case rNeqOp_name: return ("!=");

case IntervalEqOp_name:

case RealervalEqOp_name: return ("_IntervalEqOp");

case IntervalNeqOp_name:

case RealervalNeqOp_name: return ("_IntervalNeqOp");

case StringEqOp_name: return ("_StringEqOp");

case iLtOp_name:

case rLtOp_name: return ("<");

case iGtOp_name:

case rGtOp_name: return (">");

case iLeOp_name:

case rLeOp_name: return ("<=");

case iGeOp_name:

case rGeOp_name: return (">=");

case IntInOp1_name:

case IntInOp2_name:

case IntInOp_name:

case RealInOp_name: return ("_IntervalInOp");

case IntIntervalOp1_name: return ("_IntIntervalOp1");

case IntIntervalOp2_name: return ("_IntIntervalOp2");

case IntIntervalOp_name: return ("_IntIntervalOp");

case RealIntervalOp_name: return ("_RealIntervalOp");

case iBitandOp_name: return ("&");

case iBitorOp_name: return ("|");

case iBitxorOp_name: return ("^");

case iLshiftOp_name: return ("<<");

case iRshiftOp_name: return (">>");

case iPlusOp_name:

case rPlusOp_name: return ("+");

case iMinusOp_name:

case rMinusOp_name: return ("-");

case iMulOp_name:

case rMulOp_name: return ("*");

case iDivOp_name:

case rDivOp_name: return ("/");

case iModOp_name: return ("%");

case rModOp_name: return ("_realmod");

case iExpOp_name: return ("_iExpOp");

case riExpOp_name: return ("_riExpOp");

case rExpOp_name: return ("_rExpOp");

case iNegOp_name:

case rNegOp_name: return ("-");

case bNotOp_name: return ("!");

case iBitnotOp_name: return ("~");

case iMinOp_name:

case iMinOp1_name:

case iMinOp2_name:

case rMinOp_name: return ("_MinOp");

266 48 EXPRESSIONS

case iMaxOp_name:

case iMaxOp1_name:

case iMaxOp2_name:

case rMaxOp_name: return ("_MaxOp");

case iRandomOp_name: return ("_iRandomOp");

case iRandomOp1_name: return ("_iRandomOp1");

case iRandomOp2_name: return ("_iRandomOp2");

case rRandomOp_name: return ("_rRandomOp");

default:

ind = OilOpName(indication);

if (ind == EqOp_name) /* for symbolic types */

return ("==");

else if (ind == NeqOp_name)

return ("!=");

else {

fprintf (stderr, "Operator number: %d ", nr);

_assert (false); return ("UnknownOperator");

}

}

}

g

This macro is attached to an output �le.

The actual code generation templates contain one template each for the ternary operator (PTGTernOp),
binary operators that are builtin into MPL (PTGBinOpBuiltin), binary operators that are implemented
via function or macro calls (PTGBinOpCall) and again the same two for unary operators (PTGUnOpBuiltin
and PTGUnOpCall)

Expression PTG[321] �321

f

TernOp: "(" $1 " ? " $2 " : " $3 ")"

BinOpBuiltin: "(" $1 " " $2 " " $3 ")"

BinOpCall: $1 "(" $2 "," $3 ")"

UnOpBuiltin: "(" $1 $2 ")"

UnOpCall: $1 "(" $2 ")"

TypeCast: "_mk" $1 "(" $2 ")"

pTypeCast: "p_mk" $1 "(" $2 ")"

NetMaxindex: "_sgl(" $1 "._me_D.repN-1)"

ArrayMaxindex: "(" $1 "-1)"

GroupMaxindex: "((plural int)" $1 "_D.nodesN-1)"

GroupMaxindexSeq: "_sgl((plural int)" $1 "_D.nodesN-1)"

InterfaceMaxindex: "(update_conI_conN((plural char*)_sgl(" $1 "),"

"sizeof(" $2 "), offsetof(" $2 ",_me_D),"

"&" $1 "_D), (plural int)" $1 "_D.conN-1)"

g

This macro is de�ned in de�nitions 316, 321, and 323.

This macro is invoked in de�nition 336.

The results of constant folding are used only for the non-interval types, because for integer interval types
we would have to perform additional type discrimination.

Expression Generation[322] �322

f

RULE rTernaryExpr :

Expr ::= Expr '?' Expr ':' Expr

COMPUTE

Expr[1].seqcode =

48.1 Operators 267

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

PTGTernOp (Expr[2].seqcode, Expr[3].seqcode, Expr[4].seqcode));

Expr[1].parcode =

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

PTGTernOp (Expr[2].parcode, Expr[3].parcode, Expr[4].parcode));

END;

RULE rBinaryExpr :

Expr ::= Expr BinOp Expr

COMPUTE

.str = OpRepresentation (Expr[1].Operator, BinOp.Operator);

.code = PTGStr (.str);

Expr[1].seqcode =

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

IF (IsBuiltin (.str),

PTGBinOpBuiltin (Expr[2].seqcode, .code, Expr[3].seqcode),

PTGBinOpCall (.code, Expr[2].seqcode, Expr[3].seqcode)));

Expr[1].parcode =

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

IF (IsBuiltin (.str),

PTGBinOpBuiltin (Expr[2].parcode, .code, Expr[3].parcode),

PTGBinOpCall (PTGSeq (PTGStr("p"), .code),

Expr[2].parcode, Expr[3].parcode)));

END;

RULE rUnaryExpr :

Expr ::= UnaryOp Expr

COMPUTE

.str = OpRepresentation (Expr[1].Operator, UnaryOp.Operator);

.code = PTGStr (.str);

Expr[1].seqcode =

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

IF (IsBuiltin (.str),

PTGUnOpBuiltin (.code, Expr[2].seqcode),

PTGUnOpCall (.code, Expr[2].seqcode)));

Expr[1].parcode =

IF (NOT (OR (IsErrorConst (Expr[1].Val), IsInterval (Expr[1].Type))),

PTGStr (Const2Str (Expr[1].Val)),

/* else */

IF (IsBuiltin (.str),

PTGUnOpBuiltin (.code, Expr[2].parcode),

PTGUnOpCall (PTGSeq (PTGStr("p"), .code), Expr[2].parcode)));

END;

RULE rTypeConvExpr :

268 48 EXPRESSIONS

Expr ::= TypeId '(' ExprList ')'

COMPUTE

Expr[1].seqcode = PTGTypeCast (TypeId.Ptg, ExprList.seqcode);

Expr[1].parcode = PTGpTypeCast (TypeId.Ptg, ExprList.parcode);

END;

RULE rMaxindexExpr :

Expr ::= 'MAXINDEX' '(' Object ')'

COMPUTE

Expr[1].seqcode =

IF (OR (EQ (.Kind, NodeArrayTypeK), EQ (.Kind, NodeGroupTypeK)),

PTGGroupMaxindexSeq (Object.seqcode),

/* else */

IF (EQ (.Kind, ConTypeK),

PTGStr ("/* ERROR: sequential call of MAXINDEX (ConTypeK) !!! */"),

/* else */

IF (EQ (.Kind, ArrayTypeK),

PTGArrayMaxindex (PTGInt (GetIval (GetVal (Object.Type, ErrorConst)))),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGNetMaxindex (Object.seqcode),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at seqMAXINDEX", .Kind),

PTGNULL)))));

Expr[1].parcode =

IF (OR (EQ (.Kind, NodeArrayTypeK), EQ (.Kind, NodeGroupTypeK)),

PTGGroupMaxindex (Object.parcode),

/* else */

IF (EQ (.Kind, ConTypeK),

PTGInterfaceMaxindex (Object.parcode,

IF (EQ (Object.Mode, GetDataloc (Object.Type, NoMode)),

PTGKey (Object.Type), PTGStr ("_remote_connection"))),

/* else */

IF (EQ (.Kind, ArrayTypeK),

PTGArrayMaxindex (PTGInt (GetIval (GetVal (Object.Type, ErrorConst)))),

/* else */

IF (EQ (.Kind, NetTypeK),

PTGNetMaxindex (Object.seqcode),

/* else */

ORDER (

Message1 (DEADLY, "Object kind %d at seqMAXINDEX", .Kind),

PTGNULL)))));

END;

g

This macro is de�ned in de�nitions 317, 318, 322, and 324.

This macro is invoked in de�nition 334.

48.2 Function call

Expression PTG[323] �323

f

FunctionCall: [IndentNewLine] $1 " (" $2 ")"

ObjectFunctionCall: [IndentNewLine] $1 "_" $2 " (" $3 [IndentIncr]

$4 [IndentDecr] ")"

269

g

This macro is de�ned in de�nitions 316, 321, and 323.

This macro is invoked in de�nition 336.

Expression Generation[324] � 324

f

RULE rFCallExpr :

Expr ::= FunctionCall

COMPUTE

Expr[1].seqcode = FunctionCall.seqcode;

Expr[1].parcode = FunctionCall.parcode;

END;

RULE rObjFCallExpr:

Expr ::= ObjectFunctionCall

COMPUTE

Expr[1].seqcode = ObjectFunctionCall.seqcode;

Expr[1].parcode = ObjectFunctionCall.parcode;

END;

RULE rFunctionCall :

FunctionCall ::= FunctionId '(' ArgumentList ')'

COMPUTE

FunctionCall.seqcode =

PTGFunctionCall (FunctionId.Ptg, ArgumentList.seqcode);

FunctionCall.parcode =

PTGFunctionCall (PTGParName (FunctionId.Ptg), ArgumentList.parcode);

END;

RULE rObjectFunctionCall1 :

ObjectFunctionCall ::= Object '.' ObjectFunctionId '(' ArgumentList ')'

COMPUTE

ObjectFunctionCall.seqcode =

PTGObjectFunctionCall (ObjectFunctionId.Ptg, PTGKey (Object.Type),

Object.seqcode, WithComma (ArgumentList.seqcode));

ObjectFunctionCall.parcode =

PTGObjectFunctionCall (ObjectFunctionId.Ptg, PTGKey (Object.Type),

Object.parcode, WithComma (ArgumentList.parcode));

END;

g

This macro is de�ned in de�nitions 317, 318, 322, and 324.

This macro is invoked in de�nition 334.

49 Objects

Object Generation[325] � 325

f

SYMBOL Object COMPUTE /* default values: */

THIS.smallcode = PTGNULL;

THIS.largecode = PTGNULL;

THIS.seqslicecode = PTGStr ("_allslice");

THIS.parslicecode = PTGStr ("p__allslice");

END;

g

270 49 OBJECTS

This macro is de�ned in de�nitions 325, 327, 329, 331, and 332.

This macro is invoked in de�nition 334.

49.1 ME, YOU, INDEX, and explicit variables

The objects ME and YOU are always passed as pointers. That means that to access their �elds, we must
either use the arrow syntax ME-> of MPL or must �rst dereference the pointer (*ME). We use the latter
approach, which, although less elegant, is signi�cantly simpler.

Object PTG[326] �326

f

PtrObject: "*(" $1 ")"

g

This macro is de�ned in de�nitions 326, 328, and 330.

This macro is invoked in de�nition 336.

Object Generation[327] �327

f

RULE rMeObject :

Object ::= 'ME'

COMPUTE

Object.seqcode = PTGStr ("(*ME)");

Object.parcode = PTGStr ("(*ME)");

END;

RULE rYouObject :

Object ::= 'YOU'

COMPUTE

Object.seqcode = PTGStr ("(*YOU)");

Object.parcode = PTGStr ("(*YOU)");

END;

RULE rIndexObject :

Object ::= 'INDEX'

COMPUTE

Object.seqcode = PTGStr ("ME->_me_D.meI");

Object.parcode = PTGStr ("ME->_me_D.meI");

END;

RULE rDirectObject :

Object ::= Objectname

COMPUTE

Object.seqcode =

IF (OR (EQ (Objectname.Access, VarPAcc), EQ (Objectname.Access, IoPAcc)),

PTGPtrObject (Objectname.Ptg),

/* else */

IF (NOT (OR (IsErrorConst (Objectname.Val), IsInterval (Objectname.Type))),

PTGStr (Const2Str (Objectname.Val)),

/* else */

Objectname.Ptg));

Object.parcode = Object.seqcode;

END;

g

This macro is de�ned in de�nitions 325, 327, 329, 331, and 332.

This macro is invoked in de�nition 334.

49.2 Selection 271

49.2 Selection

For the selection there are three cases: (1) Ordinary selection on a local record, (2) selection to form
parallel variable selections, and (3) selection from an explicit network variable in sequential context. The
�rst case is what the code generated here represents, the second case is handled by making the individual
parts of the selection expression available in seqslicecode or parslicecode and in smallcode and
largecode. These attributes are then used later to generate the code that uses the parallel variable
selection.

Object PTG[328] � 328

f

Selection: $1 "." $2

NetSelection: $1 "." $2 /* how do this properly??? proc[0] fails

if $1 is subscribed */

g

This macro is de�ned in de�nitions 326, 328, and 330.

This macro is invoked in de�nition 336.

Object Generation[329] � 329

f

RULE rSelectionObject :

Object ::= Object '.' Elementname

COMPUTE

Object[1].seqslicecode = Object[2].seqslicecode;

Object[1].parslicecode = Object[2].parslicecode;

Object[1].seqcode =

IF (EQ (.Kind, NetTypeK),

PTGNetSelection (Object[2].seqcode, Elementname.Ptg),

PTGSelection (Object[2].seqcode, Elementname.Ptg));

Object[1].parcode =

PTGSelection (Object[2].parcode, Elementname.Ptg);

Object[1].smallcode = Elementname.Ptg;

Object[1].largecode = Object[2].smallcode;

END;

g

This macro is de�ned in de�nitions 325, 327, 329, 331, and 332.

This macro is invoked in de�nition 334.

49.3 Subscription

For the subscription there are two cases: Ordinary subscription on a local array and subscription to form
parallel variables. The �rst case is what the code generated here represents, the second case is handled by
making the individual parts of the subscription expression available in seqslicecode or parslicecode
and in smallcode. These attributes are used when it later turns out that the subscription has to be
implemented as a parallel variable in an object procedure call or in a parallel variable selection. The
interval given is converted to the type Interval if it is an Interval1 or Interval2.

Object PTG[330] � 330

f

CanonicalizeInterval: $3 "_Canonic" $2 "(" $1 ")"

Subscription: $1 "[" $2 "]"

NetSubscription: "proc[_pick_PE(" $1 "._me_D.meI==" $2 ")]." $1

g

This macro is de�ned in de�nitions 326, 328, and 330.

This macro is invoked in de�nition 336.

272 49 OBJECTS

Object Generation[331] � 331

f

RULE rIndexedObject :

Object ::= Object '[' Expr ']'

COMPUTE

Object[1].seqcode =

IF (EQ (.Kind, NetTypeK),

PTGNetSubscription (Object[2].seqcode, Expr.seqcode),

PTGSubscription (Object[2].seqcode, Expr.seqcode));

Object[1].parcode = PTGSubscription (Object[2].parcode, Expr.parcode);

Object[1].seqslicecode =

IF (EQ (Expr.Type, Interval1Key),

PTGCanonicalizeInterval (Expr.seqcode, PTGKey (Expr.Type), PTGStr("")),

/* else */

IF (EQ (Expr.Type, Interval2Key),

PTGCanonicalizeInterval (Expr.seqcode, PTGKey (Expr.Type), PTGStr("")),

/* else */

Expr.seqcode));

Object[1].parslicecode =

IF (EQ (Expr.Type, Interval1Key),

PTGCanonicalizeInterval (Expr.parcode, PTGKey (Expr.Type), PTGStr("p")),

/* else */

IF (EQ (Expr.Type, Interval2Key),

PTGCanonicalizeInterval (Expr.parcode, PTGKey (Expr.Type), PTGStr("p")),

/* else */

Expr.parcode));

Object[1].smallcode = Object[2].parcode;

END;

RULE rUnindexedObject :

Object ::= Object '[' ']'

COMPUTE

TRANSFER seqcode, parcode;

Object[1].smallcode = Object[2].parcode;

END;

g

This macro is de�ned in de�nitions 325, 327, 329, 331, and 332.

This macro is invoked in de�nition 334.

49.4 Connection addressing

The direct connection addressing is not implemented.

Object Generation[332] �332

f

RULE rWeightObject :

Object ::= '{' Object '-->' Object '}'

COMPUTE

Object[1].seqcode = PTGSeq (Object[2].seqcode, PTGStr ("~")); /* Dummy !!! */

Object[1].parcode = PTGSeq (Object[2].parcode, PTGStr ("~")); /* Dummy !!! */

END;

g

This macro is de�ned in de�nitions 325, 327, 329, 331, and 332.

This macro is invoked in de�nition 334.

273

50 Basic syntactic elements

This section describes the code generation for the non-constant basic tokens, i.e., for denoters (literals)
and identi�ers. The IdPtg symbol is from the tech library and generates a PTG node that contains the
string represented by the Sym attribute value of the same symbol. NumPtg converts the actual value of
the Sym attribute into a decimal digit string to represent an integer and CStringPtg generates a C style
string literal.

Basic Token Generation[333] � 333

f

SYMBOL NewTypeId INHERITS IdPtg END;

SYMBOL NewEnumId INHERITS IdPtg END;

SYMBOL NewElemId INHERITS IdPtg END;

SYMBOL NewInterfaceId INHERITS IdPtg END;

SYMBOL NewDataId INHERITS IdPtg END;

SYMBOL NewParamId INHERITS IdPtg END;

SYMBOL NewProcedureId INHERITS IdPtg END;

SYMBOL NewFunctionId INHERITS IdPtg END;

SYMBOL NewObjProcedureId INHERITS IdPtg END;

SYMBOL NewObjFunctionId INHERITS IdPtg END;

SYMBOL NewReductionFunctionId INHERITS IdPtg END;

SYMBOL NewWtaFunctionId INHERITS IdPtg END;

SYMBOL TypeId INHERITS IdPtg END;

SYMBOL Objectname INHERITS IdPtg END;

SYMBOL Elementname INHERITS IdPtg END;

SYMBOL ProcedureId INHERITS IdPtg END;

SYMBOL ObjectProcedureId INHERITS IdPtg END;

SYMBOL FunctionId INHERITS IdPtg END;

SYMBOL ObjectFunctionId INHERITS IdPtg END;

SYMBOL ReductionFunctionId INHERITS IdPtg END;

SYMBOL WtaFunctionId INHERITS IdPtg END;

SYMBOL RealDenoter INHERITS IdPtg END;

SYMBOL IntegerDenoter INHERITS NumPtg END;

SYMBOL StringDenoter INHERITS CStringPtg END;

g

This macro is invoked in de�nition 334.

51 Put it all together

All of the above speci�cations belong into a small number of �les, to which they are now assigned.

The LIDO �le contains the code generation attribution rules.

code2.lido[334] � 334

f

Code Generation Attributes[249]
Coding Order[254]
Overall Program Generation[256]
Type De�nition Generation[261]
Data Object De�nition Generation[278]
Subroutine De�nition Generation[285]
Statement Generation[295]
Expression Generation[317]

274 51 PUT IT ALL TOGETHER

Object Generation[325]
Basic Token Generation[333]
g

This macro is attached to an output �le.

The head �le is included at the top of the C code that is generated from the lido �le.

code2.head[335] �335

f

#include "clp.h"

#include "divgen.h"

#include "operatorgen.h"

#include "remoteconcomm.h"

alignment computation[251]
g

This macro is attached to an output �le.

The PTG �le contains the code generation templates.

code2.ptg[336] �336

f

Cupit Program PTG[255]
Type De�nition PTG[260]
Data Object De�nition PTG[277]
Subroutine De�nition PTG[282]
Statement PTG[294]
Expression PTG[316]
Object PTG[326]
g

This macro is attached to an output �le.

The property de�nition language PDL �le contains the de�nition table entries introduced by the code
generation.

code2.pdl[337] �337

f

"ptg_gen.h" /* PTGNode */

Code Generation Properties[250]
g

This macro is attached to an output �le.

The C �le (plus corresponding .h �le) contains the procedure that sets the size and alignment property
for the prede�ned types.

code2.h[338] �338

f

#ifndef type_H

#define type_H

extern void SetPredefTypeSizeAlign ();

#endif

g

This macro is attached to an output �le.

code2.c[339] �339

f

#include "scope.h" /* Declarations of predefined objects' xKey variables */

#include "pdl_gen.h" /* Property manipulation functions and property types */

275

Set Properties of Prede�ned Types[252]
g

This macro is attached to an output �le.

276 52 LANGUAGE OPERATIONS

PART V: Run Time System

The run time system consists of functions that are used by the generated code but are not directly
included in it. Instead, the functions are split across a number �les which are compiled only once (and
independent of a run of the CuPit compiler) and are then linked to the code generated by the CuPit

compiler when the CuPit compiler is used.

In this part we also �nd the Make�les used for several administrative tasks and the compiler driver shell
script.

52 Language operations

This section describes that part of the run time system that implements operations that are directly
visible in CuPit source programs. These are the random number generation (including a language-invisible
initialization function), the interval operations, type conversions for the standard types, some operators,
and topology change operations (including some language-invisible auxiliary operations).

52.1 Random number generation

rts.h Random Number Generator[340] �340

f

Real _rRandomOp (Realerval range);

plural Real p_rRandomOp (plural Realerval range);

Int _iRandomOp (Interval range);

plural Int p_iRandomOp (plural Interval range);

Int1 _iRandomOp1 (Interval1 range);

plural Int1 p_iRandomOp1 (plural Interval1 range);

Int2 _iRandomOp2 (Interval2 range);

plural Int2 p_iRandomOp2 (plural Interval2 range);

void _INITRANDOM(Int seed);

g

This macro is invoked in de�nition 385.

There is one singular and one plural function for each of the interval types plus the initialization operation.
The initialization is called once in the global initialization function of the CuPit program and can be called
again in an external function by the user if necessary. The initialization uses a seed supplied by the caller
for reproducable results or the time of day if the seed 0 is given. The random Reals have �ve random
digits. Note that this random number generator is not sophisticated, as its properties are usually not
very important for neural algorithms.

RTS Random Number Generator[341] �341

f

extern long random ();

extern srandom();

visible extern int time (/* int* */);

#define _Realrandomprecision 99999.0

Real _rRandomOp (Realerval range)

{

return (`random01 * (range.max-range.min) + range.min);

`random01:

/* a random factor in the range [0,1) : */

52.1 Random number generation 277

(Real)_iRandomOp (_IntIntervalOp (0, _Realrandomprecision))/

_Realrandomprecision

}

plural Real p_rRandomOp (plural Realerval range)

{

return (`random01 * (range.max-range.min) + range.min);

`random01:

/* a random factor in the range [0,1) : */

(plural Real)p_iRandomOp (p_IntIntervalOp (0, _Realrandomprecision)) /

_Realrandomprecision

}

Int _iRandomOp (Interval range)

{

return (((Int)random() % (range.max-range.min+1)) + range.min);

}

plural Int p_iRandomOp (plural Interval range)

{

return (((plural Int)p_random() % (range.max-range.min+1)) + range.min);

}

Int1 _iRandomOp1 (Interval1 range)

{

return (((Int)random() % (range.max-range.min+1)) + range.min);

}

plural Int1 p_iRandomOp1 (plural Interval1 range)

{

return (((plural Int)p_random() % (range.max-range.min+1)) + range.min);

}

Int2 _iRandomOp2 (Interval2 range)

{

return (((Int)random() % (range.max-range.min+1)) + range.min);

}

plural Int2 p_iRandomOp2 (plural Interval2 range)

{

return (((plural Int)p_random() % (range.max-range.min+1)) + range.min);

}

void _INITRANDOM(Int seed)

{

/* if seed == 0, the front end time is used as init value */

plural int r = 0;

plural Bool new = false; /* where has a new seed just been put ? */

int step;

srandom (seed ? (int)seed

: (int)callRequest (time, sizeof(int*), (int*)0));

/* now seed p_random on all processors */

proc[0].r = random ();

proc[0].new = true;

278 52 LANGUAGE OPERATIONS

if (iyproc == 0) { /* in first row only: */

for (step = 1; step < nxproc; step <<= 1) {

if (ixproc < step) {

if (new) {

p_srandom (r);

new = false;

}

xnetE[step].r = p_random();

xnetE[step].new = true;

}

}

}

for (step = 1; step < nyproc; step <<= 1) {

if (iyproc < step) {

if (new) {

p_srandom (r);

new = false;

}

xnetS[step].r = p_random();

xnetS[step].new = true;

}

}

if (new)

p_srandom (r);

}

g

This macro is invoked in de�nition 386.

