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1 Introduction

The classical core of the geometry of convex bodies in R?, the so-called Brunn-Minkowski
theory, is based on the notion of the mixed volume V(Kj,...,K;) of convex bodies
K1,..., K4 (non-empty compact convex subsets of R?), and the central issues are unique-
ness and extremality results. The volume V(a3 K1+ ...+ aqKy) of a linear combination
(with non-negative coefficients) has a polynomial expansion in the variables oy, ..., a4,
and the mixed volumes are the coefficients of this polynomial. A special case is Steiner’s
formula

V(K + pB?) = Zpd "ka—iVi(K), p=>0,

where B¢ is the unit ball in R?. The coefficients Vp(K),...,Vy(K) are the intrinsic
volumes Vy(K), ..., Vy(K) of the convex body K

A local variant of Steiner’s formula was introduced in 1937/1938 by Alexandrov and
Fenchel-Jessen, the surface measures Sy (K, ), ..., Sq—1(K, ) of K. The surface measures
are defined by a local variant of Steiner’s formula,

1-d

1 . f(d—1
Vd(MP(Kvn)):gZpd ! ]( ] >S](K7n)’ PZOa
7=0

where 7 is a subset of the unit sphere S%~!, and M, »(K,n) is a local parallel set of K in
the directions in 1. The surface measures defined by this equation are measures on S%~1.,
In the last decades other local variants have been introduced, for example the curvature
measures by Federer, and the support measures by Schneider (which are measures on
R? and RY x S9!, respectively).

The following equation is an integral representation of certain mixed volumes,

1
V(M,K,...,K):d/ h(M,u)Sq—1 (K, du), (1.1)
Sd—1
where h(M,-) is the support function of M. Equation (1.1) relates surface measures and
mixed volumes, and is fundamental for many uniqueness results. A special case is the

representation of the projection function

Vi 1 (K| vh) = ;/S (0, )] Su_r (K, du), (1.2)

that expresses the (d — 1)-dimensional volume of the orthogonal projection of K onto
the hyperplane L = v’ by means of the surface measure and the scalar product (-, -).



1 Introduction

Equation (1.2) also makes a connection to spherical transforms, for example, the Radon
transform.

Va—1(K]|-) is not the only projection function. More generally, for j € 1,...,d — 1,
the function V;(K|-) is a projection function of K, where V;(K|L) is the j-dimensional
volume of K|L, and L ranges over E?, the Grassmann manifold of j-dimensional linear
subspaces of RY. The only known integral representation is (1.2), i.e. for the case
j =d—1 (where Eg_l and S?~! are identified). However, if we consider only centrally
symmetric convex bodies that fulfill a certain smoothness condition, there exists the
integral representation

VEID) = [ Mgy (< ad), G =11
J

with the so-called projection generating measure p;(K,-) on E;l. However, it can be
shown that such a representation cannot exist for general convex bodies, at least not
with measures on E?. One of the goals of this thesis is to find integral representations
of projection functions with measures on suitable flag manifolds.

In [1] Ambartzumian presents a so-called sin?-representation of the width function
w(K,u) = h(K,u) + h(K, —u) of convex bodies in R3,

h(K,u) + h(K,—u) = /sinQ(au,v,L) w(K, d(v, L)), (1.3)

where p(K, ) is a measure on the flag manifold
{(v,L) e S* x L3 : v L L},

and «y, 7 is a certain angle depending on u, v and L. These measures are defined
for polytopes first, and then the existence of measures with property (1.3) is shown by
approximating convex bodies with polytopes and using a compactness argument.

After some basic notions and results are presented in Chapter 2, we go on to generalize
Ambartzumian’s result to arbitrary dimensions d and arbitrary projection functions in
Chapter 3. In that chapter we will also show that the measures p;(K,-) that appear
in the integral representations of the projection functions of K do not depend weakly
continuously on K.

In order to obtain a representation with weakly continuous measures we introduce

measures @;k) (K,-) on RY x §9-1 x E% in the following way. For a convex body K,

the invariant measure ,uk(M,gk)(K ,m)) of local parallel sets of k-flats has a polynomial

expansion in the parameter p, where the measures @g-k) (K,-) are the coefficients:

d

—k—1
1 (d—k
7=0

here 7 is a subset of R% x §9~1 x Ez. These measures depend weakly continuously on K.

The projection onto the second and third component yields measures S](.k) on S%1 x Eg



that are concentrated on the flag manifold
{(u,L) e ¥ P x £¢: w L L}.

In Chapter 5 we will use these measures to prove integral representations of projections
functions with measures depending weakly continuously on K.
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2 Notation and preliminaries

2.1 Convex Geometry

In this section we present the basic notions and facts of convex geometry that we will
need. Most of the notation follows the book of Schneider [9], and the book of Schneider
and Weil [10]. A more in-depth introduction to convex geometry can also be found in
the book by Schneider [9]. Where well-known facts are stated without proof, they can
be found in one of these books.

2.1.1 Geometry

Our general setting is the Euclidean space R? (d > 1). Its scalar product and norm will
be denoted by (-,-) and || - ||, respectively. Let B¢ be the closed unit ball and let %1
be the unit sphere in R%.

For any subset A C R? let lin A be the linear hull of A, and let A* be the (largest)
subspace that is orthogonal to A. We designate the affine hull of A by aff A.

Two linear subspaces L, L' € R? are called parallel if L ¢ L' or L' ¢ L. Two affine
flats E = L+2,E = L' + 2’ for 2,2’ € R? are called parallel, if L and L' are parallel.
Moreover, we speak of L as the linear subspace parallel to E. For any non-empty set
A C R? we denote the linear subspace parallel to its affine hull aff A by L(A). The
dimension of A is dim A := dim L(A). As an exception, for a point u € R?, we put
L(u) := lin{u} for convenience.

For a set A C R? and an (affine or linear) subspace L C R? let A|L be the orthogonal
projection of A onto L, i.e. A|L = (A+ L*)N L. We also write x|L for the orthogonal
projection of any point x onto L.

For arbitrary sets A, B C R? we define their Minkowski-sum as

A+B:={a+b:ac A be B},
and x + B := {x} + B for € R%. The Minowski-difference A © B is defined as
AcB:={a€A: a+ B C A}.

For z,y € R we define [z, y] as the segment connecting x and y. For compact sets
C1, Cy C R% we define the Hausdorff-distance

d(C1,Cs) :=min{e > 0: Cy C Cy + B4, C} € Cy + eBY}.

This distance defines a topology on the compact subsets of R

11



2 Notation and preliminaries

We denote the diameter of a compact set C C R? by
D(C) := max{||z —y| : z,y € C}.
For z € R% and a compact set C' C R?, we define the distance of z and C by
d(C,x) :=min{||lz —y| : y € C}.

In the special case C' = {z}, we also write d(z, x) instead of d({z},z) = ||z — z||. For an
affine flat E C R? we define d(F, C) and d(F, x) analogously.
Let A be a subset of some larger set M. Then we define the indicator function

Iy:M—R,z— {1’ z €4,
0, z¢A.
When it is convenient, we write I(z € A) for I4(z).

For a set A C R% bd A is the boundary of A, and int A is the interior of A. The
closure of A is denoted by cl A. relbd A is the relative boundary of A, i.e. the boundary
of A with respect to aff A. The relative interior relint A is defined analogously.

The Lebesgue measure on R? will be called \g. If L is a k-dimensional affine subspace
of R?, the Lebesgue measure on L will be denoted by )\ﬁ. For convenience, we will
sometimes write A for )\,5 if the subspace L is clear from the context. The spherical
Lebesgue measure on S ! will be called wy_1, and the spherical Lebesgue measure on
S4=1'N L will be called w,f_l. Again, we will write wg_1 for wlf_l if the subspace L is
clear from the context. For a linear subspace L' C R? of dimension dim L’ < k, we
have wX | (L') = 0 and A\E(L') = 0 for all k-flats L € L£¢ containing L'. Therefore, the
expressions w,fll and )\g denote the zero measure on L'.

We define the constants
B J B 71_d/2
Rd ‘= )\d(B ) = m,
gd :— wd,1<sd_1) = d/fd.

The Lebesgue measure is invariant under rotations, translations, and reflections. The
spherical Lebesgue measure is invariant under rotations and reflections.
We introduce the binomial coefficients,

(1) = moar

where n and k are non-negative integer numbers, and k < n. Moreover, for n < 0, k < 0,
or k> n, we put (}) := 0.

For a topological space X, we designate the set of all Borel subsets of X by B(X).
Measurability will always be with respect to this o-algebra, and all measures will be
Borel measures.

12



2.1 Convex Geometry

2.1.2 Flats

Let [,ﬁ be the Grassmann manifold of k-dimensional linear subspaces of R%, and let é’,‘j
be the set of k-dimensional affine subspaces of R%. An element L of Eg or Eg is called a
k-flat. If the dimension of L is clear from the context, it will simply be called a flat. We
now follow the steps of Schneider and Weil [10] to introduce topologies on Ei and 55.

We first need a topology on the group of rotations in R?, which is denoted by SOj.
Each rotation ¥ € SOy is represented with respect to the standard basis of R by an
orthogonal matrix M () whose determinant is 1. The mapping p : ¢ — M(¥) is an
isomorphism from the group SO, onto the group SO(d) of orthogonal (d,d)-matrices
with determinant 1. SO(d) can be interpreted as a bounded subset of R%. With respect
to the topology of R? the set SO(d) is closed, and therefore compact. The mapping
(M,N) — MN~! from SO(d) x SO(d) into SO(d) is continuous, and the same holds
for the mapping (M, x) — Mz from SO(d) x R? into RY. Now we can use p~' to carry
the topology of SO(d) over to SO4. Thus SOy is a compact topological group with
countable basis, and SO, acts continuously on R

For a fixed k-flat L € £¢, we define the function

Br: S04 — L, 9 OL.

The topology we use for Eﬁ is the finest topology such that 0 is continuous.

Similarly to the mapping p, we define the mapping v : (z,9) + t; o 9 from R% x SOy
onto the group Gy of rigid motions in R? (¢, denotes translation by x). v is used to
introduce a topology on G4. We define the function

i Lt x 805 — &L (2,9) — (L + ),

and the topology for Eg is the finest topology such that +4 is continuous. The topologies
on Ei and Eg do not depend on the choice of L.

It can then be shown that Eﬁ and 5,? are locally compact with a countable basis. SOy
acts continously and transitively on L¢, and G4 acts continuously and transitively on
£d.

There is a unique probability measure v on EZ that is invariant under rotations. More
generally, let L € £¢, and let 0 < j < d. We define Z/]-L to be the invariant probability
measure on the topological space Lﬁ of all j-dimensional linear subspaces of R¢ that
contain (or are contained in) L.

Let A% = 44([0,1]%7% x SOy), where [0,1]97% is a (d — k)-dimensional unit cube in
L*. There exists exactly one invariant measure s, on Eg such that s (A*) = 1. This
measure does not depend on the choice of L.

Let E € E,g and E' € 5]‘-1 be two flats. They are called in general relative position if
dim(E 4+ E') = min(d, k + j).

Let F € 8,?. The set of all j-flats in E;-l that are not in general relative position to £
is a set of pj-measure zero.

Aflat H € 5:}71 is called a hyperplane.

13



2 Notation and preliminaries

The relative position of two k-flats E, F € L¢ defines a number |(E, F)| in the following
way:
(B, F)| == X (C|F), (2.1)

where C' C F is a measurable set with )\f (F) = 1. Typically, one would use a unit cube
in F for the set C, i.e. C' = [0,u1] + ... + [0, ux], where uq,...,u; is an orthonormal
basis of E. The number |(E, F')| can also be defined in another way, which shows that
(2.1) does not depend on the choice of C. Let 7 : E — F be the orthogonal projection
onto F'. The Jacobian of 7 at any point x € E is

(ui,v1) -+ (ug,v1)
c:= : ,
<u1,'l)k> <Uk7'l)k>
where u1,...,u; and vy,...,v; are orthonormal bases of £ and F', respectively. We see

that this determinant does not depend on z, and therefore
NP = [ Licy@) X @)

=Lk@kﬁﬂ@
— e \E(O).

The right hand side is |c|, and thus |(E, F')| = ||, independently from C. It is also clear
that |(E, F)| = |(F, E)]|.

Now assume E € L{, F € L’;l, and 0 < k < j < d. We extend the definition of |(, )]
to this case. If dim(E|F) < k, we put |(F, E)| := [(E, F)| := 0. If dim(E|F) = k (which
is equivalent to £/ and F* being in general relative position), we put

(F,E)| := |(E, F)| == |(E, E|F)| = A\P'"'(C|F),

where C' is any measurable subset of £ with )\E (C) = 1. For arbitrary flats E, F, the
relation [(E, F)| = |(E+, F1)| holds.

2.1.3 Convex bodies

A set A C R is convex if for all 2,4 € A we also have [z,y] C A. The convex hull
conv A of a subset A of R? is the smallest convex subset of R? containing A.

A convex body K is a compact non-empty convex subset of R%. The set of all convex
bodies is denoted by K.

A convex body P that is the intersection of finitely many halfspaces is called a poly-
tope. This is equivalent to P being the convex hull of a finite non-empty set. The set of
all polytopes is a dense subset of K, i.e. for any convex body K there exists a sequence
(P;) of polytopes such that

K = lim P,

1—00

14



2.1 Convex Geometry

(with respect to the Hausdorff distance).

Let H be a hyperplane. If K is a convex body such that H N K # 0 and K is
contained in a closed half-space bounded by H, H is called a supporting hyperplane of
K. If furthermore u € S9! with L(H) = u', and K is not contained in the halfspace
that contains H + u, u is called an outer normal of the supporting hyperplane, and we
write H,, = H,(K) for this hyperplane. The set K, := K N H, is called the support set
of K in the direction w.

The support sets of a polytope P are called faces of P. P is also considered a face of
itself. A k-dimensional face is called a k-face (0 < k < d). In particular, (d — 1)-faces
are facets of P, and 0-faces are vertices of P. The set of all k-faces of P is denoted by
Fi(P). Each = € bd P lies in the relative interior of exactly one face of P. For faces F'
of polytopes, we introduce the special notation F+ := L(F)*. A face I of a polytope
P and a flat E are in general relative position if L(F) and F are in general relative
position. If all faces of P are in general relative position to E, we say that P and F are
in general relative position.

Let K € K. For z € bd K we define the normal cone of K at x,

N(K,z):={ueR"\{0}: 2 € K,y }-

A related spherical set is n(K, z) := N(K,z)N S9!, For a polytope P with a face F we
put N(P,F) := N(P,z) and n(P, F) := n(P,z), where z is any point in relint F'. These
definitions do not depend on the choice of z.

We also define the exterior angle (P, F') of P at a k-dimensional face F,

WPF) i= ——wiia(n(P. F))

The sum of the exterior angles at the vertices of a polytope is 1,

> P F)=1

FeFo(P)

We now investigate the case j := dim P < d. We identify aff P with R/, and we designate
the exterior angle of P at F in R? by

YO(P,F) = ——w;_s_1(n(P, F) N aff P).

Oj—k

We then have
YI(P,F) = y(P, F),

and consequently we speak of the exterior angle of P at F without mentioning the
dimension of the surrounding space.
For a linear subspace L C R? we put

(P, F) :=~(L+x)NP,(L+z)NF), (2.2)

15



2 Notation and preliminaries

where x is any point in the relative interior of F'. This definition does not depend on
the choice of x € relint F'.

For any convex body K € K we define the metric projection p(K,z) of x € R? as the
point z of K that is nearest to z, i. e. for which d(K, x) = ||z —z||. The metric projection
is continuous in both components.

An additive mapping ¢ : K — M (where M is an abelian group) fulfills

YK UK) +y(ENK') =(K) + (K

for all K, K’ € K for which K U K', K N K" are convex bodies.
For K € IC we define its support function

h(K,-): 81 = Ru— max{(u,z): z € K}.

