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1 Introduction

The classical core of the geometry of convex bodies in Rd, the so-called Brunn-Minkowski
theory, is based on the notion of the mixed volume V (K1, . . . ,Kd) of convex bodies
K1, . . . ,Kd (non-empty compact convex subsets of Rd), and the central issues are unique-
ness and extremality results. The volume Vd(α1K1 + . . .+αdKd) of a linear combination
(with non-negative coefficients) has a polynomial expansion in the variables α1, . . . , αd,
and the mixed volumes are the coefficients of this polynomial. A special case is Steiner’s
formula

Vd(K + ρBd) =
d∑

i=0

ρd−iκd−iVi(K), ρ ≥ 0,

where Bd is the unit ball in Rd. The coefficients V0(K), . . . , Vd(K) are the intrinsic
volumes V0(K), . . . , Vd(K) of the convex body K.

A local variant of Steiner’s formula was introduced in 1937/1938 by Alexandrov and
Fenchel-Jessen, the surface measures S0(K, ·), . . . , Sd−1(K, ·) of K. The surface measures
are defined by a local variant of Steiner’s formula,

Vd(Mρ(K, η)) =
1
d

1−d∑
j=0

ρd−1−j

(
d− 1
j

)
Sj(K, η), ρ ≥ 0,

where η is a subset of the unit sphere Sd−1, and Mρ(K, η) is a local parallel set of K in
the directions in η. The surface measures defined by this equation are measures on Sd−1.
In the last decades other local variants have been introduced, for example the curvature
measures by Federer, and the support measures by Schneider (which are measures on
Rd and Rd × Sd−1, respectively).

The following equation is an integral representation of certain mixed volumes,

V (M,K, . . . ,K) =
1
d

∫
Sd−1

h(M,u)Sd−1(K, du), (1.1)

where h(M, ·) is the support function of M . Equation (1.1) relates surface measures and
mixed volumes, and is fundamental for many uniqueness results. A special case is the
representation of the projection function

Vd−1(K| v⊥) =
1
2

∫
Sd−1

|〈v, u〉|Sd−1(K, du), (1.2)

that expresses the (d − 1)-dimensional volume of the orthogonal projection of K onto
the hyperplane L = v⊥ by means of the surface measure and the scalar product 〈·, ·〉.
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1 Introduction

Equation (1.2) also makes a connection to spherical transforms, for example, the Radon
transform.
Vd−1(K|·) is not the only projection function. More generally, for j ∈ 1, . . . , d − 1,

the function Vj(K|·) is a projection function of K, where Vj(K|L) is the j-dimensional
volume of K|L, and L ranges over Ld

j , the Grassmann manifold of j-dimensional linear
subspaces of Rd. The only known integral representation is (1.2), i. e. for the case
j = d − 1 (where Ld

d−1 and Sd−1 are identified). However, if we consider only centrally
symmetric convex bodies that fulfill a certain smoothness condition, there exists the
integral representation

Vj(K|L) =
∫
Ld

j

|〈L,M〉|%j(K, dM), j = 1, . . . , d− 1,

with the so-called projection generating measure %j(K, ·) on Ld
j . However, it can be

shown that such a representation cannot exist for general convex bodies, at least not
with measures on Ld

j . One of the goals of this thesis is to find integral representations
of projection functions with measures on suitable flag manifolds.

In [1] Ambartzumian presents a so-called sin2-representation of the width function
w(K,u) = h(K,u) + h(K,−u) of convex bodies in R3,

h(K,u) + h(K,−u) =
∫

sin2(αu,v,L)µ(K, d(v, L)), (1.3)

where µ(K, ·) is a measure on the flag manifold

{(v, L) ∈ S2 × L3
1 : v ⊥ L},

and αu,v,L is a certain angle depending on u, v and L. These measures are defined
for polytopes first, and then the existence of measures with property (1.3) is shown by
approximating convex bodies with polytopes and using a compactness argument.

After some basic notions and results are presented in Chapter 2, we go on to generalize
Ambartzumian’s result to arbitrary dimensions d and arbitrary projection functions in
Chapter 3. In that chapter we will also show that the measures µj(K, ·) that appear
in the integral representations of the projection functions of K do not depend weakly
continuously on K.

In order to obtain a representation with weakly continuous measures we introduce
measures Θ(k)

j (K, ·) on Rd × Sd−1 × Ld
k in the following way. For a convex body K,

the invariant measure µk(M
(k)
ρ (K, η)) of local parallel sets of k-flats has a polynomial

expansion in the parameter ρ, where the measures Θ(k)
j (K, ·) are the coefficients:

µk(M (k)
ρ (K, η)) =

1
d− k

d−k−1∑
j=0

ρd−k−j

(
d− k

j

)
Θ(k)

j (K, η), ρ ≥ 0,

here η is a subset of Rd×Sd−1×Ld
k. These measures depend weakly continuously on K.

The projection onto the second and third component yields measures S(k)
j on Sd−1×Ld

k

8



that are concentrated on the flag manifold

{(u, L) ∈ Sd−1 × Ld
k : u ⊥ L}.

In Chapter 5 we will use these measures to prove integral representations of projections
functions with measures depending weakly continuously on K.
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2 Notation and preliminaries

2.1 Convex Geometry

In this section we present the basic notions and facts of convex geometry that we will
need. Most of the notation follows the book of Schneider [9], and the book of Schneider
and Weil [10]. A more in-depth introduction to convex geometry can also be found in
the book by Schneider [9]. Where well-known facts are stated without proof, they can
be found in one of these books.

2.1.1 Geometry

Our general setting is the Euclidean space Rd (d ≥ 1). Its scalar product and norm will
be denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let Bd be the closed unit ball and let Sd−1

be the unit sphere in Rd.
For any subset A ⊂ Rd let linA be the linear hull of A, and let A⊥ be the (largest)

subspace that is orthogonal to A. We designate the affine hull of A by aff A.
Two linear subspaces L,L′ ⊂ Rd are called parallel if L ⊂ L′ or L′ ⊂ L. Two affine

flats E = L + x,E′ = L′ + x′ for x, x′ ∈ Rd are called parallel, if L and L′ are parallel.
Moreover, we speak of L as the linear subspace parallel to E. For any non-empty set
A ⊂ Rd we denote the linear subspace parallel to its affine hull aff A by L(A). The
dimension of A is dimA := dimL(A). As an exception, for a point u ∈ Rd, we put
L(u) := lin{u} for convenience.

For a set A ⊂ Rd and an (affine or linear) subspace L ⊂ Rd let A|L be the orthogonal
projection of A onto L, i. e. A|L = (A+ L⊥) ∩ L. We also write x|L for the orthogonal
projection of any point x onto L.

For arbitrary sets A,B ⊂ Rd we define their Minkowski-sum as

A+B := {a+ b : a ∈ A, b ∈ B},

and x+B := {x}+B for x ∈ Rd. The Minowski-difference A	B is defined as

A	B := {a ∈ A : a+B ⊂ A}.

For x, y ∈ Rd, we define [x, y] as the segment connecting x and y. For compact sets
C1, C2 ⊂ Rd we define the Hausdorff-distance

d̃(C1, C2) := min{ε > 0 : C2 ⊂ C1 + εBd, C1 ⊂ C2 + εBd}.

This distance defines a topology on the compact subsets of Rd.

11



2 Notation and preliminaries

We denote the diameter of a compact set C ⊂ Rd by

D(C) := max{‖x− y‖ : x, y ∈ C}.

For x ∈ Rd and a compact set C ⊂ Rd, we define the distance of x and C by

d(C, x) := min{‖x− y‖ : y ∈ C}.

In the special case C = {z}, we also write d(z, x) instead of d({z}, x) = ‖z − x‖. For an
affine flat E ⊂ Rd we define d(E,C) and d(E, x) analogously.

Let A be a subset of some larger set M . Then we define the indicator function

IA : M → R, x 7→

{
1, x ∈ A,
0, x /∈ A.

When it is convenient, we write I(x ∈ A) for IA(x).
For a set A ⊂ Rd, bdA is the boundary of A, and intA is the interior of A. The

closure of A is denoted by clA. relbdA is the relative boundary of A, i. e. the boundary
of A with respect to aff A. The relative interior relintA is defined analogously.

The Lebesgue measure on Rd will be called λd. If L is a k-dimensional affine subspace
of Rd, the Lebesgue measure on L will be denoted by λL

k . For convenience, we will
sometimes write λk for λL

k if the subspace L is clear from the context. The spherical
Lebesgue measure on Sd−1 will be called ωd−1, and the spherical Lebesgue measure on
Sd−1 ∩ L will be called ωL

k−1. Again, we will write ωk−1 for ωL
k−1 if the subspace L is

clear from the context. For a linear subspace L′ ⊂ Rd of dimension dimL′ < k, we
have ωL

k−1(L
′) = 0 and λL

k (L′) = 0 for all k-flats L ∈ Ld
k containing L′. Therefore, the

expressions ωL′
k−1 and λL′

k denote the zero measure on L′.
We define the constants

κd := λd(Bd) =
πd/2

Γ(n/2 + 1)
,

σd := ωd−1(Sd−1) = dκd.

The Lebesgue measure is invariant under rotations, translations, and reflections. The
spherical Lebesgue measure is invariant under rotations and reflections.

We introduce the binomial coefficients,(
n

k

)
:=

n!
k!(n− k)!

,

where n and k are non-negative integer numbers, and k ≤ n. Moreover, for n < 0, k < 0,
or k > n, we put

(
n
k

)
:= 0.

For a topological space X, we designate the set of all Borel subsets of X by B(X).
Measurability will always be with respect to this σ-algebra, and all measures will be
Borel measures.
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2.1 Convex Geometry

2.1.2 Flats

Let Ld
k be the Grassmann manifold of k-dimensional linear subspaces of Rd, and let Ed

k

be the set of k-dimensional affine subspaces of Rd. An element L of Ed
k or Ld

k is called a
k-flat. If the dimension of L is clear from the context, it will simply be called a flat. We
now follow the steps of Schneider and Weil [10] to introduce topologies on Ld

k and Ed
k .

We first need a topology on the group of rotations in Rd, which is denoted by SOd.
Each rotation ϑ ∈ SOd is represented with respect to the standard basis of Rd by an
orthogonal matrix M(ϑ) whose determinant is 1. The mapping µ : ϑ 7→ M(ϑ) is an
isomorphism from the group SOd onto the group SO(d) of orthogonal (d, d)-matrices
with determinant 1. SO(d) can be interpreted as a bounded subset of Rd2

. With respect
to the topology of Rd2

the set SO(d) is closed, and therefore compact. The mapping
(M,N) 7→ MN−1 from SO(d) × SO(d) into SO(d) is continuous, and the same holds
for the mapping (M,x) 7→Mx from SO(d)×Rd into Rd. Now we can use µ−1 to carry
the topology of SO(d) over to SOd. Thus SOd is a compact topological group with
countable basis, and SOd acts continuously on Rd.

For a fixed k-flat L ∈ Ld
k, we define the function

βk : SOd → Ld
k, ϑ 7→ ϑL.

The topology we use for Ld
k is the finest topology such that βk is continuous.

Similarly to the mapping µ, we define the mapping γ : (x, ϑ) 7→ tx ◦ ϑ from Rd × SOd

onto the group Gd of rigid motions in Rd (tx denotes translation by x). γ is used to
introduce a topology on Gd. We define the function

γk : L⊥ × SOd → Ed
k , (x, ϑ) 7→ ϑ(L+ x),

and the topology for Ed
k is the finest topology such that γk is continuous. The topologies

on Ld
k and Ed

k do not depend on the choice of L.
It can then be shown that Ld

k and Ed
k are locally compact with a countable basis. SOd

acts continously and transitively on Ld
k, and Gd acts continuously and transitively on

Ed
k .
There is a unique probability measure νk on Ld

k that is invariant under rotations. More
generally, let L ∈ Ld

k, and let 0 ≤ j ≤ d. We define νL
j to be the invariant probability

measure on the topological space LL
k of all j-dimensional linear subspaces of Rd that

contain (or are contained in) L.
Let Ak = γk([0, 1]d−k × SOd), where [0, 1]d−k is a (d − k)-dimensional unit cube in

L⊥. There exists exactly one invariant measure µk on Ed
k such that µk(Ak) = 1. This

measure does not depend on the choice of L.
Let E ∈ Ed

k and E′ ∈ Ed
j be two flats. They are called in general relative position if

dim(E + E′) = min(d, k + j).
Let E ∈ Ed

k . The set of all j-flats in Ed
j that are not in general relative position to E

is a set of µj-measure zero.
A flat H ∈ Ed

d−1 is called a hyperplane.

13



2 Notation and preliminaries

The relative position of two k-flats E,F ∈ Ld
k defines a number |〈E,F 〉| in the following

way:
|〈E,F 〉| := λF

k (C|F ), (2.1)

where C ⊂ E is a measurable set with λE
k (F ) = 1. Typically, one would use a unit cube

in E for the set C, i. e. C = [0, u1] + . . . + [0, uk], where u1, . . . , uk is an orthonormal
basis of E. The number |〈E,F 〉| can also be defined in another way, which shows that
(2.1) does not depend on the choice of C. Let π : E → F be the orthogonal projection
onto F . The Jacobian of π at any point x ∈ E is

c :=

∣∣∣∣∣∣∣
〈u1, v1〉 · · · 〈uk, v1〉

...
. . .