52.2 Type conversion and operators

All conversion operations for the standard types are implemented as macros.

rts.h Type Conversions[342] �342

f

#define _mkReal(x) ((Real)(x))

#define _mkInt(x) ((Int)(x))

#define _mkInt2(x) ((Int2)(x))

#define _mkInt1(x) ((Int1)(x))

#define p_mkReal(x) ((plural Real)(x))

#define p_mkInt(x) ((plural Int)(x))

#define p_mkInt2(x) ((plural Int2)(x))

#define p_mkInt1(x) ((plural Int1)(x))

g

This macro is invoked in de�nition 385.

Some of the operators are implemented as macros, too, since they are available in MPL or can easily be
implemented as a single expression. Others are implemented as functions. Note that some of the macro
implementations can induce unexpected side e�ects if used carelessly, because the operands are evaluated
more than once.

rts.h Operators[343] �343

f

#define _IntervalEqOp(a,b) ((a).min==(b).min && (a).max==(b).max)

#define _StringEqOp(a,b) (!strcmp(a,b))

#define _IntervalNeqOp(a,b) ((a).min!=(b).min || (a).max!=(b).max)

52.2 Type conversion and operators 279

#define _StringNeqOp(a,b) strcmp(a,b)

#define _IntervalNeqOp(a,b) ((a).min!=(b).min || (a).max!=(b).max)

#define _IntervalInOp(x,iv) ((iv).min <= (x) && (iv).max >= (x))

#define _MinOp(iv) ((iv).min)

#define _MaxOp(iv) ((iv).max)

#define _realmod(x,y) f_fmod (x,y)

Int _iExpOp (Int n, Int k);

Real _riExpOp (Real x, Int k);

float f_pow (float, float);

#define _rExpOp(x,y) f_pow(x,y)

#define p_IntervalEqOp(a,b) _IntervalEqOp(a,b)

#define p_StringEqOp(a,b) (!p_strcmp(a,b))

#define p_IntervalNeqOp(a,b) _IntervalNeqOp(a,b)

#define p_StringNeqOp(a,b) p_strcmp(a,b)

#define p_IntervalInOp(x,iv) _IntervalInOp(x,iv)

#define p_MinOp(iv) _MinOp(iv)

#define p_MaxOp(iv) _MaxOp(iv)

#define p_realmod(x,y) fp_fmod (x,y)

plural Int p_iExpOp (plural Int n, plural Int k);

plural Real p_riExpOp (plural Real x, plural Int k);

#define p_rExpOp(x,y) fp_pow(x,y)

plural float fp_pow (plural float, plural float); /* missing in mp_libm.h */

Interval _IntIntervalOp (Int a, Int b);

Interval2 _IntIntervalOp2 (Int2 a, Int2 b);

Interval1 _IntIntervalOp1 (Int1 a, Int1 b);

Realerval _RealIntervalOp (Real a, Real b);

plural Interval p_IntIntervalOp (plural Int a, plural Int b);

plural Interval2 p_IntIntervalOp2 (plural Int2 a, plural Int2 b);

plural Interval1 p_IntIntervalOp1 (plural Int1 a, plural Int1 b);

plural Realerval p_RealIntervalOp (plural Real a, plural Real b);

Interval _CanonicInterval2 (Interval2 i);

Interval _CanonicInterval1 (Interval1 i);

Interval _CanonicIntervalInt (Int i);

plural Interval p_CanonicInterval2 (plural Interval2 i);

plural Interval p_CanonicInterval1 (plural Interval1 i);

plural Interval p_CanonicIntervalInt (plural Int i);

#define _allslice _IntIntervalOp (0,1<<30)

#define p__allslice p_IntIntervalOp (0,1<<30)

g

This macro is invoked in de�nition 385.

The boolean operations on intervals are implemented as macros, as are the MIN and MAX operations. This
has the advantage that there is no need for di�erent variants, neither for the various interval types nor
for sequential versus parallel execution. The interval construction operations must be implemented as
functions. Also in this section are the equality operators on STRING, the exponentiation operators, and
the MOD operator for Real.

RTS Operators[344] � 344

f

Int _iExpOp (Int n, Int k)

{

/* Exponentiation by integers via square and multiply: */

Int result = n;

if (k == 0)

return (1);

280 52 LANGUAGE OPERATIONS

while (k > 1) {

if ((k & 1) == 0) {

result *= result; k >>= 1; /* k even */

}

else {

result *= n; k--; /* k odd */

}

}

return (result);

}

Real _riExpOp (Real x, Int k)

{

/* Exponentiation by integers via square and multiply: */

Real result = x;

if (k == 0)

return (1.0);

while (k > 1) {

if ((k & 1) == 0) {

result *= result; k >>= 1; /* k even */

}

else {

result *= x; k--; /* k odd */

}

}

return (result);

}

plural Int p_iExpOp (plural Int n, plural Int k)

{

/* Exponentiation by integers via square and multiply: */

plural Int result = n;

if (k == 0)

return (1);

while (k > 1) {

if ((k & 1) == 0) {

result *= result; k >>= 1; /* k even */

}

else {

result *= n; k--; /* k odd */

}

}

return (result);

}

plural Real p_riExpOp (plural Real x, plural Int k)

{

/* Exponentiation by integers via square and multiply: */

plural Real result = x;

if (k == 0)

return (1.0);

while (k > 1) {

if ((k & 1) == 0) {

result *= result; k >>= 1; /* k even */

}

52.3 Topology change 281

else {

result *= x; k--; /* k odd */

}

}

return (result);

}

#define _MakeIntervalOp(_it,_name,_t) \

_it _name (_t a, _t b) { _it i; i.min=a; i.max=b; return(i); } \

plural _it _cat2(p,_name) (plural _t a, plural _t b) \

{ plural _it i; i.min=a; i.max=b; return(i); }

_MakeIntervalOp (Interval, _IntIntervalOp, Int)

_MakeIntervalOp (Interval2, _IntIntervalOp2, Int2)

_MakeIntervalOp (Interval1, _IntIntervalOp1, Int1)

_MakeIntervalOp (Realerval, _RealIntervalOp, Real)

Interval _CanonicInterval1 (Interval1 i)

{

return (_IntIntervalOp ((Int)i.min, (Int)i.max));

}

Interval _CanonicInterval2 (Interval2 i)

{

return (_IntIntervalOp ((Int)i.min, (Int)i.max));

}

Interval _CanonicIntervalInt (Int i)

{

return (_IntIntervalOp (i, i));

}

plural Interval p_CanonicInterval1 (plural Interval1 i)

{

return (p_IntIntervalOp ((plural Int)i.min, (plural Int)i.max));

}

plural Interval p_CanonicInterval2 (plural Interval2 i)

{

return (p_IntIntervalOp ((plural Int)i.min, (plural Int)i.max));

}

plural Interval p_CanonicIntervalInt (plural Int i)

{

return (p_IntIntervalOp (i, i));

}

g

This macro is invoked in de�nition 387.

52.3 Topology change

This section contains topology change operations. Two of them implement language-visible functionality,
the others are auxiliary functions for these or other topology changing operations.

rts.h Topology Change Operations[345] � 345

282 52 LANGUAGE OPERATIONS

f

plural void a_MERGE__remote_connection (plural _network_D *net_D,

plural _sint con_ls, plural _remote_connection *objs,

_bool merge, _bool redistribute, _bool create_replicates);

plural void DISCONNECT (plural _network_D* net_D,

plural char* nd1, plural Interval slice1, plural _node_group_D* group_D1,

int nd_D_offset1, int interf_D_offset1, int interf_offset1,

plural char* nd2, plural Interval slice2, plural _node_group_D* group_D2,

int nd_D_offset2, int interf_D_offset2, int interf_offset2,

int consize1, int oe_offset1, int exists_offset1,

int consize2, int exists_offset2);

plural void REPLICATE_connection (plural _connection_D* con_D,

plural Int into);

plural void delete_connection_postprocessing (plural _connection_D *con_D,

plural _Gptr *oe, int remote_descr_offset);

plural void copy_connections (plural char *old_nd, plural char *nd,

int ndsize, int node_D_offset, int interface_offset, int interface_D_offset,

int consize, int con_D_offset, int oe_offset,

plural _bint x0, plural _bint y0,

plural _bint lxN, plural _bint lyN, plural _bint layer,

plural _bool is_replicate0);

plural void delete_connections (plural char *cons, int con_size,

_sint con_ls, int oe_offset, int descr_offset, int oe_descr_offset);

plural void reconnect1_connections (plural char *old_cons, plural char *cons,

int consize, _sint old_con_ls, _sint con_ls,

int oe_offset, int descr_offset, int oe_oe_offset);

plural void reconnect_connections (plural char *cons, int con_size,

_sint con_ls, int oe_offset, int descr_offset, int oe_oe_offset);

g

This macro is invoked in de�nition 385.

Most topology change operations are type-speci�c and must thus be implemented using templates. The
exceptions are implemented in this module:

We need a simpli�ed operation for the merge call to those interfaces that have remote connections
attached. Nothing needs to be done to merge them, because the actual data merging occurs from the
data end. But it is still necessary to implement the redistribution to be able to construct replicates using
this procedure.

RTS Topology Change Operations[346] �346

f

plural void a_MERGE__remote_connection (plural _network_D *net_D,

plural _sint con_ls, plural _remote_connection *objs,

_bool merge, _bool redistribute, _bool create_replicates)

{

/* active set: all

*/

_sint step, i;

_sint repN = _sgl(net_D->repN);

_bint lxN = _sgl(net_D->lxN),

lyN = _sgl(net_D->lyN);

_TRACE (4, ("MERGE_remoteCon (%x, %d/%d/%d)\n", (int)objs, (int)merge,

(int)redistribute, (int)create_replicates));

if (!create_replicates)

return; /* nothing to be done */

_assert (!merge && redistribute && create_replicates);

for (i = 0; i < con_ls; i++, objs++)

52.3 Topology change 283

`distribute this connection;

`distribute this connection:

plural _bool result_computed = net_D->exists && net_D->meI == 0 &&

objs->_me_D.exists;

if (ixproc < _S(lxN))

`do distribution in y direction;

`do distribution in x direction;

objs->_oe.pe += (ixproc & ~_M(lxN)) + ((iyproc & ~_M(lyN)) << lxprocN);

`do distribution in y direction:

step = _S(lyN);

while (step < yprocN) {

if (iyproc + step < yprocN && result_computed && `y_neighbor_I < repN)

`put y remote value;

step <<= 1;

}

`put y remote value:

ss_xsend (-step, 0, (plural void*)objs, (plural void*)objs,

sizeof(_remote_connection));

xnetS[step].result_computed = true;

`do distribution in x direction:

step = _S(lxN);

while (step < xprocN) {

if (ixproc + step < xprocN && result_computed && `x_neighbor_I < repN)

`put x remote value;

step <<= 1;

}

`put x remote value:

ss_xsend (0, step, (plural void*)objs, (plural void*)objs,

sizeof(_remote_connection));

xnetE[step].result_computed = true;

`x_neighbor_I:

((ixproc+step) >> lxN) + ((iyproc >> lyN) << (lxprocN-lxN))

`y_neighbor_I:

((ixproc) >> lxN) + (((iyproc+step) >> lyN) << (lxprocN-lxN))

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

DISCONNECT implements the removal of connections under central control for all connection types. No
template is necessary here, because the procedure does not need access to the data portion of the connec-
tion type | only to the descriptors. The procedure works in three phases: (1) Mark all connections in
slice 1 as shadow, (2) �nd all connections in slice 2 whose opposite ends are marked as shadow and delete
them, and (3) reset all connections in slice 1 that still exist from shadow to existing. This procedure
uses the assumption that there is only one node virtualization layer per group which is always true in
form 0.

RTS Topology Change Operations[347] � 347

f

284 52 LANGUAGE OPERATIONS

plural void DISCONNECT (plural _network_D* net_D,

plural char* nd1, plural Interval slice1, plural _node_group_D* group_D1,

int nd_D_offset1, int interf_D_offset1, int interf_offset1,

plural char* nd2, plural Interval slice2, plural _node_group_D* group_D2,

int nd_D_offset2, int interf_D_offset2, int interf_offset2,

int consize1, int oe_offset1, int exists_offset1,

int consize2, int exists_offset2)

{

int i;

plural _sint meI1, meI2;

int con1_ls = _sgl(`interf1_D.con_ls),

con2_ls = _sgl(`interf2_D.con_ls);

plural char *cons;

plural _Gptr oe;

plural _realness ex;

if (net_D->formA) {

fprintf (stderr, "DISCONNECT not allowed for replicated networks\n");

exit (11);

}

meI1 = `nd1_D.meI;

meI2 = `nd2_D.meI;

/* Phase 1: */

if (`nd2_D.exists && _IntervalInOp (meI2, slice2)) {

cons = _sgl(*(plural char* plural*)(nd2 + interf_offset2));

for (i = 0; i < con2_ls; i++, cons += consize2)

if (`con2_exists)

`con2_exists = _shadow;

}

/* Phase 2: */

if (`nd1_D.exists && _IntervalInOp (meI1, slice1)) {

cons = _sgl(*(plural char* plural*)(nd1 + interf_offset1));

for (i = 0; i < con1_ls; i++, cons += consize1)

if (`con1_exists)

`perhaps delete this connection;

}

/* Phase 3: */

if (`nd2_D.exists && _IntervalInOp (meI2, slice2)) {

cons = _sgl(*(plural char* plural*)(nd2 + interf_offset2));

for (i = 0; i < con2_ls; i++, cons += consize2)

if (`con2_exists)

`con2_exists = _existing;

}

/* now invalidate the conN values in the interface descriptors: */

`interf1_D.conN = invalid_conN;

`interf2_D.conN = invalid_conN;

`perhaps delete this connection:

oe = `con1_oe;

ps_rfetch (oe.pe, oe.a+exists_offset2, (plural char*)&ex,

sizeof (_realness));

if (ex == _shadow) {

ex = _nonexisting;

sp_rsend (oe.pe, (plural char*)&ex, oe.a+exists_offset2,

sizeof (_realness));

`con1_exists = _nonexisting;

52.3 Topology change 285

}

`nd1_D:

(plural _node_D)(nd1+nd_D_offset1)

`nd2_D:

(plural _node_D)(nd2+nd_D_offset2)

`interf1_D:

(plural _interface_D)(nd1+interf_D_offset1)

`interf2_D:

(plural _interface_D)(nd2+interf_D_offset2)

`con1_exists:

(plural _realness)(cons+exists_offset1)

`con2_exists:

(plural _realness)(cons+exists_offset2)

`con1_oe:

(plural _Gptr)(cons+oe_offset1)

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

REPLICATE connection, which only needs to manipulate the descriptor. Operations supporting some of
the topology changing operations can be found in section 53.3.

RTS Topology Change Operations[348] � 348

f

plural void REPLICATE_connection (plural _connection_D* con_D,

plural Int into)

{

switch (into) {

case 0: con_D->exists = _nonexisting; return; /* delete yourself */

case 1: return; /* null operation */

default: /* replicate into many is illegal */

fprintf (stderr, "REPLICATE Connection INTO %d impossible",

_sgl(into));

exit (12);

}

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

The rest of this section are internal (auxiliary) operations for topology change:

delete connection postprocessingmust be called after a REPLICATE connection INTO 0 to clean up
the inconsistencies in the descriptor data structures: The REPLICATEmerely sets the local existsmarker
to nonexisting; we now have to do the same for the remote exists marker and must invalidate the
local and remote conN values in the interface descriptors, so that a call to update conI conN can later
be triggered when necessary. Since the exists marker that was changed by the REPLICATE connection

INTO 0 is a faked one in the case of remote operations, we must set the actual marker to nonexisting,

286 52 LANGUAGE OPERATIONS

too. The procedure also checks that the network is in form 0 and exits the program with an error message
if it is not.

RTS Topology Change Operations[349] �349

f

plural void delete_connection_postprocessing (plural _connection_D *con_D,

plural _Gptr *oe, int remote_descr_offset)

{

plural _realness ex = _nonexisting;

plural _interface_D* plural remote_interf;

plural _sint new_conN = invalid_conN;

if (con_D->boss->boss->boss->boss->formA) {

fprintf (stderr, "REPLICATE con called while network is replicated\n");

exit (13);

}

/* set local and remote 'exists' value: */

con_D->exists = _nonexisting; /* needed for remote operations! */

sp_rsend (oe->pe, (plural char*)&ex,

(plural char* plural)`remote exists address, sizeof (_realness));

/* invalidate local conN: */

con_D->boss->conN = invalid_conN; /* invalidate local conN */

/* invalidate remote conN: */

ps_rfetch (oe->pe, (plural char* plural)`remote bosspointer address,

(plural char*)&remote_interf, sizeof (_interface_D*));

sp_rsend (oe->pe, (plural char*)&new_conN,

(plural char* plural)remote_interf + offsetof(_interface_D,conN),

sizeof (new_conN));

`remote exists address:

oe->a + remote_descr_offset + offsetof (_connection_D,exists)

`remote bosspointer address:

oe->a + remote_descr_offset + offsetof (_connection_D,boss)

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

copy connections is a procedure used during network replication. For one old node virtualization layer
it copies the connections of one interface to the corresponding new connection array, which must already
be allocated, and sets the oe pointer of the old connection object to point to the new one (this is step 1
of the remote pointer fuddling described in section 30.4.2). The procedure uses several parameters that
describe the overall node layout of the new node group.

RTS Topology Change Operations[350] �350

f

plural void copy_connections (plural char *old_nd, plural char *nd,

int ndsize, int node_D_offset, int interface_offset, int interface_D_offset,

int consize, int con_D_offset, int oe_offset,

plural _bint x0, plural _bint y0,

plural _bint lxN, plural _bint lyN, plural _bint layer,

plural _bool is_replicate0)

{

/* This procedure assumes that the old connections have a correct

global meI set and uses only connections from replicate 0.

The numbering of connections within a node block is along x

first, then y, and local index changing slowest.

52.3 Topology change 287

*/

int i;

plural char* con = _sgl(*(plural char* plural*)(old_nd + interface_offset));

_sint con_ls = _sgl(((plural _interface_D*)

(old_nd+interface_D_offset))->con_ls);

plural _sint ndI;

plural _bint x, y;

plural _sint index;

plural _Gptr target;

_TRACE (2, ("copy_connections__ (%x,%x)\n", (int)old_nd, (int)nd));

ndI = `old_nd _me_D.meI;

if (is_replicate0 && `old_nd _me_D.exists)

for (i = 0; i < con_ls; i++, con += consize)

if (`con_D.exists)

`copy this layer of connections;

`copy this layer of connections:

plural _sint conI = `con_D.meI;

plural _bint my_lxN = router[ndI].lxN,

my_lyN = router[ndI].lyN;

_lfold3(conI, my_lxN, my_lyN, x, y, index);

target.pe = (router[ndI].x0 + x) + (router[ndI].y0 + y) * xprocN;

target.a = *(plural char* plural* plural)(nd + ndsize*router[ndI].layer +

interface_offset) + index*consize;

`con_D.boss = &`nd interf_D; /* destroys old boss descriptor ! */

sp_rsend (target.pe, con, target.a, consize);

/* now install 'Nachsendeantrag' (``where I have moved to''): */

(plural _Gptr)(con+oe_offset) = target;

`con_D:

(plural _connection_D)(con+con_D_offset)

`nd interf_D:

(plural _interface_D)(nd + interface_D_offset)

`old_nd _me_D:

(plural _node_D)(old_nd + node_D_offset)

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

delete connections marks all connections in a connection array as deleted. This includes setting the
exists marker of the opposite end to nonexisting, too.

RTS Topology Change Operations[351] � 351

f

plural void delete_connections (plural char *cons, int con_size,

_sint con_ls, int oe_offset, int descr_offset, int oe_descr_offset)

{

/* for intra-group connections, the `exists' field is set to _nonexisting

twice, but the procedure works correctly.

active set: node blocks on which to delete

*/

int i;

plural _Gptr oe;

288 52 LANGUAGE OPERATIONS

plural _realness ex = _nonexisting;

plural _interface_D* plural remote_interf;

plural _sint new_conN = invalid_conN;

for (i = 0; i < con_ls; i++, cons += con_size)

if (`con_D.exists) {

/* set local and remote 'exists' value: */

`con_D.exists = ex;

oe = *(plural _Gptr*)(cons+oe_offset);

sp_rsend (oe.pe, (plural char*)&ex, oe.a+`oe_exists_offset,

sizeof(_realness));

/* invalidate local and remote conN: */

`con_D.boss->conN = invalid_conN; /* invalidate local conN */

ps_rfetch (oe.pe, (plural char* plural)`remote bosspointer address,

(plural char*)&remote_interf, sizeof (_interface_D*));

sp_rsend (oe.pe, (plural char*)&new_conN,

(plural char* plural)remote_interf +

offsetof(_interface_D,conN),

sizeof (new_conN));

}

`con_D:

(plural _connection_D)(cons+descr_offset)

`oe_exists_offset:

oe_descr_offset + offsetof(_connection_D,exists)

`remote bosspointer address:

oe.a + oe_descr_offset + offsetof(_connection_D,boss)

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

reconnect connections implements the \follow oe pointer" part (step 2) of the remote connection
pointer reorganization as described in section 30.4.2. reconnect1 connections does the equivalent for
the node group extension and replicate node operations, where only a single group has to be reconnected
so that intra-group connections are a special case.

RTS Topology Change Operations[352] �352

f

plural void reconnect_connections (plural char *cons, int con_size,

_sint con_ls, int oe_offset, int descr_offset, int oe_oe_offset)

{

/* iterates over the NEW connections

active set: blocks of existing nodes in replicate 0

*/

int i;

plural _Gptr oe, new_oe;

for (i = 0; i < con_ls; i++, cons += con_size) {

if (`con_D.exists) {

oe = *(plural _Gptr*)(cons+oe_offset);

#ifdef NDEBUG

ps_rfetch (oe.pe, oe.a+oe_oe_offset, cons+oe_offset, sizeof(_Gptr));

#else

ps_rfetch (oe.pe, oe.a+oe_oe_offset, (plural char*)&new_oe,

sizeof(_Gptr));

(plural _Gptr)(cons+oe_offset) = new_oe;

52.3 Topology change 289

#endif

}

}

`con_D:

(plural _connection_D)(cons+descr_offset)

}

plural void reconnect1_connections (plural char *old_cons, plural char *cons,

int consize, _sint old_con_ls, _sint con_ls,

int oe_offset, int descr_offset, int oe_oe_offset)

{

/* iterates over the NEW connections

active set: replicate 0

*/

int i;

_sint cons_start = (_sint)cons,

cons_end = (_sint)(cons + con_ls*consize),

old_cons_start = (_sint)old_cons,

old_cons_end = (_sint)(old_cons + old_con_ls*consize);

plural _bool make_correction;

plural _sint a;

plural _Gptr oe,

roe; /* remote oe: the oe of my oe */

for (i = 0; i < con_ls; i++, cons += consize) {

if (`con_D.exists) {

oe = *(plural _Gptr*)(cons+oe_offset); /* copy of original oe pointer */

ps_rfetch (oe.pe, oe.a+oe_oe_offset, (plural char*)&roe, sizeof(_Gptr));

a = (plural _sint)roe.a;

/* a is my remote's remote pointer.