Any convex body K is determined by its support function h(K,-).

A convex body Z is a zonotope, if Z is the Minkowski sum of (centrally symmetric)
line segments. Zonotopes are also characterized in the following way. A polytope Z is a
zonotope if any two edges with the same direction have the same length, i.e.

F.F' € F1(Z), L(F) = L(F') = Vi(F) = Vi(F), (2.3)
and for any F € F
n(Z,F') = Ftngit (2.4)
F'eFi(Z),L(F")=L(F)

holds.

A convex body that can by approximated by zonotopes is a zonoid. For zonoids there
also exists a characterization result. The convex body Z is a zonoid if and only if its
support function can be represented in the form

h(Z,u) = /S )l dp(v), we s, (2.5)

with some even measure p on S4~!. (A measure p on S%! is even, if for all Borel sets
1 C ST we have p(n) = p(—n).)

2.1.4 Support measures of convex bodies

In this section we present the support measures of convex bodies (see Schneider [9],
Section 4.2).

For a Borel set n C R? x S97! and K € K we denote by M,(K,n) the local parallel
set

M,(K,n) ={z ¢ RY: 0 < d(K,z) < pand (p(K,z),u(K, x)) €n},

16



2.1 Convex Geometry

where u(K, z) is the direction of the segment connecting p(K,z) and z, i.e. u(K,z) =

% M,(K,n) is a Borel set. It turns out that its Lebesgue measure has a

polynomial expansion in the following way,

MM 52 (et (2.

where O¢(K,-),...,04_1(K,-) are finite Borel measures on R? x S9~!. These measures
are concentrated on the normal bundle of K,

Nor(K) = {(z,u) € R x S: x € bd K,u € n(K, z)},

and they depend additively and weakly continuously on K € K, i.e. for K; — K we
have O;(K; )H@( ,),7=0,...,d—1, for i — oc.
For j = 0 ,d—1, the j-th curvature measure is defined by

Cj(K,-) := 0;(K, - x ST, (2.7)

the projection of ©;(K,-) onto its first component (j = 0,...,d — 1). Occasionally, a
different normalization is used,

wi(r) = g () ey

dka—j \J
The projection of ©;(kK,-) onto the second component is
Si(K,-) = 0,;(K,R? x ),

the j-th surface area measure of K.
The total measures of the curvature measures are given by

Vi(K) == 1;(K,RY, j=0,....d—1,

where V;(K) is the j-th intrinsic volume of K. Additionally, we put Vg(K) := A\g(K),
and V;(0) :==0, 5 =0,...,d. If K € K is j-dimensional, we have V;(K) = )\?HK(K).
For the intrinsic volumes the famous Steiner formula holds,

Va(K + pB) = Zpd "Ka-iVi(K), p>0. (2:8)

If P is a polytope, then
Vi(P)= > ~(F,P)Vi(F).

FeF;(P)

The intrinsic volumes have the following geometrical interpretations for general convex
bodies: Vj is the volume, V;_; is half the surface area, Vi is the mean width (up to a
constant depending on d), and V = 1.

17



2 Notation and preliminaries

Let 0 < j <k <d, and let K € K. Then Crofton’s formula holds,
. Vi(K N E)dug(E) = agikVarj—k(K),
k
where N

Qi = .
’ (kgj)"{j’{d

2.2 Measure Theory

In this section, some of the results are given without a proof. In this case, the proof can
be found, e.g., in Bauer [3].

Let X be a topological space. We know that the o-algebra generated by the open
subsets of X is the Borel o-algebra B(X).

It can be difficult to find out if a given system D of subsets of X is a o-algebra. This
problem can sometimes be solved with the help of Dynkin systems.

Definition 1. Let D be system of subsets of some set X. D is a Dynkin system (in X),
if

X €D,
DeD=X\DeD,

oo
and if, for each sequence (D) of pairwise disjoint sets in D, the union U D, lies also
n=1
i D.
The following lemma states under which conditions a Dynkin system is a o-algebra.

Lemma 2. A Dynkin system D is a o-algebra if and only if Dy N Do € D for all
Di,Dy €D.

Definition 3. Let X be a locally compact space with countable basis. Let ¢, 1, po, . ..
be finite measures on X. The sequence (¢;) is weakly convergent to ¢ if

i [ fdon = [ 7as
holds for all continuous, real-valued and bounded functions f on X.
We also denote weak convergence of (¢;) to ¢ by
i —=¢ for i — oo.

We will use weak convergence mainly in the following context. Let ¢(K,-) be a finite
measure on X which depends on a convex body K. This measure is weakly continuously
in K if K; — K implies ¢(K;,-) > ¢(K,-) (i — o0o) for convex bodies K, K1, K, . . ..

18



2.2 Measure Theory

In convex geometry, we often encounter measures that have a polynomial expansion
with respect to some parameter p. An example is equation (2.6), where the Lebesgue
measure \g(M,(K,n)) of a local parallel set (at distance p) of the convex body K is
expanded into a polynomial in p. The coeflicients, in this case, are the support measures.

We now give some properties for a general class of measures that have polynomial
expansions. The underlying method has been used, for example, by Schneider [9] and
Fallert [4]. It is well-known that a polynomial p of degree n (and therefore its coef-
ficients) are determined by its values p(z;) for n + 1 pairwise distinct real numbers
Z1,...,Tnt1. The following Lemma gives us some more information about the relation-
ship of p(z1),...,p(xn+1) and the coefficients of p.

Lemma 4. Let .
= Z a;x’ (2.9)
i=0

be a real polynomial of degree n. Then there are coefficients b; j, 0 < 4,5 < n, depending
on 1,7 and n only, such that

=r7 Y bigp((j+1)r), i=0,...,n,

for every positive real constant r.

PRrROOF. Let r > 0. We use the polynomials

n

x—( z—i—l
Lj(x) ::ZH;A A Zbd:r

to write Y1 ja;z’ = p(x) = > j=oLj(x/r)p((j + 1)r). Comparing coefficients yields
a;rt = >0 bij(z/r)p((j + 1)r), and for z = 1 we get a; =" > i—obip((4 + 1)r).
O
As a corollary we get the following result of Fallert [4], Satz 32.

Corollary 5. Let j € {0,...,d}. Then there exists a constant c;q that depends only on
j and d, such that for any convex body K C R? and any ball B' with radius r > 0 the
following inequality holds:

V;(K,B') < cjar.

PRrROOF. We apply (2.9) to the polynomial

d
M(M(K,B' x $471)) =" 'rihg_s(K, B'),
=0

which follows from (2.6) and the definition (2.7) of the curvature measures. This yields

Yq_i(K,B') i T Aa(Mj 1) (K, B x S471).

19



2 Notation and preliminaries

Now Mj;1) (K, B' x S*™') C Mg41),(K,B' x S*') € B+ (d+ 1)rB, and therefore
V(U1 (K, B')) < (d+2)kar®.

The assertion now follows easily. O

We can also apply Lemma 4 to measures that depend on a parameter that is a convex
body. If such a measure has a polynomial expansion, and depends weakly on the convex
body it belongs to, the measures that are the coefficients of the polynomial also depend
weakly on the convex body. This and some more results are stated in the following
Lemma.

Lemma 6. For each € > 0 and each K € I let o.(K,-) be a finite Borel measure on

a locally compact Hausdorff space X with countable basis. Let M be a dense subset of
K, and for each K € M let ¢po(K,-),...,on(K,-) be finite Borel measures on X. For

K € M assume the following polynomial expansion,

0K, ) =) €ei(K,-).
i=0
Moreover, let ¢. be weakly continuous in K. Then ¢o(K, ), ..., ¢p(K,-) can be expanded

to be measures depending on K € K (i. e. not only on K € M) such that they are also
weakly continuous in K.

ProOOF. From Lemma 4 we get the polynomial expansion
n
$i(K,-) =) bijogene(K,-),  r>0, i=0,...,n,
7=0
which holds for K € M. For r = 1 this equation gives
n
$i(K, ) =Y bijojr(K,). (2.10)
=0

We now use equation (2.10) to define the (for the moment possibly signed) measures
do(K,),...,on(K,-) for all K € K. Clearly, for K € M this definition coincides with
the original measures. We now show that for arbitrary K € K we also get a (positive)
measure ¢;(K, ). Let K; € M such that K; — K for | — oco. Then ¢;(Kj,-) is the weak
limit of measures,

¢1(Kla)g¢l(K7)a l—>OO,

and therefore a (positive) measure itself (i € {0,...,n}). Moreover, as ¢;(K,-) is a
sum of weakly continuous measures, ¢;(K,-) also depends weakly continuously on K
(1=0,...,n). O

We now consider another inequality. In contrast to corollary 5, we do not consider
the measure of a ball of radius €, but the measure of (a projection of) spherical images
of zonal sets.
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Definition 7. Let k € {0,...,d}, € >0 and L € L. Then
Z(Lye):={ue ST : |ulLt]| <€ ={ue S ||Ju|L|| > V1— e} (2.11)

is called a zonal set (with respect to L and ).

Theorem 8. Let k € {0,...,d},0<e<1and L€ ,Cg. Let K C R? be a convex body,
and
K.:={x €bdK : n(K,z)NZ(L,e) # 0}.

Then for0 <e<1
KL C{x € K|L: d(relbd K|L,z) < eD(K)}. (2.12)

Moreover, a constant c(K) > 0 exists that depends on k and K only, such that for
0<e<1

Mo(cl(Ke|L)) < ecp(K). (2.13)

PROOF. For e = 0, the left hand side of (2.12) is relbd K|L, which clearly is a subset
of the set on the right hand side. relbd K|L is a set of dimension less than k, and thus
(2.13) holds. On the other hand, for € = 1, the right hand side of (2.12) is K|L, and the
left hand side K(|L is a subset thereof, as K. C K. Equation (2.13) also holds, as c;(K)
can be chosen to be greater than Vi (K|L).

Thus we assume 0 < € < 1 for the rest of the proof. We start with (2.12). We may
assume without loss of generality that dim K |L = k. The set on the right hand side is

{r e K|L: ||z —z|| < eD(K) for some z € relbd K|L}.

Thus, it suffices to show that for any = € bd K that has an outer normal u € Z(L,¢), a
point z € relbd K|L exists such that d := ||z|L — z|| < eD(K). We assume without loss
of generality that # = 0 and € = ||u|L*|. Let v € S%' N L such that u|L = V1 — €2v.
We put F := lin{u, v}, g := lin{v}. Let H,, H, be the supporting hyperplanes of K with
outer normals u, v, respectively. « € H, is a support point of K. Let y € H, N K be
another support point of K. From H, = g we get that y|g lies in the relative boundary
of K|g with outer normal v (in g). As z|g € K|L and g C L, the line segment [z|g, y|g]
contains some z € relbd K|L. Then z|g = z|L yields

d=||z|L — 2| < [|z|g —ylgl|.

z|E and y|E are points in the relative boundary of the (2-dimensional) convex body
K|E, and they have outer normals u and v, respectively. This follows from the fact that
ut and vt contain E+, and from 2 € H, and y € H,. The convexity of K|E then
implies

¢ |[z[E—ylE] = |lz|lg—ylgll.

The orthogonal projection onto E is a contraction, which implies

Iz = y)|E] <z —yll < D(K).
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2 Notation and preliminaries

Altogether these inequalities imply
e-D(K) >d,

which finishes the proof of (2.12)
It is clear that cl(K(|L) is a measurable set, and that

(K |L) C {z € K|L: d(relbd(K|L),z) < eD(K)} =: K'.

If K is a polytope, for each 2z € K’ there is a face F € Fj_1(K|L) such that d(F,z) <
eD(K). Thus
K'= |J F+eDE)-[0,—uF)),
FeF_1(K|L)

where u(F') is the outer normal of K|L at F' that lies in L. Consequently,

M(E')<eD(K)- Y Vi(F 410, —u(F)))
FeFp_1(K|L)
—eD(K)- Y. Via(F)
FeFr_1(K|L)
= eD(K) - Vi—1(K|L).

If K is an arbitrary convex body, we can approximate K by a series (P;) of polytopes.
We clearly have P/ — K’ and therefore A\, (P/) — Ap(K’) for i — co. On the other hand,
P|L — K|L and Vj_1(F;|L) — Vx_1(K|L) for i — oco. Thus the inequality

M(K') <eD(K) - V_1(K|L)

holds for arbitrary K € K. We can now choose c;(K) to be any upper bound of
D(K)Vj—1(K|L) for L € L. m)

We cite the following result of Santalo [8] as a Lemma for later use.

Lemma 9. There are real constants aqk,m for k,m € {0,...,d} such that the following
properties hold. Let F € L2 and let f : Eg — R be an integrable function. If k+m > d
then the following equation holds,

(D) dn(L) = aa |

k+m—d

L M P ) vl (L) o)
' (2.14)

!
L
If k +m < d, the following equation holds,
/ f(L)dvg(L) = aga—rd—m / / LS FY R (L) duf (L) dugy, (L),
cd cF - Jck

k+m
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PrOOF. We first consider the case k +m > d. The result then is equation (14.40) in
Santalo [8], where we apply the formula (L, L*|F)| = [(L*, F)| whenever L, F' are in
general relative position. Otherwise, [(L*, F)| = 0, which fits Santalo’s formula.

For k +m = d the equations hold with ag q—x = 1.

If kK +m < d, we orthogonalize the variable of integration and get

F(L) (L) = / FIY) dva (D).
cd c

d
d—k

We observe that (d — k) + (d —m) > d, and apply (2.14) to F+ € £4  instead of
F e £, yielding

FIL) dvg-k(L)

o,
L / L
—aganaom [ [ WP EDIE @S @ (L) v ()
L:dfmfk 'cd k
1L
T R R e (P A Z
£k+m ‘cd k
—aviraen [ [ WL FRE AL dof (D) vk, (L),
££‘+'m ﬁé
We apply the equation |(L, F+)| = |(L*, F)|, which yields the assertion. O

2.3 Grassmannians

We will later study functions in L? (Ei), i.e. real-valued square integrable functions on
the Grassmannian Ez. Many of these functions will be defined using the function

Ew |(E,F)|, E€L{,

where F' is some fixed k-flat. We will now state some results related to the relative
position of E, F' that are needed later.

Lemma 10. Let 1 < k < d, 0 <m < d, and let F € L%, Leﬁﬁl. Let u; € Fn St
be such that ||ui|L|| is mazimal (or minimal). Then ui|L L (ui N F)|L, i.e. for any
ug € Fyug L uy, we have ur|L L ug|L. Moreover, the set

U:={ue F: [[ulL]| = [lua| L]} - [lu]l}
is a linear subspace of RY.

PROOF. We assume that an ug € ui- N F exists such that ui|L } wua|L, and subse-
quently show that in this case ||u1|L| can neither be maximal nor minimal.

We assume without loss of generality that us € F N S9! Orthonormal vectors
v1,vg € L exist such that ui|L = avy, ug|L = bvy + cvg for some real numbers a, b, ¢ (and
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2 Notation and preliminaries

a,b # 0 follows). For any a € [—1,1] the vector u(a) := auj + v/1 — a?uy is an element
of F NS4 Let f(a) be the squared norm of u(a)|L, i.e.

fa) = |lv(a)|L]
= ||(aa + V1 — a2b)vr + V1 — a2euy|?
= (a + \/mb)2 + (1 —a?)c?
=a?d® +(1-adb?+ (1 - )P + 2a/1 — a2ab
=+ +a(a® - —c*)+ 20\/1 — a2ab.

On (—1,1) the derivative of f is given by

2

reoy 2 32 2 _ 2@
() =2a(a” — b — ) + 21 — a?ab mab.

We first consider the case ab > 0. The summand 2a(a?—b?—c?)+2v/1 — a2ab is bounded

n (—1,1), and thus f/(«) tends to —oo for &« — +1. The continuity of f implies the
existence of some g, a1 € (—1,1) such that f(ag) > f(1) and f(ay) < f(—1). We then
have

lu(a) L] < || = wil L] = lur | L]} < [Ju(ao)| L.