...
〈u1, vk〉 · · · 〈uk, vk〉

∣∣∣∣∣∣∣ ,
where u1, . . . , uk and v1, . . . , vk are orthonormal bases of E and F , respectively. We see
that this determinant does not depend on x, and therefore

λF
k (C|F ) =

∫
F
Iπ(C)(x) dλ

F
k (x)

=
∫

E
IC(x) |c| dλE

k (x)

= |c|λE
k (C).

The right hand side is |c|, and thus |〈E,F 〉| = |c|, independently from C. It is also clear
that |〈E,F 〉| = |〈F,E〉|.

Now assume E ∈ Ld
k, F ∈ Ld

j , and 0 ≤ k < j ≤ d. We extend the definition of |〈·, ·〉|
to this case. If dim(E|F ) < k, we put |〈F,E〉| := |〈E,F 〉| := 0. If dim(E|F ) = k (which
is equivalent to E and F⊥ being in general relative position), we put

|〈F,E〉| := |〈E,F 〉| := |〈E,E|F 〉| = λ
E|F
k (C|F ),

where C is any measurable subset of E with λE
k (C) = 1. For arbitrary flats E,F , the

relation |〈E,F 〉| = |〈E⊥, F⊥〉| holds.

2.1.3 Convex bodies

A set A ⊂ Rd is convex if for all x, y ∈ A we also have [x, y] ⊂ A. The convex hull
convA of a subset A of Rd is the smallest convex subset of Rd containing A.

A convex body K is a compact non-empty convex subset of Rd. The set of all convex
bodies is denoted by K.

A convex body P that is the intersection of finitely many halfspaces is called a poly-
tope. This is equivalent to P being the convex hull of a finite non-empty set. The set of
all polytopes is a dense subset of K, i. e. for any convex body K there exists a sequence
(Pi) of polytopes such that

K = lim
i→∞

Pi

14



2.1 Convex Geometry

(with respect to the Hausdorff distance).
Let H be a hyperplane. If K is a convex body such that H ∩ K 6= 0 and K is

contained in a closed half-space bounded by H, H is called a supporting hyperplane of
K. If furthermore u ∈ Sd−1 with L(H) = u⊥, and K is not contained in the halfspace
that contains H + u, u is called an outer normal of the supporting hyperplane, and we
write Hu = Hu(K) for this hyperplane. The set Ku := K ∩Hu is called the support set
of K in the direction u.

The support sets of a polytope P are called faces of P . P is also considered a face of
itself. A k-dimensional face is called a k-face (0 ≤ k ≤ d). In particular, (d − 1)-faces
are facets of P , and 0-faces are vertices of P . The set of all k-faces of P is denoted by
Fk(P ). Each x ∈ bdP lies in the relative interior of exactly one face of P . For faces F
of polytopes, we introduce the special notation F⊥ := L(F )⊥. A face F of a polytope
P and a flat E are in general relative position if L(F ) and E are in general relative
position. If all faces of P are in general relative position to E, we say that P and E are
in general relative position.

Let K ∈ K. For x ∈ bdK we define the normal cone of K at x,

N(K,x) := {u ∈ Rd \ {0} : x ∈ Ku/‖u‖}.

A related spherical set is n(K,x) := N(K,x)∩Sd−1. For a polytope P with a face F we
put N(P, F ) := N(P, x) and n(P, F ) := n(P, x), where x is any point in relintF . These
definitions do not depend on the choice of x.

We also define the exterior angle γ(P, F ) of P at a k-dimensional face F ,

γ(P, F ) :=
1

σd−k
ωd−k−1(n(P, F )).

The sum of the exterior angles at the vertices of a polytope is 1,∑
F∈F0(P )

γ(P, F ) = 1.

We now investigate the case j := dimP < d. We identify aff P with Rj , and we designate
the exterior angle of P at F in Rj by

γ(j)(P, F ) =
1

σj−k
ωj−k−1(n(P, F ) ∩ aff P ).

We then have
γ(j)(P, F ) = γ(P, F ),

and consequently we speak of the exterior angle of P at F without mentioning the
dimension of the surrounding space.

For a linear subspace L ⊂ Rd we put

γL(P, F ) := γ((L+ x) ∩ P, (L+ x) ∩ F ), (2.2)

15



2 Notation and preliminaries

where x is any point in the relative interior of F . This definition does not depend on
the choice of x ∈ relintF .

For any convex body K ∈ K we define the metric projection p(K,x) of x ∈ Rd as the
point z of K that is nearest to x, i. e. for which d(K,x) = ‖z−x‖. The metric projection
is continuous in both components.

An additive mapping ψ : K →M (where M is an abelian group) fulfills

ψ(K ∪K ′) + ψ(K ∩K ′) = ψ(K) + ψ(K ′)

for all K,K ′ ∈ K for which K ∪K ′,K ∩K ′ are convex bodies.
For K ∈ K we define its support function

h(K, ·) : Sd−1 → R, u 7→ max{〈u, x〉 : x ∈ K}.

Any convex body K is determined by its support function h(K, ·).
A convex body Z is a zonotope, if Z is the Minkowski sum of (centrally symmetric)

line segments. Zonotopes are also characterized in the following way. A polytope Z is a
zonotope if any two edges with the same direction have the same length, i. e.

F, F ′ ∈ F1(Z), L(F ) = L(F ′) =⇒ V1(F ) = V1(F ′), (2.3)

and for any F ∈ F1 ⋃
F ′∈F1(Z),L(F ′)=L(F )

n(Z,F ′) = F⊥ ∩ Sd−1 (2.4)

holds.
A convex body that can by approximated by zonotopes is a zonoid. For zonoids there

also exists a characterization result. The convex body Z is a zonoid if and only if its
support function can be represented in the form

h(Z, u) =
∫

Sd−1

|〈u, v〉| dρ(v), u ∈ Sd−1, (2.5)

with some even measure ρ on Sd−1. (A measure ρ on Sd−1 is even, if for all Borel sets
η ⊂ Sd−1 we have ρ(η) = ρ(−η).)

2.1.4 Support measures of convex bodies

In this section we present the support measures of convex bodies (see Schneider [9],
Section 4.2).

For a Borel set η ⊂ Rd × Sd−1 and K ∈ K we denote by Mρ(K, η) the local parallel
set

Mρ(K, η) := {x ∈ Rd : 0 < d(K,x) ≤ ρ and (p(K,x), u(K,x)) ∈ η},
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2.1 Convex Geometry

where u(K,x) is the direction of the segment connecting p(K,x) and x, i. e. u(K,x) =
x−p(K,x)
‖x−p(K,x)‖ . Mρ(K, η) is a Borel set. It turns out that its Lebesgue measure has a
polynomial expansion in the following way,

λd(Mρ(K, η)) =
1
d

d−1∑
j=0

ρd−j

(
d

j

)
Θj(K, η), (2.6)

where Θ0(K, ·), . . . ,Θd−1(K, ·) are finite Borel measures on Rd × Sd−1. These measures
are concentrated on the normal bundle of K,

Nor(K) = {(x, u) ∈ Rd × S : x ∈ bdK,u ∈ n(K,x)},

and they depend additively and weakly continuously on K ∈ K, i. e. for Ki → K we
have Θj(Ki, ·)

w→Θj(K, ·), j = 0, . . . , d− 1, for i→∞.
For j = 0, . . . , d− 1, the j-th curvature measure is defined by

Cj(K, ·) := Θj(K, · × Sd−1), (2.7)

the projection of Θj(K, ·) onto its first component (j = 0, . . . , d − 1). Occasionally, a
different normalization is used,

ψj(K, ·) :=
1

dκd−j

(
d

j

)
Cj(K, ·).

The projection of Θj(K, ·) onto the second component is

Sj(K, ·) := Θj(K,Rd × ·),

the j-th surface area measure of K.
The total measures of the curvature measures are given by

Vj(K) := ψj(K,Rd), j = 0, . . . , d− 1,

where Vj(K) is the j-th intrinsic volume of K. Additionally, we put Vd(K) := λd(K),
and Vj(∅) := 0, j = 0, . . . , d. If K ∈ K is j-dimensional, we have Vj(K) = λaff K

j (K).
For the intrinsic volumes the famous Steiner formula holds,

Vd(K + ρB) =
d∑

i=0

ρd−iκd−iVi(K), ρ > 0. (2.8)

If P is a polytope, then
Vj(P ) =

∑
F∈Fj(P )

γ(F, P )Vj(F ).

The intrinsic volumes have the following geometrical interpretations for general convex
bodies: Vd is the volume, Vd−1 is half the surface area, V1 is the mean width (up to a
constant depending on d), and V0 ≡ 1.
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2 Notation and preliminaries

Let 0 ≤ j ≤ k ≤ d, and let K ∈ K. Then Crofton’s formula holds,∫
Ed

k

Vj(K ∩ E) dµk(E) = αdjkVd+j−k(K),

where

αdjk =

(
k
j

)
κkκd+j−k(
d

k−j

)
κjκd

.

2.2 Measure Theory

In this section, some of the results are given without a proof. In this case, the proof can
be found, e. g., in Bauer [3].

Let X be a topological space. We know that the σ-algebra generated by the open
subsets of X is the Borel σ-algebra B(X).

It can be difficult to find out if a given system D of subsets of X is a σ-algebra. This
problem can sometimes be solved with the help of Dynkin systems.

Definition 1. Let D be system of subsets of some set X. D is a Dynkin system (in X),
if

X ∈ D,
D ∈ D ⇒ X \D ∈ D,

and if, for each sequence (Dn) of pairwise disjoint sets in D, the union
∞⋃

n=1

Dn lies also

in D.

The following lemma states under which conditions a Dynkin system is a σ-algebra.

Lemma 2. A Dynkin system D is a σ-algebra if and only if D1 ∩ D2 ∈ D for all
D1, D2 ∈ D.

Definition 3. Let X be a locally compact space with countable basis. Let φ, φ1, φ2, . . .
be finite measures on X. The sequence (φi) is weakly convergent to φ if

lim
n→∞

∫
f dφn =

∫
f dφ

holds for all continuous, real-valued and bounded functions f on X.

We also denote weak convergence of (φi) to φ by

φi
w→φ for i→∞.

We will use weak convergence mainly in the following context. Let φ(K, ·) be a finite
measure on X which depends on a convex body K. This measure is weakly continuously
in K if Ki → K implies φ(Ki, ·)

w→φ(K, ·) (i→∞) for convex bodies K,K1,K2, . . ..

18



2.2 Measure Theory

In convex geometry, we often encounter measures that have a polynomial expansion
with respect to some parameter ρ. An example is equation (2.6), where the Lebesgue
measure λd(Mρ(K, η)) of a local parallel set (at distance ρ) of the convex body K is
expanded into a polynomial in ρ. The coefficients, in this case, are the support measures.

We now give some properties for a general class of measures that have polynomial
expansions. The underlying method has been used, for example, by Schneider [9] and
Fallert [4]. It is well-known that a polynomial p of degree n (and therefore its coef-
ficients) are determined by its values p(xi) for n + 1 pairwise distinct real numbers
x1, . . . , xn+1. The following Lemma gives us some more information about the relation-
ship of p(x1), . . . , p(xn+1) and the coefficients of p.

Lemma 4. Let

p(x) =
n∑

i=0

aix
i (2.9)

be a real polynomial of degree n. Then there are coefficients bi,j, 0 ≤ i, j ≤ n, depending
on i, j and n only, such that

ai = r−i
n∑

j=0

bi,j p((j + 1)r), i = 0, . . . , n,

for every positive real constant r.

Proof. Let r > 0. We use the polynomials

Lj(x) :=
n∏

i=0,i6=j

x− (i+ 1)
(j + 1)− (i+ 1)

=:
n∑

i=0

bi,jx
i

to write
∑n

i=0 aix
i = p(x) =

∑n
j=0 Lj(x/r)p((j + 1)r). Comparing coefficients yields

aix
i =

∑n
j=0 bi,j(x/r)

ip((j + 1)r), and for x = 1 we get ai = r−i
∑n

j=0 bi,jp((j + 1)r).
2

As a corollary we get the following result of Fallert [4], Satz 32.

Corollary 5. Let j ∈ {0, . . . , d}. Then there exists a constant cj,d that depends only on
j and d, such that for any convex body K ⊂ Rd and any ball B′ with radius r > 0 the
following inequality holds:

ψj(K,B′) ≤ cj,dr
j .

Proof. We apply (2.9) to the polynomial

λd(Mε(K,B′ × Sd−1)) =
d∑

i=0

εiκiψd−i(K,B′),

which follows from (2.6) and the definition (2.7) of the curvature measures. This yields

ψd−i(K,B′) =
1

κd−i

d∑
j=0

bi,j r
−iλd(M(j+1)r(K,B

′ × Sd−1)).
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2 Notation and preliminaries

Now M(j+1)r(K,B′ × Sd−1) ⊂M(d+1)r(K,B′ × Sd−1) ⊂ B′ + (d+ 1)rB, and therefore

V (U(j+1)r(K,B
′)) ≤ (d+ 2)dκdr

d.