It normally points to my former me (i.e. into old_cons).

For intra-layer connections, however, it already points into cons.

*/

make_correction = true;

if (!`a is in old_cons)

`handle intra layer connection; /* may set make_correction = false */

/* now send correct new oe data to my opposite end: */

if (make_correction) {

roe.pe = iproc;

roe.a = cons;

sp_rsend (oe.pe, (plural char*)&roe, oe.a+oe_oe_offset, sizeof(_Gptr));

}

}

}

`handle intra layer connection:

/* There are two cases:

1. this a is a `where I have moved to' pointer of an intra-group

connection: roe shows where my actual oe has moved to,

oe needs correction.

2. This is an already corrected pointer. (Either from a

previous virtualization layer at this interface or from

a previously handled interface).

Can be recognized by roe pointing into cons.

290 52 LANGUAGE OPERATIONS

Nothing at all needs to be done for this pointer.

*/

if (`a is in cons) /* case 2 */

make_correction = false; /* skip correction: it has already been made */

else /* case 1 */

(plural _Gptr)(cons+oe_offset) = oe = roe;

`con_D:

(plural _connection_D)(cons+descr_offset)

`a is in old_cons:

a >= old_cons_start && a < old_cons_end

`a is in cons:

a >= cons_start && a < cons_end

}

g

This macro is de�ned in de�nitions 346, 347, 348, 349, 350, 351, and 352.

This macro is invoked in de�nition 388.

52.4 Standard library

There are a number of functions that are de�ned in the run time system in order to be used as external
functions or procedures in the user programs. Only declarations need to be given for these objects in a
CuPit program. Most of them fall into one of two classes: output procedures for the builtin types and
arithmetic functions not builtin into the language. Additional procedures allow access to command line
arguments and timing measurement of program runs.

Here are the output functions for the basic types:

rts.h Standard Library [353] �353

f

void pBool (Bool ME);

void pReal (Real ME);

void pString (String ME);

void pInt (Int ME);

void pInt1 (Int1 ME);

void pInt2 (Int2 ME);

void pRealerval (Realerval ME);

void pInterval (Interval ME);

void pInterval1 (Interval1 ME);

void pInterval2 (Interval2 ME);

plural void p_pBool (plural Bool ME);

plural void p_pReal (plural Real ME);

plural void p_pString (plural String ME);

plural void p_pInt (plural Int ME);

plural void p_pInt1 (plural Int1 ME);

plural void p_pInt2 (plural Int2 ME);

plural void p_pRealerval (plural Realerval ME);

plural void p_pInterval (plural Interval ME);

plural void p_pInterval1 (plural Interval1 ME);

plural void p_pInterval2 (plural Interval2 ME);

void pRealIO (plural Real **x, Interval which);

void pIntIO (plural Int **x, Interval which);

void pInt1IO (plural Int1 **x, Interval which);

52.4 Standard library 291

void pInt2IO (plural Int2 **x, Interval which);

g

This macro is de�ned in de�nitions 353, 356, 362, and 365.

This macro is invoked in de�nition 385.

RTS Standard Library [354] � 354

f

void pBool (Bool ME)

{ printf ("%c", ME ? 'T' : 'F'); }

void pReal (Real ME)

{ printf ("%g ", ME); }

void pString (String ME)

{ printf ("%s", ME); }

void pInt (Int ME)

{ printf ("%d ", ME); }

void pInt1 (Int1 ME)

{ printf ("%d ", (int)ME); }

void pInt2 (Int2 ME)

{ printf ("%d ", (int)ME); }

void pRealerval (Realerval ME)

{ printf ("%g...%g ", ME.min, ME.max); }

void pInterval (Interval ME)

{ printf ("%d...%d ", ME.min, ME.max); }

void pInterval1 (Interval1 ME)

{ printf ("%d...%d ", (int)ME.min, (int)ME.max); }

void pInterval2 (Interval2 ME)

{ printf ("%d...%d ", (int)ME.min, (int)ME.max); }

plural void p_pBool (plural Bool ME)

{ p_printf ("%c", (plural int)(ME ? 'T' : 'F')); }

plural void p_pReal (plural Real ME)

{ p_printf ("%g ", ME); }

plural void p_pString (plural String ME)

{ p_printf ("%s", ME); }

plural void p_pInt (plural Int ME)

{ p_printf ("%d ", ME); }

plural void p_pInt1 (plural Int1 ME)

{ p_printf ("%d ", (plural int)ME); }

plural void p_pInt2 (plural Int2 ME)

{ p_printf ("%d ", (plural int)ME); }

plural void p_pRealerval (plural Realerval ME)

292 52 LANGUAGE OPERATIONS

{ p_printf ("%g...%g ", ME.min, ME.max); }

plural void p_pInterval (plural Interval ME)

{ p_printf ("%d...%d ", ME.min, ME.max); }

plural void p_pInterval1 (plural Interval1 ME)

{ p_printf ("%d...%d ", (plural int)ME.min, (plural int)ME.max); }

plural void p_pInterval2 (plural Interval2 ME)

{ p_printf ("%d...%d ", (plural int)ME.min, (plural int)ME.max); }

void pRealIO (plural Real **x, Interval which)

{

if (iproc >= which.min && iproc <= which.max)

p_printf ("%.2f ", **x);

}

void pIntIO (plural Int **x, Interval which)

{

if (iproc >= which.min && iproc <= which.max)

p_printf ("%d ", **x);

}

void pInt1IO (plural Int1 **x, Interval which)

{

if (iproc >= which.min && iproc <= which.max)

p_printf ("%d ", (plural int)**x);

}

void pInt2IO (plural Int2 **x, Interval which)

{

if (iproc >= which.min && iproc <= which.max)

p_printf ("%d ", (plural int)**x);

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

To make the output operations for the basic types available to a CuPit user program, the following
declarations have to be used:

stdlib.nn Output Procedures[355] �355

f

PROCEDURE pBool (Bool CONST me) IS EXTERNAL;

PROCEDURE pReal (Real CONST me) IS EXTERNAL;

PROCEDURE pString (String CONST me) IS EXTERNAL;

PROCEDURE pInt (Int CONST me) IS EXTERNAL;

PROCEDURE pInt1 (Int1 CONST me) IS EXTERNAL;

PROCEDURE pInt2 (Int2 CONST me) IS EXTERNAL;

PROCEDURE pInterval (Interval CONST me) IS EXTERNAL;

PROCEDURE pInterval1 (Interval1 CONST me) IS EXTERNAL;

PROCEDURE pInterval2 (Interval2 CONST me) IS EXTERNAL;

PROCEDURE pRealIO (Real IO x; Interval CONST which) IS EXTERNAL;

PROCEDURE pIntIO (Int IO x; Interval CONST which) IS EXTERNAL;

PROCEDURE pInt1IO (Int1 IO x; Interval CONST which) IS EXTERNAL;

PROCEDURE pInt2IO (Int2 IO x; Interval CONST which) IS EXTERNAL;

g

52.4 Standard library 293

This macro is invoked in de�nition 395.

The arithmetic functions in the library are a parameterized activation function (sigmoid as proposed by
David Elliot, standard sigmoid, or gaussian) and its �rst and second derivatives; functions to compute
the sign or absolute of a Real orInteger ; functions to compute the minimum or maximum of two Reals
or Integers; and several transcendental functions (logarithms, square root, trigonometric functions).

rts.h Standard Library [356] � 356

f

Real activation (Real x, Int1 type);

plural Real p_activation (plural Real x, plural Int1 type);

Real activationPrime (Real x, Real actx, Int1 type);

plural Real p_activationPrime (plural Real x, plural Real actx,

plural Int1 type);

Real activationPrimePrime (Real x, Real actx, Real actpx, Int1 type);

plural Real p_activationPrimePrime (plural Real x, plural Real actx,

plural Real actpx, plural Int1 type);

Real sqrtReal (Real x);

Real logReal (Real x);

Real log10Real (Real x);

Real log2Real (Real x);

Real sinReal (Real x);

Real cosReal (Real x);

Real tanReal (Real x);

Real signReal (Real x);

Real absReal (Real x);

Real minReal (Real x, Real y);

Real maxReal (Real x, Real y);

Int signInt (Int x);

Int absInt (Int x);

Int minInt (Int x, Int y);

Int maxInt (Int x, Int y);

Int1 signInt1 (Int1 x);

Int1 absInt1 (Int1 x);

Int1 minInt1 (Int1 x, Int1 y);

Int1 maxInt1 (Int1 x, Int1 y);

Int2 signInt2 (Int2 x);

Int2 absInt2 (Int2 x);

Int2 minInt2 (Int2 x, Int2 y);

Int2 maxInt2 (Int2 x, Int2 y);

plural Real p_sqrtReal (plural Real x);

plural Real p_logReal (plural Real x);

plural Real P_log10Real (plural Real x);

plural Real p_log2Real (plural Real x);

plural Real p_sinReal (plural Real x);

plural Real p_cosReal (plural Real x);

plural Real p_tanReal (plural Real x);

plural Real p_signReal (plural Real x);

plural Real p_absReal (plural Real x);

plural Real p_minReal (plural Real x, plural Real y);

plural Real p_maxReal (plural Real x, plural Real y);

plural Int p_signInt (plural Int x);

plural Int p_absInt (plural Int x);

plural Int p_minInt (plural Int x, plural Int y);

plural Int p_maxInt (plural Int x, plural Int y);

plural Int1 p_signInt1 (plural Int1 x);

294 52 LANGUAGE OPERATIONS

plural Int1 p_absInt1 (plural Int1 x);

plural Int1 p_minInt1 (plural Int1 x, plural Int1 y);

plural Int1 p_maxInt1 (plural Int1 x, plural Int1 y);

plural Int2 p_signInt2 (plural Int2 x);

plural Int2 p_absInt2 (plural Int2 x);

plural Int2 p_minInt2 (plural Int2 x, plural Int2 y);

plural Int2 p_maxInt2 (plural Int2 x, plural Int2 y);

g

This macro is de�ned in de�nitions 353, 356, 362, and 365.

This macro is invoked in de�nition 385.

We implement three di�erent activation functions: Type 0 is the soft symmetric sigmoid function
ssoft(x) =

x
1+jxj

as proposed by David Elliot with a range of -1 to 1. Type 1 is the standard sigmoid

function sstd(x) =
1

1+e�x
with a range of 0 to 1. Type 2 is a gaussian activation function g(x) = e�

1

2
x2

with a range of 0 to 1. Type 0 is also the default type (used when a type other then 1 or 2 is requested).
Additionally, we de�ne type -1 to be the identity activation function.

RTS Standard Library [357] �357

f

Real activation (Real x, Int1 type)

{

switch (type) {

case 1: return (`std sigmoid);

case 2: return (`gaussian);

case -1: return (x);

case 0:

default: return (`soft sigmoid);

}

`std sigmoid:

x > 50.0 ? 1.0 :

x < -50.0 ? -1.0 :

1.0/(1.0+f_exp(-x))

`gaussian:

x > 10.0 || x < -10.0 ? 1e-10 : f_exp (-0.5*x*x)

`soft sigmoid:

x / (1.0 + (x < 0.0 ? -x : x))

}

plural Real p_activation (plural Real x, plural Int1 type)

{

switch (type) {

case 1: return (`std sigmoid);

case 2: return (`gaussian);

case -1: return (x);

case 0:

default: return (`soft sigmoid);

}

`std sigmoid:

x > 50.0 ? 1.0 :

x < -50.0 ? -1.0 :

1.0/(1.0+fp_exp(-x))

52.4 Standard library 295

`gaussian:

x > 10.0 || x < -10.0 ? 1e-10 : fp_exp (-0.5*x*x)

`soft sigmoid:

x / (1.0 + (x < 0.0 ? -x : x))

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

The �rst derivative of the activation functions is the following: s0soft(x) =
1

(1+jxj)2
and s0std(x) =

e�x

(1+e�x)2

and g0(x) = �x e�
1

2
x2 .

These can be computed more e�ciently, however, if the value of the activation itself is available. Since
this is the case in learning programs, we make the activation available to the functions as an additional

parameter. This simpli�es the derivatives to s0std(x) = sstd(x)(1 � sstd(x)) and s0soft(x) =
ssoft(x)

2

x2
and

g0(x) = �x g(x).

RTS Standard Library [358] � 358

f

Real activationPrime (Real x, Real actx, Int1 type)

{

Real help;

switch (type) {

case 1: return (actx * (1-actx) + 1e-10); /* std sigmoid */

case 2: return (-x*actx); /* gaussian */

case -1: return (1);

case 0:

default: if (x < 1e-10 && x > -1e-10)

return (1.0);

else {

help = actx/x;

return (help*help); /* soft sigmoid */

}

}

}

plural Real p_activationPrime (plural Real x, plural Real actx,

plural Int1 type)

{

plural Real help;

switch (type) {

case 1: return (actx * (1-actx) + 1e-10); /* std sigmoid */

case 2: return (-x*actx); /* gaussian */

case -1: return (1);

case 0:

default: if (x < 1e-10 && x > -1e-10)

return (1.0); /* avoid division by zero */

else {

help = actx/x;

return (help*help); /* soft sigmoid */

}

}

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

296 52 LANGUAGE OPERATIONS

This macro is invoked in de�nition 389.

The same game can be repeated for the second derivatives using the activation and its �rst derivative as

auxiliary inputs. The second derivative of the activation functions is the following: s00soft(x) =
�2jxj

(1+jxj)3 x

and s00std(x) = s0std(x)(1 � 2sstd(x)) and g00(x) = �e�
1

2
x2 + x2 e�

1

2
x2 .

With the auxiliary inputs, the derivatives simplify to s00soft(x) = �2 sign(x) s
primesoft(x)

1+jxj
and s00std(x) =

s0std(x)(1� 2sstd(x)) and g00(x) = (x2 � 1) g(x).

RTS Standard Library [359] �359

f

Real activationPrimePrime (Real x, Real actx, Real actpx, Int1 type)

{

switch (type) {

case 1: return (actpx * (1-2*actx));

case 2: return ((x*x-1)*actx);

case -1: return (0);

case 0:

default: return (x < 0.0 ? 2*actpx/(1-x) : -2*actpx/(1+x));

}

}

plural Real p_activationPrimePrime (plural Real x, plural Real actx,

plural Real actpx, plural Int1 type)

{

switch (type) {

case 1: return (actpx * (1-2*actx));

case 2: return ((x*x-1)*actx);

case -1: return (0);

case 0:

default: return (x < 0.0 ? 2*actpx/(1-x) : -2*actpx/(1+x));

}

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

Now for the very simple other functions of this module:

RTS Standard Library [360] �360

f

Real sqrtReal (Real x)

{ return (f_sqrt (x)); }

Real logReal (Real x)

{ return (f_log (x)); }

Real log10Real (Real x)

{ return (f_log10 (x)); }

Real log2Real (Real x)

{ return (f_log (x)*1.442695); }

Real sinReal (Real x)

{ return (f_sin (x)); }

Real cosReal (Real x)

52.4 Standard library 297

{ return (f_cos (x)); }

Real tanReal (Real x)

{ return (f_tan (x)); }

Real signReal (Real x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

Real absReal (Real x)

{ return ((x < 0) ? -x : x); }

Real minReal (Real x, Real y)

{ return (x < y ? x : y); }

Real maxReal (Real x, Real y)

{ return (x > y ? x : y); }

Int signInt (Int x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

Int absInt (Int x)

{ return ((x < 0) ? -x : x); }

Int minInt (Int x, Int y)

{ return (x < y ? x : y); }

Int maxInt (Int x, Int y)

{ return (x > y ? x : y); }

Int1 signInt1 (Int1 x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

Int1 absInt1 (Int1 x)

{ return ((x < 0) ? -x : x); }

Int1 minInt1 (Int1 x, Int1 y)

{ return (x < y ? x : y); }

Int1 maxInt1 (Int1 x, Int1 y)

{ return (x > y ? x : y); }

Int2 signInt2 (Int2 x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

Int2 absInt2 (Int2 x)

{ return ((x < 0) ? -x : x); }

Int2 minInt2 (Int2 x, Int2 y)

{ return (x < y ? x : y); }

Int2 maxInt2 (Int2 x, Int2 y)

{ return (x > y ? x : y); }

plural Real p_sqrtReal (plural Real x)

{ return (fp_sqrt (x)); }

298 52 LANGUAGE OPERATIONS

plural Real p_logReal (plural Real x)

{ return (fp_log (x)); }

plural Real p_log10Real (plural Real x)

{ return (fp_log10 (x)); }

plural Real p_log2Real (plural Real x)

{ return (fp_log (x)*1.442695); }

plural Real p_sinReal (plural Real x)

{ return (fp_sin (x)); }

plural Real p_cosReal (plural Real x)

{ return (fp_cos (x)); }

plural Real p_tanReal (plural Real x)

{ return (fp_tan (x)); }

plural Real p_signReal (plural Real x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

plural Real p_absReal (plural Real x)

{ return ((x < 0) ? -x : x); }

plural Real p_minReal (plural Real x, plural Real y)

{ return (x < y ? x : y); }

plural Real p_maxReal (plural Real x, plural Real y)

{ return (x > y ? x : y); }

plural Int p_signInt (plural Int x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

plural Int p_absInt (plural Int x)

{ return ((x < 0) ? -x : x); }

plural Int p_minInt (plural Int x, plural Int y)

{ return (x < y ? x : y); }

plural Int p_maxInt (plural Int x, plural Int y)

{ return (x > y ? x : y); }

plural Int1 p_signInt1 (plural Int1 x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

plural Int1 p_absInt1 (plural Int1 x)

{ return ((x < 0) ? -x : x); }

plural Int1 p_minInt1 (plural Int1 x, plural Int1 y)

{ return (x < y ? x : y); }

plural Int1 p_maxInt1 (plural Int1 x, plural Int1 y)

{ return (x > y ? x : y); }

52.4 Standard library 299

plural Int2 p_signInt2 (plural Int2 x)

{ return ((x > 0) ? 1 : ((x == 0) ? 0 : -1)); }

plural Int2 p_absInt2 (plural Int2 x)

{ return ((x < 0) ? -x : x); }

plural Int2 p_minInt2 (plural Int2 x, plural Int2 y)

{ return (x < y ? x : y); }

plural Int2 p_maxInt2 (plural Int2 x, plural Int2 y)

{ return (x > y ? x : y); }

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

To make the arithmetic operations de�ned above available to a CuPit user program, the following decla-
rations have to be used:

stdlib.nn Arithmetic Functions[361] � 361

f

(* Activation types:

-1: identity activation function

0: Elliot's soft sigmoid -1...1 x/(1+abs(x))

1: Standard sigmoid 0...1 1/(1+exp(-x))

2: Gaussian 0...1 exp(-x*x/2) *)

Real FUNCTION activation (Real CONST x; Int1 CONST type) IS EXTERNAL;

Real FUNCTION activationPrime (Real CONST x, actx; Int1 CONST type) IS EXTERNAL;

Real FUNCTION activationPrimePrime (Real CONST x, actx, actpx;

Int1 CONST type) IS EXTERNAL;

Real FUNCTION sqrtReal (Real CONST x) IS EXTERNAL;

Real FUNCTION logReal (Real CONST x) IS EXTERNAL;

Real FUNCTION log10Real (Real CONST x) IS EXTERNAL;

Real FUNCTION log2Real (Real CONST x) IS EXTERNAL;

Real FUNCTION sinReal (Real CONST x) IS EXTERNAL;

Real FUNCTION cosReal (Real CONST x) IS EXTERNAL;

Real FUNCTION tanReal (Real CONST x) IS EXTERNAL;

Real FUNCTION signReal (Real CONST x) IS EXTERNAL; (* --> -1,0,1 *)

Real FUNCTION absReal (Real CONST x) IS EXTERNAL; (* --> x or -x *)

Real FUNCTION minReal (Real CONST x, y) IS EXTERNAL; (* --> x or y *)

Real FUNCTION maxReal (Real CONST x, y) IS EXTERNAL; (* --> x or y *)

Int FUNCTION signInt (Int CONST x) IS EXTERNAL; (* see above... *)

Int FUNCTION absInt (Int CONST x) IS EXTERNAL;

Int FUNCTION minInt (Int CONST x, y) IS EXTERNAL;

Int FUNCTION maxInt (Int CONST x, y) IS EXTERNAL;

Int1 FUNCTION signInt1 (Int1 CONST x) IS EXTERNAL;

Int1 FUNCTION absInt1 (Int1 CONST x) IS EXTERNAL;

Int1 FUNCTION minInt1 (Int1 CONST x, y) IS EXTERNAL;

Int1 FUNCTION maxInt1 (Int1 CONST x, y) IS EXTERNAL;

Int2 FUNCTION signInt2 (Int2 CONST x) IS EXTERNAL;

Int2 FUNCTION absInt2 (Int2 CONST x) IS EXTERNAL;

Int2 FUNCTION minInt2 (Int2 CONST x, y) IS EXTERNAL;

Int2 FUNCTION maxInt2 (Int2 CONST x, y) IS EXTERNAL;

g

This macro is invoked in de�nition 395.

The getArg function accesses the numerical command line arguments stored into the args array by the
callCupit.c front-end driver program. The arguments are numbered from 1 on. Non-existing arguments

300 52 LANGUAGE OPERATIONS

return the default value instead.

The getName function accesses the string command line arguments stored into the names array by the
callCupit.c front-end driver program. The arguments are numbered from 1 on. Non-existing arguments
return the default value instead.

rts.h Standard Library [362] �362

f

Real getArg (Int argI, Real deflt);

String getName (Int argI, String deflt);

g

This macro is de�ned in de�nitions 353, 356, 362, and 365.

This macro is invoked in de�nition 385.

RTS Standard Library [363] �363

f

extern visible int _argsN;

extern visible float _args[];

extern visible int _namesN;

extern visible int _nameoffsets[];

extern visible char _names[];

Real getArg (Int argI, Real deflt)

{

return (argI > 0 && argI <= _argsN ? _args[argI-1] : deflt);

}

String getName (Int argI, String deflt)

{

return (argI > 0 && argI <= _namesN ? _names+_nameoffsets[argI-1] : deflt);

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

stdlib.nn Other Procedures[364] �364

f

Real FUNCTION getArg (Int CONST argI; Real CONST deflt) IS EXTERNAL;

String FUNCTION getName (Int CONST argI; String CONST deflt) IS EXTERNAL;

g

This macro is de�ned in de�nitions 364 and 367.

This macro is invoked in de�nition 395.

The timerStart function starts a timer that measures CPU time consumption of the CuPit program
(including time waiting for page-faults) with a precision of about 20 ms. timerValue returns the time
since the last call to timerStart as a Real value measured in seconds. timerUnuseTicks allows to tell
the timer to subtract a certain amount of time, measured in ticks (80ns each), from the next timerValue
it returns. These unuse times accumulate and are reset upon a timerStart.

rts.h Standard Library [365] �365

f

void timerStart ();

Real timerValue ();

void timerUnuseTicks (unsigned ticks);

g

This macro is de�ned in de�nitions 353, 356, 362, and 365.

This macro is invoked in de�nition 385.