Therefore ||u1|L| is neither maximal nor minimal.

In the case ab < 0 a similar argument shows that [|u;|L| is neither maximal nor
minimal.

Because ab cannot be zero, this contradicts our assumption, and the assertion holds.

It remains to show that U is a linear subspace. If dim U < 1, then obviously U = [u4], a
linear subspace of RZ. Otherwise, let uz € F'N.S%! be such that |Jui|L|| = |luz|L|| =: ¢,
and such that uq,us are linearly independent. Let wuq,u) be an orthonormal basis of
[u1, ug]. Tt follows that u;|L is orthogonal to u5|L. For ag,as € R we have

I(@rus + azup) L] = afe® + a3 |lu | L. (2.15)

In particular, there are a, ag € R such that ug = aju; + agul, oz% + oz% =1 and ag # 0.
We therefore have

¢® = [lua| LI|* = oic® + (1 — o) ||uy| L%,

which implies ||u5|L|| = ¢. Equation (2.15) yields ||u|L|| = ¢||u|| for all u € [u1,uz]. Thus
all linear combinations of elements of U lie in U, i.e. U is a linear subspace. O

We can now construct an orthonormal basis of F' in the following manner. We choose
u; € F N S% 1 such that ||u|L|| is maximal. Then we choose uz € F N .S% 1 Nui such
that |lug|L|| is maximal. In general, choose u; € FNSYtNuin...Nu fori=1,... k
with the corresponding maximality property. Thus u1,...,us is an orthonormal basis of
F'. This motivates the following definition.
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2.3 Grassmannians

Definition 11. Let k,m € {0,...,d}, and let F € L}, L € L. For each i from 1 to k,
choose

i—1
u; € FNnsSiin ﬂuj,
j=1
such that
Bi = [uil L]
is mazximal. The numbers By, ..., By are the f-numbers of F' (with respect to L), and
BL(F) :== (B, ..., Bk) (2.16)

is the [-vector of F' (with respect to L). Moreover, {u1,...u;} is called an L-ONB of
F.

Remark. The p-vector of F' does not depend on the choice of u1,...,u;. From Lemma
10 we know that
U:=A{ueF: |ulL] = pful}

is a linear subspace. This means that the vectors uq, ..., uqimy are an orthonormal basis
of U, regardless of their choice, and 51 = ... = Bgimv. Thus Bdimuv+1,---, 0k do not
depend on the choice of uq,. .., Ugimu-

Lemma 12. Let k,m € {0,...,d}, and let F € L}, L € L£%. Let u,...,u; be an
L-ONB of F. Then uy|L, ..., ux|L,ui|L*, ... ug|L* are orthogonal.

PrROOF. We use induction on k for the proof. If & = 0, the empty set is the only
L-ONB of F, and the assertion holds.

Now let £ > 1 and assume we know the result for £ — 1. wo,...,u; is an L-ONB of
F Nui. By induction, we know that us|L, ... ug|L,us|L*, ..., ux|L* are orthogonal.
From Lemma 10 we know that wi|L is orthogonal to us|L,...,ux|L, because |u;|L||

is maximal. Moreover, |lui|Lt|| = /1 — |luz|L]|? is minimal, and Lemma 10 implies
ur|Lt L ug|L*, ... ug|L*. Finally, it is trivially clear that wi|L L wui|L*, ... ug|L*
and ui|Lt L wui|L,... uy|L. Altogether we get that uy|L, ..., ug|L,ui|L*Y, ... up| Lt
are orthogonal. O

Corollary 13. Let 0 < k <m < d and let F € L L € L. Let B := Br(F) be the
B-vector of ' w.r.t. L. Then

(E L) =B+ By (2.17)

PROOF. Let uq,...,u; be an L-ONB of F. Then [0,u1] + ...+ [0,ux] is a unit cube
in F', and its image under orthogonal projection onto L ist [0, Siv1] + ... + [0, Bxvg] for
some ONB vy, ...,v,, of L. The k-volume of this image is (1 - ... Ok. O

We now discuss how the S-numbers of F' determine the relative position of F' and L.
By this, we mean that F' is determined by these numbers, up to an orthogonal transform
under which L and Lt are invariant subspaces of R%.
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For example, if we select a fixed plane L in R3, the real number |(L, F)| determines
the position of the plane I C R3 relative to L. As in this case 3; = 1, the number
B2 = [(L,F)| determines the position of F' relative to L. [(F,L)| does clearly not
determine the relative position of F and L for the general case of k-flats in R%. However,
Br(F) determines the position of F relative to L.

Lemma 14. Let 0 < k <m < d and F € L L € L. Then Br(F) = (B1,...,5)
determines the relative position of F' and L in the following sense. If Br(F1) = Br(F»)
for two k-flats Fy and Fy, then an orthogonal transform p exists such that L and L+ are
invariant under p, and pFy = F.

PrOOF. Let v1,...,vy be an ONB of L, and let v41,...,v4 be an ONB of Lt. We

put
w; = v + /1 = Bfvag1—, i=1,... .k

Below, we will construct an orthogonal transform p under which L and L1 are invariant,
such that pu; = w; for an L-ONB of F, i.e. pF' = lin{wy,...,wx} =: W. The linear
subspace W depends on (1 (F) only. Thus, if 8r(F1) = Br(F2), there are orthogonal
transforms p1, po under which L and Lt are invariant, such that p1 F1 = W = poFs. It
then follows py 1 p1F1 = F5, and the assertion holds.

Let uq,...,ur be an L-ONB of F. From Lemma 12 we know that {u1|L, ..., ug|L} is
an orthogonal subset of L. Clearly, there is an orthogonal transform p; that leaves L+
fixed, such that (pju;)|L = Biv; for i = 1,..., k. (Note that for i > m we have v; ¢ L.
However, ; = 0 is implied in this case, and the equation holds.)

Analogously, Lemma 12 also implies that {ui|L*, ..., us|Lt} is an orthogonal subset
of L*. There is an orthogonal transfrom po that leaves L fixed, such that (pou;)|L*- =

\/1 = ?vati_y for i = 1,...,k. (Note that for i < m + k — d we have vgy;— ¢ Lt

However, ; = 1 is implied in this case, and the equation holds.)
p := p1p2 is an orthogonal transform under which L and L' are invariant subspaces.

We have
pu; = PBiv; + A/ 1-— ﬁ?vd+17i = Wj. (2'18)
Thus pF' depends on (1 (F') only, and the assertion follows as stated above. O

We now compute the spherical Lebesgue measure of the image of a set under a certain
mapping, which we will use in the next chapter.

Lemma 15. Let 0 < k < d and let F,L € [,ﬁ be such that |(F,L)| # 0. Let a mapping
7 : F\ {0} — L be defined by

. x|L
L .
| L
Then for all Borel subsets 1 of F N S%1
1
orr(mo(n) = (P D) [ o dwica ). (2.19)
n
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Proor. We put C :={azx: a € [0,1],2 € m1(n)} and

1
D::{xEF:x|L€C’}:{aw:xEn,OSaﬁm}C
x

The orthogonal projection from F' onto L is injective, and thus

wr—1(mr(n)) = kA (C)
= k[(F, L)| A (D

1/HUILII 1
F L | drdwk 1( )

— (F, L) / dek_1<u>.
n
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3 Integral representations of projection
functions |

In this chapter we present an integral representation of projection functions of convex
bodies. More precisely, we will associate a measure p(P,-) with a convex polytope P.
This measure is a Borel measure on S%! x Eg, which we abbreviate by

Sd=Lk .= gd=1 y rd. (3.1)
We will also associate a function fr, on S¢ 1% with L € Ez, such that
WP = [ 1) (P, (3:2)

For general convex bodies, there also exist measures (K, -) such that (3.2) holds.
However, in Example 20 we will see that ux(K,-) does not depend weakly continuously
on K.

In later chapters, we will define measures depending weakly continuously on K, which
allow an integral representation of projection functions in the form (3.2).

3.1 Ambartzumian’s integral representation of the width
function in R3

The following theorem is Ambartzumian’s sin?-representation of (the width function of)
convex bodies in R3. The width function of a convex body K is given by

w(K,u) = h(K,u) + h(K,—u), ue St

For a centrally symmetric convex body M we have w(M,-) = 2h(M, ), and hence the
support function of M is determined by the width function of M. Thus a centrally
symmetric convex body is determined by its width function. Therefore, a representation
of the width function of a centrally symmetric convex body M can be considered a
representation of M itself.

Note that this does not hold for general convex bodies. For any convex body K, we
can define the convex body M := %(K — K), which is centrally symmetric and has the
same width function as K, i.e. w(M,-) = w(K,-).

The width function of K in direction u is the distance of the supporting hyperplanes
of K with outer normals u and —u. This is also the length of the line segment of lin{u}
between these hyperplanes. This segment is K|lin{u}. Thus, the width function w(K,u)
is the same as the projection function Vi (K| lin{u}).
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Theorem 16. (Ambartzumian [1]) Let K C R3 be a convex body. Then a Borel
measure p1(K,-) on S*' exists such that

2
ln = [ A

o WMUQ d(u,F)), Le€ E? (3.3)

for all L € £3. For polytopes P, the measures defined by

wi(Pym) = % Z Vi(F) /(PF) I((u, F) e ’I’])dwlsQr'}Fl(u) (3.4)
FeFi(P) ms

have this property.

Remark. The measure p(P,-) defined by (3.4) is concentrated on {(u, F) € S : u L
F}, and the same holds for the measure pi(K,-) used in (3.3). If u € L, we have
L+ c ut. We also have F' C u* for almost all (u, F'), which means that L+ and F are
not in general relative position. More precisely, we have F|L C u™ N L, which is a set
of dimension not greater than k& — 1. This means that the enumerator of the integrand
in (3.3) is 0. By putting % :=0 for u € L we get @T}?‘TQ = 0 whenever F and L+

[[u
are not in general relative position.

We do not give a direct proof of Theorem 16 here. However, Theorem 18 includes
Theorem 16 as a special case.

To explain why this representation has the name sin?-representation, we define the
function f7 by

(wh N FL ot LY (L F)| £ 0,

3. p3 3 2
LY X L] xS R, (L, F,
fi 1 1 — R, ( U)H{(), (L, F)| = 0.

If (L, F)| =0, then f3(L,F,u)=0= %, as explained above. On the other hand, if
|(L,F)| # 0, then u ¢ L follows from u € F-. We choose an orthonormal basis u,u’ of
FL ie. u is an orthonormal basis of F- Nu". Then
(L. F)| = [(F* )
= ([0, 4] + [0,w)ILY)
= ([0, L) M (0.0 )
= [[ul LH|[[(u N F w0 LY,

yielding
(L, F)* _ JulL* Pt 0 FYut n LY
[u] LE[ lul L2
= wtnFtutn Ll>2
= YL, F,u).
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Thus, (3.3) can be expressed as
WEKID) = [ (P (K, dwF), Le £
52,1

The squared sine of the angle between F and u™N L is (u™ N F+ vt N LL>2. Therefore,
this formula is called sin?-representation of the width function of convex bodies.

3.2 Integral representations of arbitrary projection functions

We will give an integral representation for polytopes first, and then generalize this for-
mula to arbitrary convex bodies. Similarly to the last section, we will encounter a

2
fraction of form %, where L, F € Ei, and v € F. The denominator becomes

0 for v € L only, and we will see that this happens for a set with measure 0 only. As
above, the fact that |(F,L)| = 0 for F, L not in general relative position motivates the

2
(RL) = = 0 whenever F, L are not in general relative position.

definiton of Tal Lo =%

Lemma 17. Let P be a convex polytope in R? and 0 < k < d. Then the projection
function L — Vi(P|L),L € ,C‘,f, is given by

VP = S i(F) / AL (). (3.5)
Tdk iy n(pr) |ul L

PrOOF. First of all, as L is k-dimensional, the volume Vj(P|L) is the Lebesgue
measure on L of P|L. By definition, this means

Vi(P|L) = M\e(P|L)
_ / I(z € P|L) d)(x)
L
_ / I((L* +2) N P #£ 0) dA().
L

Now we can split the integrand into a sum ranging over the k-faces of P. The integrand
vanishes, if (L++x) NP =, and is 1 otherwise, i.e. if (L +2) N P is a polytope. This
polytope lies in an appropriately translated version of L+, and therefore

> v (P, F) = Vo((L* +2)NP) =1,
FeFo((L++z)nP)

by the definition (2.2) of v, (P, F). If (L* +2)NP = (), the sum is empty, and therefore
vanishes.
Replacing the indicator function with this sum, we get

e = [ 701 (P, F) dAi(x).
L FeFo((Lt+x)NP)
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BEach F € Fo((L* 4 ) N P) is of the form L+ N F’ for some face F' of P, where the di-
mension of any such F’ can obviously be at most d— (d— k) = k. In fact, if its dimension
is less than k, x lies in the projection F’|L, a set of dimension k— 1 or less. The union of
all these sets has Ay measure 0, as P has only finitely many faces. Therefore, in the inte-

gral we can replace Y pe r((1Lipynp) Yot (P F) With 3o pc r py (12 aynprzp Yoo (P F).
This gives us

Vk(P|L):/L Z m (P, F)I((L* + ) N F' # 0) d\i(2)

FreFi(
= ¥ wPF) [ 1@ 00 F £ )
FEF,(P) L
= D> (P F)V(FIL).
FeF(P)
We now use the definition of ;1 to expand

1
’}/LL(P, F) = a&)dfk71<nLl(P, F))

The set ny . (P, F) is the image of n(P, F) under the mapping 7,1 : © ~— (z|LY)/||z|L*]|.
From Lemma 15 we know that for L, F in general relative position we have

[(FL, L)
Wig—k—1(mr(n(P, F)) = " dwg__1(u).
d—k 1( LJ-( ( )) /PVF) ||u|LJ_”d_k d—k 1( )

Together with Vi (F|L) = |(F, L)|Vi(F) and |[(F*, LY)| = |(F, L)| we get

2
Vi(PIL)=—— ) Vi(F / <F’7L>dwd_k_1(u). (3.6)

L||d—k
Feﬂ P) (P,F) (|| L]

If L+, F are not in general relative position, we have |(F, L)| = 0, and (3.6) also holds.
a

We now present an alternative form of (3.5). We choose an orthonormal basis u; =
U, ug, ..., ug—j of F-. Then
(F,L)| = (F*, L)

= Aa_ ([0, ur| L] + ([0, ug) 4 . .. 4 [0, ug_g])| L))

= M (w,u| L) - Mg ([0, u2] + -+ [0, ug—x])[(LF N wh))

— JulLH) - [t 0 FL ut 0 L)
yielding

(F,1)? (wrnFtutnih)?
lulLH[[4=% a4 [Ja=R=2
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3.2 Integral representations of arbitrary projection functions

in the case |(F, L)| # 0. We define the function f¢ by

(wtnFtutnrt)?
fle Ly x Ly x ST S R, (L,F,u)'—>{ Rz [(FL)#0,
0,

With this function we can express (3.5) as
Vi(P|L) = Z vk / - FUF, Ly u) dwg—_j—1(u). (3.7)
n(P,F

Fe}‘
One special case is k = d — 2, giving

wt N L utn LY (F L) 40,
fo(L P = { Fo L
0, [(F,L)| = 0.
Applying this to d = 3, we can see at this point that (3.3) holds for polytopes, with a
measure defined by (3.4).

Remark. It is easy to see that f¢ , is continuous at (L, F,u) if u ¢ L. However, for
u € L, this is not the case, as the following example shows.
We consider the special case d = 3, and we put

1 0 sin w
F=ln{[0]|},u=[1] e F:Y,L=1lin{|cosw |}, weR.
0 0 0

For w = 0, we have f}(L,F,u) = 0, as u € L. For w € (-n/2,7/2) \ {0} we have
|(F,L)| # 0, and thus

FL Fu) = [(FFnut, L nut)

0 0
= [(in{ { 0') },1in{{ O | })|
1 1

=1.