The assertion now follows easily. 2

We can also apply Lemma 4 to measures that depend on a parameter that is a convex
body. If such a measure has a polynomial expansion, and depends weakly on the convex
body it belongs to, the measures that are the coefficients of the polynomial also depend
weakly on the convex body. This and some more results are stated in the following
Lemma.

Lemma 6. For each ε > 0 and each K ∈ K let %ε(K, ·) be a finite Borel measure on
a locally compact Hausdorff space X with countable basis. Let M be a dense subset of
K, and for each K ∈ M let φ0(K, ·), . . . , φn(K, ·) be finite Borel measures on X. For
K ∈M assume the following polynomial expansion,

%ε(K, ·) =
n∑

i=0

εiφi(K, ·).

Moreover, let φε be weakly continuous in K. Then φ0(K, ·), . . . , φk(K, ·) can be expanded
to be measures depending on K ∈ K (i. e. not only on K ∈ M) such that they are also
weakly continuous in K.

Proof. From Lemma 4 we get the polynomial expansion

φi(K, ·) = r−i
n∑

j=0

bi,j%(j+1)r(K, ·), r > 0, i = 0, . . . , n,

which holds for K ∈M. For r = 1 this equation gives

φi(K, ·) =
n∑

j=0

bi,j%j+1(K, ·). (2.10)

We now use equation (2.10) to define the (for the moment possibly signed) measures
φ0(K, ·), . . . , φn(K, ·) for all K ∈ K. Clearly, for K ∈ M this definition coincides with
the original measures. We now show that for arbitrary K ∈ K we also get a (positive)
measure φi(K, ·). Let Kl ∈M such that Kl → K for l→∞. Then φi(Kl, ·) is the weak
limit of measures,

φi(Kl, ·)
w→φi(K, ·), l→∞,

and therefore a (positive) measure itself (i ∈ {0, . . . , n}). Moreover, as φi(K, ·) is a
sum of weakly continuous measures, φi(K, ·) also depends weakly continuously on K
(i = 0, . . . , n). 2

We now consider another inequality. In contrast to corollary 5, we do not consider
the measure of a ball of radius ε, but the measure of (a projection of) spherical images
of zonal sets.
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2.2 Measure Theory

Definition 7. Let k ∈ {0, . . . , d}, ε ≥ 0 and L ∈ Ld
k. Then

Z(L, ε) := {u ∈ Sd−1 : ‖u|L⊥‖ ≤ ε} = {u ∈ Sd−1 : ‖u|L‖ ≥
√

1− ε2} (2.11)

is called a zonal set (with respect to L and ε).

Theorem 8. Let k ∈ {0, . . . , d}, 0 ≤ ε ≤ 1 and L ∈ Ld
k. Let K ⊂ Rd be a convex body,

and
Kε := {x ∈ bdK : n(K,x) ∩ Z(L, ε) 6= ∅}.

Then for 0 ≤ ε ≤ 1

Kε|L ⊂ {x ∈ K|L : d(relbdK|L, x) ≤ εD(K)}. (2.12)

Moreover, a constant ck(K) > 0 exists that depends on k and K only, such that for
0 ≤ ε ≤ 1

λk(cl(Kε|L)) ≤ εck(K). (2.13)

Proof. For ε = 0, the left hand side of (2.12) is relbdK|L, which clearly is a subset
of the set on the right hand side. relbdK|L is a set of dimension less than k, and thus
(2.13) holds. On the other hand, for ε = 1, the right hand side of (2.12) is K|L, and the
left hand side Kε|L is a subset thereof, as Kε ⊂ K. Equation (2.13) also holds, as ck(K)
can be chosen to be greater than Vk(K|L).

Thus we assume 0 < ε < 1 for the rest of the proof. We start with (2.12). We may
assume without loss of generality that dimK|L = k. The set on the right hand side is

{x ∈ K|L : ‖x− z‖ < εD(K) for some z ∈ relbdK|L}.

Thus, it suffices to show that for any x ∈ bdK that has an outer normal u ∈ Z(L, ε), a
point z ∈ relbdK|L exists such that d := ‖x|L− z‖ < εD(K). We assume without loss
of generality that x = 0 and ε = ‖u|L⊥‖. Let v ∈ Sd−1 ∩ L such that u|L =

√
1− ε2v.

We put E := lin{u, v}, g := lin{v}. Let Hu,Hv be the supporting hyperplanes of K with
outer normals u, v, respectively. x ∈ Hu is a support point of K. Let y ∈ Hv ∩ K be
another support point of K. From Hv = g⊥ we get that y|g lies in the relative boundary
of K|g with outer normal v (in g). As x|g ∈ K|L and g ⊂ L, the line segment [x|g, y|g]
contains some z ∈ relbdK|L. Then x|g = x|L yields

d = ‖x|L− z‖ ≤ ‖x|g − y|g‖.

x|E and y|E are points in the relative boundary of the (2-dimensional) convex body
K|E, and they have outer normals u and v, respectively. This follows from the fact that
u⊥ and v⊥ contain E⊥, and from x ∈ Hu and y ∈ Hv. The convexity of K|E then
implies

ε · ‖x|E − y|E ‖ ≥ ‖x|g − y|g ‖.

The orthogonal projection onto E is a contraction, which implies

‖(x− y)|E‖ ≤ ‖x− y‖ ≤ D(K).
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2 Notation and preliminaries

Altogether these inequalities imply

ε ·D(K) ≥ d,

which finishes the proof of (2.12)
It is clear that cl(Kε|L) is a measurable set, and that

cl(Kε|L) ⊂ {x ∈ K|L : d(relbd(K|L), x) ≤ εD(K)} =: K ′.

If K is a polytope, for each x ∈ K ′ there is a face F ∈ Fk−1(K|L) such that d(F, x) ≤
εD(K). Thus

K ′ =
⋃

F∈Fk−1(K|L)

F + εD(K) · [0,−u(F )],

where u(F ) is the outer normal of K|L at F that lies in L. Consequently,

λk(K ′) ≤ εD(K) ·
∑

F∈Fk−1(K|L)

Vk(F + [0,−u(F )])

= εD(K) ·
∑

F∈Fk−1(K|L)

Vk−1(F )

= εD(K) · Vk−1(K|L).

If K is an arbitrary convex body, we can approximate K by a series (Pi) of polytopes.
We clearly have P ′

i → K ′ and therefore λk(P ′
i ) → λk(K ′) for i→∞. On the other hand,

Pi|L→ K|L and Vk−1(Pi|L) → Vk−1(K|L) for i→∞. Thus the inequality

λk(K ′) ≤ εD(K) · Vk−1(K|L)

holds for arbitrary K ∈ K. We can now choose ck(K) to be any upper bound of
D(K)Vk−1(K|L) for L ∈ Ld

k. 2

We cite the following result of Santalò [8] as a Lemma for later use.

Lemma 9. There are real constants ad,k,m for k,m ∈ {0, . . . , d} such that the following
properties hold. Let F ∈ Ld

m and let f : Ld
k → R be an integrable function. If k +m ≥ d

then the following equation holds,∫
Ld

k

f(L) dνk(L) = ad,k,m

∫
LF

k+m−d

∫
LL′

k

|〈L⊥, F 〉|k+m−df(L) dνL′
k (L) dνF

k+m−d(L
′).

(2.14)
If k +m ≤ d, the following equation holds,∫

Ld
k

f(L) dνk(L) = ad,d−k,d−m

∫
LF

k+m

∫
LL′

k

|〈L⊥, F 〉|d−k−mf(L) dνL′
k (L) dνF

k+m(L′).
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Proof. We first consider the case k +m > d. The result then is equation (14.40) in
Santalò [8], where we apply the formula |〈L⊥, L⊥|F 〉| = |〈L⊥, F 〉| whenever L,F are in
general relative position. Otherwise, |〈L⊥, F 〉| = 0, which fits Santalò’s formula.

For k +m = d the equations hold with ad,k,d−k = 1.
If k +m < d, we orthogonalize the variable of integration and get∫

Ld
k

f(L) dνk(L) =
∫
Ld

d−k

f(L⊥) dνd−k(L).

We observe that (d − k) + (d − m) > d, and apply (2.14) to F⊥ ∈ Ld
d−m instead of

F ∈ Ld
m, yielding∫
Ld

d−k

f(L⊥) dνd−k(L)

= ad,d−k,d−m

∫
LF⊥

d−m−k

∫
LL′

d−k

|〈L⊥, F⊥〉|d−k−mf(L⊥) dνL′
d−k(L) dνF⊥

d−k−m(L′)

= ad,d−k,d−m

∫
LF

k+m

∫
LL′⊥

d−k

|〈L⊥, F⊥〉|d−k−mf(L⊥) dνL′⊥

d−k(L) dνF
k+m(L′)

= ad,d−k,d−m

∫
LF

k+m

∫
LL′

k

|〈L,F⊥〉|d−k−mf(L⊥) dνL′
k (L) dνF

k+m(L′).

We apply the equation |〈L,F⊥〉| = |〈L⊥, F 〉|, which yields the assertion. 2

2.3 Grassmannians

We will later study functions in L2(Ld
k), i. e. real-valued square integrable functions on

the Grassmannian Ld
k. Many of these functions will be defined using the function

E 7→ |〈E,F 〉|, E ∈ Ld
k,

where F is some fixed k-flat. We will now state some results related to the relative
position of E,F that are needed later.

Lemma 10. Let 1 ≤ k ≤ d, 0 ≤ m ≤ d, and let F ∈ Ld
k, L ∈ Ld

m. Let u1 ∈ F ∩ Sd−1

be such that ‖u1|L‖ is maximal (or minimal). Then u1|L ⊥ (u⊥1 ∩ F )|L, i. e. for any
u2 ∈ F, u2 ⊥ u1, we have u1|L ⊥ u2|L. Moreover, the set

U := {u ∈ F : ‖u|L‖ = ‖u1|L‖ · ‖u‖}

is a linear subspace of Rd.

Proof. We assume that an u2 ∈ u⊥1 ∩ F exists such that u1|L 6⊥ u2|L, and subse-
quently show that in this case ‖u1|L‖ can neither be maximal nor minimal.

We assume without loss of generality that u2 ∈ F ∩ Sd−1. Orthonormal vectors
v1, v2 ∈ L exist such that u1|L = av1, u2|L = bv1 + cv2 for some real numbers a, b, c (and
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2 Notation and preliminaries

a, b 6= 0 follows). For any α ∈ [−1, 1] the vector u(α) := αu1 +
√

1− α2u2 is an element
of F ∩ Sd−1. Let f(α) be the squared norm of u(α)|L, i. e.

f(α) = ‖v(α)|L‖2

= ‖(αa+
√

1− α2b)v1 +
√

1− α2cv2‖2

= (αa+
√

1− α2b)2 + (1− α2)c2

= α2a2 + (1− α2)b2 + (1− α2)c2 + 2α
√

1− α2ab

= b2 + c2 + α2(a2 − b2 − c2) + 2α
√

1− α2ab.

On (−1, 1) the derivative of f is given by

f ′(α) = 2α(a2 − b2 − c2) + 2
√

1− α2ab− α2

√
1− α2

ab.

We first consider the case ab > 0. The summand 2α(a2−b2−c2)+2
√

1− α2ab is bounded
on (−1, 1), and thus f ′(α) tends to −∞ for α → ±1. The continuity of f implies the
existence of some α0, α1 ∈ (−1, 1) such that f(α0) > f(1) and f(α1) < f(−1). We then
have

‖u(α1)|L‖ < ‖ − u1|L‖ = ‖u1|L‖ < ‖u(α0)|L‖.

Therefore ‖u1|L‖ is neither maximal nor minimal.
In the case ab < 0 a similar argument shows that ‖u1|L‖ is neither maximal nor

minimal.
Because ab cannot be zero, this contradicts our assumption, and the assertion holds.
It remains to show that U is a linear subspace. If dimU ≤ 1, then obviously U = [u1], a

linear subspace of Rd. Otherwise, let u2 ∈ F ∩ Sd−1 be such that ‖u1|L‖ = ‖u2|L‖ =: c,
and such that u1, u2 are linearly independent. Let u1, u

′
2 be an orthonormal basis of

[u1, u2]. It follows that u1|L is orthogonal to u′2|L. For α1, α2 ∈ R we have

‖(α1u1 + α2u
′
2)|L‖2 = α2

1c
2 + α2

2‖u′2|L‖2. (2.15)

In particular, there are α1, α2 ∈ R such that u2 = α1u1 +α2u
′
2, α

2
1 +α2

2 = 1 and α2 6= 0.
We therefore have

c2 = ‖u2|L‖2 = α2
1c

2 + (1− α2)‖u′2|L‖2,

which implies ‖u′2|L‖ = c. Equation (2.15) yields ‖u|L‖ = c‖u‖ for all u ∈ [u1, u2]. Thus
all linear combinations of elements of U lie in U , i. e. U is a linear subspace. 2

We can now construct an orthonormal basis of F in the following manner. We choose
u1 ∈ F ∩ Sd−1 such that ‖u1|L‖ is maximal. Then we choose u2 ∈ F ∩ Sd−1 ∩ u⊥1 such
that ‖u2|L‖ is maximal. In general, choose ui ∈ F ∩Sd−1∩u⊥1 ∩ . . .∩u⊥i−1 for i = 1, . . . , k
with the corresponding maximality property. Thus u1, . . . , uk is an orthonormal basis of
F . This motivates the following definition.
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2.3 Grassmannians

Definition 11. Let k,m ∈ {0, . . . , d}, and let F ∈ Ld
k, L ∈ Ld

m. For each i from 1 to k,
choose

ui ∈ F ∩ Sd−1 ∩
i−1⋂
j=1

u⊥j ,

such that
βi := ‖ui|L‖

is maximal. The numbers β1, . . . , βk are the β-numbers of F (with respect to L), and

βL(F ) := (β1, . . . , βk) (2.16)

is the β-vector of F (with respect to L). Moreover, {u1, . . . uk} is called an L-ONB of
F .