301

RTS Standard Library [366] �366

f

static _work unuseTicks = 0;

void timerStart ()

{

extern void mpCpuTimerStart (); /* #include <mp_time.h> gives errors */

unuseTicks = 0;

mpCpuTimerStart ();

}

Real timerValue ()

{

/* mpCpuTimerElapsed() returns milliseconds: */

extern unsigned int mpCpuTimerElapsed ();

return ((Real)mpCpuTimerElapsed()*0.001 - (Real)unuseTicks*80e-9);

}

void timerUnuseTicks (unsigned ticks)

{

unuseTicks += ticks;

}

g

This macro is de�ned in de�nitions 354, 357, 358, 359, 360, 363, and 366.

This macro is invoked in de�nition 389.

stdlib.nn Other Procedures[367] � 367

f

PROCEDURE timerStart () IS EXTERNAL;

Real FUNCTION timerValue () IS EXTERNAL;

g

This macro is de�ned in de�nitions 364 and 367.

This macro is invoked in de�nition 395.

53 Internal operations

This section describes that part of the run time system that implements operations that are not directly
visible in CuPit source programs. These are auxiliary functions for interprocessor communication, the
dynamicmemory allocation functions, and functions for computation (in particular address computation).

53.1 Communication operations

rts.h Communication Functions[368] � 368

f

/* do xnet send operations with plural distance values: */

/* perform op[(1<<ldist)-1].lval = val for plural ldist: */

#define xsend(op, ldist, lval, val) \

{ int __i; \

for (__i = lxprocN; __i >= 0; __i--) \

if ((ldist) == __i) \

op[(1<<__i)-1].lval = (val); \

}

302 53 INTERNAL OPERATIONS

/* perform ss_xfetch or ss_rfetch whichever is cheaper: */

#define ss_fetchx(dx, src, dest, size) \

{ if (dx > 32) \

ss_rfetch (iproc + (dx), src, dest, size); \

else \

ss_xfetch (0, (dx), src, dest, size); \

}

#define ss_fetchy(dy, src, dest, size) \

{ if (dy > 1) \

ss_rfetch (iproc + ((dy)<<lxprocN), src, dest, size); \

else \

ss_xfetch (-(dy), 0, src, dest, size); \

}

plural void ss_xsendc (plural _bint ldist_y, plural _bint ldist_x,

plural void* src_and_dest, _sint nbytes,

plural _bool got_it);

g

This macro is invoked in de�nition 385.

xsend implements xnet send, copy, or pipe operations with plural distance values which must be powers
of two and are given in logarithmic form.

ss fetchx and ss fetchy perform a horizontal or vertical fetch operation with singular operand addresses
and singular distance by either an xnet or a router operation, whichever is cheaper.

ss xsendc broadcasts a number of bytes to all PEs in the southeast rectangle of each PE that has the
parameter got it true. These rectangles may not overlap.

RTS Communication Operations[369] �369

f

plural void ss_xsendc (plural _bint ldist_y, plural _bint ldist_x,

plural void* src_and_dest, _sint nbytes,

plural _bool got_it)

{

/* Broadcast nbytes bytes from the set of active PEs with got_it == true

to the rectangle of size '_S(ldist_x)' times '_S(ldist_y)' PEs that has

a got_it == true PE as its upper left (Northwest) corner.

Overlapping of the rectangles is not allowed.

active set: at least all source and target PEs

*/

int ldist; /* NOT plural! */

int transmitted;

plural char *a;

plural int test;

`distribute ldist values;

test = (plural int)*(plural char*)src_and_dest;

`distribute ldist values:

int i;

if (!got_it)

ldist_x = ldist_y = 255; /* set to unique and impossible value */

if (got_it) {

for (i = lxprocN; i > 0; i--)

if (ldist_x == i) {

xnetcE[_M(i)].ldist_x = ldist_x;

53.1 Communication operations 303

xnetcE[_M(i)].ldist_y = ldist_y;

`send data east;

}

}

if (ldist_x != 255) {

for (i = lyprocN; i > 0; i--)

if (ldist_y == i) {

xnetcS[_M(i)].ldist_x = ldist_x;

xnetcS[_M(i)].ldist_y = ldist_y;

`send data south;

}

}

`send data east:

for (transmitted = 0, a = src_and_dest;

transmitted + sizeof(long long) <= nbytes;

transmitted += sizeof(long long), a += 8)

xnetcE[_M(i)].*(plural long long*)a = *(plural long long*)a;

if (transmitted + sizeof (int) <= nbytes) {

xnetcE[_M(i)].*(plural int*)a = *(plural int*)a;

transmitted += sizeof (int);

}

if (transmitted + sizeof (_sint) <= nbytes) {

xnetcE[_M(i)].*(plural _sint*)a = *(plural _sint*)a;

transmitted += sizeof (_sint);

}

if (transmitted + sizeof (_bint) <= nbytes) {

xnetcE[_M(i)].*(plural _bint*)a = *(plural _bint*)a;

transmitted += sizeof (_bint);

}

_assert (transmitted == nbytes);

`send data south:

for (transmitted = 0, a = src_and_dest;

transmitted + sizeof(long long) <= nbytes;

transmitted += sizeof(long long), a += 8)

xnetcS[_M(i)].*(plural long long*)a = *(plural long long*)a;

if (transmitted + sizeof (int) <= nbytes) {

xnetcS[_M(i)].*(plural int*)a = *(plural int*)a;

transmitted += sizeof (int);

}

if (transmitted + sizeof (_sint) <= nbytes) {

xnetcS[_M(i)].*(plural _sint*)a = *(plural _sint*)a;

transmitted += sizeof (_sint);

}

if (transmitted + sizeof (_bint) <= nbytes) {

xnetcS[_M(i)].*(plural _bint*)a = *(plural _bint*)a;

transmitted += sizeof (_bint);

}

_assert (transmitted == nbytes);

}

g

This macro is invoked in de�nition 390.

304 53 INTERNAL OPERATIONS

53.2 Memory allocation

The memory allocation functions used in the code generated by the CuPit compiler are just wrappers
around the p malloc and p free functions of the MasPar library.

rts.h Memory Allocation[370] �370

f

plural void _initgetmem (int size_of_dynamic_memory);

plural void* _getmem (int size, _bool zero_out);

plural void _freemem (plural void *a);

g

This macro is invoked in de�nition 385.

We implement the functions initgetmem to initialize the dynamic memory allocation, getmem to allocate
a block of storage on each active PE (which has the same size and address on each PE), and freemem

to release allocated memory. If not enough memory is available, getmem generates an error message and
terminates the program. An option parameter allows to tell getmem to initialize the allocated memory
with all zeroes.

If the symbol memorytrace is de�ned, this module also contains the functions writetrace and tracemem

which write a complete report of all memory allocations into the �le given in TRACEFILE. For each point
in time, this report contains all segments of memory currently allocated with their locical and physical
size and physical address. This report can be plotted with gnuplot to visualize usage of dynamically
allocated memory. Writing of the report is suppressed if the tracelevel of the CuPit progam is zero.

RTS Memory Allocation[371] �371

f

#define memorytrace

#ifdef memorytrace

extern int _tracelevel; /* from CuPit program */

#define TRACEFILE "memtrace"

#define SEGS 150

static FILE *mt; /* memory trace file */

static _sint sStart[SEGS], /* start of reserved memory segments */

sSize[SEGS]; /* size of allocated memor segs (0 -> unused) */

static int segsN = 0, /* number of currently allocated memory segments */

highestI = -1, /* index of highest used segment entry */

memtime = 0; /* number of current timestep */

static void writetrace ()

{

/* brute force approach:

for each segment currently reserved, we write one line in

gnuplot errorbar style: x y ylow yhigh

x is just a running number (getmem time axis)

y is addr+size-1 of the segment (logical end address)

ylow = addr

yhigh = end of segment in real memory consumption:

addr + (1<<log2(size+4))

*/

int j;

for (j = 0; j <= highestI; j++)

if (sSize[j] != 0) {

fprintf (mt, "%d %d %d %d\n", memtime, sStart[j]+sSize[j]-1,

53.2 Memory allocation 305

sStart[j], sStart[j] + (1<<_log2(sSize[j]+4)));

}

fflush (mt);

}

static void tracemem (plural void* addr, int size, _bool free)

{

/* Announces that a memory segment at 'addr' was free'd (if free = true) or

that a memory segment of size 'size' has been reserved at 'addr'.

*/

int i;

memtime++;

if (_tracelevel == 0)

return;

if (free)

`release segment;

else

`reserve segment;

`release segment:

for (i = 0; i <= highestI; i++)

if (sStart[i] == (int)addr) {

sSize[i] = 0; /* mark as released */

segsN--;

if (i == highestI)

highestI--;

writetrace ();

return;

}

_assert (false); /* segment was not found! */

`reserve segment:

if (size == 0)

return;

for (i = 0; i < SEGS; i++)

if (sSize[i] == 0) {

sStart[i] = (int)addr;

sSize[i] = (_sint)size;

segsN++;

if (i > highestI)

highestI = i;

writetrace ();

return;

}

_assert (false); /* segment could not be marked: too many segments */

}

#endif

plural void _initgetmem (int size_of_dynamic_memory)

{

/* nothing to be done */

#ifdef memorytrace

if (_tracelevel == 0)

return;

mt = fopen (TRACEFILE, "w");

306 53 INTERNAL OPERATIONS

if (mt == 0) {

fprintf (stderr, "couldn't write `%s'\n", TRACEFILE);

exit (21);

}

#endif

}

plural void* _getmem (int size, _bool zero_out)

{

plural void* r;

if (size == 0)

return (0);

r = p_malloc (size);

if (r == 0) {

fprintf (stderr, "\n*** not enough PE memory (requested: %d bytes) ***\n",

size);

exit (31);

}

if (zero_out)

p_memset (r, (plural int)0, (plural size_t)size);

#ifdef memorytrace

tracemem (r, size, false);

#endif

return (r);

}

plural void _freemem (plural void *a)

{

_assert ((int)a < 16384); /* pointers beyond memory size are garbage! */

if (a != 0) {

p_free (a);

#ifdef memorytrace

tracemem (a, 0, true);

#endif

}

}

g

This macro is invoked in de�nition 391.

53.3 Computation

For the computation of size and placement of segments, blocks, and connections we need a number of
routines that are de�ned in this section.

rts.h Address Computations[372] �372

f

#define _S(la) (1<<(la)) /* Shift: maps log2(a) --> a */

#define _M(la) ((1<<(la))-1) /* Mask: maps log2(a) --> a-1 */

#define _lfold2(n,lxsize,lysize,x,y) {\

x = (n) & _M(lxsize); \

y = (n) >> (lxsize); \

_assert ((y) < _S(lysize)); }

#define _lfold3(n,lxsize,lysize,x,y,i) {\

53.3 Computation 307

x = (n) & _M(lxsize); \

y = (n) >> (lxsize); \

i = (y) >> (lysize); \

y &= _M(lysize); }

#define _fold2(n,xsize,ysize,x,y) {\

x = (n) % (xsize); \

y = (n) / (xsize); \

_assert ((y) < (ysize)); }

#define _fold3(n,lxsize,lysize,x,y,i) {\

x = (n) % (xsize); \

y = (n) / (xsize); \

i = (y) / (ysize); \

y %= (ysize); }

#define _unlfold2(lxsize,x,y) ((x) + ((y) << (lxsize)))

#define _unlfold3(lxsize,lysize,x,y,i) ((x) + ((y) << (lxsize)) + \

((i) << ((lxsize) + (lysize))))

#define _unfold2(xsize,x,y) ((x) + (y) * (xsize))

#define _unfold3(xsize,ysize,x,y,i) ((x) + (y) * (xsize) + \

(i) * (xsize) * (ysize))

_bint _log2 (int x);

plural _bint _p_log2 (plural int x);

plural _sint compute_block_sizesA (plural _work work, _sint nodesN,

_sint newnodesN, int segmentsize);

plural void compute_block_size0 (plural _network_D* net_D,

plural _node_group_D *group_D, _bint *lxblocksize, _bint *lyblocksize);

plural void compute_block_layout (plural _sint size, _sint nodesN,

_sint newnodesN, _bint segment_lxN, _bint segment_lyN, _sint max_lblocksize,

plural _bint *x0, plural _bint *y0, plural _bint *lxN, plural _bint *lyN,

plural _bint *layer, _bint *layersN);

plural void update_conI_conN (plural char *cons, int con_size,

int descr_offset, plural _interface_D *interf_D);

_work wpc_sum (plural _interface_D *interf_D);

g

This macro is invoked in de�nition 385.

fold2 and lfold2 convert a number n into two indices x,y into a two dimensional array of size
(xsize,ysize), where x changes fastest; for lfold2, the sizes of the array dimensions must be pow-
ers of two and are given in logarithmic form. fold3 and lfold3 do the same for a three-dimensional
array with third index i changing slowest. unfold2, unlfold2, unfold3, and unlfold3 are the inverse
operations and return the value of n they compute. The value of lysize is not actually used in fold2

and lfold2 but is present for a sanity check.

The integral logarithm function log2 returns the ceiling of the base 2 logarithm, i.e., the integer that is
the exponent of the smallest power of two that is larger than or equal to the argument.

compute block sizesA computes the size of each node block from the work performed by that node.
The node sizes implicitly determine the number of node virtualization layers used. compute block size0

computes the common block size of the nodes of a form 0 node group.

compute block layout computes a layout of node blocks over several node virtualization layers from the
node block sizes. The layout is described by giving for each node block its upper left corner, x and y size,
and virtualization layer.

308 53 INTERNAL OPERATIONS

compute local rtiwork conI conN counts the number of actually existing connections of one node shad-
ow interface in each node shadow of one node virtualization layer and locally sums the total work
actually performed by them. During counting, the meI �eld in each connection interface is set prop-
erly. The function is used only in the rti version of the generated code where real measurements of
work are available in the connection descriptor of each single connection. The plain and optimized ver-
sions use compute local work conI conN instead, which also counts the connections (and sets meI) but
computes the work by multiplication with a work per connection factor that is given as a parameter
(taken from the interface descriptor where it is stored for each interface of each node group). Both,
compute local rtiwork conI conN and compute local work conI conN compute the correct value for
the meI �eld in each connection descriptor in a local sense, i.e., \I am the nth connection in the local
connection array"; the values computed for work and number of connections are also local.

update conI conN computes the global value of the meI �eld in each connection descriptor, i.e, \I am the
nth connection at this interface in the node block". It assumes that each meI is set correctly in the local
sense mentioned above and that the number of local connections is given as a parameter. In addition,
this procedure counts the total number of connections at each node interface (across all shadows).

The procedure wpc sum is called for one interface in one node virtualization layer; it computes the sum
of the wpc values of the interface at the existing nodes.

RTS Address Computations[373] �373

f

_bint _log2 (int x)

{

_bint result = 0;

int i = x;

while (i > 0) {

i >>= 1;

result++;

}

return ((1<<(result-1)) == x ? result-1 : result);

}

plural _bint _p_log2 (plural int x)

{

plural _bint result = 0;

plural int i = x;

while (i > 0) {

i >>= 1;

result++;

}

return ((1<<(result-1)) == x ? result-1 : result);

}

g

This macro is de�ned in de�nitions 373 and 374.

This macro is invoked in de�nition 392.

For compute block sizesA we use the following strategy: The blocks are sized so as to �ll the segment
at most exactly once (if newnodesN is 0) or twice (otherwise). \Suggested" node block size is proportional
to work. This value is then rounded up to the next higher power of two. These values usually over�ll the
segment. This can be corrected by rounding some of those block sizes (that were rounded up the most)
down instead of up. To do this, we determine by binary search a cuto� threshold on the ratio of power of
two block size to suggested block size (which is between 1 and 2), that is the highest that cuts of enough
much-rounded-up blocks. Some of the blocks that are above this threshold are then rounded down (to a
power of two) in size. We round down only as many blocks as necessary, from lowest block numbers to
highest.

RTS Address Computations[374] �374

53.3 Computation 309

f

plural _sint compute_block_sizesA (plural _work work, _sint nodesN,

_sint newnodesN, int segmentsize)

{

_sint oldnodesN = nodesN - newnodesN;

plural _work work1 = iproc < oldnodesN ? work : 0,

work2 = iproc >= oldnodesN ? work : 0;

_work totalwork1 = reduceAdd64u (work1),

totalwork2 = `layer 2 totalwork;

plural _sint result1 = 0, result2 = 0;

plural float PEshould, ratio;

plural _sint PEup, PEdown, PEtry, diffs;

_sint sum, oldsum, mustsave;

_TRACE (1, ("compute_block_sizesA (%d, %d/%d, %d/%d, %d)\n",

(int)proc[0].work, (int)totalwork1, (int)nodesN,

(int)totalwork2, (int)newnodesN, segmentsize));

if (nodesN == 0)

return;

if (oldnodesN > segmentsize || newnodesN > segmentsize) {

fprintf (stderr, "Too many nodes for segment. Use fewer replicates\n");

exit (32);

}

if (iproc < oldnodesN)

`compute first layer layout;

if (iproc >= oldnodesN && iproc < nodesN)

`compute second layer layout;

_TRACE (2, ("blocksizes: newnd0: %d, newnd1: %d, newnd2: %d\n",

(int)proc[oldnodesN].result2, (int)proc[oldnodesN+1].result2,

(int)proc[oldnodesN+2].result2));

return (result1+result2);

`compute first layer layout:

plural char seg = 0;

if (totalwork1 == 0)

PEshould = (float)segmentsize / (float)oldnodesN;

else

PEshould = (plural float)(work1*segmentsize) / (float)totalwork1;

`compute cutoff ratio threshold;

/* now use the ratio only on as many blocks as necessary, beginning at 0 */

diffs = PEup - PEtry; /* differences when rounding down */

proc[oldnodesN-1].seg = 1;

result1 = scanAdd16u (diffs, seg);

if (result1-diffs >= mustsave)

PEtry = PEup;

result1 = PEtry;

`compute cutoff ratio threshold:

float upper, lower, limit;

int stepsN;

_bool finished;

if (PEshould < 1.0)

PEshould = 1.0;

PEup = (plural _sint)_S(_p_log2((plural int)(PEshould+0.99)));

PEdown = PEup == 1 ? 1 : PEup>>1;

if (_tracelevel >= 1) {

310 53 INTERNAL OPERATIONS

printf ("PEshould/up/down:");

p_printf (" %g/%d/%d", PEshould, PEup, PEdown);

printf (" (sums:)%g/%d/%d\n", reduceAddf(PEshould),

reduceAdd16u(PEup), reduceAdd16u(PEdown));

}

sum = reduceAdd16u (PEdown);

_assert (sum <= segmentsize); /* no problem if this happens, because: */

if (sum > segmentsize) { /* beware of the ghosts of float arithmetic! */

PEup = (plural _sint)_S(_p_log2((plural int)PEshould));

PEdown = PEup == 1 ? 1 : PEup>>1;

}

/* we may still have a problem due to too many PEup==1: */

while (reduceAdd16u (PEdown) > segmentsize)

PEdown = PEdown == 1 ? 1 : PEdown>>1;

mustsave = reduceAdd16u (PEup) - segmentsize;

ratio = (plural float)PEup / PEshould; /* is in [0.5...2) */

upper = 2.0;

lower = 0.5;

limit = 1.5;

sum = 0;

stepsN = 0;

finished = false;

PEtry = PEup;

/* go for the highest ratio limit that does not overfill the segment */

while (!finished && mustsave != 0) {

stepsN++;

PEtry = ratio >= limit ? PEdown : PEup;

oldsum = sum;

sum = reduceAdd16u (PEtry);

finished = (sum <= segmentsize &&

((oldsum > segmentsize && stepsN >= 4) ||

sum == segmentsize)) ||

stepsN >= 10;

if (sum > segmentsize) /* limit too high, reduce it */

upper = limit;

else /* limit too low, increase it again */

lower = limit;

limit = (upper+lower)/2.0;

}

if (sum > segmentsize)

PEtry = ratio >= lower ? PEdown : PEup;

`compute second layer layout:

plural char seg = 0;

if (totalwork2 == 0)

PEshould = (float)segmentsize / (float)newnodesN;

else

PEshould = (plural float)(work2*segmentsize) / (float)totalwork2;

`compute cutoff ratio threshold;

/* now use the ratio only on as many blocks as necessary, beginning at 0 */

diffs = PEup - PEtry; /* differences when rounding down */

proc[nodesN-1].seg = 1;

result2 = scanAdd16u (diffs, seg);

if (result2-diffs >= mustsave)

PEtry = PEup;

53.3 Computation 311

result2 = PEtry;

`layer 2 totalwork:

newnodesN ? reduceAdd64u (work2) : 0

}

plural void compute_block_size0 (plural _network_D* net_D,

plural _node_group_D *group_D, _bint *lxblocksize, _bint *lyblocksize)

{

/* precondition: group_D->nodesN set, net_D set

group_D->boss == net_D, !net_D->formA

(the network segment size is expected to be procN, but we don't

rely on this)

postcondition: group_D->localsize set,

*lxblocksize and *lyblocksize set

strategy: The blocksize is chosen so as to fill the segment just once.

*/

int segmentsize, blocksize;

_bint lsegmentsize, lblocksize;

_sint nodesN = _sgl(group_D->nodesN);

_assert (!net_D->formA);

_TRACE (2, ("compute_block_size0 (%x, %x)\n", (int)net_D, (int)group_D));

lsegmentsize = _sgl (net_D->lxN + net_D->lyN);

segmentsize = _S(lsegmentsize);

blocksize = segmentsize / nodesN;

if (blocksize == 0) {

blocksize = 1;

lblocksize = 0;

}

else {

lblocksize = _log2 (blocksize - (blocksize>>1) + 1); /* rounds down */

if ((nodesN << lblocksize) > segmentsize) /* the +1 above may have */

lblocksize--; /* provoked rounding up! */

blocksize = _S(lblocksize);

}

*lyblocksize = lblocksize >> 1;

*lxblocksize = lblocksize - *lyblocksize;

group_D->localsizeN = nodesN / `nr of blocks +

(nodesN % `nr of blocks != 0);

_TRACE (2, ("lxblocksize=%d, lyblocksize=%d, group_D->localsize=%d\n",

(int)*lxblocksize, (int)*lyblocksize,

(int)_sgl(group_D->localsizeN)));

`nr of blocks:

_S(lsegmentsize - lblocksize)

}

plural void compute_block_layout (

plural _sint size, /* on proc[i] = size of node block of node i */

_sint nodesN, /* number of nodes to consider total */

_sint newnodesN, /* number of nodes for layer 2 */

_bint segment_lxN, /* log2 of (maximal ixproc to use + 1) */

312 53 INTERNAL OPERATIONS

_bint segment_lyN, /* dito iyproc */

_sint max_lblocksize, /* log2 of maximum possible blocksize */

plural _bint *x0,

plural _bint *y0, /* upper left corner of node block of node i */

plural _bint *lxN, /* on proc[i]: */

plural _bint *lyN, /* log size of node block of node i */

plural _bint *layer, /* on proc[i] = virtualization layer of node i */

_bint *layersN) /* highest virtualization layer used */

{

/* this function computes a linear block layout, i.e., virtualization

layer i contains all nodes k[i] to k[i+1]-1 with k[i] < k[i+1]

for all i, k[0] = 0, k[layersN] = nodesN-1, and layersN minimal.