Similarly, it is possible to show that fj takes any value in [0, 1] in any neighbourhood of
(lin{u}, F,u), and thus cannot be made continuous by changing its value for [(F, L)| = 0.

An extension of Lemma 17 to arbitrary convex bodies is stated in the following The-
orem.

Theorem 18. Let 0 < k < d and let K C R? be a convex body. Then a Borel measure
pr(K, ) on Sk exists such that

Vi(K|L) = /Sd_l’k U Lou)u(K, d(u, F)), L€ L. (3.8)
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3 Integral representations of projection functions I

If K is a polytope, the measure defined by

pe(K,m) = —— > Vi(F /n (K’F)I((u,L(F))En)dwd_k_l(u) (3.9)

Fefk K)
has this property.

Proor. If K is a polytope, the measure ui(K,-) defined by (3.9) has the desired
property. This follows directly from Lemma 17.

Now let K be an arbitrary convex body. Let (P;) be a sequence of polytopes converging
to K. These measures are defined on the compact space S~ 1 x L’g, and the sequence of
their total measures,

L ( Sd lk; Z Vk PZ,F)
FE}—k %)

= Vi(P),

converges to V(K. Thus there exists an upper bound for the total measures. Therefore,
a weakly convergent subsequence of (ux(P;,-)) exists (see Bauer [3], Satz 46.3). We
assume without loss of generality that (F;) is such a subsequence, and we let p (K, -) be
the weak limit of (ug(P;,-)).

In view of the definition of zonal sets (2.11) we define a function

(F,L)*
max (e, [[u|L-][)4-F

fe(u, F) :=

which is continuous on S~ 1F and increases when e decreases. Moreover, the integrand
of (3.8) is the limit f := lim.¢ fe. The Theorem of monotone convergence (see Bauer
[3], Satz 11.4) shows

/Sd—l,k fu, F)pi(K, d(u, F)) = lim folu, F)un(K, d(u, F)),

€e—=0 Jgd—1,k

and the continuity of f. implies (using the weak convergence of the measures p(F;,-))

/Sdl,k fe(u, F)pp (K, d(u, F)) = lim fe(u, F)pg (P, d(u, F))

1—00 Jgd—1,k

1—00 Jgd—1,k
= Vi(K|L).

It remains to show

/Sd_l,k f(u, F) dpy, (K, d(u, F)) > Vi(K|L).

34



3.2 Integral representations of arbitrary projection functions

In view of Theorem 8 it becomes clear that for 0 < e < 1

/Sdl,k Fu, F)p(K, d(u, F)) 2 / Je(u, F) g (K, d(u, F))

Sdfl,k

= lim Jelu, F)pi (P, d(u, F))

1—00 gd—1,k
> lim (Vi (F|L) — Ag(cl P c|L))
> lim Vi (P;|L) — ecp(K)

e—0

— Vi(K|L),

where ¢ (K) is some constant depending on k and K, and P; . is defined as in Theorem
8:
P c={xebdP;: n(P,z)NZ(L,e) # 0}

Altogether we get the assertion. O

One application of the measures (K, -) is the characterization of zonoids in the set
of centrally symmetric convex bodies. Again, Ambartzumian has proved the result for
d = 3, and we use a similar argument here.

Theorem 19. Let Z be a centrally symmetric convex body. Z is a zonoid if and only if
there exists a measure p1(Z) on STV that satisfies (3.8) and has the form

wi(Z,n) = /ﬁd /Flde_l I((u, F) € n) dwg—2(u)p(Z, dF) (3.10)

for some finite measure p(Z,-) on L§.
PrOOF. Let Z be a zonotope. We put
Fi(Z):={F € £{: 3F" € F(Z) such that L(F') = F}.

For F € F{(Z) let I(F) be the common length of all edges of Z in direction F' (see (2.3)).
We apply (2.4) to (3.9) and get

1
m(zm =2 3 W [ 1) €5t
1
K= FefZ{(Z) ) /Flmsd—1 I((u, F) € 1) dwg—o(w),

for all Borel sets 7, and hence pi(Z,-) is of the form (3.10) (and p is the sum of one
point measures).

Now let Z be a zonoid. We can approximate Z by zonotopes. The construction in
the proof of Theorem 18 yields a measure p;(Z, -) with the desired properties. However,
(2.5) yields the existence of a measure p satisfying (3.10) directly.
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3 Integral representations of projection functions I

On the other hand, let Z be a centrally symmetric convex body for which uy(Z,-)
has the form (3.10). We apply (3.8), and carrying out the inner integration we get for
LecLd

wn = [ [ R dasp(z. dF)

— /E E.L)|o(2, dF).

1

(Here we used that
ot
————dwg_
N L

M :={xec Ft: |z|Lt| <1}.

Now M|L‘+ = B4N L+, and thus Vy_y (M) = [(F+, LY |og_1 = |(F, L)|og_1.)
Thus for z € S4! we have

is the (d — 1)-volume of

H(Z.w) = SV(ZIEw) = 252 [ (P L)z, ap).

and (2.5) yields that Z is a zonoid. O

3.3 A counterexample

In (3.9) we have given a definition for the measures uy(P, ) for polytopes P. By approx-
imating a convex body K with polytopes P; — K (i — o0) in Theorem 18, ux (K, -) was
defined to be the weak limit of a converging subsequence of (ui(P;,-)). Naturally, the
question arises if pi(K,-) depends weakly continuously on K. The following example
shows that this is not even the case for d = 3,k = 1.

Example 20.

We are going to approximate the unit ball B C R? by two sequences (P,) and (Q,)
of polytopes. We then show that the sequences of associated measures (p1(P,,-)) and
(11(Qn, +)) converge weakly, but to different measures (B, -) and uf (B, -), respectively.
This means that 11 (B, ) can not be defined such that K +— p; (K, -) is weakly continuous
at B.

In fact, we will show that the limit measure p)(B,-) of (u1(P,,-)) is not rotation
invariant, i.e. there exists a rotation p such that p} (B, pn) # p} (B, n) for some Borel set
n C S?. We can then put Q,, := p~'P,, and thus uf(B,n) = i (B, pn) # py(B,n), i.e.
wy(B,-) # p{(B,-). To show that p1(B,n) is not rotation invariant, it suffices to show
that fi(-) := u}j(B,S? x -) is not rotation invariant. [ is a measure on £3. We know
that the only (up to scaling) finite rotation invariant measure on £3 is v;. Therefore it
suffices to show that a Borel set 7 C £3 exists such that ji(n) > 0 and 11(n) = 0.
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3.3 A counterexample

For n € N we define

x
P,:=conv{|y | € S?ix =02y =342""ij€ Z}.
z

We obviously have lim,, ., P, = B.
There exists a subsequence of (ug(Py,-)) that converges weakly. Without loss of
generality, we assume that (ug(P,,-)) converges weakly, and define

() = Tim (P, $2 % 2,

a measure on L.
We put

n={lin{ly|}:z=y=1V(e=1y=0)V(r=0,y=1)}.

z
Obviously v1(n) = 0. It remains to show that ji(n) > 0. For i? + j2 < 2" we put
p(n, i, j) = (127", 527", /1 = (% + j2)272),

which is a vertex of P,. Consider the set

e(n,i',5') = [p(n,i,5),p(ni +,j + )] C Pa, @,§' >0.

It is clear that all edges (or 1-faces) of P, have this form. ui(P,,S? x -) is concentrated
on the set {L(F) : F € Fi(P,)}. The line L(e(n,d,5’)) is in n for ¢/ = j = 1 or
i'=1,7/=0o0r ¢ =0,/ =1. We now show that e(n,,j’) can be an edge only in these
cases.

We define a function parametrizing e(n,, j'),

f@t) =tp(n,i+id,j+35)+ 1 —t)pn,i,j).

In particular, if f(1/i') lies in the interior of P,, e(n,#,j’) lies not completely in the
boundary of P,, and thus it is no edge. For symmetry reasons, it suffices to show that
f(1/4’) lies in the interior of P, for i,j > 0 and 0 < 5/ <4’
The first and second component of f(1/i') are (14 4)27" and
i1 S+

1 /
Lo agen —-—
U527+ 5 ;

respectively. These are also the first and second component of
Q(nai/mj/) = j//i/ p(n,l + 1’.7 + 1) + (1 - j,/Z/) p(n7Z + 17j>7

a point on the segment connecting p(n,i + 1,7) and p(n,7 + 1,5 + 1). We will show
that f(1/4') lies in the relative interior of the segment s connecting g(n,d’, ;") and its
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3 Integral representations of projection functions I

reflection ¢ about lin(eq, e2) (which is also a point of P,). It then follows that f(1/i)
lies in the interior of P,, because s lies not in the boudary of

COHV{Q(n?ilvj/)aqvp(nviaj)vp(nvi+ 27])7]?(”72 + 17] + 1),])(77,,1 + 17.7 - 1)} - Pn

To show that f(1/4) lies in the relative interior of s, it suffices to show that the third
component of f(1/4') is less than the third component of ¢(n,4’, ;). This number is

-/
ai=SVI=((+ 12+ G+ D727+ (1 \/1— (i +1)2 + 7222,

and the third component of f(1/i) is

= VIS R+ G PR + (- VT = @+ e

The partial derivatives of z1, 2o with respect to j' are

;j = (VI (G4 G P — VT (G DEF 222
1= ((z + 1) +52)27%) — (1= (G+1)° + (G +1)%)27%")
N 24522720 41— ((i + 1)2+ (j + 1)2)27 2
_ 1 (25 +1)27>"
I+ )2 4222+ /1— ((+ D2+ (J + D)2)2 2
—(j+4)27*

TGP+ G2

and
o G+
07 T i A= (G P+ G+

respectively. As 8%,21 > 8%,22, it would suffice to show z; > 29 for 7/ = 1. Instead,
we show the equivalent inequality /27 > ¢'z9. The partial derivatives of 'zq,4'29 with
respect to i’ are

8
23 1= 87 i 21 \/1 — ’L +1 —i—j2)2_2”,

and

(i )22
VI— (GG + 2

24::(96222 V1= (i2 + j2)272n —
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3.3 A counterexample

respectively. The difference of z3 and z4 is

23— 24 =/1— ((i+1)2+32)2720 — /1 — (2 + j2)2-2n
(Z+Z )2 2n
VI= @+ 32+ (G + )72
- 2721(2 4+ 1)
VI (12 1— (P F 22
(i +i)2=2n
VI= @+ + G+ )72
2_2"(2i+1) (z+ )2 n
21— (i +1)2 4,22 2 \/1 — )2+ j2)2- 2"
I o
21— (i + 12+ 227
> 0.

Now all that remains to show z1 > z9 for all i/ > 5/ > 1 is to show that z; > 25 holds for
i = 7/ = 1. In this case we have

=VI=((+1)?+ (G +1)2)27" = 2,
and the assertion follows. O

We have seen that the measures ui(K,-) can be used for an integral representation
of projections functions. For polytopes P, the measure g (P,-) is given by (3.9). For
general convex bodies K, the existence of such a measure has been established by ap-
proximation of K by polytopes. In general, the resulting measure depends on the chosen
approximation, and not only on K. In particular, there can be no definition of py (K, -)
such that (3.9) holds for polytopes and uy(K,-) depends weakly continuously on K.

In the next chapter we will define a measure depending weakly continuously on K.
In Chapter 5 we will prove an integral representation of projection functions using this
measure.
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4 Generalized support measures

We now give a generalization of the support measures introduced in Section 2.1.4. His-
torically, there have been a number of generalizations and variants of the classical surface
area and curvature measures.

In 1937/1938, the surface area measures S;(K, -) (on S91) were introduced by Alexan-
drov and Fenchel-Jessen. Later, the curvature measures (on R?) by Federer followed.
The support measures (on R? x S4=1) by Schneider, which we introduced in Section
2.1.4, are a generalization of both the surface are measures and the curvature measures.
A generaliztation of the curvature measures to the manifold of k-flats touching a con-
vex body was investigated by Weil in [11] and [12]. Kropp [6] studied corresponding
generalizations of the surface area measures. In the following we present a common
generalization of the measures of Weil and of Kropp.

Instead of local parallel sets of K that consist of points € R? with d(K,z) < p,
where p is some positive real number, we consider local parallel sets of k-flats E with
d(K,FE) < p. For this, we use the method applied by Schneider [9] for the support
measures. As we shall show, the invariant measure of these local parallel sets has a
polynomial expansion in p, and the generalized curvature are the coefficients of this
polynomial.

We mention that there are further generalizations of support measures by Rataj and
Zahle [7] and Hug [5].

4.1 Local parallel sets of flats

Let 0 < k < d, let K be a convex body, and let p > 0. For every affine k-flat F € 5,‘3 we
consider the set of points of E with minimal distance to K. If there is a unique point of £
with minimal distance to K, we call this point {(K, F). In this case, we write p(K, E) for
the metric projection of [(K, E) onto K, i.e. p(K,E) = p(K,I(K, E)). Clearly p(K, E)
is the unique nearest point of K to E. We then have d(E,K) = d(I(K,E),K) =
UK, E) — p(K, E)]|.

Sometimes it is convenient to consider only the set of k-flats F € 5,? that have a unique
point of minimal distance to K, and do not intersect K. We call this set K ()

K® .= {E ¢ E}: ENK =0, point of minimal distance is unique}.
In fact, K*) comprises almost all k-flats not intersecting K.
Lemma 21. Let 0 < k < d, and let K be a convexr body. Then
w({€L: ENK =0} \KW) = 0.
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4 Generalized support measures

PrOOF. Any flat that does not intersect K and for which the nearest point is not
unique must be parallel to some line segment in the boundary of K. From Schneider
[9], Corollary 2.3.11, it thus follows that the set of all k-dimensional flats that neither
intersect K nor have a unique nearest point to K has pg-measure 0. O

Schneider considers parallel sets of a convex body K. These sets consist of points
whose distance from K is less than some real number p. A generalization are “parallel”
sets that consist of (affine) k-flats whose distance from K is less than p. Also, the
direction of the shortest segment connecting K and the flat plays an important role. It
must be an outer normal of the points z € K that minimize the distance d(F,x).

Definition 22. Let 0 < k < d and let K be a convez body. For E € K®) we define the
direction of the shortest segment connecting K and E as
l(Kv E) _p(K7E)

dK,E)

u(K,E):=

and we define the set K,(,k) of parallel k-flats of positive distance not greater than p € R
as

k) ._ k) .
K :={EeK"™:0<dK,E)<p}.

Remark. The set K ék) is a measurable set.

PrROOF. The set of all k-flats intersecting a convex body is a closed set and thus
measurable. Therefore the sets

{(FeLl: ENK+pB#0}and {FE e L}: ENK # 0}

are measurable. ng) is — up to the flats with non-unique nearest point to K — the
difference of these sets. O

Lemma 23. Let K € K. Then the functions p(K,-),l(K,-),u(K,-) : K& — R% and
d(-,-) : K x L& — R? are continuous.

PROOF. We start with the continuity of d(-,-). Let L be a fixed k-flat and let (K;) be
a sequence of convex bodies converging to K. Then |d(K;, L) —d(K, L)| < d(K;, K) — 0
for i — oo. On the other hand, let (E;) be a sequence of k-flats in £¢ that converges to
some E € £%, i.e. for a fixed k-flat L there exist converging sequences (p;) of rotations
and (z;) of points in L' such that E; = p;(L + x;). It follows that

d(K, E;) = d(K, pi(L + 2;)) = d(p; 'K =z, L) — d(p™'K — z,L) = d(K, E), i — o0,

where x is the limit of (z;) and p is the limit of (p;).

We next show that p(K,-) is continuous. Due to the compactness of K, it suffices to
show that any accumulation point of (p(K, F;)) coincides with p(K, E'). Let = be such
an accumulation point, i.e. a subsequence (Ej;) exists such that p(K, E;;) — v € K
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4.1 Local parallel sets of flats

(j — 00). Now d(p(K,E;;), E;;) < d(p(K, E), E;;), and the limit for j — oo yields
d(z, F) < d(K, F). The uniqueness property of p(K, F) implies x = p(K, E).