Remark. The β-vector of F does not depend on the choice of u1, . . . , uk. From Lemma
10 we know that

U := {u ∈ F : ‖u|L‖ = β1‖u‖}

is a linear subspace. This means that the vectors u1, . . . , udim U are an orthonormal basis
of U , regardless of their choice, and β1 = . . . = βdim U . Thus βdim U+1, . . . , βk do not
depend on the choice of u1, . . . , udim U .

Lemma 12. Let k,m ∈ {0, . . . , d}, and let F ∈ Ld
k, L ∈ Ld

m. Let u1, . . . , uk be an
L-ONB of F . Then u1|L, . . . , uk|L, u1|L⊥, . . . , uk|L⊥ are orthogonal.

Proof. We use induction on k for the proof. If k = 0, the empty set is the only
L-ONB of F , and the assertion holds.

Now let k ≥ 1 and assume we know the result for k − 1. u2, . . . , uk is an L-ONB of
F ∩ u⊥1 . By induction, we know that u2|L, . . . , uk|L, u2|L⊥, . . . , uk|L⊥ are orthogonal.
From Lemma 10 we know that u1|L is orthogonal to u2|L, . . . , uk|L, because ‖u1|L‖
is maximal. Moreover, ‖u1|L⊥‖ =

√
1− ‖u1|L‖2 is minimal, and Lemma 10 implies

u1|L⊥ ⊥ u2|L⊥, . . . , uk|L⊥. Finally, it is trivially clear that u1|L ⊥ u1|L⊥, . . . , uk|L⊥
and u1|L⊥ ⊥ u1|L, . . . , uk|L. Altogether we get that u1|L, . . . , uk|L, u1|L⊥, . . . , uk|L⊥
are orthogonal. 2

Corollary 13. Let 0 ≤ k ≤ m ≤ d and let F ∈ Ld
k, L ∈ Ld

m. Let β := βL(F ) be the
β-vector of F w. r. t. L. Then

|〈F,L〉| = β1 · . . . · βk. (2.17)

Proof. Let u1, . . . , uk be an L-ONB of F . Then [0, u1] + . . .+ [0, uk] is a unit cube
in F , and its image under orthogonal projection onto L ist [0, β1v1] + . . .+ [0, βkvk] for
some ONB v1, . . . , vm of L. The k-volume of this image is β1 · . . . · βk. 2

We now discuss how the β-numbers of F determine the relative position of F and L.
By this, we mean that F is determined by these numbers, up to an orthogonal transform
under which L and L⊥ are invariant subspaces of Rd.
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For example, if we select a fixed plane L in R3, the real number |〈L,F 〉| determines
the position of the plane F ⊂ R3 relative to L. As in this case β1 = 1, the number
β2 = |〈L,F 〉| determines the position of F relative to L. |〈F,L〉| does clearly not
determine the relative position of F and L for the general case of k-flats in Rd. However,
βL(F ) determines the position of F relative to L.

Lemma 14. Let 0 ≤ k ≤ m ≤ d and F ∈ Ld
k, L ∈ Ld

m. Then βL(F ) = (β1, . . . , βk)
determines the relative position of F and L in the following sense. If βL(F1) = βL(F2)
for two k-flats F1 and F2, then an orthogonal transform ρ exists such that L and L⊥ are
invariant under ρ, and ρF1 = F2.

Proof. Let v1, . . . , vm be an ONB of L, and let vm+1, . . . , vd be an ONB of L⊥. We
put

wi := βivi +
√

1− β2
i vd+1−i, i = 1, . . . , k.

Below, we will construct an orthogonal transform ρ under which L and L⊥ are invariant,
such that ρui = wi for an L-ONB of F , i. e. ρF = lin{w1, . . . , wk} =: W . The linear
subspace W depends on βL(F ) only. Thus, if βL(F1) = βL(F2), there are orthogonal
transforms ρ1, ρ2 under which L and L⊥ are invariant, such that ρ1F1 = W = ρ2F2. It
then follows ρ−1

2 ρ1F1 = F2, and the assertion holds.
Let u1, . . . , uk be an L-ONB of F . From Lemma 12 we know that {u1|L, . . . , uk|L} is

an orthogonal subset of L. Clearly, there is an orthogonal transform ρ1 that leaves L⊥

fixed, such that (ρ1ui)|L = βivi for i = 1, . . . , k. (Note that for i ≥ m we have vi /∈ L.
However, βi = 0 is implied in this case, and the equation holds.)

Analogously, Lemma 12 also implies that {u1|L⊥, . . . , uk|L⊥} is an orthogonal subset
of L⊥. There is an orthogonal transfrom ρ2 that leaves L fixed, such that (ρ2ui)|L⊥ =√

1− β2
i vd+i−k for i = 1, . . . , k. (Note that for i ≤ m + k − d we have vd+i−k /∈ L⊥.

However, βi = 1 is implied in this case, and the equation holds.)
ρ := ρ1ρ2 is an orthogonal transform under which L and L⊥ are invariant subspaces.

We have
ρui = βivi +

√
1− β2

i vd+1−i = wi. (2.18)

Thus ρF depends on βL(F ) only, and the assertion follows as stated above. 2

We now compute the spherical Lebesgue measure of the image of a set under a certain
mapping, which we will use in the next chapter.

Lemma 15. Let 0 ≤ k ≤ d and let F,L ∈ Ld
k be such that |〈F,L〉| 6= 0. Let a mapping

πL : F \ {0} → L be defined by

πL : x 7→ x|L
‖x|L‖

.

Then for all Borel subsets η of F ∩ Sd−1

ωk−1(πL(η)) = |〈F,L〉|
∫

η

1
‖u|L‖k

dωk−1(u). (2.19)
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2.3 Grassmannians

Proof. We put C := {αx : α ∈ [0, 1], x ∈ πL(η)} and

D := {x ∈ F : x|L ∈ C} = {αx : x ∈ η, 0 ≤ α ≤ 1
‖x|L‖

} ⊂ F.

The orthogonal projection from F onto L is injective, and thus

ωk−1(πL(η)) = kλk(C)
= k|〈F,L〉|λk(D)

= k|〈F,L〉|
∫

η

∫ 1/‖u|L‖

0
rk−1 dr dωk−1(u)

= |〈F,L〉|
∫

η

1
‖u|L‖k

dωk−1(u).

2
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2 Notation and preliminaries
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3 Integral representations of projection
functions I

In this chapter we present an integral representation of projection functions of convex
bodies. More precisely, we will associate a measure µk(P, ·) with a convex polytope P .
This measure is a Borel measure on Sd−1 × Ld

k, which we abbreviate by

Sd−1,k := Sd−1 × Ld
k. (3.1)

We will also associate a function fL on Sd−1,k with L ∈ Ld
k, such that

Vk(P |L) =
∫
fL(·) dµk(P, ·). (3.2)

For general convex bodies, there also exist measures µk(K, ·) such that (3.2) holds.
However, in Example 20 we will see that µk(K, ·) does not depend weakly continuously
on K.

In later chapters, we will define measures depending weakly continuously on K, which
allow an integral representation of projection functions in the form (3.2).

3.1 Ambartzumian’s integral representation of the width
function in R3

The following theorem is Ambartzumian’s sin2-representation of (the width function of)
convex bodies in R3. The width function of a convex body K is given by

w(K,u) := h(K,u) + h(K,−u), u ∈ Sd−1.

For a centrally symmetric convex body M we have w(M, ·) = 2h(M, ·), and hence the
support function of M is determined by the width function of M . Thus a centrally
symmetric convex body is determined by its width function. Therefore, a representation
of the width function of a centrally symmetric convex body M can be considered a
representation of M itself.

Note that this does not hold for general convex bodies. For any convex body K, we
can define the convex body M := 1

2(K −K), which is centrally symmetric and has the
same width function as K, i. e. w(M, ·) = w(K, ·).

The width function of K in direction u is the distance of the supporting hyperplanes
of K with outer normals u and −u. This is also the length of the line segment of lin{u}
between these hyperplanes. This segment is K| lin{u}. Thus, the width function w(K,u)
is the same as the projection function V1(K| lin{u}).

29



3 Integral representations of projection functions I

Theorem 16. (Ambartzumian [1]) Let K ⊂ R3 be a convex body. Then a Borel
measure µ1(K, ·) on S2,1 exists such that

V1(K|L) =
∫

S2,1

〈L,F 〉2

‖u|L⊥‖2
µ1(K, d(u, F )), L ∈ L3

1 (3.3)

for all L ∈ L3
1. For polytopes P , the measures defined by

µ1(P, η) =
1
2π

∑
F∈F1(P )

Vk(F )
∫

n(P,F )
I( (u, F ) ∈ η ) dωS2∩F⊥

1 (u) (3.4)

have this property.

Remark. The measure µ1(P, ·) defined by (3.4) is concentrated on {(u, F ) ∈ S2,1 : u ⊥
F}, and the same holds for the measure µ1(K, ·) used in (3.3). If u ∈ L, we have
L⊥ ⊂ u⊥. We also have F ⊂ u⊥ for almost all (u, F ), which means that L⊥ and F are
not in general relative position. More precisely, we have F |L ⊂ u⊥ ∩ L, which is a set
of dimension not greater than k − 1. This means that the enumerator of the integrand
in (3.3) is 0. By putting 〈L,F 〉2

‖u|L⊥‖2 := 0 for u ∈ L we get 〈L,F 〉2
‖u|L⊥‖2 = 0 whenever F and L⊥

are not in general relative position.

We do not give a direct proof of Theorem 16 here. However, Theorem 18 includes
Theorem 16 as a special case.

To explain why this representation has the name sin2-representation, we define the
function f3

1 by

f3
1 : L3

1 × L3
1 × S2 → R, (L,F, u) 7→

{
〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2, |〈L,F 〉| 6= 0,
0, |〈L,F 〉| = 0.

If |〈L,F 〉| = 0, then f3
1 (L,F, u) = 0 = 〈L,F 〉2

‖u|L⊥‖ , as explained above. On the other hand, if

|〈L,F 〉| 6= 0, then u /∈ L follows from u ∈ F⊥. We choose an orthonormal basis u, u′ of
F⊥, i. e. u′ is an orthonormal basis of F⊥ ∩ u⊥. Then

|〈L,F 〉| = |〈F⊥, L⊥〉|
= λ2(([0, u] + [0, u′])|L⊥)

= λ1([0, u|L⊥]) · λ1([0, u′|(L⊥ ∩ u⊥)])

= ‖u|L⊥‖|〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉|,

yielding

〈L,F 〉2

‖u|L⊥‖2
=
‖u|L⊥‖2〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2

‖u|L⊥‖2

= 〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2

= f3
1 (L,F, u).
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3.2 Integral representations of arbitrary projection functions

Thus, (3.3) can be expressed as

V1(K|L) =
∫

S2,1

f3
1 (L,F, u)µ1(K, d(u, F )), L ∈ L3

1.

The squared sine of the angle between F and u⊥∩L is 〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2. Therefore,
this formula is called sin2-representation of the width function of convex bodies.

3.2 Integral representations of arbitrary projection functions

We will give an integral representation for polytopes first, and then generalize this for-
mula to arbitrary convex bodies. Similarly to the last section, we will encounter a
fraction of form 〈F,L〉2

‖u|L⊥‖d−k , where L,F ∈ Ld
k, and u ∈ F⊥. The denominator becomes

0 for u ∈ L only, and we will see that this happens for a set with measure 0 only. As
above, the fact that |〈F,L〉| = 0 for F,L not in general relative position motivates the
definiton of 〈F,L〉2

‖u|L⊥‖d−k = 0 whenever F,L are not in general relative position.