The layout computed is for segment 0 only which is assumed to be at

the upper left of the PE array (0...segment_xN-1, 0...segment_yN-1)

We use only a restricted version of the algorithm, which knows

which nodes to put into which layer in advance (layer 1: 0 to

nodesN-newnodesN-1, layer 2: all others). The general version is

available by #define general_cbl

*/

plural int cum_size; /* on proc[i] = cumulated block size of nodes 0..i */

int low, high; /* current lowest/highest node number to consider */

plural _bool is_free; /* layout of current virtualization layer: each PE is

marked as free(=true) or occupied(=false) */

int l; /* number of current virtualization layer */

int lbs, /* current log block size considered */

lxbs, lybs; /* current log x and y block size considered */

int segment_size = _S(segment_lxN + segment_lyN);

plural _bool within_segment = ixproc < _S(segment_lxN) &&

iyproc < _S(segment_lyN);

_assert (nodesN < procN);

_TRACE (2, ("compute_block_layout (%d, %d, %d)\n", (int)proc[0].size,

(int)nodesN, (int)max_lblocksize));

low = 0;

l = 0; /* index of current virtualization layer */

#ifdef general_cbl

if (iproc < nodesN)

cum_size = scanAdd32 ((plural int)size, 0); /* unsegmented scan */

#endif

while (low < nodesN) {

`find high;

`layout one virtualization layer;

#ifdef general_cbl

cum_size -= proc[high].cum_size;

#endif

low = high + 1;

l++;

}

_TRACE (2, ("nd2 at %d/%d logsize %d/%d layer %d\n", (int)proc[2].*x0,

(int)proc[2].*y0, (int)proc[2].*lxN, (int)proc[2].*lyN,

(int)proc[2].*layer));

*layersN = l;

`find high:

#ifdef general_cbl

53.3 Computation 313

plural _bool fits = false;

if (iproc < nodesN && cum_size <= segment_size)

fits = true;

if (!fits)

high = selectFirst() - 1; /* the last one that fits is 'high' */

#else

high = (low == 0) ? nodesN - newnodesN - 1 : nodesN -1;

#endif

`layout one virtualization layer:

is_free = true; /* all PEs are initially free on a virtualization layer */

for (lbs = max_lblocksize; lbs >= 0; lbs--)

`layout blocks of one size;

`layout blocks of one size:

plural short free_blocks_enum = procN+1;/* enumeration of free blocks */

plural short relevant_nodes_enum = -1; /* enumeration of nodes to fit */

plural _sint relevant_nodesN; /* number of nodes to fit */

lybs = lbs >> 1;

lxbs = lbs - lybs;

`find mark and store new blocks to use;

`find mark and store new blocks to use:

plural _bint block_x0, block_y0; /* 'meet data' of blocks */

/* find and count relevant nodes: */

if (iproc >= low && iproc <= high && size == _S(lbs)) {

relevant_nodes_enum = enumerate();

}

relevant_nodesN = reduceMax16 (relevant_nodes_enum) + 1;

/* find blocks and put meeting data: */

if (within_segment && is_free &&

(ixproc & _M(lxbs)) == 0 && (iyproc & _M(lybs)) == 0) {

free_blocks_enum = enumerate();

if (free_blocks_enum < relevant_nodesN) {

is_free = false;

router[free_blocks_enum].block_x0 = ixproc;

router[free_blocks_enum].block_y0 = iyproc;

}

}

/* mark blocks as non-free: */

ss_xsendc (lybs, lxbs, &is_free, sizeof (is_free),

free_blocks_enum != -1 && free_blocks_enum < relevant_nodesN);

/* fetch data to relevant nodes: */

if (relevant_nodes_enum != -1) {

*x0 = router[relevant_nodes_enum].block_x0;

*y0 = router[relevant_nodes_enum].block_y0;

*lxN = lxbs;

*lyN = lybs;

*layer = l;

}

}

plural void update_conI_conN (plural char *cons, int con_size,

314 53 INTERNAL OPERATIONS

int descr_offset, plural _interface_D *interf_D)

{

/* This procedure is called for one interface in one node

virtualization layer in replicate 0.

It computes the correct values of conI

in each connection and of conN in the interface descriptor.

May do nothing if nothing is necessary.

1. compute local conI values in the connection objects.

2. compute a prefix sum over local conN in each node block.

3. compute meI as meI := scanvalue + meI - local conN

*/

int i;

plural char* old_cons = cons;

plural _bint lxN = `nd_D.lxN,

lyN = `nd_D.lyN;

plural _sint blocksize = _S(lxN + lyN);

int con_ls = _sgl(interf_D->con_ls);

plural _sint local_conN, /* number of connections in each PE */

sum; /* prefix sum over local_conN */

plural _sint myI;

_TRACE (4, ("update_conI_conN (%x, ls=%d)\n", (int)cons, con_ls));

if (`no update needed)

return;

`compute local conN;

`compute prefix sum over local conN;

`compute conI;

`send sum to rest of node block;

interf_D->conN = sum;

`no update needed:

/* must be singular value! */

!globalor (`nd_D.exists && interf_D->conN == invalid_conN)

`compute local conN:

for (i = con_ls, local_conN = 0; i > 0; i--, cons += con_size)

if (`me_D.exists)

`me_D.meI = local_conN++;

cons = old_cons;

`compute prefix sum over local conN:

plural _sint your_xPE, your_yPE, yourPE;

plural _bint x0 = (plural _bint)ixproc & (plural _bint)~_M(lxN);

_sint step = 1;

_bint lstep = 0;

myI = (ixproc & _M(lxN)) + ((iyproc & _M(lyN)) << lxN);

sum = local_conN;

while (myI + step < blocksize) {

your_xPE = x0 + ((ixproc+step) & _M(lxN));

your_yPE = iyproc + ((ixproc-x0 + step) >> lxN);

yourPE = your_xPE + (your_yPE << lxprocN);

sum += router[yourPE].sum;

step <<= 1;

lstep++;

}

53.4 Machine control and analysis 315

`compute conI:

plural _sint help = sum - local_conN;

/* because my local cons are now added individually: */

for (i = 0; i < con_ls; i++, cons += con_size)

if (`me_D.exists)

`me_D.meI += help;

`send sum to rest of node block:

ss_xsendc (lyN, lxN, (plural void*)&sum, sizeof(sum), myI == 0);

`me_D:

(plural _connection_D)(cons+descr_offset)

`nd_D:

(plural _node_D plural)interf_D->boss

}

_work wpc_sum (plural _interface_D *interf_D)

{

/* This procedure is called for one interface in one node

virtualization layer; it computes the sum of the wpc values

of the interface at the existing nodes.

*/

plural _work wpcs = 0;

if (interf_D->boss->exists == _existing) /* exclude shadows */

router[interf_D->boss->meI].wpcs = interf_D->wpc;

return (reduceAdd64u (wpcs));

}

g

This macro is de�ned in de�nitions 373 and 374.

This macro is invoked in de�nition 392.

53.4 Machine control and analysis

This module contains operations that either control or analyze the behavior of the machine.

There is a function pick PE that returns the number of a random one of the PEs on which a condition
is true.

The function dpuTimerTicks2 implements reliable DPU timing. The MasPar's ACU has a design error
that makes the original dpuTimerTicks routine (which measures time in system clock ticks, 80ns each)
output wrong values occasionally. I have made a few experiments on our MP-1216A to �nd a pattern
in these faults in order to devise a way to recognize them. These experiments suggest that the following
describes the error behavior of the timer values:

Errors occur randomly distributed and happen once in about 12000 (with much variation) dpuTimerTicks
calls on the average, independent of how much work the program does in between the calls. When a
wrong value was returned by dpuTimerTicks, succeeding values are still correct in respect to the same

call of dpuTimerStart, i.e., the timer does not have to be restarted in order to recover from an error.
Within each single time slice of the DPU process, only two di�erent wrong values are possible; their
di�erence is always 2. Within the next time slice, two other wrong values occur. The new wrong values
are smaller than the previous ones, but the di�erence from the previous wrong seems to depend on the
time between the time slices somehow. With just two active DPU processes it is usually in the range
of several millions. Two dpuTimerTicks calls that are executed immediately after one another, usually

316 53 INTERNAL OPERATIONS

return values that di�er by about 56 ticks. From time to time, larger di�erences occur but these are
always less than 500.

These observations lead to the following method for reliable timing: Repeat getting a close pair of
dpuTimerTicks values as long as the di�erence of the two values is less than 40 or larger than 500
(thresholds should roughly be the same on a MP-2). The resulting two values are then correct with
roughly 500 ticks (40 microseconds) precision.

The chance that both values of any pair are wrong is about 120002 (144 million), but even this case
will usually be caught and repaired since these two wrong values di�er only by 2 (if the corresponding
observation is always true). Given this situation, the only way to get a wrong value out of the method
is that (1) both values of the pair are wrong, (2) between the two calls to dpuTimerTicks the timeslice
ends, and (3) the old and new wrong values di�er by at most 500. The probability of (3) is according
to my observations less than 1/160000. This estimation is probably quite conservative: it assumes that
the downward steps are distributed evenly between 0 and 80 million, which is true when there are two
constantly active DPU processes in DPU memory; with swapping or other long pauses between time
slices, steps larger than 80 million occur and the probability is still smaller. Assuming that a program
spends as much as 10 percent of its time calling dpuTimerTicks and each timeslice is one second long,
(2) will roughly happen once every 200 seconds. If the conditions are independent, (1) and (2) and (3)
will then happen once about every 146 million CPU years on the average.

I believe we can live with that.

dpuTimerTicks2 is used exactly like dpuTimerTicks, the only observable di�erences are that (1) the
new operation is slower (it takes roughly 370 ticks) and (2) no bogus values occur. Just like for
dpuTimerTicks, measurements are returned as 32-bit integer; over
ow occurs after 232 ticks, which is
343.6 million microseconds or 5 minutes and 43 seconds. The remaining problem with this routine is that
a swapout/swapin cycle may still be visible as consumed time; typical values on our machine are about
400000 to 500000 ticks for a job requiring 4 kB PMEM, but I have also observed outliers with 600000
and 1.9 million. Note that MPPE slows dpuTimerTicks down somehow, so that for dpuTimerTicks2 to
work correctly in MPPE sessions, the tolerance needs to be increased to 1000.

There is an additional function spendTicks that performs a waiting loop consuming a given number of
ticks. This is used for latency simulation purposes.

rts.h Machine Control[375] �375

f

_sint _pick_PE (plural _bool condition);

void dpuTimerStart ();

unsigned dpuTimerTicks2 ();

void _spendTicks (register unsigned ticks);

g

This macro is invoked in de�nition 385.

RTS Machine Control[376] �376

f

void dpuTimerStart();

unsigned dpuTimerTicks();

_sint _pick_PE (plural _bool condition)

{

if (condition)

return (_sgl(iproc));

else

return (0); /* emergency solution */

}

unsigned dpuTimerTicks2 ()

53.5 Output 317

{

register unsigned t1, t2, count = 0;

do {

t1 = dpuTimerTicks();

t2 = dpuTimerTicks();

count++;

}

while (t2-t1 > 1000 /*solo:500, with MPPE:1000*/

|| t2-t1 < 10);

return (t2);

}

void _spendTicks (register unsigned ticks)

{

register int end = dpuTimerTicks2() + ticks - 200; /* 200 for overhead */

while ((int)dpuTimerTicks2() < end)

;

}

g

This macro is invoked in de�nition 393.

The following code can be used to test the dpuTimerTicks2 routine. It should display a line after roughly
every 500000 iterations showing a di�erence of more than 900 ticks (but not very much more) in the fourth
column. In addition, one larger di�erence appears for each swapin/swapout cycle.

test dpuTimerTicks2[377] � 377

f

unsigned n, first, second, old = 0, new;

dpuTimerStart();

n=1;

while (n != 0) {

n=n+1;

new = dpuTimerTicks2();

if (new - old < 10 || new - old > 900) {

printf ("%7d %12d %12d %12d\n", n, old, new, new-old);

new = dpuTimerTicks2 ();

}

old = new;

}

g

This macro is NEVER invoked.

53.5 Output

For the automatic generation of output procedures for all network, node, and connection types, we need
basic output procedures for the builtin types and the descriptor types. These are de�ned here.

In addition we de�ne output procedures for the basic types that can be used in user programs.

rts.h Output Operations[378] � 378

f

void p_pr_network_D (String name, plural _network_D* plural ME);

void p_pr_node_group_D (String name, plural _node_group_D* plural ME);

void p_pr_node_D (String name, plural _node_D* plural ME);

void p_pr_interface_D (String name, plural _interface_D* plural ME);

void p_pr_connection_D (String name, plural _connection_D* plural ME);

318 53 INTERNAL OPERATIONS

void p_pr_Gptr (String name, plural _Gptr* plural ME);

void p_prBool (String name, plural Bool* plural ME);

void p_prReal (String name, plural Real* plural ME);

void p_prString (String name, plural String* plural ME);

void p_prInt (String name, plural Int* plural ME);

void p_prInt1 (String name, plural Int1* plural ME);

void p_prInt2 (String name, plural Int2* plural ME);

void p_prRealerval (String name, plural Realerval* plural ME);

void p_prInterval (String name, plural Interval* plural ME);

void p_prInterval1 (String name, plural Interval1* plural ME);

void p_prInterval2 (String name, plural Interval2* plural ME);

void p_pr_remote_connection (String name, plural _remote_connection* plural ME);

void p_pr_remote_connection_interface (String name,

plural _remote_connection* plural ME, plural _interface_D* plural descr);

g

This macro is invoked in de�nition 385.

RTS Output Operations[379] �379

f

void p_pr_network_D (String name, plural _network_D* plural ME)

{

printf ("%s@%x=(", name, (int)_sgl(ME));

p_printf ("exists=%d formA=%d meI=%d repN=%d lrepN=%d lxN=%d lyN=%d) ",

(plural int)ME->exists, (plural int)ME->formA, (plural int)ME->meI,

(plural int)ME->repN, (plural int)ME->lrepN,

(plural int)ME->lxN, (plural int)ME->lyN);

}

void p_pr_node_group_D (String name, plural _node_group_D* plural ME)

{

printf ("%s@%x=(", name, (int)_sgl(ME));

p_printf ("nodesN=%d newnodesN=%d localsizeN=%d better2virt=%d boss=%x) ",

(plural int)ME->nodesN, (plural int)ME->newnodesN,

(plural int)ME->localsizeN, (plural int)ME->better2virt,

(plural int)ME->boss);

}

void p_pr_node_D (String name, plural _node_D* plural ME)

{

printf ("%s@%x=(", name, (int)_sgl(ME));

p_printf ("exists=%d meI=%d lxN=%d lyN=%d boss=%x) ",

(plural int)ME->exists, (plural int)ME->meI,

(plural int)ME->lxN, (plural int)ME->lyN,

(plural int)ME->boss);

}

void p_pr_interface_D (String name, plural _interface_D* plural ME)

{

printf ("%s@%x=(", name, (int)_sgl(ME));

p_printf ("con_ls=%d boss=%x conN=%d work_per_con=%d wpc=%d) ",

(plural int)ME->con_ls, (plural int)ME->boss,

(plural int)ME->conN, (plural int)ME->work_per_con,

(plural int)ME->wpc);

}

void p_pr_connection_D (String name, plural _connection_D* plural ME)

53.5 Output 319

{

printf ("%s@%x=(", name, (int)_sgl(ME));

p_printf ("exists=%d meI=%d boss=%x) ",

(plural int)ME->exists, (plural int)ME->meI,

(plural int)ME->boss);

}

void p_pr_Gptr (String name, plural _Gptr* plural ME)

{

printf ("%s=(", name);

p_printf ("pe=%d a=%x) ", (plural int)ME->pe, (plural int)ME->a);

}

void p_prBool (String name, plural Bool* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%c ", (plural int)(*ME ? 'T' : 'F'));

}

void p_prReal (String name, plural Real* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%g ", *ME);

}

void p_prString (String name, plural String* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("`%s' ", *ME);

}

void p_prInt (String name, plural Int* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d ", *ME);

}

void p_prInt1 (String name, plural Int1* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d ", (plural int)*ME);

}

void p_prInt2 (String name, plural Int2* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d ", (plural int)*ME);

}

320 53 INTERNAL OPERATIONS

void p_prRealerval (String name, plural Realerval* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%g...%g ", ME->min, ME->max);

}

void p_prInterval (String name, plural Interval* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d...%d ", ME->min, ME->max);

}

void p_prInterval1 (String name, plural Interval1* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d...%d ", (plural int)ME->min, (plural int)ME->max);

}

void p_prInterval2 (String name, plural Interval2* plural ME)

{

if (*name != 0)

printf ("%s=", name);

p_printf ("%d...%d ", (plural int)ME->min, (plural int)ME->max);

}

void p_pr_remote_connection (String name, plural _remote_connection* plural ME)

{

printf ("\n%s@%x=(", name, (int)_sgl(ME));

p_pr_connection_D ("_me_D", &ME->_me_D);

p_pr_Gptr ("_oe", &ME->_oe);

printf (")");

}

void p_pr_remote_connection_interface (String name,

plural _remote_connection* plural ME, plural _interface_D* plural descr)

{

char* n = "0";

int i;

printf ("\n%s@%x=(", name, (int)_sgl(ME));

p_pr_interface_D ("_me_D", descr);

for (i = 0; i < descr->con_ls; i++, ME++) {

n = (i % 64) + '0'; / name the individual connections consecutively */

p_pr_remote_connection (n, ME);

}

printf (")");

}

g

This macro is invoked in de�nition 394.

321

54 Miscellany

This section comprises those parts of the run time system that are not directly used in the generated
program. These are the front end program (which must be linked with the generated program) plus some
administrative infrastructure: A compiler driver shell script and two make�les.

54.1 The front end program

The code generated by the CuPit compiler runs on the ACU and the PE array only. But it nevertheless
has to be started on the front end machine. The following is a little C program to be run on the front
end in order to parse command line arguments and start the CuPit program. A command line argument
preceeded by an argument consisting of only the letter 'T', if present, is used as an integer in order to set
the tracelevel variable of the program. Allowed values are from 0 (no tracing) to 5 (maximum tracing).
A command line argument preceeded by an argument consisting of only the letter 'R', if present, is used
as the seed for the random number generator All following arguments are treated as either
oating point
values or strings: If an argument appears that consists of only the letter 'N', this argument is skipped
and the next argument is interpreted as a string argument and copied to the names variable. Otherwise,
arguments are interpreted as
oating point arguments and their values are copied to the args variable
(which must be an array of at least 20
oats). The number of such
oating point arguments is copied
to the argsN variable; the number of string arguments is copied to the namesN variable. Afterwards, the
driver calls the initialization procedure INIT and then the main procedure program. The command line
argument descriptors argc and argv are made available as global variables to be fetched by copyIn by
the MPL program if necessary.

lib/callCupit.c[380] � 380

f/*

File: CuPit front end program for MasPar

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include <stdio.h>

#include <stdlib.h>

extern INIT ();

extern program ();

extern print_rusage ();

extern int _tracelevel;

extern int _randominit;

extern float _args[];

extern int _argsN;

extern int _nameoffsets[];

extern int _namesN;

extern char _names[];

int argc;

char **argv;

static float floatargs[20];

static int nameoffsets[10];

static char names[210];

int main (int _argc, char *_argv[])

{

int trclv,

rndinit,

i = 1,

322 54 MISCELLANY

floatargsN = 0, /* number of float arguments already found */

stringargsN = 0, /* dito for string arguments */

namespos = 0; /* sum of lengths of string arguments so far */

argc = _argc;

argv = _argv;

if (argc < 2) {

fprintf (stderr,

"usage: cmd [T tracelevel] [R randominit] [N namearg | floatarg]*\n");

return (1);

}

/***** parse command line arguments: */

while (i < argc) {

if (argv[i][0] == 'T') {

i++;

trclv = atoi (argv[i]);

copyOut (&trclv, &_tracelevel, sizeof (int));

printf ("----- StartFE\n");

}

else if (argv[i][0] == 'R') {

i++;

rndinit = atoi (argv[i]);

copyOut (&rndinit, &_randominit, sizeof (int));

}

else if (argv[i][0] == 'N') {

i++;

nameoffsets[stringargsN++] = namespos;

strcpy (names+namespos, argv[i]);

namespos += strlen (argv[i]) + 1;

}

else {

floatargs[floatargsN++] = atof (argv[i]);

}

i++;

}

copyOut (&floatargsN, &_argsN, sizeof (int));

copyOut (floatargs, _args, sizeof (floatargs));

copyOut (&stringargsN, &_namesN, sizeof (int));

copyOut (nameoffsets, _nameoffsets, sizeof (nameoffsets));

copyOut (names, _names, sizeof (names));

/***** now execute the DPU program: */

callRequest(INIT, 0);

callRequest(program, 0);

callRequest(print_rusage, 0);

/***** finish: */

if (trclv > 0)

printf ("----- EndFE\n");

return (0);

}

g

This macro is attached to an output �le.

54.2 Compiler driver script

Since the compiler works in several phases (which even run on di�erent machines), a script is needed that
drives the compilation from one phase to the other. This script is simply called cupit because it is the

54.2 Compiler driver script 323

program the compiler user will call.

cupit[381] � 381

f#!/bin/sh

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

File: CuPit compiler driver script

Usage: see message below

set -e #exit on error

set -u #unset variables are errors

#----- programs and variables:

CUPITDIR=${CUPITDIR:-"/home2/i41s25/prechelt/cupit2"} #set if not predefined

LIBDIR=$CUPITDIR/lib

cupit=$CUPITDIR/cc/cupit.exe

crefine=crefine

mpl="mpl_cc -Zq"

cpp="/lib/cpp -D_parallel_=1 -C"

#----- variables:

cppopts=""

cupitopts=""

mplopts=""

unknownopts=""

cupitfiles=""

mplfiles=""

ofiles=""

outfile="a.out"

unknownfiles=""

compileonly=0

check=0

codetype=0

nomplcc=0

pretty=0

pmem=0

pe=0

P=0

#----- check usage:

if test $# -eq 0 ; then

echo "Usage: cupit [options] (mycupit.nn|mympl.m|mympl.mr|myobj.o)...