As the sequence (K, E;) is clearly bounded, we can use a similar argument for the
continuity of /. Consider a subsequence (E;;) such that I(K, E;;) converges to y € RY
(j — o0). Bothy and I(K, E) lieon E, thus [y, (K, E)] C E. Asd(K,y) = d(K,l(K, E))
by continuity of d, the uniqueness property of [ implies y = (K, E).

Now we have that p, [, d are continuous, and d(K, -) is positive on K (k). The continuity
of u follows from the definition. O

Lemma 24. Let (K;) be a converging sequence of convex bodies with limit K € K. Let
0<k<d and let

Le KM KM.
i=1
Then
p(Kz7L) - p(Ka L)> Z(KZaL) - Z(Ka L)v U(KlaL) - U(Ka L)

PROOF. The convergence of (K;) implies the existence of some (compact) ball that
contains K;, i € N, and K. To show p(K;, L) — p(K, L) it thus suffices to show that any
accumulation point of the sequence (p(Kj, L)) is p(K,L). The continuity of d implies
that any accumulation point of (p(Kj;, L)) has the same distance from L, namely d(K, L).
Because L is in K(*)| there exists exactly one such point in K.

Orthogonal projections are continuous, and thus [(K;, L) = p(K;, L)|L implies that
I(K;,L) = I(K,L), i — co. Thus (I(K;, L) — (p(K;, L)) converges. (d(K;, L)) converges
also, and is positive with positive limit. Thus w(K;, L) — u(K,L), i — oo by the
definition of u. O

The measures we will now introduce are defined on
2k = RY x 971 % £

Let this set be equipped with the product topology. The measures will be concentrated
on the set of triples (x,u, L), where z lies in the boundary of K, u is an outer normal of
K at x, and L is a linear subspace of R™ that is orthogonal to w.

Let K € K be fixed. From Lemma 23 we know that F — p(K, E) and E — u(K, E)
are continuous on Eg. The mapping E — L(E) is obviously also continuous. Thus

’ | B~ (K, E),u(K,E), L(E))

is a continuous function.
This allows us to define a Borel measure as the image of u; under fp(k).

Definition 25. For K € K and p > 0 we define the Borel measure

P, ) = () L))
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4 Generalized support measures

Thus ug,k)(K ,-) is a finite measure on B(X(*¥), and the measure of a Borel set 1 €
B(Z(k)) is the pui-measure of a local parallel set of supporting k-flats,

MP(K,n) = (f,E’”)f1 ()
= {Ee€KV : (p(K,E),u(K,E),L(E)) € n}.

While ,uf,k) (K,n) has been defined for fixed K, we can also consider the convex body

K as variable. In analogy to the classic case of the curvature measures, we investigate

some properties of ,u,(ok) (K,-) with respect to K, in particular continuity, measurability

and additivity.

Lemma 26. Let (K;) be a sequence of convex bodies converging to K € K. Then the
measures ,uf,k) (K5, -) converge weakly to ,ug{) (K,-),

p(K, ) S (K, (k= o).

PROOF. Let A be the set of all k-flats that are parallel to a 1-face of some Kj, i.e.

A:={Ec&!:3ieN,Fc F(K,) such that F||E}.

Note that A is a set of measure 0, which once more follows from Schneider [9], Corollary

2.3.11. Let 7 € %) be an open subset. Let E € Mék) (K,n)\ A be an arbitrary flat with
d(K,FE) < p. For almost all 4, K; and E do not intersect. Therefore d(K;, F) — d(K, E)
and (p(K;, E),u(K;, E)) — (p(K, E),u(K, E)) for i — co. It follows that for almost all i
the inequality d(K;, F) < p holds, and (p(K;, E),u(K;, E), L(F)) € n. Thus, for almost
all i € N we have F € Mp(k)(Ki,n). We get

(M (K, n) \ A) N{E € & : d(K, B) < p} C lim inf M (K, ),
and thus
p(K ) = (MK, n))
= e (MP (K1) \ A) N {E € & : d(K, E) < p})
< (1i££f M,ﬁ’“)(Ki,n)>
< liirgglfuk(M,gk)(Ki n))

= liminfugk)(Ki 7).

1— 00

For the second equality we used two facts. From Crofton’s formula we know

/gd I(M N E #0)dug(E) = aaorVa—k(M)
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4.1 Local parallel sets of flats

for all convex bodies M. The intrinsic volumes are continuous on K, in particular
lim,—, Vg_ (K +7B) = Vy_(K + pB). Thus pu({E € £} : d(K,E) = p}) = 0.

The same reasoning shows
ug? (K3, 20 — pP (1, 5W), i — oo,
which completes the proof. O

Lemma 27. For arbitrary n € B(X®)) the mapping ,ug,k)(~, n) : K — R is measurable.

ProOOF. We already know from the previous proof that for open sets 7 the mapping

ugk)(-,n) is lower half-continuous and therefore measurable. We show that the set D

of all n for which Mg,k)(-,n) is measurable is a Dynkin system. u,()k)(-, »(*)) is obviously

measurable. For n € D we have Mék) (K,n) C M,gk)(K, »(*)) and
k k k k k
M (K, 50\ ) = Mg (K, 5 0) \ M (K, ),

which yields
P, W\ ) = uP (K, 50 — 1 (K, n)

for all K € K. Thus ) \ 5y € D. Let (1;) be a sequence of pairwise disjoint elements
of D. Then we have for all K €

ny (KZL_JOm) = ;Mp(K, m),

since ,ugk)(K ,+) is a measure. This yields (J;2;7; € D. Thus D is a Dynkin system

containing the open sets.

Lemma 2 now yields that D contains the o-algebra generated by the open sets. Thus
we have measurability for each Borel set 7. O
Lemma 28. For each n € ©%) the function u,()k)(',n) is additive.

PROOF. Let K,M € K satisfy K UM € K. Let E € K® nM® . We put y :=
p(Ka E),Z = p(M7 E)

We now consider the case p(K UM, E) =y. As K U M is convex, [y, z] is a subset of
K U M. Therefore an a € [y, z] N K N M exists. The mapping

ts d(ts + (1 - 1)y, E)
is convex and has a minimum on [0, 1] at ¢ = 0. This implies d(y, E) < d(a, E) < d(z, E).
As z = p(M, E), we have d(a, E) > d(z, E), and thus d(a, E) = d(z, F) (and a,z € M).

The uniqueness of the nearest point now implies z =a € K N M. We get

d(KUM,E)=d(K,E), d(KNM,E)=d(M,E)
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and
u(KUM,E)=u(K,FE), u(KNM,E)=u(M,FE).

Thus

k k
Ee MP(KUM,n) <<= EecMP(Kn),

Ee MM (KNM,n) <<= EeMP(M,n).
In the other case, p(K U M, E) = z, a similar reasoning shows

k k
EeMP(KUM,n) <« EeMP(M,n),

EeMP(KNMn) <« FEeMP(Kn).
This means that for almost all E we have the identity

I(E € MP (K UM,n)+I(E € MP(KnM,n)
= I(E € MP(K,n)) + I(E € MP(M,n)).

Integration of this identity with respect to uj yields the assertion. O

4.2 k-support measures

The measure u,()k)(K ,+) is a polynomial in p, i.e. it is a sum of measures that are ho-
mogeneous of different degrees in p. To show this, we start by considering the case of a
polytope P € K. For each E € P,Sk) the nearest point p(P, E) lies in the relative interior
of a uniquely determined face F' of P. For a given face F' of P we now compute the

measure of the set
o k -1 .
A= Mé )(P,n) N p(P,-)" (relint F)

for a Borel subset 7 of ) and p > 0. If dim F > d — k, the nearest point of F to
a k-flat E is either not unique, or not in the relative interior, or £ and F intersect.
In each case E is not in A, so the set A is empty. Therefore we concentrate on the
case m := dim ' < d — k. Then (assuming 0 € F' without loss of generality, as uj is
translation invariant)

p(A) = /g (Ee P®) . I(p(P,E) € relint F) - I(0 < d(P, E) < p)

E),u(P,E), L(E)) € 1) du(E)
/ / (L+y e P®). I(p(P,L+7y) €relint F)-1(0 < d(F,L+y) < p)
cdJrt

x I((p(F, L+ y),u(F,L+vy),L) €n)d\g—i(y) dvi(L) (4.1)
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4.2 k-support measures

For each L € L¢ in general relative position to F we define Ly := L(F)|Lt = (L(F)+L)N
Lt and Ly := Lf NL+ = L(F)* N LY. We have L1 L Ly and the direct decomposition
Li® Ly=L"%. Moreover, for y; € L1 und y2 € Ly we have

(L+y1+y2)|L(F) = (L+y)L(F),  (L+y)lL" ={m},

and
Y2

g2l
whenever p(F, L + y1 + y2) € relint F. Thus

w(E,L+y1+1y2) = d(F,L+y1+y2) = |ly2]|,

p(P, L+ y1 + y2) € relint I’
< p(F,L+y+y2) €relint F, u(F,L+y1 +y2) € n(P, F)
<« y €relint F|L*,y, € N(P, F)

and, in this case,
0<d(F,L+y1+y2) <p = 0< |yl <p.

On the other hand, if L, F' are not in general relative position, L + y ¢ P®) for all
y € L*. Therefore, the inner integral of (4.1) is zero.
In each case, the inner integral of (4.1) is

/ / (L+y1 +y2 € PP I(p(P, L + y1 + y2) € relint F)
L1 J Lo

x I(0<d(F,L+y1+y2) <p)
X I((p(F, L+ y1+ y2),w(F, L+ y1 + y2), L) € ) dXg—k—m(y2) dAm(y1)

/ / (L+y1+1y2 € PP . I(y; €relint FILY) - I(0 < [Jy2]| < p)
L1 J Lo
xI(y2 € N(P,F))-I((p(F, L+ v1),y2/llv2ll, L) € n) dXg—k—m(y2) dAn(11)

If yp € N(P,F) and L+ y; + yo ¢ P®), then L + y; + yo must have more than one
nearest point to F. This means that F' and L are not in general relative position, i.e.

4
the dimension of F|L" is less than m, and )\QL is the zero measure. Thus we get that
the inner integral of (4.1) is

i [ D(F, L+ 1), 95, L) € 1) dw_tm1 () oo (31):
d—k—m k m F|Lt len(PF

Altogether, we have

) = et [ ((F L+ 1), 2, 1) € 1)
- m £¢ JFILL LJ-ﬂnPF)

X dwq—g—m—1(y2) dAm(y1) dvg(L).
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4 Generalized support measures

The last expression is translation invariant, and we need no longer assume 0 € F'.
We can now take the sum over all faces F' of P, and get

poB)(Pon) = > (M (P,n) 0 p(P, )~ (relint F))
F is face of P
d—k—1
S Z k= m/ / /
D0 rer d k m" cd Jr|LL J LA nn(PF)

X [(( (F, L + yl), Y2, L) S ’)7) dwd,k,m,l(yg) d)\m(yl) dl/k(L)

Thus we get the polynomial representation

d—k—1 d—F
i (P, phm O (P,n), (4.2)
d k =
where the coefficients are measures as follows. For m =0,...,d — k — 1 we define
) d—k—1\"
®m (PJI) = Z
m Fef,, F|L+ JLinn(P,F) (4.3)

x I((p(F, L +y1), y2,L) € 77) dwd—k—m—1(Yy2) dAm(y1) dvg(L).

This polynomial representation can be extended to arbitrary convex bodies.

Theorem 29. For each convez body K € K and each k € {0,...,d—1} there exist finite
measures @(()k)(K,-),...,@gi)kfl(K,-) on B(X®), such that for each n € B(X®) and
each p > 0 the measure uf)k)(K, n) of the local parallel set of k-flats, M,Sk)(K, n), is given

by
d—k—

k
1
g (o) = == >

m=0

1
gt (e . (4.4)

m

The mapping K +— @%)(K, -) is weakly continuous, i. e.
Ki— K = O0)(K;, ) BO0(K,),  (i— o),
and additive, 1. e. if K1, Ko, K1 UKy € K, then
O (K1 U Ko, ) + O (K1 N Ka, ) = O (K1, ) + O (Ka, ).
For each n € B(X®) the function K — @%)(K,n) is measurable on K.

ProOOF. If K is a polytope, (4.4) has been established in (4.2). From Lemma 26 we
know that ugk)(K ,+) is a measure depending weakly on K € K. The set of polytopes is

dense in K. Lemma 6 thus implies that (4.4) can be extended to all convex bodies, and
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4.2 k-support measures

that the measures @ﬁ,’? (K,n) depend weakly continuous on K. Moreover, the polynomial
expansion

O (K, n) Zal kul (K, n) (4.5)

holds for some real coefficients a; . Therefore additivity and measurability follow from
Lemma 26 and Lemma 28. O

(k)(

We call the measure O,
is concentrated on

K, -) the m-th support measure of parallel k-flats of K. It

Nory(K) := {(z,u, L) e 2™ : 2 e bd K, u € n(K,z),L L u},

the k-th generalized normal bundle of K. This follows because (z,u, L) € M,(k)(K,n)
implies (z,u,L) = (p(K, E),u(K, E),L(E)) for some E € &L Thus ,ugk)(K,n) =
( )(K 1 N Norg(K)) and therefore @%)(K,n) = @%)(K,n N Norg(K)) by (4.5).
For the measures @gi)(K,-) we have polynomial expansions analogous to (4.4) for

ME) )( K,-). Still analogous to Schneider, we define the mapping ¢, : »®) — nk) by
to(z,u, L) := (x + pu,u, L).

Theorem 30. Let 0 < k<d—-1,K e K,neBE®) p>0and0<m<d—k—1.
Then

O (K + pBt,( Zifﬂ( ) J(K,m).

J=

Proor. Let E € K® and d(K,E) > p. Then p(K + pB* E) = p(K,E) +
pu(K,E),u(K + pB* E) = u(K,E) and d(K + pB% E) = d(K,E) — p. Except for
a set of measure zero, for A > 0 the local parallel set of k-flats Méi))\(K ,m) is the disjoint
union Mp(k)(K, n) U Mik)(K + pB%,t,(n)). Thus the equation

1) (K m) = 1 (5, ) + i (K + pB2 ().

holds. All that remains to do now is to insert the polynomial expansion (4.4) and
compare the coeflicients. O

Often, will need a special case, or, to be more precise, the projection onto the second
and third component.

Definition 31. Let k,m € {0,...,d — 1} be such that k+m < d — 1, and let K be a
convez body. We call
SWHE, ) = O%) (K, R x -)

the m-th k-surface area measure of K. These measures are defined on

Sd=Lk .= gd=1 . rd.
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4 Generalized support measures

For later reference, we state these measures for polytopes explicitly. Let P be a
polytope. Then

ﬂ“uj)-—<d_k_l)_l }: V FMLX/
moA m LLtnn(P,F)

FeFm(P)

x I((u, L) € n) dwg—g—m—1(u) dvg(L).

(4.6)

(k)(

The following Lemma gives an alternative representation of Sy,”(P,-) in the case of

polytopes. In fact, for polytopes P, Sy(,f )(P, -) is a sum of measures on the normal cones
of the m-faces of P.