Lemma 17. Let P be a convex polytope in Rd and 0 ≤ k < d. Then the projection
function L 7→ Vk(P |L), L ∈ Ld

k is given by

Vk(P |L) =
1

σd−k

∑
F∈Fk(P )

Vk(F )
∫

n(P,F )

〈F,L〉2

‖u|L⊥‖d−k
dωd−k−1(u). (3.5)

Proof. First of all, as L is k-dimensional, the volume Vk(P |L) is the Lebesgue
measure on L of P |L. By definition, this means

Vk(P |L) = λk(P |L)

=
∫

L
I(x ∈ P |L) dλk(x)

=
∫

L
I((L⊥ + x) ∩ P 6= ∅) dλk(x).

Now we can split the integrand into a sum ranging over the k-faces of P . The integrand
vanishes, if (L⊥ +x)∩P = ∅, and is 1 otherwise, i. e. if (L⊥ +x)∩P is a polytope. This
polytope lies in an appropriately translated version of L⊥, and therefore∑

F∈F0((L⊥+x)∩P )

γL⊥(P, F ) = V0((L⊥ + x) ∩ P ) = 1,

by the definition (2.2) of γL⊥(P, F ). If (L⊥+x)∩P = ∅, the sum is empty, and therefore
vanishes.

Replacing the indicator function with this sum, we get

Vk(P |L) =
∫

L

∑
F∈F0((L⊥+x)∩P )

γL⊥(P, F ) dλk(x).
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3 Integral representations of projection functions I

Each F ∈ F0((L⊥ + x) ∩ P ) is of the form L⊥ ∩ F ′ for some face F ′ of P , where the di-
mension of any such F ′ can obviously be at most d−(d−k) = k. In fact, if its dimension
is less than k, x lies in the projection F ′|L, a set of dimension k−1 or less. The union of
all these sets has λk measure 0, as P has only finitely many faces. Therefore, in the inte-
gral we can replace

∑
F∈F0((L⊥+x)∩P ) γL⊥(P, F ) with

∑
F ′∈Fk(P ),(L⊥+x)∩F ′ 6=∅ γL⊥(P, F ′).

This gives us

Vk(P |L) =
∫

L

∑
F ′∈Fk(P )

γL⊥(P, F )I((L⊥ + x) ∩ F ′ 6= ∅) dλk(x)

=
∑

F∈Fk(P )

γL⊥(P, F )
∫

L
I((L⊥ + x) ∩ F 6= ∅) dλk(x)

=
∑

F∈Fk(P )

γL⊥(P, F )Vk(F |L).

We now use the definition of γL⊥ to expand

γL⊥(P, F ) =
1

σd−k
ωd−k−1(nL⊥(P, F )).

The set nL⊥(P, F ) is the image of n(P, F ) under the mapping πL⊥ : x 7→ (x|L⊥)/‖x|L⊥‖.
From Lemma 15 we know that for L⊥, F in general relative position we have

ωd−k−1(πL⊥(n(P, F )) =
∫

n(P,F )

|〈F⊥, L⊥〉|
‖u|L⊥‖d−k

dωd−k−1(u).

Together with Vk(F |L) = |〈F,L〉|Vk(F ) and |〈F⊥, L⊥〉| = |〈F,L〉| we get

Vk(P |L) =
1

σd−k

∑
F∈Fk(P )

Vk(F )
∫

n(P,F )

〈F,L〉2

‖u|L⊥‖d−k
dωd−k−1(u). (3.6)

If L⊥, F are not in general relative position, we have |〈F,L〉| = 0, and (3.6) also holds.
2

We now present an alternative form of (3.5). We choose an orthonormal basis u1 =
u, u2, . . . , ud−k of F⊥. Then

|〈F,L〉| = |〈F⊥, L⊥〉|
= λd−k([0, u1|L⊥] + ([0, u2] + . . .+ [0, ud−k])|L⊥])

= λ1(u, u|L⊥) · λd−k−1(([0, u2] + . . .+ [0, ud−k])|(L⊥ ∩ u⊥))

= ‖u|L⊥‖ · |〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉|,

yielding
〈F,L〉2

‖u|L⊥‖d−k
=
〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2

‖u|L⊥‖d−k−2
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3.2 Integral representations of arbitrary projection functions

in the case |〈F,L〉| 6= 0. We define the function fd
k by

fd
k : Ld

k × Ld
k × Sd−1 → R, (L,F, u) 7→

{
〈u⊥∩F⊥,u⊥∩L⊥〉2

‖u|L⊥‖d−k−2 , |〈F,L〉| 6= 0,

0, |〈F,L〉| = 0.

With this function we can express (3.5) as

Vk(P |L) =
1

σd−k

∑
F∈Fk(P )

Vk(F )
∫

n(P,F )
fd

k (F,L, u) dωd−k−1(u). (3.7)

One special case is k = d− 2, giving

fd
d−2(L,F, u) =

{
〈u⊥ ∩ F⊥, u⊥ ∩ L⊥〉2, |〈F,L〉| 6= 0,
0, |〈F,L〉| = 0.

Applying this to d = 3, we can see at this point that (3.3) holds for polytopes, with a
measure defined by (3.4).

Remark. It is easy to see that fd
d−2 is continuous at (L,F, u) if u /∈ L. However, for

u ∈ L, this is not the case, as the following example shows.
We consider the special case d = 3, and we put

F = lin{

1
0
0

}, u =

0
1
0

 ∈ F⊥, L = lin{

sinω
cosω

0

}, ω ∈ R.

For ω = 0, we have f3
1 (L,F, u) = 0, as u ∈ L. For ω ∈ (−π/2, π/2) \ {0} we have

|〈F,L〉| 6= 0, and thus

f3
1 (L,F, u) = |〈F⊥ ∩ u⊥, L⊥ ∩ u⊥〉|

= |〈lin{

0
0
1

}, lin{
0

0
1

}〉|
= 1.

Similarly, it is possible to show that f3
1 takes any value in [0, 1] in any neighbourhood of

(lin{u}, F, u), and thus cannot be made continuous by changing its value for |〈F,L〉| = 0.

An extension of Lemma 17 to arbitrary convex bodies is stated in the following The-
orem.

Theorem 18. Let 0 ≤ k < d and let K ⊂ Rd be a convex body. Then a Borel measure
µk(K, ·) on Sd−1,k exists such that

Vk(K|L) =
∫

Sd−1,k

fd
k (F,L, u)µk(K, d(u, F )), L ∈ Ld

k. (3.8)
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3 Integral representations of projection functions I

If K is a polytope, the measure defined by

µk(K, η) =
1

σd−k

∑
F∈Fk(K)

Vk(F )
∫

n(K,F )
I((u, L(F )) ∈ η) dωd−k−1(u) (3.9)

has this property.

Proof. If K is a polytope, the measure µk(K, ·) defined by (3.9) has the desired
property. This follows directly from Lemma 17.

Now letK be an arbitrary convex body. Let (Pi) be a sequence of polytopes converging
to K. These measures are defined on the compact space Sd−1×Ld

k, and the sequence of
their total measures,

µk(Pi, S
d−1,k) =

1
σd−k

∑
F∈Fk(Pi)

Vk(F )γ(Pi, F )

= Vk(Pi),

converges to Vk(K). Thus there exists an upper bound for the total measures. Therefore,
a weakly convergent subsequence of (µk(Pi, ·)) exists (see Bauer [3], Satz 46.3). We
assume without loss of generality that (Pi) is such a subsequence, and we let µk(K, ·) be
the weak limit of (µk(Pi, ·)).

In view of the definition of zonal sets (2.11) we define a function

fε(u, F ) :=
〈F,L〉2

max(ε, ‖u|L⊥‖)d−k
,

which is continuous on Sd−1,k, and increases when ε decreases. Moreover, the integrand
of (3.8) is the limit f := limε→0 fε. The Theorem of monotone convergence (see Bauer
[3], Satz 11.4) shows∫

Sd−1,k

f(u, F )µk(K, d(u, F )) = lim
ε→0

∫
Sd−1,k

fε(u, F )µk(K, d(u, F )),

and the continuity of fε implies (using the weak convergence of the measures µk(Pi, ·))∫
Sd−1,k

fε(u, F )µk(K, d(u, F )) = lim
i→∞

∫
Sd−1,k

fε(u, F )µk(Pi, d(u, F ))

≤ lim
i→∞

∫
Sd−1,k

f(u, F )µk(Pi, d(u, F ))

= lim
i→∞

Vk(Pi|L)

= Vk(K|L).

It remains to show ∫
Sd−1,k

f(u, F ) dµk(K, d(u, F )) ≥ Vk(K|L).
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3.2 Integral representations of arbitrary projection functions

In view of Theorem 8 it becomes clear that for 0 < ε < 1∫
Sd−1,k

f(u, F )µk(K, d(u, F )) ≥
∫

Sd−1,k

fε(u, F )µk(K, d(u, F ))

= lim
i→∞

∫
Sd−1,k

fε(u, F )µk(Pi, d(u, F ))

≥ lim
i→∞

(Vk(Pi|L)− λk(clPi,ε|L))

≥ lim
i→∞

Vk(Pi|L)− εck(K)

ε→0−−→ Vk(K|L),

where ck(K) is some constant depending on k and K, and Pi,ε is defined as in Theorem
8:

Pi,ε = {x ∈ bdPi : n(Pi, x) ∩ Z(L, ε) 6= ∅}.

Altogether we get the assertion. 2

One application of the measures µk(K, ·) is the characterization of zonoids in the set
of centrally symmetric convex bodies. Again, Ambartzumian has proved the result for
d = 3, and we use a similar argument here.

Theorem 19. Let Z be a centrally symmetric convex body. Z is a zonoid if and only if
there exists a measure µ1(Z) on Sd−1,1 that satisfies (3.8) and has the form

µ1(Z, η) =
∫
Ld

1

∫
F⊥∩Sd−1

I((u, F ) ∈ η) dωd−2(u)ρ(Z, dF ) (3.10)

for some finite measure ρ(Z, ·) on Ld
1.

Proof. Let Z be a zonotope. We put

F ′
1(Z) := {F ∈ Ld

1 : ∃F ′ ∈ F1(Z) such that L(F ′) = F}.

For F ∈ F ′
1(Z) let l(F ) be the common length of all edges of Z in direction F (see (2.3)).

We apply (2.4) to (3.9) and get

µ1(Z, η) =
1

σd−1

∑
F∈F1(Z)

Vk(F )
∫

n(K,F )
I((u, L(F )) ∈ η) dωd−2(u)

=
1

σd−1

∑
F∈F ′1(Z)

l(F )
∫

F⊥∩Sd−1

I((u, F ) ∈ η) dωd−2(u),

for all Borel sets η, and hence µ1(Z, ·) is of the form (3.10) (and ρ is the sum of one
point measures).

Now let Z be a zonoid. We can approximate Z by zonotopes. The construction in
the proof of Theorem 18 yields a measure µ1(Z, ·) with the desired properties. However,
(2.5) yields the existence of a measure ρ satisfying (3.10) directly.
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3 Integral representations of projection functions I

On the other hand, let Z be a centrally symmetric convex body for which µ1(Z, ·)
has the form (3.10). We apply (3.8), and carrying out the inner integration we get for
L ∈ Ld

1

V1(Z|L) =
∫
Ld

1

∫
F⊥∩Sd−1

fd
1 (L,F, u) dωd−2(u)ρ(Z, dF )

= σd−1

∫
Ld

1

|〈F,L〉|ρ(Z, dF ).

(Here we used that ∫
F⊥∩Sd−1

1
‖u|L⊥‖d−1

dωd−2

is the (d− 1)-volume of
M := {x ∈ F⊥ : ‖x|L⊥‖ ≤ 1}.

Now M |L⊥ = Bd ∩ L⊥, and thus Vd−1(M) = |〈F⊥, L⊥〉|σd−1 = |〈F,L〉|σd−1.)
Thus for x ∈ Sd−1 we have

h(Z, u) =
1
2
V1(Z|L(u)) =

σd−1

2

∫
Ld

1

|〈F,L(u)〉|ρ(Z, dF ),

and (2.5) yields that Z is a zonoid. 2

3.3 A counterexample

In (3.9) we have given a definition for the measures µk(P, ·) for polytopes P . By approx-
imating a convex body K with polytopes Pi → K (i→∞) in Theorem 18, µk(K, ·) was
defined to be the weak limit of a converging subsequence of (µk(Pi, ·)). Naturally, the
question arises if µk(K, ·) depends weakly continuously on K. The following example
shows that this is not even the case for d = 3, k = 1.

Example 20.

We are going to approximate the unit ball B ⊂ R3 by two sequences (Pn) and (Qn)
of polytopes. We then show that the sequences of associated measures (µ1(Pn, ·)) and
(µ1(Qn, ·)) converge weakly, but to different measures µ′1(B, ·) and µ′′1(B, ·), respectively.
This means that µ1(B, ·) can not be defined such that K 7→ µ1(K, ·) is weakly continuous
at B.