Expects only one .nn file but arbitrarily many .m, .mr, and .o

files. Leaves cupit-compiled version of .nn file in nn1.m, preprocessed

nn1.m in nn2.m, and line-numbering-stripped nn2.m in nn3.m

Options:

-c compile only, do not link

-check exit after syntax check of first '.nn' file (nn1.m is produced)

-conatout place connection objects at OUT interfaces (default: at IN)

-conindividual fetch/send elements of remote connections individually

-conwhole always fetch/send the whole connection object

-dumbbalance load balancing assumes connection fetch/send costs nothing

-Dn=b define macro n with body b for /lib/cpp

-hidelatency make measurement ignore remote connection send/fetch times

-highlatency simulate additional latency on remote con send/fetch

324 54 MISCELLANY

-nobalance use regular instead of load-balancing data distribution

-nodatalocality perform remote fetch/send even for local connections

-nomplcc generate MPL code but don't compile it to .o files

-nonodevirt use 1 nodevirt layer where 2 were better and vice versa

-o file file to write executable to

-O turn on optimizations of MPL compiler (turn off profiling)

-opt optimize CuPit, using run time information

-pretty run nn3.m through beautifier: gindent -kr

-pmem 8k sets PMEM limit to 8kb (default:4kb), also possible: 12k, 16k etc

-pe use only 1024 PEs (useful for debugging purposes)

-P produce print procedures

-rti generation run time information collection code

"

exit 1

fi

#----- here we go:

while test $# -gt 0 ; do

case $1 in

-D*) cppopts="$cppopts $1" ;;

-P) cupitopts="$cupitopts $1"; P=1 ;;

-g) mplopts="$mplopts $1" ;;

-c) compileonly=1 ;;

-check) check=1 ;;

-conatout) cupitopts="$cupitopts $1" ;;

-conindividual) cupitopts="$cupitopts $1" ;;

-conwhole) cupitopts="$cupitopts $1" ;;

-dumbbalance) cupitopts="$cupitopts $1" ;;

-hidelatency) cupitopts="$cupitopts $1" ;;

-highlatency) cupitopts="$cupitopts $1" ;;

-nobalance) cupitopts="$cupitopts $1" ;;

-nodatalocality) cupitopts="$cupitopts $1" ;;

-nomplcc) nomplcc=1 ;;

-wrongnodevirt) cupitopts="$cupitopts $1" ;;

-o) outfile=$2; shift ;;

-opt) codetype=2 ;;

-O) mplopts="$mplopts -nohprofile" ;; #-Zn == (not -g)

-pretty) pretty=1 ;;

-pmem) pmem=$2; shift ;;

-pe) pe=1 ;;

-rti) codetype=1 ;;

-*) unknownopts="$unknownopts $1" ;;

*.nn) echo "$cpp -I"$LIBDIR" $cppopts $1 >nn1.nn"

$cpp -I"$LIBDIR" $cppopts $1 >nn1.nn #pass comments

echo "$cupit $cupitopts -codetype $codetype nn1.nn >nn1.m"

$cupit $cupitopts -codetype $codetype nn1.nn >nn1.m

if test $check -eq 1 ; then

exit;

fi

echo "$mpl -I"$LIBDIR" -E nn1.m >nn2.m"

$mpl -I"$LIBDIR" -E nn1.m >nn2.m

echo "removing #line commands in nn2.m >nn3.m"

perl -ne 's/[]*$//; print if(!m/^# [0-9]/ && ($_ ne "\n"

|| $l ne "\n")); $l=$_;' nn2.m >nn3.m

if test $pretty -eq 1 ; then

54.3 The compiler Make�le 325

echo mv -f nn3.m nn3.ugly

mv -f nn3.m nn3.ugly

#old: cb -js -l 77 nn3.ugly | expand -3 >nn3.m

echo "gindent -kr -st nn3.ugly | perl..."

gindent -kr -st nn3.ugly |

perl -pe 's/^} plural/}\n\nplural/' >nn3.m

fi

if test -r dump.m -a $P -eq 1; then #debugging aid

echo "cat dump.m >> nn3.m"

cat dump.m >> nn3.m

fi

if test $nomplcc -eq 0; then

echo $mpl $mplopts -c -nocpp nn3.m

$mpl $mplopts -c -nocpp nn3.m

ofiles="$ofiles nn3.o"

fi

;;

*.mr) echo $crefine $1

$crefine $1

echo $mpl $cppopts $mplopts -I"$LIBDIR" -c `basename $1 r`

$mpl $cppopts $mplopts -I"$LIBDIR" -c `basename $1 r`

ofiles="$ofiles `basename $1 .mr`.o" ;;

*.m) echo $mpl $cppopts $mplopts -I"$LIBDIR" -c $1

$mpl $cppopts $mplopts -I"$LIBDIR" -c $1

ofiles="$ofiles `basename $1 .m`.o" ;;

*.o) ofiles="$ofiles $1" ;;

*) unknownfiles="$unknownfiles $1" ;;

esac

shift

done

if test "$unknownopts" != "" ; then

echo "Unknown option(s) '$unknownopts' ignored"

fi

if test "$unknownfiles" != "" ; then

echo "File(s) '$unknownfiles' with unknown extensions ignored"

fi

if test $compileonly -eq 0 ; then

echo $mpl $mplopts -o $outfile $ofiles $LIBDIR/callCupit.o -L"$LIBDIR" -lcupit

$mpl $mplopts -o $outfile $ofiles $LIBDIR/callCupit.o -L"$LIBDIR" -lcupit

if test $pmem != "0" ; then

mplimit -Zq $outfile pmem $pmem

mplimit -Zq $outfile

fi

if test $pe -ne 0 ; then

mpswopt -1 $outfile #1024 PEs only for debugging

fi

fi

g

This macro is attached to an output �le.

54.3 The compiler Make�le

To extract this Make�le from the FunnelWeb document after changes, use make makefile (which also
tangles all �les belonging to the run time system).

326 54 MISCELLANY

Since FunnelWeb does not like unprintable characters inside macro bodies, we use the following macro
to represent the Tab character required by make at the beginning of each action line:

T[382] �382

f g

This macro is invoked in de�nitions 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383,

383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 383, 384, 384, 384, 384, 384, 384, 384, 384,

384, 384, 384, 384, and 384.

Make�le[383] �383

f#Makefile for miscellaneous CuPit compiler administration tasks

#Lutz Prechelt, 93/09/14

#$Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

CI=ci

CIOPTS= -diff -l

TANGLE= fw +D -L +S1 +U

SCALL=

std:

T[382] @echo "you can make: makefile, lib, ci, tex, dvi, dvi2, clean, or exe"

makefile: lib/.rts.fw_tangled

ci:

T[382] $(CI) $(CIOPTS) compiler.fw

T[382] $(CI) $(CIOPTS) scanner.fw

T[382] $(CI) $(CIOPTS) grammar.fw

T[382] $(CI) $(CIOPTS) names.fw

T[382] $(CI) $(CIOPTS) types.fw

T[382] $(CI) $(CIOPTS) usage.fw

T[382] $(CI) $(CIOPTS) code.tex

T[382] $(CI) $(CIOPTS) code1.fw

T[382] $(CI) $(CIOPTS) code2.fw

T[382] $(CI) $(CIOPTS) rts.fw

T[382] $(CI) $(CIOPTS) aux.fw

T[382] $(CI) $(CIOPTS) appendix.tex

T[382] $(CI) $(CIOPTS) cupit.specs

T[382] $(CI) $(CIOPTS) README

T[382] $(CI) $(CIOPTS) fileinout.fw

tex:

T[382] fw +T -O +S1 -L compiler.fw

dvi: tex

T[382] latex compiler.tex

dvi2:

T[382] #bibtex compiler

T[382] makeindex -o compiler_idx.tex -s $(HOME)/lib/makeindexstyle compiler

T[382] latex compiler.tex

T[382] latex compiler.tex

lib: lib/.code1.fw_tangled lib/.rts.fw_tangled lib/.fileinout.fw_tangled

T[382] @#$(SCALL) cd ../lib

T[382] -cd lib; make

54.4 The library Make�le 327

T[382] @#$(SCALL) cd ../cc

lib/.code1.fw_tangled: code1.fw

T[382] $(TANGLE) code1.fw

T[382] @rm code1.map

T[382] @touch lib/.code1.fw_tangled

lib/.rts.fw_tangled: rts.fw

T[382] $(TANGLE) rts.fw

T[382] @rm rts.map

T[382] @chmod +x cupit # mode is not preserved by FunnelWeb

T[382] @touch lib/.rts.fw_tangled

lib/.fileinout.fw_tangled: fileinout.fw

T[382] $(TANGLE) fileinout.fw

T[382] @rm fileinout.map

T[382] @touch lib/.fileinout.fw_tangled

clean:

T[382] cd lib; make clean

T[382] rm -f *~ *.lis *.jrn *.map *.log *.o ?

exe:

T[382] eli <F

g

This macro is attached to an output �le.

54.4 The library Make�le

The library Make�le is responsible for converting the .tplr template �les into .tpl �les by sending
them through the C-Re�ne preprocessor and for compiling the modules of the run time system. For
convenience, this make�le also builds (and includes into the library �le) some modules that are not
directly part of the run time system. Currently the only such module is fileinout. The Make�le is
usually started from the compiler Make�le without an argument. In order for the compilation to work,
the sexec process must have been started on the MasPar (in the correct directory!) before.

To extract this Make�le from the FunnelWeb document after changes, use make makefile (which also
tangles all �les belonging to the run time system).

lib/Make�le[384] � 384

f#Makefile for CuPit compiler 'lib' subdirectory management

#Lutz Prechelt, 93/09/14

#$Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

CR=crefine

SCALL=

MPL= $(SCALL) mpl_cc

MPLFLAGS= -Zq

%.tpl: %.tplr

T[382] @echo $< :

T[382] @rm -f $*.tpl

T[382] @$(CR) -n0 -s- -c $*.tplr

T[382] @chmod -w $*.tpl

328 55 PUT IT ALL TOGETHER

%.o: %.mr

T[382] @echo $< :

T[382] @$(CR) -c -n0 -s- $*.mr

T[382] @$(MPL) $(MPLFLAGS) -c $*.m

tpls= \

NodeArrayInit.tpl ArrayInit.tpl \

ReductionCon.tpl ReductionNode.tpl ReductionNet.tpl \

WtaCon.tpl WtaNode.tpl WtaNet.tpl \

Input.tpl Output.tpl \

Connect.tpl \

MergeCon.tpl MergeNode.tpl MergeNet.tpl \

Extend.tpl \

ReplicateNode.tpl ReplicateNet.tpl ReplicateNetNodes.tpl

objs= \

rtsrandom.o \

rtsoperators.o \

rtstopology.o \

rtsstdlib.o \

rtscomm.o \

rtsmalloc.o \

rtsaddress.o \

rtsmachine.o \

rtsoutput.o \

fileinout.o

#And this is what must be done:

lib: templates objects libcupit.a callCupit.o

templates: $(tpls)

objects: $(objs)

libcupit.a: $(objs)

T[382] @#scall "mpar -cr libcupit.a \`mplorder" $(objs) "| tsort\`" #use this

T[382] mpar -cr libcupit.a `mplorder $(objs) | tsort` # OR this

T[382] $(SCALL) mpranlib -Zq libcupit.a

callCupit.o: callCupit.c

T[382] @echo -n "in maspar:"; scall pwd

T[382] scall $(MPL) $(MPLFLAGS) -c $*.c

clean:

T[382] rm -f *~ *.lis *.jrn *.map *.log *.o ?

g

This macro is attached to an output �le.

55 Put it all together

Here we construct the �les comprising the run time system from the parts given above. There is one
header �le rts.h that de�nes the whole run time system plus one MPL �le for each of the parts random

329

numbers, operators, topology change, communication, memory allocation, and computation.

lib/rts.h[385] � 385

f/*

File: CuPit run time system header file

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#ifndef RTS_H

#define RTS_H

#include <mpl.h>

#include <maspar/mp_libc.h>

#include <mp_resource.h> /* for mpGetRUsage */

#undef NULL /* else we get 'redefined' message from stdio.h */

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include "mplforgotten.h"

#include "cupittypes.h"

#include "descriptors.h"

#include "libmisc.h"

rts.h Random Number Generator[340]
rts.h Type Conversions[342]
rts.h Operators[343]
rts.h Topology Change Operations[345]
rts.h Standard Library [353]
rts.h Communication Functions[368]
rts.h Memory Allocation[370]
rts.h Address Computations[372]
rts.h Machine Control[375]
rts.h Output Operations[378]

#endif

g

This macro is attached to an output �le.

(Just like any other section of the same name, most of this section is pretty booooring:)

lib/rtsrandom.mr[386] � 386

f/*

File: CuPit run time system random number generator

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Random Number Generator[341]
g

This macro is attached to an output �le.

lib/rtsoperators.mr[387] � 387

f/*

File: CuPit run time system interval operations and other operators

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Operators[344]

330 55 PUT IT ALL TOGETHER

g

This macro is attached to an output �le.

lib/rtstopology.mr[388] �388

f/*

File: CuPit run time system topology change operations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Topology Change Operations[346]
g

This macro is attached to an output �le.

lib/rtsstdlib.mr[389] �389

f/*

File: CuPit run time system standard library

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

#include <math.h>

#include <mp_libm.h>

/* #include <mp_time.h> gives "redefinition of `struct timeval'" error */

RTS Standard Library [354]
g

This macro is attached to an output �le.

lib/rtscomm.mr[390] �390

f/*

File: CuPit run time system communication operations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Communication Operations[369]
g

This macro is attached to an output �le.

lib/rtsmalloc.mr[391] �391

f/*

File: CuPit run time system memory allocation

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Memory Allocation[371]
g

This macro is attached to an output �le.

lib/rtsaddress.mr[392] �392

f/*

File: CuPit run time system address computations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Address Computations[373]
g

This macro is attached to an output �le.

331

lib/rtsmachine.mr[393] �393

f/*

File: CuPit run time system machine control and analysis operations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Machine Control[376]
g

This macro is attached to an output �le.

lib/rtsoutput.mr[394] � 394

f/*

File: CuPit run time system output operations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

#include "rts.h"

RTS Output Operations[379]
g

This macro is attached to an output �le.

lib/stdlib.nn[395] � 395

f

/*

File: CuPit standard library Cupit declarations

RCS: $Id: rts.fw,v 1.16 1994/11/07 10:58:16 prechelt Exp prechelt $

*/

stdlib.nn Output Procedures[355]
stdlib.nn Arithmetic Functions[361]
stdlib.nn Other Procedures[364]
g

This macro is attached to an output �le.

332 56 LIDO EXTENSIONS

PART VI: Auxiliary Stu�

The auxiliary stu� are several small �les for various purposes that do not �t well into any other place.

aux.head[396] �396

f

LIDO Extensions[397]
Option Variables[400]
g

This macro is attached to an output �le.

56 LIDO extensions

We de�ne an additional head �le for Lido that de�nes macros for printing messages, computing the
number of error messages emitted, and converting de�nition table keys into PTG nodes directly.

LIDO Extensions[397] �397

f

/* $Id: aux.fw,v 1.10 1994/11/07 10:58:53 prechelt Exp prechelt $ */

/* messages with several additional parameters: */

#define Message(s, m) message (s, m, 0, COORDREF)

#define Message1(s, m, p1) \

message (s, sprintf (malloc(100), m, p1), 0, COORDREF)

#define Message2(s, m, p1, p2) \

message (s, sprintf (malloc(120), m, p1, p2), 0, COORDREF)

#define Message3(s, m, p1, p2, p3) \

message (s, sprintf (malloc(140), m, p1, p2, p3), 0, COORDREF)

#define Message4(s, m, p1, p2, p3, p4) \

message (s, sprintf (malloc(160), m, p1, p2, p3, p4), 0, COORDREF)

/* pseudo-macros for currently inactivated messages: */

#define Messag(s, m) 4710

#define Messag1(s, m, p1) 4711

#define Messag2(s, m, p1, p2) 4712

#define Messag3(s, m, p1, p2, p3) 4713

#define Messag4(s, m, p1, p2, p3, p4) 4714

/* the number of errors that occured during compilation: */

#define NrOfErrors (ErrorCount[ERROR] + ErrorCount[FATAL])

/* Make a PTG node from the symbol stored under a DefTableKey */

#define PTGKey(k) PTGStr (SymString (GetSym (k, NoSym)))

/* Prepend a comma to a PTGNode if it is nonempty (for argument lists) */

#define WithComma(p) ((p)==PTGNULL ? (p) : PTGSeq (PTGStr (", "), (p)))

/* Bit operations on integers: */

#define BITAND(a,b) ((a) & (b))

#define BITOR(a,b) ((a) | (b))

#define BITNOT(a,b) ~(a)

g

This macro is invoked in de�nition 396.

333

57 cupit.h

The �le cupit.h de�nes the basic types of CuPit for use in data objects of the compiler itself.

cupit.h[398] � 398

f

#ifndef cupit_H

#define cupit_H

/* $Id: aux.fw,v 1.10 1994/11/07 10:58:53 prechelt Exp prechelt $ */

/* for use internally in the compiler only */

#include <stdio.h> /* for fprintf() in _assert() */

#include <stdlib.h> /* for atof() */

#include "csm.h" /* string[] */

typedef char* String;

typedef int Bool;

typedef int Int;

typedef short Int2;

typedef char Int1;

typedef double Real;

#define true 1

#define false 0

#define BoolNull() 0 /* for CONSTITUENTS */

/* Turning a .Sym attribute value into a string: */

#define SymString(s) ((s) < 0 ? "<unknown>" : string[s])

#define NoSym -1

/* assertions: */

#ifndef NDEBUG

#define _assert(c) ((c) ? 0 : fprintf (stderr, "Oops! '%s', line %d\n", \

__FILE__, __LINE__))

#else

#define _assert(c)

#endif

#endif

g

This macro is attached to an output �le.

58 Command line processing

The following declarations introduce options that are automatically processed by the generated com-
piler. Each boolean option is available as an integer variable, each integer or string option or po-
sitional argument is available as a de�nition table key (the corresponding integer or string value is
SymString(GetValue(x))).

options.clp[399] � 399

f

/* $Id: aux.fw,v 1.10 1994/11/07 10:58:53 prechelt Exp prechelt $ */

/*---------- Control optimizations: */

conAtOut "-conatout" boolean

334 58 COMMAND LINE PROCESSING

"Locate connection data at OUT interfaces (default: IN interfaces)";

conIndividual "-conindividual" boolean

"Fetch/send used elements of (remote) connection objects individually";

conWhole "-conwhole" boolean

"Always fetch and send the whole (remote) connection object";

dumbBalance "-dumbbalance" boolean

"Assume for load balancing that remote connection fetch/send costs nothing";

noBalance "-nobalance" boolean

"Use regular instead of load-balancing data distribution";

noDataLocality "-nodatalocality" boolean

"Generate dummy send/fetch for local connection operations";

hideLatency "-hidelatency" boolean

"Make timing functions ignore remote connection fetch/send times";

highLatency "-highlatency" boolean

"Add generate code with artificial additional latency";

wrongNodeVirt "-nonodevirt" boolean

"Use one node virtualization layer where two were better and vice versa";

codetype "-codetype" int

"0 = plain 1 = collect run time inforation 2 = optimized";

/*---------- other: */

ProducePrintcode "-P" boolean

"Produce print procedures";

FileName positional

"File name of CuPit program";

g

This macro is attached to an output �le.

Option Variables[400] �400

f

#include "clp.h"

g

This macro is invoked in de�nition 396.

335

APPENDIX

A cupit.specs

This section contains the �le cupit.specs which describes to Eli the set of �les that together form the
speci�cation of a compiler. In our case we �nd there a number of FunnelWeb �les that contain the
individual parts of the hand-written compiler speci�cation plus a number of instantiations of Eli library
modules:

/*
File: ELI .specs file for MasPar CuPit compiler specifications
RCS: $Id: cupit.specs,v 1.7 1994/02/28 12:12:49 prechelt Exp prechelt $
*/

scanner.fw
cpp.fw
grammar.fw
names.fw
types.fw
usage.fw
code2.fw
aux.fw

LIGA.ctl

$/Tool/lib/Name/Chain.gnrc :inst
$/Tool/lib/Name/NoKeyMsg.gnrc :inst
$/Tool/lib/Name/Unique.gnrc :inst
$/Tool/lib/Name/Field.gnrc :inst

$/Tool/lib/Tech/GenName.gnrc +referto=_tmp :inst
$/Tool/lib/Tech/LeafPtg.gnrc :inst
$/Tool/lib/Tech/Indent.gnrc :inst
$/Tool/lib/Tech/NodCoord.specs

/usr/lib/libm.a

B Compiler restrictions

This section describes what restrictions and peculiarities the compiler has compared to the CuPit language
de�nition.

1. The number of replicates of any single network is limited to the number of processors of the target
machine.

2. The number of nodes in any single node group is limited to the number of processors of the target
machine.

3. No names must be used in a CuPit program that are keywords in MPL.

4. Some of the operators evaluate their operands twice.

5. Applying REPLICATE ME INTO 0 to nodes that belong to a node array (not a node group) does not
produce a run time error. Instead, it works just as if the array was a group.

6. Procedures that are meant to be part of the central agent but formally are not, may induce problems
(usually illegal assigments of plural values to singular variables in the unwanted parallel version of
the procedure). Arti�cially mention a network variable to make the procedure part of the central
agent to resolve the problem.

7. There are some holes in the semantic checking, in particular concerning illegal VAR parameters.

8. Records are initialized only when they are members of connections, nodes, or networks, but not when
they are individual objects.

9. In CONNECT statements, no integers can be used for the description of node group slices; intervals of
the form n...n have to be used instead.

336 C LIST OF EXIT CODES

10. When a connection operation b, which was called from a connection operation a, deletes the connec-
tion (REPLICATE ME INTO 0), only b is immediately returned from, but the rest of a after the call
to b is still executed for the deleted connections | usually without any e�ect, though. The analog
is true for nodes.

11. When the input or output assignment is used for a non-builtin type, the procedures implementing
it will appear before the de�nition of the type itself in the resulting code.

12. Calls using a slice of a network (i.e. only certain replicates) will not compile. Slicing only works
properly for groups.

13. The random number generator does not know about node blocks. As a result, using it in node
or network procedures will lead to inconsistencies since di�erent values are returned on di�erent
processors.

14. Record procedures are not handled properly.

15. Arrays (except for node arrays) are never intialized.

16. Replication of a node into many nodes is not implemented.

17. Connection addressing is not implemented.

18. Assignment of complete objects of structure types and constructors for structure types are not
implemented.

19. Reductions and winner-takes-all operations on arrays are not implemented. (Package the array type
into a record type to perform a reduction or WTA on it.)

20. The `%='-assignment is not implemented for Reals.

21. The compiler assumes that the MPL compiler casts integer arguments passed to
oat parameters
automatically, which it does not.

22. The compiler does not detect when type conversions from type A to B are applied to arrays of A.

23. The compiler does not complain about assignments to arrays; not even for scalars of a type other
than the array element type.

24. Comments that extend beyond the end-of-�le produce a segmentation fault.

C List of exit codes

When a run time error occurs, the program terminates with an exit code other than 0. Below is a list of
standard error codes used by programs generated by the CuPit compiler along with their meaning.

CodeMeaning
10 number of network replicates must be positive
11 DISCONNECT not allowed for replicated networks
12 REPLICATE connection INTO (many) impossible
13 REPLICATE connection called while network is replicated
14 CONNECT called while network is replicated
15 EXTEND not allowed for replicated networks
16 EXTEND BY (negative) called, but group has only (fewer) nodes
17 REPLICATE node not allowed in replicated networks
18 REPLICATE node INTO x only allowed for x=0 and x=1
19 REPLICATE net called for replicated network
31 not enough memory
32 too many nodes per segment
41 could not write trace�le
42 could not open data�le
43 data�le format error or data�le inconsistency
44 openData�le: dump was for x PEs, I have (more)
45 could not open or write �le to dump to
46 could not write output �le

337

47 could not write protocol �le
1 (other)

D I/O area handling

An I/O area object a of type X that is passed to an external C procedure is passed as a plural X **a.
External procedures are responsible for allocating enough memory for *a. The memory layout of the
I/O area is just a plural array of X values at a singular start address, where coe�cient c of replicate n is
stored at
proc[(n*N+c)%P].(*a)[(n*N+c)/P]

(where both c and n are counted beginning at 0; N is the number of nodes; P is the number of processors).

E Errors during compiler development

This appendix presents an annotated list of all errors found in the compiler during its test and use. For
each error, I recorded the type of error according to the taxonomy described below, the date (in German
format: DD.MM.) and time when the error was found, and a short description of the error. This list
may be useful for anybody who wants to study programmer errors. It was made in the spirit of Knuth's
article \The errors of TEX" [Knu89]. The error taxonomy used in my list is a partially simpli�ed and
partially extended version of the one used by Knuth. There are the following error types:

A. Algorithm Awry. An error in the algorithmic program logic. This error accounts for 40% of the 89
errors in the list.

C. Incomplete Change. I intended to change some aspect of the program (usually one that was relevant
in more than one place), but did not change all relevant parts of the program or changed a particular
part only incompletely. 2% of the errors.

D. Data Structure Debacle. The invariants of a data structure were violated, i.e., either never established
or not maintained. 20% of the errors.

F. Forgotten Function. Some part of the program simply had never been implemented, although I thought
it was. 2% of the errors.

L. Language Liability. An error introduced by peculiarities of the programming language used. Such
errors would not have occured in \better" languages. 13% of the errors.