Lemma 32. Let 0 < k,m < d withk+m < d—1, and let P be a convex polytope. Let
f be a non-negative measurable function on S*LF. Then

/ F(u, L) S (P, d(u, L)) = (d"“‘l)_l S Va(F)-I(F f),
Sd*l,k ’ m ’ ’ o m
FeFm(P)

where

F, f) = m LY d=k=mtlp(y T,
IE 1) = ean, /PF /ﬁFirw /L’+L<F) Lo flu, L) (4.7)

dvy LY vl O (L) dwg (),
and oq km 18 a constant depending on d, k and m only.
PROOF. From (4.6) we get that the integral of f is
* d—k—1\""
f(u, L) SE(P, d(u, L)) = Z v I(F, ),
Sd—1,k m Fer

where

1= [ (B[ D e @dn@). (49
cé LLtnn(P,F)
Applying Lemma 9 to the outer integral of (4.8), we get that I(F, f) is proportional to
Lueey L VDI A UL Y a (D af . (49
k+m LL

where

F(L) = / £ty L) desa 1 ().
Liﬂn(P F)

As F is an m-flat, any flat L' € £} is the sum of L(F) and a k-flat orthogonal to F.
Therefore, (4.9) is equal to

—k—m r L'+L(F L
/m /,CL,H(FMRLW b (L) duy L) (L),
k k
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4.2 k-support measures

If |(F,L*)| # 0, the intersection of L and L(F) is {0}. In this case, L + L(F) =
L' + L(F). For the orthogonal spaces we have L+ N F- = L't N FL. In particular, we
have Lt Nn(P, F) = L' Nn(P, F), yielding

P f = [ R S ) dea )

for all L. Thus (4.9) becomes

F, LJ_ d7k7m+1 f U,L
Jie oo g BN 0
dwq 1 (w) dv TN (LY duF T (L),

We now can apply Fubini’s Theorem, yielding that I(F, f) is proportional to

. B LR f(u, L)
/L,;“ /Lflmn(P,F) /Lg +L(F)

At I L) dwg g (w) dvE (L),

Instead of k-flats in F*, we now integrate about the orthognoal d — k — m-flats in F'*,

yielding
1\ |d—k—m+1
/ﬁFl //rm(PF /LILKF’L ) flu, L)

L

1
dvE " (L) dwdms () dvf (D).
The two outer integrations are on d — k — m-spaces respectively 1-spaces in F=.

Therefore we can apply a Theorem of Schneider and Weil [10], Satz 6.1.1, to show that
I(F, f) is proportional to

[P Y RIS (82
LOC) dekmm k
7L
dv " (L) Ay (L) dgms ().

Replacing the integration about d — k — m-flats with an integration about k-flats again,
we get that I(F, f) is proportional to

F7 LJ_ d*k*WH’lf U,L
/n(P,F) /z:kFLﬂ“L /ﬁﬁl“(”‘( ) (1) (4.10)
A TP LY duf T (L) dwgm (u),

which completes the proof. O
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4 Generalized support measures

We now give an expression for the constants aq k., by considering a special case. Let
F be a polytope with dim F' = m and let f = 1. Then, from (4.8), we get

I(F.f) = /L B L) A1 (1) d (L)

d LinFingd-1

= acsem [ WPLH) (D).

k

On the other hand, (4.10) is in this case

Ll),d k—m+1
Flngd-1 EFimu L/+L(F) ’

L'+L(F LAyt
vl TFI(L) duf (L) dwg 1 (u).
Clearly, the inner integral is independent from L', and the expression simplifies to

Od-m / NE LS PR (1),
L

k

where F' € £{, is any (k +m)-flat containing F. Thus we get

vibm Mg (P L) du(L)
Td—m fﬁ’z*’” (L, L'y|d=k=m+1 gph+m ()’

k+m

ad km =

where L' € El,erm is an arbitrary k-flat.
We now apply a Theorem of Schneider and Weil [10], Satz 4.2.2, to a convex polytope
K with dim K = m and V,,(K) = 1. We get

(™) Kdem bk

)

[, B dvieD) = Butaima-sm =
Lok (4 tm) kK

with the definition of 3 in Schneider and Weil [10], Satz 4.1.1. Altogether,

Od—k—m (d_km) Kd—k

. (4.11)
(d—m) (g ) Frka [ pieem [(Ly L[ d=h=mt vyt (L)

Ad kom =

The most useful special case is k = d —m — 1 (meaning F' is a (d — k — 1)-face, and
we consider k-flats). We state the result for this case in the following Corollary.

Corollary 33. Let 0 < k < d, let f : S~ 1F = R be a non-negative measurable function,
and let P be a polytope. Then

[ TSP (Pl L) = asrae 3 Vi)
S FeFg—p—1(P)

X /n(P,F)/ZL <L,Fi ﬂuL>2f(u, L) dy]é‘J'(L) dwk(u), (412)
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4.2 k-support measures

and i1
2k4-1 ("))
Qdkd—k—1= ———.

RKkOd

PrROOF. We apply (4.11) to m =d — k — 1, and get

o1 (1) Kan

(k+1)({)Arra [pa-1 (L, L v~ (L)
B 24—k
dKgkg fﬁz,1<L,L/>2 dvi(L)

Qd kd—k—1 =

We will later show independently in Corollary 39 that

/gg—l (L, L) dvi (L) = <d - 1) N

2ka-k (")
KkOd

giving
Qd kd—k—1 =

On the other hand, (4.10) becomes

/PF /LFLM /L,+L(F> LL> f(u, L) dv L+L(F)( L)dv} Flout (L) dwoy,(w),

Now dim(F+Nut) = d—(d—k—1)—1 = k, which means that L' = F-nu*, and l/F Mut
is a one-point measure. Moreover, |(F,L*+)| = [(L, FY)| = (L, F+Nu >\ Therefore
I(F, f) is proportional to

/ - / AL PRty f(u, ) v (L) de(u),

and the constant of proportionality is og kq—k—1- O

We now return to the volume Vi (P|L) of the projection of a polytope P onto a k-
flat L. In fact, equation (4.12) allows us to make a connection between the measure
S,gdik*l)(P, -) of a polytope P, and the projection function V(P|-) of P. The following
Corollary states this result. It represents Vi (P|L) as an integral of a function g7, with
respect to S,(gdfkfl)(P, -). In the next chapter we will then show that such a function g,
indeed exists.

The function f,f that appears in the next corollary was defined in Section 3.2.

Corollary 34. Let 0 < k < d, let P be a polytope and let gy, : ST147F=1 L R be an
integrable function satisfying

Od—

[ wrt et g pya (5) - L)

o
S d,d—k—1,k
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4 Generalized support measures

forall F € Eﬁ and u € SN FL. Then the following equation for projection functions
holds,

Vi(P|L) = / g (u, B)SYF (P, d(u, E)). (4.13)

gd—1,d—k—1

Proor. This follows from a comparsion of (3.7) and (4.12), where in the latter
equation the roles of k£ and d — k — 1 have to be exchanged. a
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5 Integral representations of projection
functions |l

5.1 The integral equation

We consider convex bodies K in R% and their projection functions L +— Vi (K|L), L €
L£¢ (0 < k < d). We know from (4.13) that there are weakly continuous measures

S,gdik*l)(K, ) on §4-bd=k=l = gd=1 . pd . such that (if K is a polytope)

/ g1, (u, B)SLF (K, d(u, B)) = Vi(K|L),

where gy, is any function satisfying

2 1L Od—k
[ B e g By (B) = T (L P
L4 k1 Qd d—k—1k
cok_ WEOFLW DY e
= Qdd—k—1k [u| LA[jd=F=2 7 ’ o (5.1)
0, (F,L)| =0,

for all F' € [,g and u € S9N FL. However, we have not yet established the existence
of such a function gr. In this chapter we will give such a function explicitly.
We simplify the notation for integrals with respect to a normalized invariant measure
v in the following way. Instead of dv(E) we write dFE, i.e. we leave out the measure v.
It is clear that we can consider the problem to find a function g, satisfying (5.1) as
the problem to find a function fr, in u’ (or, equivalently, R%!), satisfying

/ (E,F" fi, (E)dE = (F',L')*,
cd

Whered/—d—l,k/—(i—k—l,F/ F mu"‘,l/ [ Nu .IfSUCha f’eiStS,We
can put n fr X
Od—k f N L(
gi (u, E) = ad7d_k_17k”u|l J—Hd—k‘—? L--Nu
’ uel,

+ 'LLJ_ u
Ernun), gl (5.2)

to get a function g, satisfying (5.1). From now on, we will only consider this second
problem. Therefore, we will write d instead of d’ etc.
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5 Integral representations of projection functions I1

Question. For L € L%, does a function fr, Eﬁ — R exist that satisfies the equation
| PR i = (F 1 (5.3)
g

for all F € ,Cﬁ ?
We first give an alternative form of (5.3). We define an integral operator on C(L£%),
the set of continuous real-valued functions on Lg.

U (L) — C(LY), f > T(f), where U(f)(F) = /Ed (E,F)*f(E)dE. (5.4)

Then we need to find a function f7, such that

V(fr)(F) = (F,L)*.
From now on, we will only consider the case d > 2k. The remaining cases can be
solved using orthogonalization, as for d < 2k we have 2(d — k) < d, and thus

/ (B, F)2fy. (EY)dE = / (B, P} f,.(E)dE
i cd

d—k
— (Fh Y’
= <F7L>27

if fr1 is a solution for the first case.
We further introduce a scalar product (-,-) on C(L%),

/ f(e (5.5)

This definition allows us to derive some properties of W.
Lemma 35. The operator VU is self-adjoint with respect to (-,-).

ProoOF. With the definition of ¥ and the definition of the scalar product (5.5), we
get by an application of Fubini’s Theorem

/ (E',E)*f(E)dE' ¢(E)dE

,Cd ,Cd

— / (B, BY2f(E')g(E) dE' dE
Ld l:d

/ (E', EY}q(E) dE f(E') dE'
Ld Ld
(9))-

O

From linear algebra we know that the eigenspaces of self-adjoint linear operators are
orthogonal to each other. For later use, we state this as a Corollary.

Corollary 36. Eigenspaces of ¥ belonging to different eigenvalues are orthogonal.
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5.2 A multilinear function on pairs of matrices

5.2 A multilinear function on pairs of matrices

As stated in the last section, we now assume 0 < k < d/2, and L € £g. Let eq,...,eq be
an orthonormal basis of R? such that lin{ey, ..., e;} = L. (We can assume without loss
of generality that e1,...,eq is the standard basis of R?.) From now on, J, I and M will
denote subsets of {1,...,d} with k elements. In a sum of the form ), f(I), I ranges
over all those subsets. J will always be the set {1,...,k}. Let

Er:= lin{ei ’Z S I}

In particular, we have EFy = L.
For k-flats F, L, we have

(@1,y1) - (21,9
[(E, L)| = | det : : I
(@ksy1) o (@ks Yk)
where 1, ...,z is any orthonormal basis of FE, and 1, ..., y; is any orthonormal basis
of L. We now give a generalization of this definition. For arbitrary vectors z1, ..., zg,
Yi,...,Yr we consider the determinant of the matrix whose entries are (z;,y;).
Definition 37. Let XY € R™* be (d x k)-matrices with columns x1,...,x, and
Y1, .-+, Yk, Tespectively. Then
(i, o) - (@1, k)
(X, V)= = S (5.6)
<5L‘k,y1> <xkayk>

Moreover, let o, ...z} be the rows of X. We define X1 to be the (k x k)-matriz of
the rows x} with i € I.

For k = 1, this is the standard scalar product in R?. For k& > 1, (5.6) does not define
a scalar product. In this case, (-,-) is not bilinear, but multilinear in both components.
For example, if x1, ...,z are linearly dependent, (X,Y) = 0 for all Y. It is also easy to
see that (-,-) is symmetric, as (X,Y) = det(XTY) = det(Y T X) = (¥, X).

Now we consider the case of orthonormal columns, i.e. the columns x1,...,z; of X
form an orthonormal basis of its linear hull, and the same holds for Y. We note that,
up to the sign, (X,Y) depends on F := lin{xy,..., 2} and F := lin{y1,...,yx} only.
In fact, we have |(X,Y)| = |[(E, F)|, and the sign of (X,Y) depends on the orientation
of the bases x1,...,z, and y1,...,yx. In particular, (F, F)2 = (X,Y)?, and the most
important special case is

(Er, B)* = | X1, (5.7)

Lemma 38. Let X and Y be (d x k)-matrices. Then

(X,Y) = |X4]|v1]. (5.8)
I
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5 Integral representations of projection functions I1

PrROOF. We assume for the moment that the columns of X and Y are elements of
{e1,...,eq}. We further assume that the columns of X (and those of Y') are linearly
independent. Then (X,Y) = 0if X and Y do not have the same columns (not necessarily
at the same positions). In this case, for each I we have |X;| = 0 or |Y;| = 0, and
the assertion holds. If X and Y have the same columns (not necessarily at the same
positions), there is a permutation o € S such that the i-th column of X is the o(i)-th
column of Y. If we apply o to the columns of the matrix in (5.6), that matrix turns into
the unit matrix. Thus (X,Y) is 1 if o is even, and —1 if o is odd. On the other hand,
| X 1| (and |Y7|) does not vanish if and only if I is the set of the indices of the unit vectors
that form the columns of X (and Y'). For this I, the columns of Y7 are a permutation of
the columns of X;. This permutations is the same o as above. Thus | X;| has the same
sign as |Y7| if and only if o is even, implying that | X;||Y7| is 1 if o is even, and —1 if o
is odd.

The multilinearity of (-,-) as well as of | -y || -7 | now implies the assertion. O

Now let X be a matrix with orthonormal columns again. The special case X =Y
gives

dUEEN =) X =(X,X)=1. (5.9)

I I
For the next corollary, we recall that J = {1,...,k}, and thus L = E; = lin{ey, ..., ex}.

Corollary 39. Let 0 < k <d. Then

/ﬁd (E,L)*dE = <Z> _1. (5.10)

PRrROOF. (5.9) and the invariance of vy, imply

1:/ > (E,E;)*dE
LT

5.3 Integrals on Grassmannians

Now we compute more constants that arise as integrals of functions containing powers
of (E, E)?. They will be needed later for the solution of the integral equation.
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5.3 Integrals on Grassmannians
Definition 40. Let 0 < j < k and 2k — j < d. The constant c; is defined by

d
C;(Cg = /.cd (E,E))*(E,Efy,_jke1, o6—)) dE.
k

It is clear that Eyy . j k11, 26—;3 could be replaced by Ey for any set I with [INJ] = j.
More generally, we have

/Ed (B, Ey)* (B, )’ dE = i) 1. (5.11)
k

(d)

The following considerations will allow us to calculate c;, j explicitly.

Proposition 41. Let d ¢ I, M. Then

/ (E,EI>2(E,EM>2dE:Hd7k/ (E,E)*(E,Ey)* dE (5.12)
cé !

with

d=-k)d—-k+2)
Hap = d(d+2)

PrROOF. We note that

EJ_
AH/ e ealBred) B, A€ BLT),
Ly

L
is a measure on £, that is invariant with respect to rotations in ej, and thus it is a

L
multiple of uzd . Writing F' :=lin{ey,...,eq_r}, we calculate the factor to

[ Beciyta= [ o chtap
cd S04

[ it
SOy
1

= — |u|F||* du (5.13)
gd Jgd-1

We further use spherical cylinder coordinates to compute

/ yu|FH4du—/ / 2)(8)/2||(tey + /1 — 2u)| F||* dt du
S’d d— 1med _

T'(1/2)T((d +3)/2) )
T'((d+4)/2) /Sd e [ul F||* du.

Applying this recursively k times, we get

[ el = g R T2 Jul Pl du, (5.14)
d—1 ((d + 4)/2) Sd—1ﬂejr1...ﬁedl_k+1
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5 Integral representations of projection functions I1

and the latter integrand is identical to 1. Thus, applying (5.14) to (5.13), we get

eV gE — @W(dfk)/zr((d—k‘ﬂl)/?)
/L;JE’ ar b=, L((d+4)/2)

(d—k)(d—k+2)
B d(d+2)

Moreover, as eq L Ej and eq L E)y, it follows
2 1,2 1 2
<E7EI> = <E76d> <E|edvEI> )
2 2
(E,Em)? = (E,eq) (Eleg, Eu)”
and thus

2 2
| BB 4B = [ (Blet B Bled. Ban)(B.ej)* ap
k k

_(d—k)(d—k+2)
o dd+2) /in (B, Er)*(E, Ex)* dE,

which finishes the proof. O

(d) (2k)

This allows us to give a recursion formula for ¢, i First of all, we define ¢ ; := ¢ ;

for £ > 0, and put cpo := 1. We get

(d—K)(d—k+2)!