In fact, we will show that the limit measure µ′1(B, ·) of (µ1(Pn, ·)) is not rotation
invariant, i. e. there exists a rotation ρ such that µ′1(B, ρη) 6= µ′1(B, η) for some Borel set
η ⊂ S2. We can then put Qn := ρ−1Pn, and thus µ′′1(B, η) = µ′1(B, ρη) 6= µ′1(B, η), i. e.
µ′1(B, ·) 6= µ′′1(B, ·). To show that µ1(B, η) is not rotation invariant, it suffices to show
that µ̃(·) := µ′1(B,S

2 × ·) is not rotation invariant. µ̃ is a measure on L3
1. We know

that the only (up to scaling) finite rotation invariant measure on L3
1 is ν1. Therefore it

suffices to show that a Borel set η ⊂ L3
1 exists such that µ̃(η) > 0 and ν1(η) = 0.
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3.3 A counterexample

For n ∈ N we define

Pn := conv{

xy
z

 ∈ S2 : x = i2−n, y = j2−n, i, j ∈ Z}.

We obviously have limn→∞ Pn = B.
There exists a subsequence of (µk(Pn, ·)) that converges weakly. Without loss of

generality, we assume that (µk(Pn, ·)) converges weakly, and define

µ̃(·) := lim
n→∞

µk(Pn, S
2 × ·),

a measure on L3
1.

We put

η := {lin{

xy
z

} : x = y = 1 ∨ (x = 1, y = 0) ∨ (x = 0, y = 1)}.

Obviously ν1(η) = 0. It remains to show that µ̃(η) > 0. For i2 + j2 ≤ 2n we put

p(n, i, j) := (i2−n, j2−n,
√

1− (i2 + j2)2−2n),

which is a vertex of Pn. Consider the set

e(n, i′, j′) := [p(n, i, j), p(n, i+ i′, j + j′)] ⊂ Pn, i′, j′ ≥ 0.

It is clear that all edges (or 1-faces) of Pn have this form. µ1(Pn, S
2× ·) is concentrated

on the set {L(F ) : F ∈ F1(Pn)}. The line L(e(n, i′, j′)) is in η for i′ = j′ = 1 or
i′ = 1, j′ = 0 or i′ = 0, j′ = 1. We now show that e(n, i′, j′) can be an edge only in these
cases.

We define a function parametrizing e(n, i′, j′),

f(t) := tp(n, i+ i′, j + j′) + (1− t)p(n, i, j).

In particular, if f(1/i′) lies in the interior of Pn, e(n, i′, j′) lies not completely in the
boundary of Pn, and thus it is no edge. For symmetry reasons, it suffices to show that
f(1/i′) lies in the interior of Pn for i, j ≥ 0 and 0 < j′ < i′.

The first and second component of f(1/i′) are (1 + i)2−n and

1
i′

(j + j′)2−n +
i′ − 1
i′

j2−n =
j′ + i′j

2

−n

,

respectively. These are also the first and second component of

q(n, i′, j′) := j′/i′ · p(n, i+ 1, j + 1) + (1− j′/i′) · p(n, i+ 1, j),

a point on the segment connecting p(n, i + 1, j) and p(n, i + 1, j + 1). We will show
that f(1/i′) lies in the relative interior of the segment s connecting q(n, i′, j′) and its
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3 Integral representations of projection functions I

reflection q̃ about lin(e1, e2) (which is also a point of Pn). It then follows that f(1/i′)
lies in the interior of Pn, because s lies not in the boudary of

conv{q(n, i′, j′), q̃, p(n, i, j), p(n, i+ 2, j), p(n, i+ 1, j + 1), p(n, i+ 1, j − 1)} ⊂ Pn.

To show that f(1/i′) lies in the relative interior of s, it suffices to show that the third
component of f(1/i′) is less than the third component of q(n, i′, j′). This number is

z1 :=
j′

i′

√
1− ((i+ 1)2 + (j + 1)2)2−2n + (1− j′

i′
)
√

1− ((i+ 1)2 + j2)2−2n,

and the third component of f(1/i′) is

z2 :=
1
i′

√
1− ((i+ i′)2 + (j + j′)2)2−2n + (1− 1

i′
)
√

1− (i2 + j2)2−2n.

The partial derivatives of z1, z2 with respect to j′ are

∂

∂j′
z1 =

1
i′

(√
1− ((i+ 1)2 + (j + 1)2)2−2n −

√
1− ((i+ 1)2 + j2)2−2n

)
= − 1

i′

(
1− ((i+ 1)2 + j2)2−2n

)
−
(
1− ((i+ 1)2 + (j + 1)2)2−2n

)√
1− ((i+ 1)2 + j2)2−2n +

√
1− ((i+ 1)2 + (j + 1)2)2−2n

= − 1
i′

(2j + 1)2−2n√
1− ((i+ 1)2 + j2)2−2n +

√
1− ((i+ 1)2 + (j + 1)2)2−2n

>
−(j + j′)2−2n

i′
√

1− ((i+ i′)2 + (j + j′)2)2−2n
,

and
∂

∂j′
z2 =

−(j + j′)2−2n

i′
√

1− ((i+ i′)2 + (j + j′)2)2−2n
,

respectively. As ∂
∂j′ z1 >

∂
∂j′ z2, it would suffice to show z1 > z2 for j′ = 1. Instead,

we show the equivalent inequality i′z1 > i′z2. The partial derivatives of i′z1, i′z2 with
respect to i′ are

z3 :=
∂

∂i′
(i′z1) =

√
1− ((i+ 1)2 + j2)2−2n,

and

z4 :=
∂

∂i′
(i′z2) =

√
1− (i2 + j2)2−2n − (i+ i′)2−2n√

1− ((i+ i′)2 + (j + j′)2)2−2n
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3.3 A counterexample

respectively. The difference of z3 and z4 is

z3 − z4 =
√

1− ((i+ 1)2 + j2)2−2n −
√

1− (i2 + j2)2−2n

+
(i+ i′)2−2n√

1− ((i+ i′)2 + (j + j′)2)2−2n

= − 2−2n(2i+ 1)√
1− ((i+ 1)2 + j2)2−2n +

√
1− (i2 + j2)2−2n

+
(i+ i′)2−2n√

1− ((i+ i′)2 + (j + j′)2)2−2n

> − 2−2n(2i+ 1)
2
√

1− ((i+ 1)2 + j2)2−2n
+

(i+ i′)2−2n√
1− ((i+ 1)2 + j2)2−2n

=
(i′ − 1

2)2−2n

2
√

1− ((i+ 1)2 + j2)2−2n

> 0.

Now all that remains to show z1 > z2 for all i′ > j′ ≥ 1 is to show that z1 ≥ z2 holds for
i′ = j′ = 1. In this case we have

z1 =
√

1− ((i+ 1)2 + (j + 1)2)2−2n = z2,

and the assertion follows. 2

We have seen that the measures µk(K, ·) can be used for an integral representation
of projections functions. For polytopes P , the measure µk(P, ·) is given by (3.9). For
general convex bodies K, the existence of such a measure has been established by ap-
proximation of K by polytopes. In general, the resulting measure depends on the chosen
approximation, and not only on K. In particular, there can be no definition of µk(K, ·)
such that (3.9) holds for polytopes and µk(K, ·) depends weakly continuously on K.

In the next chapter we will define a measure depending weakly continuously on K.
In Chapter 5 we will prove an integral representation of projection functions using this
measure.
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4 Generalized support measures

We now give a generalization of the support measures introduced in Section 2.1.4. His-
torically, there have been a number of generalizations and variants of the classical surface
area and curvature measures.

In 1937/1938, the surface area measures Sj(K, ·) (on Sd−1) were introduced by Alexan-
drov and Fenchel-Jessen. Later, the curvature measures (on Rd) by Federer followed.
The support measures (on Rd × Sd−1) by Schneider, which we introduced in Section
2.1.4, are a generalization of both the surface are measures and the curvature measures.
A generaliztation of the curvature measures to the manifold of k-flats touching a con-
vex body was investigated by Weil in [11] and [12]. Kropp [6] studied corresponding
generalizations of the surface area measures. In the following we present a common
generalization of the measures of Weil and of Kropp.

Instead of local parallel sets of K that consist of points x ∈ Rd with d(K,x) < ρ,
where ρ is some positive real number, we consider local parallel sets of k-flats E with
d(K,E) < ρ. For this, we use the method applied by Schneider [9] for the support
measures. As we shall show, the invariant measure of these local parallel sets has a
polynomial expansion in ρ, and the generalized curvature are the coefficients of this
polynomial.

We mention that there are further generalizations of support measures by Rataj and
Zähle [7] and Hug [5].

4.1 Local parallel sets of flats

Let 0 ≤ k < d, let K be a convex body, and let ρ > 0. For every affine k-flat E ∈ Ed
k we

consider the set of points of E with minimal distance to K. If there is a unique point of E
with minimal distance to K, we call this point l(K,E). In this case, we write p(K,E) for
the metric projection of l(K,E) onto K, i. e. p(K,E) = p(K, l(K,E)). Clearly p(K,E)
is the unique nearest point of K to E. We then have d(E,K) = d(l(K,E),K) =
‖l(K,E)− p(K,E)‖.

Sometimes it is convenient to consider only the set of k-flats E ∈ Ed
k that have a unique

point of minimal distance to K, and do not intersect K. We call this set K(k):

K(k) := {E ∈ Ed
k : E ∩K = ∅, point of minimal distance is unique}.

In fact, K(k) comprises almost all k-flats not intersecting K.

Lemma 21. Let 0 ≤ k ≤ d, and let K be a convex body. Then

µk({Ed
k : E ∩K = ∅} \K(k)) = 0.
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4 Generalized support measures

Proof. Any flat that does not intersect K and for which the nearest point is not
unique must be parallel to some line segment in the boundary of K. From Schneider
[9], Corollary 2.3.11, it thus follows that the set of all k-dimensional flats that neither
intersect K nor have a unique nearest point to K has µk-measure 0. 2

Schneider considers parallel sets of a convex body K. These sets consist of points
whose distance from K is less than some real number ρ. A generalization are “parallel”
sets that consist of (affine) k-flats whose distance from K is less than ρ. Also, the
direction of the shortest segment connecting K and the flat plays an important role. It
must be an outer normal of the points x ∈ K that minimize the distance d(E, x).

Definition 22. Let 0 ≤ k ≤ d and let K be a convex body. For E ∈ K(k) we define the
direction of the shortest segment connecting K and E as

u(K,E) :=
l(K,E)− p(K,E)

d(K,E)
,

and we define the set K(k)
ρ of parallel k-flats of positive distance not greater than ρ ∈ R

as
K(k)

ρ := {E ∈ K(k) : 0 < d(K,E) ≤ ρ}.

Remark. The set K(k)
ρ is a measurable set.

Proof. The set of all k-flats intersecting a convex body is a closed set and thus
measurable. Therefore the sets

{E ∈ Ld
k : E ∩K + ρB 6= ∅} and {E ∈ Ld

k : E ∩K 6= ∅}

are measurable. K
(k)
ρ is – up to the flats with non-unique nearest point to K – the

difference of these sets. 2

Lemma 23. Let K ∈ K. Then the functions p(K, ·), l(K, ·), u(K, ·) : K(k) → Rd and
d(·, ·) : K × Ld

k → Rd are continuous.

Proof. We start with the continuity of d(·, ·). Let L be a fixed k-flat and let (Ki) be
a sequence of convex bodies converging to K. Then |d(Ki, L)−d(K,L)| ≤ d̃(Ki,K) → 0
for i→∞. On the other hand, let (Ei) be a sequence of k-flats in Ld

k that converges to
some E ∈ Ld

k, i. e. for a fixed k-flat L there exist converging sequences (ρi) of rotations
and (xi) of points in L⊥ such that Ei = ρi(L+ xi). It follows that

d(K,Ei) = d(K, ρi(L+ xi)) = d(ρ−1
i K − xi, L) → d(ρ−1K − x, L) = d(K,E), i→∞,

where x is the limit of (xi) and ρ is the limit of (ρi).
We next show that p(K, ·) is continuous. Due to the compactness of K, it suffices to

show that any accumulation point of (p(K,Ei)) coincides with p(K,E). Let x be such
an accumulation point, i. e. a subsequence (Eij ) exists such that p(K,Eij ) → x ∈ K
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4.1 Local parallel sets of flats

(j → ∞). Now d(p(K,Eij ), Eij ) ≤ d(p(K,E), Eij ), and the limit for j → ∞ yields
d(x,E) ≤ d(K,E). The uniqueness property of p(K,E) implies x = p(K,E).

As the sequence l(K,Ei) is clearly bounded, we can use a similar argument for the
continuity of l. Consider a subsequence (Eij ) such that l(K,Eij ) converges to y ∈ Rd

(j →∞). Both y and l(K,E) lie on E, thus [y, l(K,E)] ⊂ E. As d(K, y) = d(K, l(K,E))
by continuity of d, the uniqueness property of l implies y = l(K,E).

Now we have that p, l, d are continuous, and d(K, ·) is positive on K(k). The continuity
of u follows from the definition. 2

Lemma 24. Let (Ki) be a converging sequence of convex bodies with limit K ∈ K. Let
0 ≤ k < d and let

L ∈ K(k) ∩
∞⋂
i=1

K
(k)
i .

Then
p(Ki, L) → p(K,L), l(Ki, L) → l(K,L), u(Ki, L) → u(K,L).