M. Module Mismatch. A function was used in a way that did not satisfy its interface conditions. 7% of
the errors.

P. Parallelism Perplexity. Too many, too few, or the wrong PEs were active at some point during program
execution. 3% of the errors.

T. Trivial Typo. I didn't type the characters that I intended to type, resulting in a legal but wrong
program. 1% of the errors.

X. Mix-up of data objects of functions. Used object A where B would have been correct. The di�erence
to the trivial type is that I more or less believed A was correct. 3% of the errors.

1. O�-by-one error. Using an integer number that was too large or too small by one; for instance by
writing <= instead of < in a loop condition. 7% of all errors.

It should be noted that in many cases it is not clear which category an error should be assigned to; thus
the above percentages are fuzzy. Below follows the error list. Errors 1 to 31 were found during a code
inspection from November 10, 1993, to November 23, 1993. In this inspection, code produced by an

338 E ERRORS DURING COMPILER DEVELOPMENT

early version of the compiler was considered before any program execution was attempted. Subsequent
errors were found during actual tests of the compiler-produced code, which occured in parallel to further
compiler development (introduction of various optimizations etc). The �rst version of the compiler that
produced a successfully running program was after error 55. The error list was originally written in
German language. The list was only translated and typeset, but the contents were not edited; so you can
see my state of mind (when I found the error) shine through in various places. I hope I did not introduce
too many errors into the errors during the translation: : :

1. (D) 10.11., 9:38
Network descriptor is not initialized (INIT_Mlp).

2. (C) 10.11., 9:59
In compute_block_size0: _log2 (_sgl (net_D->lxN)) seems to be leftover from change xN ::=
lxN in _network_D.

3. (L) 10.11., 12:05
xx_xfetch (dy, o,) goes dy steps northwards, not southwards. Ditto for xx_xsend. This
means there are errors in various places in the templates.

4. (A) 10.11., 12:35
In a_MERGE_Net: for y-reduction and redistribution do not use if (iyproc == 0) but use
if (iyproc < _S(net->_me_D.lxN) instead, since we need a complete replicate as the result, not
only on PE 0.

5. (D) 10.11., 14:06
In REPLICATE_Net in redistribute-step: result_computed set to wrong value. _me_D.meI == 0 is
insu�cient, _me_D.exists must be true as well.

6. (A) 10.11., 14:13
In REPLICATE_Net in redistribute-steps: Condition for `put x value is too weak. Additionally
`x_neighborI < repN must be satis�ed, otherwise we may overwrite non-existing replicates and
wrongly set exists to true there. Analogously for y value.

7. (D) 10.11., 14:26
In REPLICATE_Net we must compute meI in create_replicates.

8. (D) 10.11., 16:52
In REPLICATE_Net the repN of net_D is not set for the _A_to_0 case.

9. (A) 10.11., 17:04
In REPLICATE_Net: upon initialization of net_D for cases _0_to_0 and _0_to_A we compute wrong
values for net_D.lxN and lyN.

10. (F) 11.11., 11:06
In REPLICATE_Net at `compute work and conN and conI forgot to transfer mywork to
nd->_me_D.work.

11. (D) 15.11., 8:55
In layout__ no values set for group_D->nodesN and group_D->boss.

12. (D) 15.11., 9:30
In layout__ at `init _me_D of new _existing nodes no value set for nd_D.work.

13. (1) 15.11., 9:31
In layout__ at
`send _existing old node to each new node and allocate connection arrays the �rst
loop with 0...localsize-1 is too short by one iteration.

14. (A) 15.11., 9:38
Ditto: for (i = layersN - 1; i <= 0; i--, nd++) is a brain-dead loop. In the future we write
for (i = 0; i < layersN; i++, nd++). This change also removes another error which would
have occured due to the test if (layer == i) and the subsequent operations on nd, because
i--,nd++ does not guarantee the implicitly assumed *nd == nodes[i].

15. (A) 15.11., 9:45
Ditto: in _lfold3 we must not use lxN,lyN but lxblocksize,lyblocksize (which must be made
into variables that are global to the procedure for this purpose).

339

16. (A) 15.11., 10:05
The same problem occurs in
`fetch _existing old node to each new node and allocate connection arrays (In order
to have proper values for lxblocksize,lyblocksize there, we also set these variables after calling
compute_block_sizesA). Fehler (14) tritt hier ebenso nochmals auf.

17. (A) 15.11., 10:24
In copy_connections we must dereference when initializing con, because we want to know the
address of the connections and not the address at which this address is stored.

18. (A) 15.11., 10:28
In copy_connections the assertion \old network is in form0" does not always hold (however, this
is also not necessary).

19. (A) 15.11., 10:38
Ditto: Computation of target.a has an error analogous to error 17.

20. (T) 15.11., 11:11
In a_MERGE_connection upon assignment to _oe.pe it must be << lxprocN instead of << yprocN.
(Two errors in one identi�er!)

21. (D) 16.11., 9:28
In CONNECT_Weight: First use of base1,base2 is before their initialization (we must either have
_base1,_base2 there or the assignments to baseX and basebaseX must be executed before the
if).

22. (A) 16.11., 9:53
Ditto: once again a brain-dead loop of the form
for (k = _sgl(`interf_D1.con_ls); k <= 0; k-- (plus another analog one for
interf_D2 plus further two such pairs.

23. (A) 16.11., 10:31
Ditto: in `reorganizeX we must not have &new_cons at the rsend, but just new_cons instead,
because this is already a pointer.

24. (A) 16.11., 11:35
Ditto: in `write meet_rcons and read meet_cons the normalization is wrong in the assignment
to global_conI:
(norm_p_nodeI-slice1.min) * cons_per_node2 + `nd_D2.meI;

the correct form would have been
norm_p_nodeI * cons_per_node2 + (`nd_D2.meI - slice2.min);

25. (A) 16.11., 11:41
Ditto: in `write meet_cons we must do a cons++ after setting meet_cons, in order to proceed.
(For `write meet_rcons and read meet_cons and `read meet_rcons this is not necessary,
because cons->_me_D.exists is being initialized there).

26. (L) 18.11., 13:48
In ReductionNodes/WtaNodes at `target addr it should be
(plural void* plural)(x + itarget) (since x is a _type_ pointer) instead of
(plural void* plural)x + (itarget * sizeof (_type_)), because sizeof(void) is 0, so that
the addition does not do anything.

27. (A) 19.11., 11:31
In NodeArrayInit at `allocate and initialize nodes: There is an existing node with
meI == arrsizeN (instead of only up to arrsizeN-1 as it should be.)

28. (D) 18.11., 11:44
In INIT_node the ME->interface_D.boss is not set.

29. (D) 23.11., 10:04
In layout__ the nd->_me_D.boss is not set for non-existing nodes.

30. (D) 23.11., 10:20
In copy_connections the con_D.boss is not set.

31. (D) 23.11., 10:41
In CONNECT_ at `make con: cons->_me_D.boss is not set; (correspondingly also
rcons->_me_D.boss at `make rcon).

340 E ERRORS DURING COMPILER DEVELOPMENT

32. (M) 25.11., 9:56
In compute_block_layout the variable free_enum must be int instead of _sint (because it needs
to hold the value -1). The same is true for variable layout.

33. (A) 25.11., 11:06
In compute_block_layout: cum_size -= procN is wrong if we had waste before. Only the really
assigned total size must be subtracted, that is, com_size -= proc[high].cum_size.

34. (A) 25.11., 11:11
In compute_block_size at `find high: if (iproc >= low makes PE 0 always get a !fits in the
second and later iterations and thus we have high == -1.

35. (A) 25.11., 11:40
In compute_block_layout: Oh dear, the logic for storing the data about the blocks found in the
node descriptions was completely wrong. We need intermediate variables for x0,y0 that are used
according to the enumeration of free blocks of size _S(lbs) and the nodes of that size (between low

and high).

36. (L) 29.11., 13:38
For an unsigned variable x one should not attempt a for-loop of the kind
for (x = 10; x >= 0; x--) since that will never terminate! (Happened in
compute_block_layout: `layout one virtualization layer)

37. (C) 29.11., 13:51
ss_xsendc was converted from dist to ldist only incompletely.

38. (D) 30.11., 16:40
compute_block_layout distributes data over all PEs instead of only over segment 0.

39. (A) 30.11., 16:53
copy_connections does not test for non-existing nodes or connections and therefore partially
works with nonsense data.

40. (L) 03.12., 14:24
In CONNECT_xx `inferf1 is wrong: instead of
(plural _type_*)*(plural char**)(base1+interf_offset1) it should be
(plural _type_ plural*)(base1+interf_offset1). The �rst expression should be illegal, but
is not
agged as an error by the MPL compiler! (Ditto for `interf2). The resulting garbage code
also led to garbage results.

41. (D) 03.12., 16:18
In REPLICATE_Net the boss pointers must not only be changed in node_group_D but also in
node_D! We now do both in the layout__ procedure.

42. (L) 03.12., 16:36
In copy_connections we have the same garbage as in error 40:
plural char* con = *(plural char**)(old_nd + interface_offset)); should have been
plural char* con = _sgl(*(plural char* plural*)(old_nd + interface_offset));

43. (A) 03.12., 16:49
In compute_block_sizesA the (work + (work_per_PE>>1)) / work_per_PE) results in a
division by zero. Just add 1.

44. (L) 07.12., 13:07
In CONNECT_ at `reorganize1 we wrongly say
sp_rsend (cons->_oe.pe, (plural char* plural)new_cons, instead of
sp_rsend (cons->_oe.pe, (plural char*)&new_cons,. A corresponding error is in
`reorganize2.

45. (D) 08.12., 10:23
In CONNECT_ at `write meet_cons the
global_conI = (`nd_D1.meI-slice1.min) * cons_per_node2 + norm_p_nodeI; is wrong,
because cons_per_node2 is the size of slice 1. What we really need is the size of slice 2! A
corresponding error is in `write meet_rcons and read meet_cons and in `read meet_rcons.

46. (D) 08.12., 10:28
In CONNECT_ at `write meet_rcons and read meet_cons we wrongly step nbpnI with stepsize
_S(lblocksize1) (like in `write meet_cons) instead with _S(lblocksize2).

341

47. (A) 08.12., 11:24
In CONNECT_ at `write meet_cons, `write meet_rcons and read meet_cons and `read rcons

the test if (global_conI < cons_neededN) makes the procedure use data from non-existing
partner nodes. Therefore, the test has to be extended by && norm_p_nodeI < cons_per_nodex. In
order to avoid the confusion resulting from cons_per_node1 == size(slice2) (where I am
interested in the latter) I introduce slice1size,slice2size.

48. (M) 08.12., 12:55
When calling CONNECT_, the code generation does not make sure that the �rst group is the local
one and the second group is the one with the _remote_connections. (Error in code2.fw:
rConnectTo, rDisconnectFrom)

49. (L) 09.12., 09:43
In PTGremoteFetchCode/PTGremoteSendCode we use &ME as an argument for rfetch/rsend,
although ME is itself a pointer.

50. (A) 09.12., 10:51
In compute_block_layout the test for free blocks must be
(ixproc & _M(lxbs)) == 0 && (iyproc & _M(lybs)) == 0) (which essentially is modulo)
instead of (ixproc & _S(lxbs)) == 0 && (iyproc & _S(lybs)) == 0). Immediately after this
test we also must check for free_blocks_enum != -1 in addition to
free_blocks_enum < relevant_nodesN or we must initialize free_blocks_enum with a large
positive value.

51. (L) 09.12., 11:35
Aaaaarghhh!!! In layout__ I wrote if (nd->_me_D.exists = _existing).

52. (A) 09.12., 12:41
In compute_work_conI_conN the computation of your_xPE,your_yPE is completely wrong and the
second loop condition must be removed since we want a complete pre�x sum and not only a
reduction. Furthermore, the summation step must not read from help, but from sum instead.

53. (A) 09.12., 14:46
reconnect_connections should have a parameter descr_offset and use it in order to check the
existence of the connections to be reconnected. Otherwise we often perform very time-consuming
blind work: all non-existing connections fetch from PE 0.

54. (X) 13.12., 15:31
Oh dear: in rts.fw (run time system) the functions had #define rti set while the rest of nn3.m
did not. This is where the strange values in the work �eld of some connection descriptors came
from. This was probably also the cause of the crashes. At least the program runs without crashing
after errors 54 and 55 were removed.

55. (L) 13.12., 15:47
p_malloc seems to return 0 when size == 0. This confused my getmem.

56. (M) 14.12., 12:06
The code generation must not turn a REPLICATE net INTO 7 into REPLICATE_Mlp (...., false)

but should output REPLICATE_Mlp (...., 7 != 1) instead.

57. (A) 17.12., 10:30
The algorithm of _INITRANDOM was nonsense. It generated lots of identical initializations on
di�erent PEs. Rewrote it completely.

58. (A) 17.12., 12:56
For expression of the kind net.field and net[i].field we generated faulty code.

59. (A) 17.12., 14:13
Reduction_Nodes did not properly obey slice.

60. (A) 17.12., 14:57
In MergeNet the re�nements of index computation are wrong. Instead of
`y_neighbor_I: ((ixproc) >> lxN) + (((iyproc+step) >> lyN) << lxN)

it should be
((ixproc) >> lxN) + (((iyproc+step) >> lyN) << (lxprocN-lxN)).

61. (A) 17.12., 17:07
Corresponding errors are in MergeNode and MergeCon. I could have thought of that earlier: : :

342 E ERRORS DURING COMPILER DEVELOPMENT

62. (A) 17.12., 18:40
In layout__ at `distribute _existing node to rest of node block we must conditionalize
nd->_me_D.exists = _shadow; by an if (ex = _existing), otherwise we generate spurious
nodes at strange places.

63. (M) 18.12., 11:50
Aaaarghhhh!! In test.nn I had a prototype Real FUNCTION fabs (Real CONST x) IS EXTERNAL

which does not work as expected, because this function expects double arguments! Replaced by
absReal.

64. (A) 18.12., 13:50
In layout__ at
`fetch _existing old node to each new node and allocate connection arrays or the
corresponding `send... the PE number computation is wrong: xI and yI must be multiplied by
xblocksize and yblocksize, respectively.

65. (L) 18.12., 14:15
Aaarghhhh again! Lutz Prechelt Bugs proudly present: if (ex = _existing) in
layout__:`distribute _existing node to rest of node block. Great. Perhaps I should
retire: : :

66. (A) 18.12., 15:25
INPUT_x and OUTPUT_x performed index transformation according to slice only incompletely.

67. (D) 18.12., 16:08
We do need a a_MERGE__remote_connection, because otherwise there is no procedure that
distributes the descriptor replicates.

68. (P) 18.12., 16:31
In a_MERGE_Con the test of exists on the outer level successfully suppresses all useful activity as
long as the replicates do not yet exist. Analog in a_MERGE__remote_connection.

69. (X) 8.1., 16:22
In �leinout.fw (extra module not shown in this document) in procedure getExamples at
*firstI = (*firstI + howmany) % exmplN I had exN instead as the last term, which was an
uninitialized local variable. It seems this variable happened to have small values always, because
otherwise nothing would ever have worked. Probably several strange behaviors can be explained by
this error.

70. (A) 12.1., 9:40
In layout__ upon introduction of is_replicate0/willbe_replicate0 in
`fetch _existing old node to each new node and allocate connection arrays I
accidentally put `allocate connection arrays and set interfaces boss pointer outside of
the loop for (i = 0; i < layersN; i++, nd++). This made all connections dissappear.

71. (P) 13.1., 15:30
In ss_xsendc the ldist_x and ldist_y were used as if they had the correct value on all PEs.
They are valid, however, only on PEs that have got_it==true and have to be distributed �rst.

72. (F) 15.1., 15:20
In semantic analysis at FieldUse the NoKeyMsg was missing.

73. (P) 15.1., 17:17
In layout__ at `allocate connection arrays and set interfaces boss pointer the
if (layer == i) has to be extended by && iproc < new_nodesN, because otherwise we may use
uninitialized values.

74. (1) 16.1., 15:02
In ReplicateNode.tpl we must have new_nodesN = reduceMax16u (newI) + 1 (I missed the
+1). This error later made layout__ create a node that did not receive a descriptor because no
layout information had been computed for it.

75. (M) 10.2., 12:00
When replicating empty node groups compute_block_sizes performs a division by zero. Handle
this trivial case in layout__.

76. (X) 10.2., 13:00

343

For node procedure calls using slices wrong code was generated (object.parcode instead of
object.smallcode).

77. (A) 11.3., 13:17
In PTGa[r]ConProcedureDef: Accessed ME->_me_D.boss->boss->boss->boss->formA after
termination of the loop for (... ME++).

78. (A) 11.3., 15:07
In MergeNode.tplr: Accidentally put an if (merge && !redistribute) around the
must-be-unconditional call to a_MERGE_con when introducing objs->_cat2(_i,_D).wpc /= repN;

79. (D) 13.4., 11:00
delete_connection_postprocessing must set _me_D.exists = _nonexisting for remote
connections, but does not.

80. (L) 15.4., 16:08
In delete_connection_postprocessing we had
plural _interface_D* plural remote_interf; and then
sp_rsend (oe->pe, (plural char*)&new_conN,

(plural char* plural)(remote_interf + offsetof(_interface_D,conN)). This plus, however
is based on sizeof(_interface_D)!

81. (M) 16.4., 14:30
In the code generated for MAXINDEX ME.interface the call of update_conI_conN receives the
argument Object.Type. This is correct for the dataloc end; the remote end should have
_remote_connection instead.

82. (L) 18.4., 14:37
In compute_block_sizesA we have plural work1 instead of plural _work work1, which creates
idiotic distributions as soon as the work exceeds 2**31 (which is less than two minutes).

83. (A) 2.5., 10:02
In layout__ the argument for the number of nodes parameter of virtualization layer 2 was
_sgl(net_D->formA) || (_codetype_ == 2 &&

_sgl(old_group_D->better2virt) <= 0) ? 0 : newnodesN. This test of formA is exactly the
wrong way round: We want 0 for form0.

84. (1) 2.5., 10:14
When adding nodes in EXTEND we compute meI for each position of the existing block layout and
then determine the new nodes as
plural _bool new = meI >= group_D->nodesN && meI <= group_D->nodesN+n; which
generates one node too much.

85. (A) 2.5., 17:04
In reconnect1_connections at if (!`a is in old_cons) the ! was missing. This exchanged
the cases of intra-group connections and extra-group connections. Chaos was the result for all
REPLICATE_Node calls.

86. (D) 22.7., 12:38
delete_connections does not invalidate boss->conN.

87. (1) 11.9., 18:06
In ReductionNode and WtaNode we wrongly have
if (slice.max > group_D->nodesN) slice.max = (plural int)group_D->nodesN - 1;

where >= would be right instead of >. This made kogi9 etc. crash.

88. (1) 3.10., 12:34
In INPUT_ and OUTPUT_ a similar error is in `adjust slice and compute index boundaries;

where both from and to can only be modi�ed up to the opposite limit. For empty ranges they
should go one step farther.

89. (1) 3.10., 12:49
And furthermore the upper limit was localsizeN which is 1 too much.

344 REFERENCES

References

[GHL+92] Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony M. Sloane, and William M.
Waite. Eli: A complete,
exible compiler construction system. Communications of the ACM,
35(2):121{131, February 1992.

[Knu89] Donald Ervin Knuth. The errors of TEX. Software | Practice and Experience, 19(7):607{685,
July 1989.

[Pre94] Lutz Prechelt. CuPit | a parallel language for neural algorithms: Language reference and
tutorial. Technical Report 4/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, D-76128
Karlsruhe, Germany, January 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-
4.ps.Z on ftp.ira.uka.de.

[Wil92] Ross N. Williams. FunnelWeb User's Manual, version 1.0 for funnelweb 3.0 edition, May 1992.