(@ |
k + 2)ld?—2k(d + 2)d—2k -

) L
C; = Hak - HopgrpCrj = A

(5.15)

Note that the factor does not depend on j.

For j > 1 we can use (5.12) to reduce the dimensions of the spaces involved in ¢ j. An

application of this formula gives ¢y ; = Hgkykcl(fj]-ﬁ_l). Orthogonalizing, i.e. considering

(2k — 1 — k)-flats instead of k-flats, gives cp; = H%kc,?_k;]l)_l Another reduction of
dimensions finally gives

Ckj = Hop pHop—1 k—1CK—1,5-1
k(k + 2) k(k +2)
T oKk +2) 2k — D)2k 1) Kt (5.16)
(k +2)2k
16(k+ 1)(k + 1/2)(k — 1/2) *-tt
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5.3 Integrals on Grassmannians

For the case j = 0 we apply (5.9) to (5.10), and get

92 —1
k = / (Ej, E)*dE
k Ezk
_ 2 2
— /E% (E;,E)*> (E,E[)*dE
k I
= ch,umﬂ

1

=S e

The factor (";) is the number of ways to choose j elements of I that belong to J =

{1,...,k}, and (kﬁ]) is the number of ways to choose the other k — j elements of I,
which must lie in {k + 1,...,2k}. This yields

Ck,0 = (2:) - — Zi: (5)2%4. (5.17)

7j=1

Now we are ready to prove an explicit formula for the céd;. As c,gd) is a multiple of
ck,; (and we have given the factor in (5.15)), it suffices to give explicit values of ¢ ;. We

already know cpo = 1 from the definition. For £ > 0 the following Lemma states the
result.

Lemma 42. Let 0 < j <k and let k > 0. Then

s = (k + ; —~ j) Tk ;2)2 (%; 1) ! <2kk— 1) —1‘ (5.18)

PrOOF. For j =k, we apply (5.16) k times recursively to ¢ . We note that

k
, . O @E+DI2k-1)! 2k +1D)I(2k -1)!
}:[1(22 +1)(20 1) = Hf:1(2i) ] H?:_ll(%) T2%k—1El(k—1)!

and (5.18) follows:

((k +2)1/2)°k!
Ak (k+ TR (20 + 1)(2i — 1)
(B +2))%KEN K — 1)
~ 8(k+ D)!(2k + 1)!(2k — 1)!
(k+2)? kl(k + 1) k!l(k — 1)!
8  (2k+1)! 2k 1)

Cik =
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5 Integral representations of projection functions I1

Thus we have shown (5.18) for j = k.

We now use induction on k. For k = 1, equation (5.18) is easily verified.

We assume that (5.18) holds for £k — 1 and j € {0,...,k — 2}, and show (5.18) for k
and j € {0,...,k —1}. (Note that there is no assumption for the base case k = 1.)

We first consider the case 7 > 1, and leave the case j = 0 for later. From (5.16) we
know

Ckyj = Hop pHop—1 p—1Ck—1,5-1-

We apply the induction hypothesis and get

k—1)+2-(G -1\ "
Ckj = <( ) 9 U )> Hop p Hop—1 p—1Ck—1k-1

Applying (5.16) once more yields

k+2—5\""
Ck,j = 9 Ck.k»
which is the desired result.

It remains to compute ci 9. We have

<2k>1 WKL o (2k+ 1)k — DIk +1)!

k) TR S+ 20k + 2k — DR

and
k 2C R\ (k+2— ‘1C
j kj = j 9 Kk

<k - 2) <k> (k + 2) -

= ‘ . Ch k-
J J 2

Thus (5.17) implies

= () (37 S (77 (e

j=1
(. @k D)2k — 1)k +1)! 2% +2\ (k+2\"" [(k+2\!
_(8(k+2)!(k+2)!(k:—1)!(2k)!_( k )( 2 ) +< 2 ) )Ck”“‘

k;rQ) (];) = (2]“;2)) To prove the desired

(Here we have used the well-known fact Z?:o (
result, we have to show that

2k + 112k — DIk +1)!  [(2k+2\ (k+2\"
8(k:+2)!(k+2)!(k—1)!(2k)!_( k )( 2 ) ’

which is verified easily. O
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5.3 Integrals on Grassmannians

Lemma 43. Let F € Eﬁ. Then
p k
/d (E,F)X(E,Ey)* dE = ;ifmm FEN =3 N (FE).  (5.19)
Ly I =0  L|InM|=j

PRrOOF. For any orthonormal basis x1, ...,z of ' let X denote the matrix that has
the columns z1,...,z;. Similarly, let Y be a matrix whose columns are an orthonormal
basis of F. Then (E, E;)* = |X/|?, and from (5.8) we know

2
(B,F)’ =(X,Y)" = (Z IXIHYII)
1

Thus

Ud"'Ud—k+1/d (E,F)*(E, Ey)® dE

Ly,

:/ / <X,Y>2|XM‘2dwd_k(Ik).-- dwq—1(z1)
Sd-1 Sd=1nzin..nzi

_ Z/ / Y[V 1 X 0| [ X | X a2 g (1) - dsp(a0)
Sd 1 Sd lm 1

1
1,1 ﬂ...ﬂxkil

=i [, X021 Xarf? () - dasa ()
d-1 Sd-lngin..nait

+ 3 iyl / / X0 | X1 | Xt P degie () - . dergr (21).
LIMTAD S 1Ney NNz

In the last expression, the first sum equals
2 d
O-d"'o-dfk+lz<F7EI C](€|)IQM|
I

i.e. it is the desired result. We have to show that the second sum is 0. In fact, for
fixed I # I', we may assume Wlthout loss of generality d € I,d g’é I'. Moreover, wq_1
is invariant under reflection about ed We will now denote by X the matrix X whose
columns are reflected about ey. Then X2 = [Xul?, | Xp| = |Xp|, and | X7 = —|X]].
This lets us evaluate the integral in the summand that belongs to I and I’ as

/ / ‘X]HX]/‘ ’XM‘ded,k(:L'k)... dwd,l(:cl)
Sd—1 Sd=1ngin..nai |
_ / / X0 1X 0| [ K a2 dwap () - dwar (1)
Sd—1 Sd=1ngin..nat

:_/ / X1 1 X | [ Xar |2 dwao(zr) - . . dwgr (1),
Sd—1 Sd=1ngin..nat_
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5 Integral representations of projection functions I1

i.e. it must vanish. O

From Lemma 43 we see that for a function f : E% — R of the form
f(B) =Y ar(E, Ep)?
I

with real constants ay, we have

\Ij(f)(F> = ZBI<F7EI>27

1

with some real constants 3;. If we can choose the «aj in such a way that 85 = 1 and
Br =0 for I # J, we have a solution for the integral equation (5.3). We will follow this
approach in section 5.5. There we will get a system of linear equations for the aj. For
given d and k, it is in fact possible to compute the coefficients, i.e. to find a solution
for (5.3). However, using only the system of linear equations, there seems to be no easy
way to show the existence of a solution for all d and k. Therefore, we use a different
approach to show the existence of a solution independently.

5.4 Eigenfunctions of the integral operator

To motivate the following considerations, assume that we knew that some functions were
eigenfunctions of the integral operator ¥ defined in (5.4). Assume further that we can
express (-, L)? as a linear combination of these eigenfunctions. (Note that every rotation
of an eigenfunction is an eigenfunction, too.) If in this sum we divide every summand
by its eigenvalue, we get a function satisfying the integral equation (5.3).

Consequently, in this section we will give some eigenfunctions. We then show that
(-, L>2 is a linear combination of these eigenfunctions.

We recall that in this chapter the set I is always a subset of {1, ..., d} with k elements.
When selecting a subset of all such sets I (for example in the range of a sum), we will
often not state this condition explicitly, or abbreviate it by || = k.

Definition 44. For 1 < n < k we define

G =1{2,4,...,2n}, (5.20)
Goi={I:|I|=k,|IN{L,2}| =|IN{3,4}|=...=|INn{2n—1,2n}| =1}, (5.21)

and

fu(B) = 3 (~1)lICl (B, By,

1egn

Moreover, we define

GO = wa
Go = {I: || = k).
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5.4 Eigenfunctions of the integral operator

(Note that the definitions of Gy and Gy formally coincide with (5.20) and (5.21) for
n = 0, respectively. However, in particular the definition of Gy is much clearer if given
explicitly.)

Lemma 45. The functions f, are eigenfunctions of the integral operator V¥, i.e.

/E (B F) [ (E)dE = ay, fo(F). (5.22)
k
PRrROOF. The left hand side of (5.22) is
/ (B, F)fu(BE)dE = Y (-1 [ (B F)(E,E;)*dE (5.23)
Lg 1€Gn Lg

We know from (5.19) that each summand on the right hand side of (5.23) results in
a linear combination of (F, E1>2 (where I, as stated above, ranges over all subsets of
{1,...,d} with k elements). Therefore

/Ld<EF>f" = > Bi(F,Ep)?

I:|I|=k

for some 7. We have to show that §; = 0 for I ¢ G,, and that there exists an a,, such
that 87 = (—1)NGnlay, for all I € G,,.

Consider the case I ¢ G,. This means that there is some ¢ € {1,...,n} such that
[T N{2i —1,2i}| # 1. Without loss of generality we assume |I N {1,2}| # 1. Equation
(5.19) yields

Br="Y_ ()Gl

Meg,

_ MNGyp| (d) MNGy| (d)

- Z (=) |k\IﬂM|+ Z Sl lck,|ImM\
Megn,1eM MeGn,2e M

_ MNGyp| () MU{P\{1)NGn| ()

= D (MG Y ()IEREIRGIGT e
MegGn,1eM MegGn,1eM

We now simplify the second sum. The set G, contains 2, but not 1. Thus, for all M
containing 1 (and therefore not 2), we have

((MU{ZH\{1}) NGal = M N Grl +1,

yielding
(_1)\((MU{2})\{1})WGTLI - _(_1)|M0Gn‘.

We have to consider the two cases IN{1,2} =0 and IN{1,2} = {1,2}. In the first case,
IN((MU{2})\{1}) = INnM. In the second case, IN((MU{2})\{1}) = ((INnM)u{2})\{1}.
In both cases, |[I N (M U{2})\ {1})| = |I N M| follows. Altogether, we get

_ MNG,| (d) MNGy| .(d)
Br = Z (1) |Ck,umM| + Z ~(-1) |Ckz,\ImM|
MeGp,1eM MeGn,1eM

=0.
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5 Integral representations of projection functions I1

In the case I € G, let m € Sy be a permutation for which the sets {1, 2}, ...,{2n—1,2n}
are invariant, and for which 7(I) = Gj. Note that M € G, if and only if 7(M) € G,,
which means that 7 is a bijection of G,.

Let i € {1,...,n}. We have 2i € G,. Moreover, 2i is in [ if and only if 7(2i) = 2i.
Thus, 2i € 7(G,,) if and only if 2i € I. Let M € G,. Then 2i € M N« (G,) if and only
if2te MNI,and 2i —1 € M N7(Gy) if and only if 2i — 1 € M N I. It follows that

(—D)MOr{2NE = _(—q)IMO{2ed g lIN{2H

and hence
(_1)\Mﬁ7r(Gn)| _ (_l)n(_1)|MﬂGn|(_1)\IﬁGn\‘

Thus (5.19) yields

— 7"71M Gn (d)
Pr= Z SO |Ck,|mrl(M)|

Megn
— Z 1) MOm(Ga)l (D)
k,Jm(1)NM|
MeGn
d
= (O 3 O
Megn
Therefore the constants
d
o 1= (1) D0 (~)MC D L n=0,k, (5.24)
MeGn
fulfill (5.22), and the proof is complete. O

We can even give the eigenvalues o, in a more explicit form,

d
an = (=1)" Z (‘DanGnICE@,ﬁGmM\
MeGn,

k
=0y ds > (e

j=0 MeGn,|MNGy|=j
k n
n d .
13" D ST (1) {M € Go s MGy =1, [MN (G \ G| = j — 1}

We now determine the number of elements of

A={MEegG,: | MNG,| =1, |MN(Gp\Gpn)|=3j—1}.

For M to be in A, we have (7) ways to choose the [ elements of M which must lie
in Gp,. (n — [ more elements of M are determined by this choice.) We then have

(’;:?) ways to choose j — [ additional elements, which lie in Gy \ G,,. Finally we have
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5.4 Eigenfunctions of the integral operator

(ki_lf;fj) ways to choose the remaining k + 1 — n — j elements of M, which must lie in
{1,...,d}\ ({1,...,2n} U Gj). Thus the set A has (/ )(l; - (ki;’f;fj) elements, and
k n
n (d) (n (k—n d—k—n
n=(—1 A -1 .
@ (=1) chwz( )<l><j—l><k+l—n—j

§=0 1=0

As mentioned before, rotations of the f, are eigenfunctions, too. In particular, the
functions given by

fT(Lal,b1),-~-,(an,bn)(E) — Z (_1)|Im{b1»--'7bn}|<E’ E])Q,
I:|I|=k,|INn{a1,b1 }|=...=|IN{an,bn }|=1
where aq,...,ap,b1,...,b, € {1,...,d} are pairwise distinct, are eigenfunctions with

eigenvalue «,.
Let A = {a1,...,a,} C {1,...,d},B C {1,...,d} be disjoint sets with n elements.
Sums of rotations of a fixed f, are eigenfunctions., and thus the function

f;;l,B — Z f7(la1,7r(a1)) ..... (an,m(an))

7:A— B, bijective

is an eigenfunction (and does not depend on the order of ay,...,a,). Another eigen-

function is
A Z A,B

fA(E) is certainly a linear combination of the functions E — (E, E;)?, where I ranges
over all subsets of {1,...,d} with k elements. We will now determine the coefficients. If
|I N A| = j, we know that (E, E;)? appears in A8 if and only if I \ A C B and that it
then appears j!(n — j)! times. This is the case if and only if n — j of the elements of B
are in I \ A (which has k — j elements), and j of its elements are in {1,...,d}\ (I U A)
(which has d — k — n + j elements). Moreover, whenever (E, E;)? appears, it has the
sign (—1)I"Bl = (—1)"~J. Therefore,
n
FAE) =S 1) S (BB, (5.25)

§=0 I:|INA|=j

i (i_) (d kjn+]>

n

FAE) =D (1) Y S (BE) (5.26)

J=0 S:SCA,|S|=5I:INA=S

where

We have

We now want to give another form for the inner sum in the last equation, namely

> (E.Ep)? Z > (1" > (E,Ep)? (5.27)

I:INA=S i=0 T:SCTCA,|T|=j+i I.TCI
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5 Integral representations of projection functions I1

We will prove this equation by applying the inclusion-exclusion principle. We put
{a1,...,an—;} := A\ S, and we define the sets

M, ={I: SU{a;} CI}, i=1,...,n—].

Note that

UM,‘Z{I:SCI}\{I:IQA:S}.

(This equation holds for n — j = 0, too.) Moreover, for 1 <1i <n — j,

(| My={:S0{a,. ...a}cCI}

h<...<l;

We now apply the inclusion-exclusion principle to the function I — (F, E]>2 and the
sets My,..., M,,_;, which yields

n—j
(B,En?=>_(-1)"" > (E,Ep)”
I: SCI,INA#S i:l' hi<.<li I: Su{ayy ,....ar, }CI (528)
n—j
=) (=) > (E, Er)*.
i=1 T:SCTCA,|T|=j+i
The left hand side of (5.28) is
>, (BE)=) (BE)- ) (BE)
I: SCI,INA#£S} I:5cI I:INA=S
=07 > > (BEN- Y (EEn
T:SCTCA,|T|=j+01:TCI I:INA=S

Comparing this to the right hand side of (5.28) and rearranging for ) ;. ;r4_q (£, E])2
yields (5.27).
We now apply (5.27) to (5.26) and get

n

n—j
FAE) = (1" DY > (=1)" > (B.Ep”.