Proof. The convergence of (Ki) implies the existence of some (compact) ball that
contains Ki, i ∈ N, and K. To show p(Ki, L) → p(K,L) it thus suffices to show that any
accumulation point of the sequence (p(Ki, L)) is p(K,L). The continuity of d implies
that any accumulation point of (p(Ki, L)) has the same distance from L, namely d(K,L).
Because L is in K(k), there exists exactly one such point in K.

Orthogonal projections are continuous, and thus l(Ki, L) = p(Ki, L)|L implies that
l(Ki, L) → l(K,L), i→∞. Thus (l(Ki, L)− (p(Ki, L)) converges. (d(Ki, L)) converges
also, and is positive with positive limit. Thus u(Ki, L) → u(K,L), i → ∞ by the
definition of u. 2

The measures we will now introduce are defined on

Σ(k) := Rd × Sd−1 × Ld
k.

Let this set be equipped with the product topology. The measures will be concentrated
on the set of triples (x, u, L), where x lies in the boundary of K, u is an outer normal of
K at x, and L is a linear subspace of Rn that is orthogonal to u.

Let K ∈ K be fixed. From Lemma 23 we know that E 7→ p(K,E) and E 7→ u(K,E)
are continuous on Ed

k . The mapping E 7→ L(E) is obviously also continuous. Thus

f (k)
ρ :

{
K

(k)
ρ → Σ(k)

E 7→ (p(K,E), u(K,E), L(E))

is a continuous function.
This allows us to define a Borel measure as the image of µk under f (k)

ρ .

Definition 25. For K ∈ K and ρ > 0 we define the Borel measure

µ(k)
ρ (K, ·) := µk((f (k)

ρ )−1(·)).
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4 Generalized support measures

Thus µ(k)
ρ (K, ·) is a finite measure on B(Σ(k)), and the measure of a Borel set η ∈

B(Σ(k)) is the µk-measure of a local parallel set of supporting k-flats,

M (k)
ρ (K, η) :=

(
f (k)

ρ

)−1
(η)

= {E ∈ K(k)
ρ : (p(K,E), u(K,E), L(E)) ∈ η}.

While µ(k)
ρ (K, η) has been defined for fixed K, we can also consider the convex body

K as variable. In analogy to the classic case of the curvature measures, we investigate
some properties of µ(k)

ρ (K, ·) with respect to K, in particular continuity, measurability
and additivity.

Lemma 26. Let (Ki) be a sequence of convex bodies converging to K ∈ K. Then the
measures µ(k)

ρ (Ki, ·) converge weakly to µ(k)
ρ (K, ·),

µ(k)
ρ (Ki, ·)

w→µ(k)
ρ (K, ·) (k →∞).

Proof. Let A be the set of all k-flats that are parallel to a 1-face of some Ki, i. e.

A := {E ∈ Ed
k : ∃i ∈ N, F ∈ F1(Kn) such that F ||E}.

Note that A is a set of measure 0, which once more follows from Schneider [9], Corollary
2.3.11. Let η ⊂ Σ(k) be an open subset. Let E ∈M (k)

ρ (K, η)\A be an arbitrary flat with
d(K,E) < ρ. For almost all i, Ki and E do not intersect. Therefore d(Ki, E) → d(K,E)
and (p(Ki, E), u(Ki, E)) → (p(K,E), u(K,E)) for i→∞. It follows that for almost all i
the inequality d(Ki, E) < ρ holds, and (p(Ki, E), u(Ki, E), L(E)) ∈ η. Thus, for almost
all i ∈ N we have E ∈M (k)

ρ (Ki, η). We get

(M (k)
ρ (K, η) \A) ∩ {E ∈ En

k : d(K,E) < ρ} ⊂ lim inf
i→∞

M (k)
ρ (Ki, η),

and thus

µ(k)
ρ (K, η) = µk(M (k)

ρ (K, η))

= µk

(
(M (k)

ρ (K, η) \A) ∩ {E ∈ En
k : d(K,E) < ρ}

)
≤ µk

(
lim inf
i→∞

M (k)
ρ (Ki, η)

)
≤ lim inf

i→∞
µk(M (k)

ρ (Ki, η))

= lim inf
i→∞

µ(k)
ρ (Ki, η).

For the second equality we used two facts. From Crofton’s formula we know∫
Ed

k

I(M ∩ E 6= ∅) dµk(E) = αd0kVd−k(M)
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4.1 Local parallel sets of flats

for all convex bodies M . The intrinsic volumes are continuous on K, in particular
limr→ρ Vd−k(K + rB) = Vd−k(K + ρB). Thus µk({E ∈ Ed

k : d(K,E) = ρ}) = 0.
The same reasoning shows

µ(k)
ρ (Ki,Σ(k)) → µ(k)

ρ (K,Σ(k)), i→∞,

which completes the proof. 2

Lemma 27. For arbitrary η ∈ B(Σ(k)) the mapping µ(k)
ρ (·, η) : K → R is measurable.

Proof. We already know from the previous proof that for open sets η the mapping
µ

(k)
ρ (·, η) is lower half-continuous and therefore measurable. We show that the set D

of all η for which µ
(k)
ρ (·, η) is measurable is a Dynkin system. µ(k)

ρ (·,Σ(k)) is obviously
measurable. For η ∈ D we have M (k)

ρ (K, η) ⊂M
(k)
ρ (K,Σ(k)) and

M (k)
ρ (K,Σ(k) \ η) = M (k)

ρ (K,Σ(k)) \M (k)
ρ (K, η),

which yields
µ(k)

ρ (K,Σ(k) \ η) = µ(k)
ρ (K,Σ(k))− µ(k)

ρ (K, η)

for all K ∈ K. Thus Σ(k) \ η ∈ D. Let (ηi) be a sequence of pairwise disjoint elements
of D. Then we have for all K ∈ K

µ(k)
ρ

(
K,

∞⋃
i=0

ηi

)
=

∞∑
i=1

µρ(K, η1),

since µ(k)
ρ (K, ·) is a measure. This yields

⋃∞
i=1 ηi ∈ D. Thus D is a Dynkin system

containing the open sets.
Lemma 2 now yields that D contains the σ-algebra generated by the open sets. Thus

we have measurability for each Borel set η. 2

Lemma 28. For each η ∈ Σ(k) the function µ
(k)
ρ (·, η) is additive.

Proof. Let K,M ∈ K satisfy K ∪M ∈ K. Let E ∈ K(k) ∩M (k). We put y :=
p(K,E), z := p(M,E).

We now consider the case p(K ∪M,E) = y. As K ∪M is convex, [y, z] is a subset of
K ∪M . Therefore an a ∈ [y, z] ∩K ∩M exists. The mapping

t 7→ d(tz + (1− t)y,E)

is convex and has a minimum on [0, 1] at t = 0. This implies d(y,E) ≤ d(a,E) ≤ d(z,E).
As z = p(M,E), we have d(a,E) ≥ d(z,E), and thus d(a,E) = d(z, E) (and a, z ∈M).
The uniqueness of the nearest point now implies z = a ∈ K ∩M . We get

d(K ∪M,E) = d(K,E), d(K ∩M,E) = d(M,E)
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4 Generalized support measures

and
u(K ∪M,E) = u(K,E), u(K ∩M,E) = u(M,E).

Thus

E ∈M (k)
ρ (K ∪M,η) ⇐⇒ E ∈M (k)

ρ (K, η),

E ∈M (k)
ρ (K ∩M,η) ⇐⇒ E ∈M (k)

ρ (M,η).

In the other case, p(K ∪M,E) = z, a similar reasoning shows

E ∈M (k)
ρ (K ∪M,η) ⇐⇒ E ∈M (k)

ρ (M,η),

E ∈M (k)
ρ (K ∩M,η) ⇐⇒ E ∈M (k)

ρ (K, η).

This means that for almost all E we have the identity

I(E ∈M (k)
ρ (K ∪M,η)) + I(E ∈M (k)

ρ (K ∩M,η))

= I(E ∈M (k)
ρ (K, η)) + I(E ∈M (k)

ρ (M,η)).

Integration of this identity with respect to µk yields the assertion. 2

4.2 k-support measures

The measure µ(k)
ρ (K, ·) is a polynomial in ρ, i. e. it is a sum of measures that are ho-

mogeneous of different degrees in ρ. To show this, we start by considering the case of a
polytope P ∈ K. For each E ∈ P (k)

ρ the nearest point p(P,E) lies in the relative interior
of a uniquely determined face F of P . For a given face F of P we now compute the
measure of the set

A := M (k)
ρ (P, η) ∩ p(P, ·)−1(relintF )

for a Borel subset η of Σ(k) and ρ > 0. If dimF ≥ d − k, the nearest point of F to
a k-flat E is either not unique, or not in the relative interior, or E and F intersect.
In each case E is not in A, so the set A is empty. Therefore we concentrate on the
case m := dimF < d − k. Then (assuming 0 ∈ F without loss of generality, as µk is
translation invariant)

µk(A) =
∫
Ed

k

I(E ∈ P (k)) · I(p(P,E) ∈ relintF ) · I(0 < d(P,E) ≤ ρ)

× I((p(P,E), u(P,E), L(E)) ∈ η) dµk(E)

=
∫
Ld

k

∫
L⊥

I(L+ y ∈ P (k)) · I(p(P,L+ y) ∈ relintF ) · I(0 < d(F,L+ y) ≤ ρ)

× I((p(F,L+ y), u(F,L+ y), L) ∈ η) dλd−k(y) dνk(L) (4.1)
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4.2 k-support measures

For each L ∈ Ld
k in general relative position to F we define L1 := L(F )|L⊥ = (L(F )+L)∩

L⊥ and L2 := L⊥1 ∩ L⊥ = L(F )⊥ ∩ L⊥. We have L1 ⊥ L2 and the direct decomposition
L1 ⊕ L2 = L⊥. Moreover, for y1 ∈ L1 und y2 ∈ L2 we have

(L+ y1 + y2)|L(F ) = (L+ y1)|L(F ), (L+ y1)|L⊥ = {y1},

and
u(F,L+ y1 + y2) =

y2

‖y2‖
, d(F,L+ y1 + y2) = ‖y2‖,

whenever p(F,L+ y1 + y2) ∈ relintF . Thus

p(P,L+ y1 + y2) ∈ relintF
⇐⇒ p(F,L+ y1 + y2) ∈ relintF, u(F,L+ y1 + y2) ∈ n(P, F )
⇐⇒ y1 ∈ relintF |L⊥, y2 ∈ N(P, F )

and, in this case,

0 < d(F,L+ y1 + y2) ≤ ρ ⇐⇒ 0 < ‖y2‖ ≤ ρ.

On the other hand, if L,F are not in general relative position, L + y /∈ P (k) for all
y ∈ L⊥. Therefore, the inner integral of (4.1) is zero.

In each case, the inner integral of (4.1) is∫
L1

∫
L2

I(L+ y1 + y2 ∈ P (k)) · I(p(P,L+ y1 + y2) ∈ relintF )

× I(0 < d(F,L+ y1 + y2) ≤ ρ)
× I((p(F,L+ y1 + y2), u(F,L+ y1 + y2), L) ∈ η) dλd−k−m(y2) dλm(y1)

=
∫

L1

∫
L2

I(L+ y1 + y2 ∈ P (k)) · I(y1 ∈ relintF |L⊥) · I(0 < ‖y2‖ ≤ ρ)

× I(y2 ∈ N(P, F )) · I((p(F,L+ y1), y2/‖y2‖, L) ∈ η) dλd−k−m(y2) dλm(y1)

If y2 ∈ N(P, F ) and L + y1 + y2 /∈ P (k), then L + y1 + y2 must have more than one
nearest point to F . This means that F and L are not in general relative position, i. e.
the dimension of F |L⊥ is less than m, and λF |L⊥

m is the zero measure. Thus we get that
the inner integral of (4.1) is

1
d− k −m

ρd−k−m

∫
F |L⊥

∫
L⊥∩n(P,F )

I((p(F,L+ y1), y2, L) ∈ η) dωd−k−m−1(y2) dλm(y1).

Altogether, we have

µk(A) =
1

d− k −m
ρd−k−m

∫
Ld

k

∫
F |L⊥

∫
L⊥∩n(P,F )

I((p(F,L+ y1), y2, L) ∈ η)

× dωd−k−m−1(y2) dλm(y1) dνk(L).
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The last expression is translation invariant, and we need no longer assume 0 ∈ F .
We can now take the sum over all faces F of P , and get

µρ(k)(P, η) =
∑

F is face of P

µk(M (k)
ρ (P, η) ∩ p(P, ·)−1(relintF ))

=
d−k−1∑
m=0

∑
F∈Fm(P )

1
d− k −m

ρd−k−m

∫
Ld

k

∫
F |L⊥

∫
L⊥∩n(P,F )

× I((p(F,L+ y1), y2, L) ∈ η) dωd−k−m−1(y2) dλm(y1) dνk(L).