Index

[] 43

.tpl 160

.tplr 160

a 157

x 152

x REDUCTION 66
x WTA 66

absInt 293

absReal 293

abstract.sym 57

Access 64 , 103
Access Rights of Objects 64 , 129

activation 293

activationPrime 293

activationPrimePrime 293

ACU 9

align 213

Alignment 213

alignment computation 213 , 274

all 10
all-slice 43

argc 321

arglist 213

args 215 , 299, 321

argsN 215 , 321

argv 321
ARRAY 33

array size 18

Array Type Analysis 68, 74
Array Type De�nition 14, 19

Array Type Generation 219, 230

Array Type PTG 218, 229
ArrayInit.tpl 163

ArrayTypeDef 74

ArrayTypeK 62

assert 159 , 333

Assignment 26, 26

Assignment Analysis 87, 87, 88
Assignment Generation 247, 247

Assignment PTG 246, 247

aux.head 332

Auxiliary Types 154, 157, 158

auxLinedirective 47

auxscan.c 54

base type 18

Basic Token Generation 273 , 274
better2virt 155

Binary Expression Analysis 102, 115, 116

BITAND 38 , 332
BITNOT 40 , 332

BITOR 38 , 332
BITXOR 38

block 144

block layout 145

Bool 14 , 153 , 333

bool 157

BoolNull 333

boss 154{156

BREAK 31 , 65, 98

Break Statement 26, 31
Break Statement Analysis 96, 99

central agent 43

CentralAgent 65

CHAIN 67, 67 , 83 , 89, 214

CHAINSTART 67
clp 8

code 212

code generation assumptions 142

Code Generation Attributes 212 , 273

Code Generation Properties 212 , 274
code2.c 274

code2.h 274

code2.head 274

code2.lido 273

code2.pdl 274

code2.ptg 274

coded 214

codehelp.ptg 214

codetype 216, 333
Coding Order 214 , 273

Comment 45, 46

Communication Aggregation 136, 138
compiler restrictions 335

complex type 13

component 15

ComputeConst 110 , 115

con 8

x ls 154 , 156
conAtOut 73, 333

conIndividual 239, 333

conN 156 , 236, 285
CONNECT 32 , 101

CONNECT object analysis 101, 101

Connect.tpl 180

Connection Descriptor Type 154, 156

Connection Type Analysis 68, 73

Connection Type De�nition 14, 18
Connection Type Generation 219, 228

Connection Type PTG 218, 227

connection D 156 , 227
CONST 20 , 153

Const2Str 110

ConstAcc 64 , 103
constant expression 36

ConstantK 62 , 103, 123

CONSTITUENTS 9

ConstPAcc 64

Context 65 , 79

Context Kind 78, 80 , 90, 93, 96, 100{102, 118, 120,

123, 124

Control Flow Analysis 87, 96

Control Flow Generation 247, 256 , 258

Control Flow PTG 246, 255 , 258

345

346 INDEX

ConTypeK 62

conWhole 239, 333
x connections 286

copyIn 321

cosReal 293

cost model 145, 147

cpp.gla 47

CStringPtg 273

cupit 322, 323

Cupit Program 44, 44

Cupit Program PTG 215 , 217 , 274
cupit.h 333

cupit.specs 335

CupitConst 109

cupittypes.h 153

curpos 47

D 152

Data allocation Analysis 87, 100, 101
Data Allocation Statement 26, 32

Data Allocation Statement Generation 247, 260

Data Allocation Statement PTG 246, 259
data distribution 144

Data Object Access 40, 41{43

Data Object De�nition 20 , 44
Data Object De�nition Analysis 76, 77 , 129

Data Object De�nition Generation 233, 234 , 273

Data Object De�nition PTG 233 , 274
data parallelism 28

datacode 212

Dataloc 65 , 146
De�ne Conversion 67, 67

De�ne Oil Type 104, 104

De�neOilType 103

De�nition Table To Oil 104, 105

DefTableKeySet 130

DefTbl2Oil 103

deftblkeyset.c 131

deftblkeyset.h 130

x connections 287

Denoter 40, 41

Denoter Expression Analysis 102, 118, 119

descriptor types 154

descriptorcode 212

descriptors.h 153

DISCONNECT 32, 32 , 101, 283

divgen.c 217

divgen.h 217

done1 66

done2 66

DOWNTO 31

dpuTimerTicks2 315

DScontains 130

DSempty 130

DSinsert 130

DSiterate 130

DSmk 130

DSnext 130

DSunite 130

dumbBalance 203, 216, 333

element 15

Eli 8
ELSE 30

ELSIF 30

EnumIdNo 68

Env 58

err.c 49

err.h 47

ErrorConst 65

ErrorK 62

errors 337
example add.tpl 161

example add.tpl code 161

example add.tpl result 161

existing 157

exists 154{156

explicit variable 42

Expr 103

Expression 36{40 , 45
Expression Analysis 102 , 129

Expression Generation 262, 263 , 266 , 269 , 273

Expression List Analysis 90 , 102
Expression PTG 262 , 266 , 268 , 274

ExprList 89

EXTEND 33 , 100
Extend.tpl 196

EXTERNAL 22

false 153 , 333

fetchcode 212

�eld 15

Field.gnrc 69

�eld.gnrc 64

FieldDef 69

FieldScope 69

FieldUse 69

�leinout 327
FileName 333

fold2 307

fold3 307

folding.c 110

folding.h 110

FOR 31, 31
FOR loop 31

form 0 144, 145

form A 144

formA 154

free 43

freemem 304

FUNCTION 23

Function Call 40, 41

Function Call Analysis 102, 120
Function De�nition 21, 22

Function De�nition Analysis 79, 81

FunctionK 62

Get 8
getArg 299

GetImax 110

GetImin 110

GetIval 110

INDEX 347

getmem 304

getName 300

getRemoteCommCost 140

GetRmax 110

GetRmin 110

GetX 62

gla 8

global router 9
GlobalContext 65

GlobalSubroutineContext 65

globINITgen 216

GotParam 83

Gptr 10, 157

grammar.con 44

GROUP 33

group procedure call 25, 28
group size 19

Group Type Analysis 68, 75

Group Type De�nition 14, 19
Group Type Generation 219, 231

Group Type PTG 218, 231

Groups 213

GroupTypeDef 75

head 9
hideLatency 333

highLatency 333

I 152

I/O Assignment 26, 27
I/O Assignment Analysis 87, 88

I/O Assignment Generation 247, 248

I/O Assignment PTG 246, 248
I/O object 233

i1 109

i2 109

IdDef 58

IdPtg 273

iExpOp 279

IF 30

if 10

If Statement 26, 30
If Statement Analysis 96, 97

implicit connection interface group 43

implicit network group 43

implicit variable 42

IN 17 , 37 , 128

INDEX 42 , 124
index 11

INH 63

inherited attribute 63
InhKey 63

InhKind 63

InhParams 65

InhPtg 213

InhType 78

INIT 215, 321

initcode 212

InitElemIdList 71

initgetmem 304

INITRANDOM 276

InMode 64 , 65

Input assignment 27

Input.tpl 187

Int 14 , 153 , 333

Int1 14 , 153 , 333
Int2 14 , 153 , 333

Integer Denoter 45, 45

IntegerDenoter 46

interface 17

Interface Descriptor Type 154, 156

interface mode 72
Interface Modes of Connection Elements 64 , 129

interface D 156 , 223

Interfaces 213

Interval 15, 38, 43, 153

Interval1 15, 153
Interval2 15, 153

IntervalEqOp 279

IntervalInOp 279

IntervalNeqOp 279

IntIntervalOp 279

IntIntervalOp1 279

IntIntervalOp2 279

IO 21

IoAcc 64 , 103
IoPAcc 64 , 103

IOprocgen 216, 217

iRandomOp 276

iRandomOp1 276

iRandomOp2 276

IsBuiltin 264

IsConstAcc 64

IsInt 103

IsInterval 103

IsIoAcc 64

IsUsed 65

IsUsed Values 65 , 130
IsVarAcc 64

Key 58 , 63, 64 , 69
KeyArray 83

Kind 61 , 63 , 103

Kinds Of Contexts 65 , 129

Kinds Of Objects 61 , 129

known 67

l 152

largecode 213

layout 145

Layout Nodes 203, 203

layout X 203

lfold2 307

lfold3 307

lib/ArrayInit.tplr 163

lib/callCupit.c 321

lib/Connect.tplr 180

lib/cupittypes.h 153

lib/descriptors.h 154

lib/Extend.tplr 196

lib/Input.tplr 187

lib/libmisc.h 159

348 INDEX

lib/Make�le 327

lib/MergeCon.tplr 189

lib/MergeNet.tplr 194

lib/MergeNode.tplr 192

lib/mplforgotten.h 158

lib/NodeArrayInit.tplr 161

lib/Output.tplr 188

lib/ReductionCon.tplr 163

lib/ReductionNet.tplr 170

lib/ReductionNode.tplr 167

lib/ReplicateNet.tplr 200

lib/ReplicateNetNodes.tplr 203

lib/ReplicateNode.tplr 199

lib/rts.h 329

lib/rtsaddress.mr 330

lib/rtscomm.mr 330

lib/rtsmachine.mr 331

lib/rtsmalloc.mr 330

lib/rtsoperators.mr 329

lib/rtsoutput.mr 331

lib/rtsrandom.mr 329

lib/rtsstdlib.mr 330

lib/rtstopology.mr 330

lib/stdlib.nn 331

lib/WtaCon.tplr 172

lib/WtaNet.tplr 178

lib/WtaNode.tplr 175

libmisc.h 159

lido 8, 9

LIDO Extensions 332, 332

linear block arrangement 145

literate programming 12

localsizeN 154, 155

log10Real 293

log2 307

log2Real 293

logReal 293

long long 11

loop 31

Loop Statement 26, 30
Loop Statement Analysis 96, 98

LoopNest 65 , 98

Lowercase Identi�er 45, 45

LowercaseIdent 45

lprocN 158

lrepN 154

LSHIFT 38

lxN 154, 155

lxprocN 158

lyN 154

lyprocN 158

M 306

Machine Descriptors 154, 158

machine segment 144

macro 11
make 326

Make�le 326

MasPar 9
MasPar Communication Measurement 134

MasPar Communication Measurement Results 134

MAX 40

MAXINDEX 34, 40
MaxOp 279

may-be-read set 147

may-be-used sets 130

may-be-written set 147

MayBeRead 66

MayBeUsed 66

MayBeWritten 66

ME 22{25, 42 , 123

meI 154{156 , 308
memory mapping 27

memory overhead 154

memorytrace 304

MERGE 25 , 102

Merge Procedure De�nition Analysis 79, 86
Merge Statement 26, 34

Merge Statement Analysis 87, 102

Merge Statement Generation 247, 262
Merge Statement PTG 246, 262

MergeCon.tpl 189

MergeContext 65 , 86
MergeDefs 65 , 86

MergeNet.tpl 194

MergeNode.tpl 191

MergeProcDef 245

Messag 332

Message 332

message 47

MeType 64 , 78

MIN 40

MinOp 279

mkInt 279

mkInt1 279

mkInt2 279

mkReal 279

Mode 64

mode 72

moredatacode 212

moreproccode 212

MP-1 9

MP-2 9

mpCpuTimer 300

MPL 10

mplforgotten.h 158

MultiObjectProcedureCall 93
MultiObjProcedureCall 251

multiple object procedure call 29

multiply de�ned identi�er 57

N 152

Name De�nition 57, 58

name generation rules 151
Name Ranges 58, 59

Name Use 57, 59

NameOccurrence 58

NameOf 47

nameo�sets 215

names 151, 215 , 300, 321
names.lido 57

namesN 215 , 321

INDEX 349

NeedConReduction 66

NeedConWta 66

NeedNetReduction 66

NeedNetWta 66

NeedNodeReduction 66

NeedNodeWta 66

NetTypeK 62

NetVar 66

Network Descriptor Type 154, 155

Network Type Analysis 68, 76

Network Type De�nition 14, 20
Network Type Generation 219, 232

Network Type PTG 218, 231

network D 155 , 231
neuron 17

New Symbolic Type In Oil 104, 105
NewElemId 70

newnodesN 155

NewObjRoutineId 81

NewParamId 84

NewSymbolicOilType 68

nice-rectangular 144

noBalance 203, 216, 333

NoContext 65

noDataLocality 333

node block 144

Node Descriptor Type 154, 155

Node Group Descriptor Type 154, 155
node procedure 17

Node Type Analysis 68, 71, 72

Node Type De�nition 14, 17
Node Type Generation 219, 224

Node Type PTG 218, 223

node D 155 , 223
node group D 155 , 220

NodeArrayInit.tpl 161

NodeArrayTypeK 62

NoDefTblKeySet 130

NodeGroupTypeK 62

NodeInterfaceElemDef 72

nodesN 155

NodeTypeK 62

NoKey 69
nonexisting 157

NoSym 333

NOT 40

nr 63

NrOfErrors 332

number type 13

NumPtg 273

object category 61

Object Expression Analysis 103, 122{128
Object Function De�nition Analysis 79, 83

Object Generation 269{272 , 274

Object Merge Procedure De�nition 21, 24
object procedure 22

Object Procedure De�nition Analysis 79, 81, 82

Object PTG 270, 271 , 274
object-centered parallelism 28

ObjSubroutineContext 65

oe 156 , 227

O�set 213

O�set/Size Block Handling 136, 136

oil 8

Oil Coercions 105, 105
Oil Operators 105, 106{108

Oil Structure Class 105, 109

Oil Symbolic Class 105, 109
Oil To De�nition Table 104, 105

Oil2DefTbl 103

x interface.c 104

x interface.h 103

OilType 64

OilTypeName 104
Operator 66 , 103

Operator Mapping 88, 116, 116 , 117
operatorgen.c 264

operatorgen.h 264

OpRepresentation 264

Option Variables 332, 334

options.clp 333

OR 37

OUT 18 , 128

OutMode 64 , 65

Output assignment 27

Output.tpl 188

Overall Program Generation 216 , 273

p iRandomOp 276

p iRandomOp1 276

p iRandomOp2 276

p rRandomOp 276

x 151

x free 304

x malloc 155, 304
parallel statments 25

parallel variable 43

parallel variable selection 43

Paramcounter 83 , 89

Parameter Access Handler 64 , 130

ParameterAcc 64

Parameterlist De�nition Analysis 79, 83{85

paramlist 213

Params 65 , 83
parcode 212

parslicecode 213 , 271

ParVariableK 62 , 125
ParVariableSelK 125

ParVarMode 65

ParVarType 64

pBool 290

pdl 8, 64

PE 9

pe 157

x PE 315

pInt 290

pInt1 290

pInt2 290

pInterval 290

pInterval1 290

pInterval2 290

350 INDEX

plain code version 143

plural variables 10
plural X* 10

plural X* plural 10

POSITION 47
pr connection D 317

pr Gptr 317

pr interface D 317

pr network D 317

pr node D 317

pr node group D 317

pr remote connection 317

prBool 317

pReal 290

pRealerval 290

Prede�ned Objects 59 , 60, 61
PredefKey 60

PredefObj 60

prInt 317

prInt1 317

prInt2 317

printcode 212

prInterval 317

prInterval1 317

prInterval2 317

proc[pe].expr 10

proccode 212

PROCEDURE 22

Procedure Call 26, 27, 28

Procedure Call Analysis 87, 89 , 92

Procedure Call Generation 247, 249, 250
Procedure Call PTG 246, 249

Procedure De�nition 21, 21

Procedure De�nition Analysis 79, 80
ProcedureK 62

process parallelism 29

processor block 144

procN 158

ProducePrintCode 333

program 44, 44 , 321
property de�nition language 62

prReal 317

prRealerval 317

prString 317

pString 290

Ptg 213

ptg 8, 9

PTGaConProcedureCall 249

PTGaConProcedureDef 236

PTGaNetProcedureCall 249

PTGaNodeProcedureCall 249

PTGaObjProcedureDef 235

PTGarConProcedureCall 249

PTGarConProcedureDef 237

PTGArrayDef 229

PTGArrayTypeInit 229

PTGArrayTypePrint 229

PTGAssign 247

PTGBinOpBuiltin 266

PTGBinOpCall 266

PTGBreak 255

PTGCanonicalizeInterval 271

PTGComment 214

PTGConInterfTypePrint 227

PTGConnectProcDef 227

PTGConProcedureCall 249

PTGConReductionStmt 251

PTGConstParam 235

PTGConTypeDef 227

PTGConTypeDescr 227

PTGConTypePrint 227
PTGConWtaStmt 253

PTGDataElemDef 220

PTGdummySendFetchCode 236

PTGElsePart 255

PTGElsifPart 255

PTGExtendTpl 223

PTGForLoop 258

PTGFunctionCall 268

PTGGlobInit 215

PTGGroupAbbr 220

PTGGroupMaxindex 266

PTGGroupMaxindexSeq 266

PTGHideLatency 135

PTGIfStmt 255

PTGInitElem 220

PTGInitInterfaceElem 223

PTGInitNodeArrayElem 220

PTGInt 214

PTGInterfaceAbbr 223

PTGInterfaceDef 223

PTGInterfaceDescr 223

PTGInterfaceMaxindex 266

PTGIoDef 233

PTGIoParam 235

PTGIOProc 217

PTGKey 332

PTGList 214

PTGMergeConTpl 227

PTGMergeNetTpl 231

PTGMergeNodeTpl 223

PTGMergeStmt 262

PTGNetInit 231

PTGNetInitCall 215

PTGNetMaxindex 266

PTGNetProcedureCall 249

PTGNetReductionStmt 251

PTGNetSelection 271

PTGNetSubscription 271

PTGNetType 231

PTGNetTypeInit 231

PTGNetTypePrint 231

PTGNetWtaStmt 253

PTGNode 9

PTGNodeArrayDef 229

PTGNodeArrayTypeInit 223

PTGNodeArrayTypeInitAlias 229

PTGNodeArrayTypePrint 229

PTGNodeGroupDescr 220

PTGNodeProcedureCall 249

INDEX 351

PTGNodeReductionStmt 251

PTGNodeTypeDef 223

PTGNodeTypeInit 223

PTGNodeTypePrint 223

PTGNodeWtaStmt 253

PTGNULL 9

PTGObjMeDef 235

PTGObjSubroutineName 235

PTGParamlist 235

PTGParConstParam 235

PTGParIoParam 235

PTGParName 235

PTGParNetDef 233

PTGParVarDef 233

PTGParVarParam 235

PTGpRecProcedureCall 249

PTGPrint 220

PTGPrintInterfaceElem 223

PTGProcedureCall 249

PTGProgram 215

PTGPtrObject 269

PTGpTypeCast 266

PTGrConReductionStmt 251

PTGrConWtaStmt 253

PTGRecordTypeDef 220

PTGRecordTypeInit 220

PTGRecordTypePrint 220

PTGRecProcedureCall 249

PTGReductionFunctionDef 243

PTGReductionTplDef 243

PTGremoteFetchCode 135

PTGremoteInterfaceAbbr 223

PTGremoteInterfaceDef 223

PTGremoteSendCode 135

PTGReplicateNetNodeTpl 223

PTGReplicateNetTpl 231

PTGReplicateNodeTpl 223

PTGReturn 255

PTGReturn0 255

PTGSelection 271

PTGSeq 214

PTGSeq3 214

PTGSeq4 214

PTGSeq5 214

PTGSeq6 214

PTGSeqNetDef 233

PTGspendTime 135

PTGStr 214

PTGSubroutineDef 235

PTGSubroutineDescr 235

PTGSubroutineExt 235

PTGSubscription 271

PTGSymbolicTypeDef 219

PTGTernOp 266

PTGTypeCast 266

PTGUnOpBuiltin 266

PTGUnOpCall 266

PTGUntil 255

PTGVarArg 262

PTGVarDef 233

PTGVarParam 235

PTGWhile0P 255

PTGWhile0S 255

PTGWhileLoop 255

PTGWtaFunctionDef 244

PTGWtaTplDef 244

quasi-singular 154

r1 109

r2 109

RANDOM 40

random block arrangement 145

randominit 215 , 321

Real 14 , 153 , 333

Real Denoter 45, 46
RealDenoter 46

Realerval 15, 38, 153

RealIntervalOp 279

realmod 279

realness 157

Reconnect Nodes 203, 210

x connections 288

reconnect X 210

x connections 288

record procedure 15

Record Type Analysis 68, 70, 71
Record Type De�nition 14, 15, 16

Record Type Generation 219, 220

Record Type PTG 218, 220
RecordDataElemDef 70

RecordTypeK 62

reduce 11
REDUCTION 23 , 29

Reduction Function De�nition 21, 23

Reduction Function De�nition Analysis 79, 85
Reduction Statement 26, 29

Reduction Statement Analysis 87, 93

Reduction Statement Generation 247, 252
Reduction Statement PTG 246, 251

ReductionCon.tpl 163

ReductionContext 65 , 85
ReductionFunctionK 62

ReductionNet.tpl 170

ReductionNode.tpl 167

Release Node Memory 203, 211

release X 210

Remote Connection Type 154, 156

remote end 132

remote connection 156 , 223

remoteconcomm.c 136

remoteconcomm.h 133

remoteFetchCode 133

remoteSendCode 133

REPEAT 31

REPLICATE 32, 33 , 99

x connection 285

ReplicateNet.tpl 200

ReplicateNetNodes.tpl 203

ReplicateNode.tpl 199

x type 158

352 INDEX

repN 154

restrictions 335
RETURN 23, 30

Return Statement 26, 30

Return Statement Analysis 96, 96
return type 30

rExpOp 279

riExpOp 279

RootField 69

router 9

router[pe].expr 10
rRandomOp 276

rsend 11

RSHIFT 38

rti code version 143

rti version 1

rticode 212

RTS Address Computations 308 , 330

RTS Communication Operations 302 , 330
RTS Machine Control 316 , 331

RTS Memory Allocation 304 , 330

RTS Operators 279 , 329
RTS Output Operations 318 , 331

RTS Random Number Generator 276 , 329

RTS Standard Library 291 , 294{296 , 300, 301 , 330
RTS Topology Change Operations 282, 283 , 285{

288 , 330

rts.h 328

rts.h Address Computations 306 , 329

rts.h Communication Functions 301 , 329

rts.h Machine Control 316 , 329
rts.h Memory Allocation 304 , 329

rts.h Operators 278 , 329

rts.h Output Operations 317 , 329
rts.h Random Number Generator 276 , 329

rts.h Standard Library 290 , 293 , 300 , 329

rts.h Topology Change Operations 281 , 329
rts.h Type Conversions 278 , 329

run time information code version 143

run time measurements 145

S 306

scanerr.c 46

scanner 63
scanner.gla 45

scope.c 60

scope.h 60

scope.head 61

ScopeKey 64

Scoping Basics 57, 58

segment 144

selection 42

Send/Fetch Code Construction 136, 139, 140

sendcode 213

seqcode 212

seqslicecode 213 , 271
Set 8

Set Oil Types For Standard Types 67, 104

Set Properties of Prede�ned Objects 66 , 129
Set Properties of Prede�ned Types 213 , 275

SetIminmax 110

SetIval 109

SetNothing 109

SetRminmax 110

SetX 62

sexec 327
sgl 159

shadow 144 , 157

shift operator 38
signInt 293

signReal 293

SIMD 9
simple type 13

SimpleTypeK 62

singular 10
sinReal 293

sint 157

Size 213

slice 43

smallcode 213

spendTicks 316

sqrtReal 293

x fetchx 302

x fetchy 302

x xsendc 302

StandardEnv 61
StandardEnv function 60, 61

Statement 26 , 45

Statement Analysis 87 , 129
Statement Generation 246 , 273

Statement PTG 246 , 274

Statements 21, 25
statically optimized code version 143

stdlib.nn Arithmetic Functions 299 , 331

stdlib.nn Other Procedures 300, 301 , 331
stdlib.nn Output Procedures 292 , 331

str 63

String 14 , 153
String Denoter 45, 46

StringDenoter 46

StringEqOp 279

StringNeqOp 279

structure type 13

structure type object 42
Structure Type Scoping Rules 68, 69

Subroutine De�nition 21 , 44

Subroutine De�nition Analysis 78 , 129
Subroutine De�nition Generation 238{240 , 243 ,

245, 246 , 273

Subroutine De�nition PTG 235{237 , 243{245 , 274
Subroutine ME Type 79 , 80{82, 92{95, 100, 101,

121, 124, 125

Subroutine Return Type 79 , 96, 97
Subroutine Type Remote Access 79, 79

Subroutine YOU Type 79 , 124

SubroutineDescription 80
subscription 43

Sym 58 , 63 , 68, 69, 119

sym 8
SYMBOLIC 14 , 37

Symbolic Type Analysis 68, 68

INDEX 353

Symbolic Type De�nition 14, 14

Symbolic Type Generation 219, 219
Symbolic Type PTG 218, 219

SymString 333

SYNT 63
synthesized attribute 63

T 326, 326 , 327, 328

tAccess 64

tanReal 293

terminal symbol 63

Ternary Expression Analysis 102, 114

test dpuTimerTicks2 317

THEN 30

timerStart 300

timerValue 300

tInterfaceMode 64

tKind 62

TO 31

tpl 9

tplr 9

TRACE 159

TRACEFILE 304

tracelevel 159, 215 , 304, 321

Traversal Order Invariant 67 , 129
true 153 , 333

Type 63, 64

type analysis 57
Type Analysis Attributes 63 , 129

Type Analysis Properties 62 , 129

type compatibility 34
type conversion 34, 40

Type Conversion Expression Analysis 102, 117

Type Def Body Code 219, 219
Type De�nition 13 , 44

Type De�nition Analysis 67 , 129

Type De�nition Generation 218 , 273
Type De�nition Key 68, 68

Type De�nition PTG 218 , 274

Type Identi�er 16, 16
type name 14

type.c 129

type.h 129

type.head 130

type.lido 129

type.pdl 129

Type2 64

TypeDef 14

TypeDefBody 14, 68
TypeDefContext 65

TypeId 14

TypeNameOccurrence 58

types.oil 105

Unary Expression Analysis 102, 117, 118

unde�ned identi�er 57

Unde�nedK 62

unfold2 307

unfold3 307

unit 17

unlfold2 307

unlfold3 307

UNTIL 31

Uppercase Identi�er 45, 45

UppercaseIdent 45

UPTO 31

usage.ptg 136

used 65

used0 65

usedA 65

usedAR 65

Val 65

VAR 20 , 22, 153
VAR parameter 22

VAR parameter for functions 23

VarAcc 64 , 103
VariableK 62 , 103

VarPAcc 64 , 103

virtualization 144
VOID 67

Void 60 , 78, 79

VoidKey 64

WHILE 31

while 10

Winner-takes-all 24 , 29 , 94

Winner-takes-all Analysis 87, 95
Winner-takes-all Function De�nition 21, 24

Winner-Takes-All Statement Generation 247, 254

Winner-Takes-All Statement PTG 246, 253
WITH 9

WithComma 332

work 157

wpc 156 , 203

x sum 308

writetrace 304

Wrong Keywords 45, 46

wrongNodeVirt 216, 333

WTA 24 , 29 , 94
Wta Function De�nition Analysis 79, 86

Wta Statement 26, 29

WtaCon.tpl 172

WtaContext 65 , 85

WtaFunctionK 62

WtaNet.tpl 178

WtaNode.tpl 175

X-net 9
xfetch 11

xnetE[dist].expr 10

XOR 37

xprocN 158

xsend 11, 302

YOU 23{25, 42 , 123

YouType 64

yprocN 158