Jj=0 SCA,|S|=j i=0 T:SCTCA,|T|=j+i I.TCI

If |T| =m with T' C A, the coefficient of ) ;. ,; (£, E;)? in this equation is

n

Sy 3 o = Yy ().

§=0 S:SCT,|S|=j j=0

So we get, after rearranging for m = |1,

n

AE =Sy Y Z%,j(’;) S (EEY (520

m=0 T:TCA,|T|=m j=0 I.rcr

68



5.4 Eigenfunctions of the integral operator

If f is a function on £{ and p € SO(d), then the rotated function pf is defined by
pf(E) = [(p™'E),E € L].

Definition 46. The linear space spanned by f,, and rotations thereof is called
HEkE™ = lin{pf, : p € SO(d)}.

H%kn is a subspace of the space of continuous (real-valued) functions on £¢.
For the next Lemma, the reader is reminded that I is always a subset of {1,...,d},
and we always have |I| = k.

Lemma 47. Let AC {1,...,d} and | = |A| < k. Then for g* : L& — R defined by

g(E) = Y (E,Ep)?’ (5.30)
I:. ACI
we have l
gt € ZHC”“” (5.31)

PrOOF. The proof is by induction on [. For [ = 0 we have go( )= <E,E1>2 =
fo(E), thus g e HORO,
If we know (5.31) for 0,1,...,[, the case [ + 1 can be proven using (5.29) as follows.

I+1
ffi1 = Z(—l)HHm Z Z’YIH,J( )gm7

m=0 T:TCA,|T|=m j=0
and solving for ng+1 = gl’il we get

l

I el LD ME Al DD ot

j=0 V+1,3 m=0 T:TCA,|T|=m j=0

is in H®%T C = ™ by definition. The rest of the right hand side is the
A s in R S Ak by definition. The rest of the right hand side is th
sum of functions of the form gl , where m < I, and we know

+1
gm € ZHdk’n C ZHdkn
Therefore gl 41 must be in Zlﬂ H%Fm also, which completes the proof. O

Corollary 48. The function (-,L> = g{ has a representation

k
=> h,
1=0

where
h, € HORL 0<1<k.
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5 Integral representations of projection functions I1

The eigenvalue of h; is ag, of course. If the eigenvalues «y, . .., ay are pairwise distinct,
the sum in (5.31) is a direct sum. As U is self-adjoint, in this case it would even be a
sum of orthogonal spaces.

For the construction of a function satisfying (5.3) it is not necessary that «p, ..., ax
are pairwise distinct. However, we will see that we need that h; # 0 implies

ap # 0.
Lemma 49. Let 0 <1 < k such that ),

o=

h; #0. Then o # 0.

Lo =0

PROOF. Let k := [{ay,...,a;}| and {aq,... ,ai} = {oq,...,ax}. Moreover, let [ be
the natural number such that a; = o.
The functions

Loy=aq&;
satisfy
k

> hi=(, L)’

=1
and

/d (- F)’hi(E)dE = a;h;(F), 1<i<k.
‘ck

Note that for i # j we have &; # &;. Corollary 36 implies that the eigenspaces of ¥ in
which h; and h; lie must be orthogonal. We use this fact and the special case ' = L to
get

This clearly implies oy = a7 # 0. O
We are now in a position to state that a function satisfying (5.3) exists.

Theorem 50. There exists a function satisfying the integral equation (5.3) in the space
spanned by {(-,Er)*: T c {1,...,d}, |I| = k}.
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5.4 Eigenfunctions of the integral operator

Proor. We consider the function

1
h = —
> o
1=0,0;#0
Then
GRS
U = —
= > ()
1=0,0;#0
k
1
= > Lam
87}
1=0,0;#0
k
- Y n
l=0,0&l750

Lemma 49 implies Zf:o,al:(] h; = 0, and we get

k
U(h)=> h=(,L)"
=0

O

We can give an even more explicit result. First of all, we need more notation. We
define three sequences of functions, which we need for the explicit representation and its
proof.

Definition 51. Fori¢ €0,...,k let

bi == Z sz

A:ACT,|Al=i
2
= >, (B0 (5.32)
I:|InJ|=1
gi= > g
AACT|Al=i

The functions ¢;, which are, in a sense, the simplest of these functions, will be used
for the representation. We start by showing some relations between these sequences of
functions.
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5 Integral representations of projection functions I1

Lemma 52. For 0 <1i <k we have

p(E)=" > D (-U)v,; > (EEp? (5.33)

A:ACJ,|A|=i j=0 LIINA|=j
k : m\ (k—m
=Y (Zev () (G2 ) e (531
=0 \ j=0 J t—=]

g(B)=" > Y (B E, (5.35)

A:ACJ,|A|l=i I:ACT
and p; is an eigenfunction of VW with eigenvalue .

PRrROOF. (5.33) follows from (5.25) and the definition of p;. (5.35) follows from (5.30)
and the definition of g;. For (5.34) we write (5.33) as

i

pi(E) =) (=) iy Y > (EE)

5=0 A:ACJ,|Al=i I|INA|=j

For how many A does a fixed I satisfy the condition of the last sum, |[I N A| = 57 If
|I N J| = m, there are (T) possibilities for the elements of A that lie in I, and (k;:z”)
possibilities for the elements of A in J \ I. This means

TR Y G

A:ACJ,|Al=i I}| INA|=j m=0

Substituting this into the last equation and rearranging we get (5.34). p; is an eigen-
function, as fiA is an eigenfunction for each A, and the eigenvalue must obviously be the
same. O

Lemma 53. Fori € {0,...,k} we have

i, Pi € lin{q07"'>qk}a g; € hn{p(b:pz}

PROOF. p; € lin{qo, ..., q;} follows directly from (5.34). An immediate consequence
is ¢; € lin{qo, ..., qx}, if g; € lin{po, ...,p;}, which is all that remains to show. We will
use induction on .

For i = 0 we have go(E) = ) 1.4 (E, E;)? =1 from (5.35) and (5.9). On the other
hand, from (5.34) we get

wie) = 3 (0000 (1) (577 Y gui
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5.4 Eigenfunctions of the integral operator

This shows gy € lin{po}. We use (5.29) once again to get
A m
, m
o= crryw(l) ¥ S s sy
m=0 Jj=0 J A:ACJ|A|=i T:TCA,|T|=m I:TCI
For how many A does a fixed T' C J occur in this sum? The ¢ — m elements of A\ T
can be chosen from among the k —m elements of J \ T', therefore T" occurs (]:::g) times.

As > rrc gyriem 2rrer (B Ep)? = g (E), we have altogether

m

R _1\itm o (m k—m

bi = Z ( 1) Z%,](j) (Z—m) Im- (5.36)
m=0 7=0

The coeflicient of g; is not 0, and thus we can solve this equation for g; and see that

g; is a linear combination of p;, go,...,g;—1. From the induction we know that g; €
lin{po,...,p;} Clin{po,...,pi—1} for j < i, showing that g; € lin{po,...,p;}. O

Lemma 54. The sets {po,...,m}, {qo,---,aqx} and {go,...,gr} are bases of the same
(k + 1)-dimensional linear subspace of continuous functions of Ez.

PROOF. We start with the linear independence of qq,...,qr. For this, it suffices to
show that for i € {0,...,k} there is an E(i) C L% such that ¢;(E(i)) = 0 for j # i and
¢i(E(7)) = 1. Such a flat is given by E(i) = Epy with M = {1,...,i,k+1,...,2k — i},

because
1, M=1
(Ear, Ep)? = ,
0, M#I

and I = M occurs in (5.32) only for ¢ = |[M N J| (and then exactly once).
Lemma 53 gives

lin{go,...,gx} Clin{po,...,px} C lin{qo,-..,qx}

It remains to show lin{qo,...,qx} C lin{go,...,gx}. The summands of g; in (5.35)
are of the form (-, E1>2 with [I N J| > 4. These summands appear in ¢; for j > i only.
Together with the linear independence of qq, . . ., gx this shows that g, ..., gi are linearly
independent. Thus lin{qo, ..., ¢t} and lin{go, ..., gx} are two (k + 1)-dimensional linear
spaces, one of them containing the other. Therefore, these subspaces must be identical,
and the assertion follows. O

Theorem 55. There exists exactly one solution of (5.3) of the form

k k
fo= > awa= > a Y (E) (5.37)
1=0,0; %0 i=0,0;,#0  I:|INJ|=i

PROOF. gi = (-, EJ>2 can be written as a unique linear combination Zf:o ai;p;. Asin
Lemma 49, we see that a; = 0 implies a; = 0. Thus, we have \I/(Zf:[)’ai#o Z—sz) = G.
Each p; can be expressed as a unique linear combination p; = Z?:o aéy ;4;- Thus (5.37)

with a; = Zf:()’a#) % ; ; gives the unique solution to (5.3). O
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5 Integral representations of projection functions I1

5.5 Symmetry approach

We now give a method to compute the coefficients a; in (5.37) directly. The form we
assume for fr is

k
fo=> a"q, (5.38)
=0

where a(d k) (0 < j < k) are real constants. Under this assumption, we have from (5.19)

/<EF>fL E)dE = Z(d’“ 3 / (B, F\2(E, B\ dE
Lé

I:|INJ|=i
: (d,k) (d)
9 2
= Z“z’ Z ch,|MmI|<F’ En)
i=0 L|InJ|=i M
k
(d,k) (d) 2
=> o™ Y Z D G (F Bu)
1=0 I:|InJ|=i m=0 M: |MnJ|=m
d,k d 2
_ Zagn ) Z Z S v (F 1)
=0 m=0 I:|InJ|=i M: |MNJ|=m

For symmetry reasons,

(dk) . _ (d)
dim = Z Ck,|MnI|
|MNJ|=m

depends only on d, k, and ¢ = |I N J|, m = |M N J|. Using the definition of ¢;, we get

:i(h ia%k)d(dk .

i=0 m=0

Thus fr, satisfies (5.3) if the agd’k) satisfy the following system of linear equations.

dk

AN
a&d’k) 0

Dk 1 =] (5.39)
(dk)
k—1 0
(dk) 1
k

Here D(%*) is the matrix with coefficient dl((i’f) in row ¢, column m. Moreover, from the
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5.5 Symmetry approach

definition of d{%®

7,Mm

(dk) (d)
dim = Z Ck, | M|
M:|MNJ|=m

k
SO D v

M:|MNJ|=m,|MnI|=j
_ ic@i i\ (k—i\(k—i\( d—2k+i
rt k,leo J\m—-1)\Gj—1)\k+l—-m—3j)

In particular, for k = 2 the matrix D(®2) is

it follows

Cld)d 2d 1
D@D =y [ Edd 34 9
(—3+d)2(—2+d) 4 (—2+d) 6

Now we can easily find a function satisfying (5.3) for k = 2 (and d > 4).

2 (0) L ), @ d
fr = < =)
(d+1)d’t —d+1't L 3(d+2>c%

Using the same technique, we can compute the function f7 for any k£ (and d > 2k).
This works only if (5.39) has a solution. From Theorem 55 we know that such a solution
exists.

We have used the computer algebra system Maple to compute the coefficients for
k <50, yielding

(d,k) pi A+ d+2-k
o =T @
3} (k+1)(d+2)ey

This would hold in the general case, i.e. for all k, if the following Conjecture is true.
Conjecture 56. For 0 <i <k <d/2
-1 k

e () Do) ()

7=0
Z’“: i\ k—i\(k—i\[{ d=2k+i \ [0, 0<i<k
N\ \m =) \G=1)\k+1-m—-5) "1 1, i=k

In fact, for each k < 50, the solutions stated above are unique. This also means that
the eigenvalues «y, ..., aj are non-zero.
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5 Integral representations of projection functions I1

5.6 The projection function for general convex bodies

From Theorem 55 we know that exactly one solution of the integral equation (5.3) exists.

Equation (5.2) yields a function gz (u, E) on S~k
9d—k Lt
. E-n L
gr(u, B) = { @dd—k-1kllul LH]TF2 Juso (B2 000), g L
07 u € L.

If this function is integrable, Corollary 34 states that for polytopes P we have the
following integral representation of projection functions,

Vi(P|L) = /S e gr(u, B)SEF1(P, d(u, E)). (5.40)

The integrability of gz (u, F) is not clear, because g1 (u, E') has both positive and nega-
tive summands, and is not bounded. The following Theorem states in which cases the
integrability of gz, (u, E'), and therefore the representation (5.40) has been established.

Theorem 57. Let 0 <k <d—-1, L € Lg, and let K € IC be a convex body. The integral
representation of the projection function (5.40) holds in the following cases:

(i) K is a polytope in general relative position to Lt
(i1i) k =1, and K is a polytope.

ProOOF. The function (u, E) +— f;1,. (E+- Nut) is bounded. To show that g, is
integrable it therefore suffices to show that
1
(u, L) = h(u, L) =  [lul L4527
0, ué L,

u € L,

is integrable.
For k > d — 2 the function h is bounded by 1. The measure S,(Cd_k_l) is finite. Thus
h is integrable in case (i).

Sl(cd—k—l)

For case (ii) we note that is concentrated on the set

A= ] {wL)es" " uen®F)}
Fefk(K)

However, if u € n(P, F) for some F € F(K), u is in F-. The general relative position
of F and L+ implies that u ¢ L. Therefore, h is bounded, and thus integrable in case

(ii).

In case (iii), we have to show

/ h(u, L)S\(K, d(u, L)) < .
gd—1,d—2
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5.6 The projection function for general convex bodies
According to Corollary 33 and equation (4.12) we have to show that for any F' € F{(K)
/ / (B, - 02 h(u, L) dvty(B) dwg_o(u) < oo.
n(PF)J Ly,
Because h(u, L) does not depend on FE, it suffices to show

/ h(u, L) dwgq—s(u) < 0.
Sd—1npLl

For F in general relative position to L', the integrand is bounded, and the asssertion
is clear. Now assume that F' and L1 are not in general relative position. Then some
v € SN FL N L exists. Because dim L = 1, we have L = lin(v). We use spherical
cylinder coordinates to compute

1
/ h(u, L) dwq—s(u) = / / (1 —12)% h(tv + V1 — t2u, L) dt dwy_z(u)
Sd—1npL Sd—1npLlnyl J—

1

/ /1<1 )% dtdwas ()
= — 2 ———r- wWd—3\u
Sa-1nFLnpt J—1 V11— t2d 3

1 o\ d=4—(d=3)
= Ud—2/ (1—t)" =2 dt

-1
=0q—2"T,

which finishes the proof of (iii). O

Up to now, we have considered the k-th intrinsic volume of the projection of some
body K onto a k-flat L. We now consider the j-th intrinsic volume of the projection,
where 0 < 5 < k.

Theorem 58. Let0 <k <d—1and L € E‘ki:. Let K be a convex body such that gy, is

integrable by S](»dfkfl), j=0,...,k. Then

Vi(K|L) = / gr(u, B)SY V(K d(u, B)).

gd—1,k

PRrROOF. We apply Theorem 30 to sets of the form n = R? x 7/, yielding

k
. (kY qla—e
SV 4 pB ) = :P]<j>51(cd_jk (K, 1), Vp>o. (5.41)
=0

It is clear that gy, is integrable by the measure on left hand side. Integrating gr, by the
measures in (5.41) yields

V(K +pBYIL) = D) (’;) v,

k
Jj=0
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5 Integral representations of projection functions I1

where the coefficients are
o= BT dwB), =0k
gd—1,k

We note that Vi((K + pB?)|L) = Vi ((K|L) + p(BYL)). A comparison with Steiner’s
formula (2.8) in the k-dimensional space L now yields

v; = V;(K|L),

which finishes the proof. O
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