Thus we get the polynomial representation

µ(k)
ρ (P, η) =

1
d− k

d−k−1∑
m=0

ρd−k−m

(
d− k

m

)
Θ(k)

m (P, η), (4.2)

where the coefficients are measures as follows. For m = 0, . . . , d− k − 1 we define

Θ(k)
m (P, η) :=

(
d− k − 1

m

)−1 ∑
F∈Fm(P )

∫
Ld

k

∫
F |L⊥

∫
L⊥∩n(P,F )

× I((p(F,L+ y1), y2, L) ∈ η) dωd−k−m−1(y2) dλm(y1) dνk(L).

(4.3)

This polynomial representation can be extended to arbitrary convex bodies.

Theorem 29. For each convex body K ∈ K and each k ∈ {0, . . . , d−1} there exist finite
measures Θ(k)

0 (K, ·), . . . ,Θ(k)
d−k−1(K, ·) on B(Σ(k)), such that for each η ∈ B(Σ(k)) and

each ρ > 0 the measure µ(k)
ρ (K, η) of the local parallel set of k-flats, M (k)

ρ (K, η), is given
by

µ(k)
ρ (K, η) =

1
d− k

d−k−1∑
m=0

ρd−k−m

(
d− k

m

)
Θ(k)

m (K, η). (4.4)

The mapping K 7→ Θ(k)
m (K, ·) is weakly continuous, i. e.

Ki → K ⇒ Θ(k)
m (Ki, ·)

w→Θ(k)
m (K, ·), (i→∞),

and additive, i. e. if K1,K2,K1 ∪K2 ∈ K, then

Θ(k)
m (K1 ∪K2, ·) + Θ(k)

m (K1 ∩K2, ·) = Θ(k)
m (K1, ·) + Θ(k)

m (K2, ·).

For each η ∈ B(Σ(k)) the function K 7→ Θ(k)
m (K, η) is measurable on K.

Proof. If K is a polytope, (4.4) has been established in (4.2). From Lemma 26 we
know that µ(k)

ρ (K, ·) is a measure depending weakly on K ∈ K. The set of polytopes is
dense in K. Lemma 6 thus implies that (4.4) can be extended to all convex bodies, and
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4.2 k-support measures

that the measures Θ(k)
m (K, η) depend weakly continuous on K. Moreover, the polynomial

expansion

Θ(k)
m (K, η) =

d−k∑
l=1

al,kµ
(k)
l (K, η) (4.5)

holds for some real coefficients al,k. Therefore additivity and measurability follow from
Lemma 26 and Lemma 28. 2

We call the measure Θ(k)
m (K, ·) the m-th support measure of parallel k-flats of K. It

is concentrated on

Nork(K) := {(x, u, L) ∈ Σ(k) : x ∈ bdK,u ∈ n(K,x), L ⊥ u},

the k-th generalized normal bundle of K. This follows because (x, u, L) ∈ Mρ(k)(K, η)
implies (x, u, L) = (p(K,E), u(K,E), L(E)) for some E ∈ Ed

k . Thus µ
(k)
ρ (K, η) =

µ
(k)
ρ (K, η ∩Nork(K)) and therefore Θ(k)

m (K, η) = Θ(k)
m (K, η ∩Nork(K)) by (4.5).

For the measures Θ(k)
m (K, ·) we have polynomial expansions analogous to (4.4) for

µ
(k)
ρ (K, ·). Still analogous to Schneider, we define the mapping tρ : Σ(k) → Σ(k) by
tρ(x, u, L) := (x+ ρu, u, L).

Theorem 30. Let 0 ≤ k ≤ d − 1,K ∈ K, η ∈ B(Σ(k)), ρ > 0 and 0 ≤ m ≤ d − k − 1.
Then

Θ(k)
m (K + ρBd, tρ(η)) =

m∑
j=0

ρj

(
m

j

)
Θ(k)

m−j(K, η).

Proof. Let E ∈ K(k) and d(K,E) > ρ. Then p(K + ρBd, E) = p(K,E) +
ρu(K,E), u(K + ρBd, E) = u(K,E) and d(K + ρBd, E) = d(K,E) − ρ. Except for
a set of measure zero, for λ > 0 the local parallel set of k-flats M (k)

ρ+λ(K, η) is the disjoint

union M (k)
ρ (K, η) ∪M (k)

λ (K + ρBd, tρ(η)). Thus the equation

µ
(k)
ρ+λ(K, η) = µ(k)

ρ (K, η) + µ
(k)
λ (K + ρBd, tρ(η)).

holds. All that remains to do now is to insert the polynomial expansion (4.4) and
compare the coefficients. 2

Often, will need a special case, or, to be more precise, the projection onto the second
and third component.

Definition 31. Let k,m ∈ {0, . . . , d − 1} be such that k + m ≤ d − 1, and let K be a
convex body. We call

S(k)
m (K, ·) := Θ(k)

m (K,Rd × ·)

the m-th k-surface area measure of K. These measures are defined on

Sd−1,k := Sd−1 × Ld
k.
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4 Generalized support measures

For later reference, we state these measures for polytopes explicitly. Let P be a
polytope. Then

S(k)
m (P, η) :=

(
d− k − 1

m

)−1 ∑
F∈Fm(P )

∫
Ld

k

Vm(F |L⊥)
∫

L⊥∩n(P,F )

× I((u, L) ∈ η) dωd−k−m−1(u) dνk(L).

(4.6)

The following Lemma gives an alternative representation of S(k)
m (P, ·) in the case of

polytopes. In fact, for polytopes P , S(k)
m (P, ·) is a sum of measures on the normal cones

of the m-faces of P .

Lemma 32. Let 0 ≤ k,m < d with k +m ≤ d− 1, and let P be a convex polytope. Let
f be a non-negative measurable function on Sd−1,k. Then∫

Sd−1,k

f(u, L)S(k)
m (P, d(u, L)) =

(
d− k − 1

m

)−1 ∑
F∈Fm(P )

Vm(F ) · I(F, f),

where

I(F, f) = αd,k,m

∫
n(P,F )

∫
LF⊥∩u⊥

k

∫
LL′+L(F )

k

|〈F,L⊥〉|d−k−m+1f(u, L)

dν
L′+L(F )
k (L) dνF⊥∩u⊥

k (L′) dωd−m−1(u),

(4.7)

and αd,k,m is a constant depending on d, k and m only.

Proof. From (4.6) we get that the integral of f is∫
Sd−1,k

f(u, L)S(k)
m (P, d(u, L)) =

(
d− k − 1

m

)−1 ∑
F∈Fm(P )

Vm(F ) · I(F, f),

where
I(F, f) =

∫
Ld

k

|〈F,L⊥〉|
∫

L⊥∩n(P,F )
f(u, L) dωd−k−m−1(u) dνk(L). (4.8)

Applying Lemma 9 to the outer integral of (4.8), we get that I(F, f) is proportional to∫
LL(F )

k+m

∫
LL′

k

|〈F,L⊥〉| f̃(L) |〈L,F⊥〉|d−k−m dνL′
k (L) dνL(F )

k+m (L′), (4.9)

where
f̃(L) =

∫
L⊥∩n(P,F )

f(u, L) dωd−k−m−1(u).

As F is an m-flat, any flat L′ ∈ LF
k+m is the sum of L(F ) and a k-flat orthogonal to F .

Therefore, (4.9) is equal to∫
LF⊥

k

∫
LL′+L(F )

k

|〈F,L⊥〉|d−k−m+1 f̃(L) dνL′+L(F )
k (L) dνF⊥

k (L′).
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4.2 k-support measures

If |〈F,L⊥〉| 6= 0, the intersection of L and L(F ) is {0}. In this case, L + L(F ) =
L′ + L(F ). For the orthogonal spaces we have L⊥ ∩ F⊥ = L′⊥ ∩ F⊥. In particular, we
have L⊥ ∩ n(P, F ) = L′⊥ ∩ n(P, F ), yielding

|〈F,L⊥〉|d−k−m+1 f̃(L) =
∫

L′⊥∩n(P,F )
|〈F,L⊥〉|d−k−m+1 f(u, L) dωd−k−m−1(u)

for all L. Thus (4.9) becomes∫
LF⊥

k

∫
LL′+L(F )

k

∫
L′⊥∩n(P,F )

|〈F,L⊥〉|d−k−m+1 f(u, L)

dωd−k−m−1(u) dν
L′+L(F )
k (L) dνF⊥

k (L′).

We now can apply Fubini’s Theorem, yielding that I(F, f) is proportional to∫
LF⊥

k

∫
L′⊥∩n(P,F )

∫
LL′+L(F )

k

|〈F,L⊥〉|d−k−m+1 f(u, L)

dν
L′+L(F )
k (L) dωd−k−m−1(u) dνF⊥

k (L′).

Instead of k-flats in F⊥, we now integrate about the orthognoal d− k −m-flats in F⊥,
yielding ∫

LF⊥
d−k−m

∫
L′∩n(P,F )

∫
LL′⊥

k

|〈F,L⊥〉|d−k−m+1 f(u, L)

dνL′⊥

k (L) dωd−k−m−1(u) dνF⊥
d−k−m(L′).

The two outer integrations are on d − k − m-spaces respectively 1-spaces in F⊥.
Therefore we can apply a Theorem of Schneider and Weil [10], Satz 6.1.1, to show that
I(F, f) is proportional to∫

n(P,F )

∫
LF⊥∩u⊥

d−k−m

∫
LL′⊥

k

|〈F,L⊥〉|d−k−m+1 f(u, L)

dνL′⊥

k (L) dνF⊥
d−k−m(L′) dωd−m−1(u).

Replacing the integration about d− k−m-flats with an integration about k-flats again,
we get that I(F, f) is proportional to∫

n(P,F )

∫
LF⊥∩u⊥

k

∫
LL′+L(F )

k

|〈F,L⊥〉|d−k−m+1f(u, L)

dν
L′+L(F )
k (L) dνF⊥∩u⊥

k (L′) dωd−m−1(u),

(4.10)

which completes the proof. 2
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4 Generalized support measures

We now give an expression for the constants αd,k,m by considering a special case. Let
F be a polytope with dimF = m and let f ≡ 1. Then, from (4.8), we get

I(F, f) =
∫
Ld

k

|〈F,L⊥〉|
∫

L⊥∩F⊥∩Sd−1

dωd−k−m−1(u) dνk(L)

= σd−k−m

∫
Ld

k

|〈F,L⊥〉| dνk(L).

On the other hand, (4.10) is in this case∫
F⊥∩Sd−1

∫
LF⊥∩u⊥

k

∫
LL′+L(F )

k

|〈F,L⊥〉|d−k−m+1

dν
L′+L(F )
k (L) dνF⊥∩u⊥

k (L′) dωd−m−1(u).

Clearly, the inner integral is independent from L′, and the expression simplifies to

σd−m

∫
LF ′

k

|〈F,L⊥ ∩ F ′〉|d−k−m+1 dνF ′
k (L),

where F ′ ∈ Ld
k+m is any (k +m)-flat containing F . Thus we get

αd,k,m =
σd−k−m

σd−m
·

∫
Ld

k
|〈F,L⊥〉| dνk(L)∫

Lk+m
k

|〈L,L′〉|d−k−m+1 dνk+m
k (L)

,

where L′ ∈ Lk+m
k is an arbitrary k-flat.

We now apply a Theorem of Schneider and Weil [10], Satz 4.2.2, to a convex polytope
K with dimK = m and Vm(K) = 1. We get∫

Ld
d−k

|〈F,L〉| dνd−k(L) = βd(d+m−(d−k))m =

(
d−m

k

)
κd−mκd−k(

d
d−k−m

)
κkκd

,

with the definition of β in Schneider and Weil [10], Satz 4.1.1. Altogether,

αd,k,m =
σd−k−m

(
d−m

k

)
κd−k

(d−m)
(

d
d−k−m

)
κkκd

∫
Lk+m

k
|〈L,L′〉|d−k−m+1 dνk+m

k (L)
. (4.11)

The most useful special case is k = d −m − 1 (meaning F is a (d − k − 1)-face, and
we consider k-flats). We state the result for this case in the following Corollary.

Corollary 33. Let 0 ≤ k < d, let f : Sd−1,k → R be a non-negative measurable function,
and let P be a polytope. Then∫

Sd−1,k

f(u, L)S(k)
d−k−1(P, d(u, L)) = αd,k,d−k−1

∑
F∈Fd−k−1(P )

Vd−k−1(F )

×
∫

n(P,F )

∫
Lu⊥

k

〈L,F⊥ ∩ u⊥〉2f(u, L) dνu⊥
k (L) dωk(u), (4.12)
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4.2 k-support measures

and

αd,k,d−k−1 =
2κd−k

(
d−1
k

)
κkσd

.

Proof. We apply (4.11) to m = d− k − 1, and get

αd,k,d−k−1 =
σ1

(
k+1

k

)
κd−k

(k + 1)
(
d
1

)
κkκd

∫
Ld−1

k
|〈L,L′〉|2 dνd−1

k (L)

=
2κd−k

dκkκd

∫
Ld−1

k
〈L,L′〉2 dνd−1

k (L)
.

We will later show independently in Corollary 39 that∫
Ld−1

k

〈L,L′〉2 dνd−1
k (L) =

(
d− 1
k

)−1

,

giving

αd,k,d−k−1 =
2κd−k

(
d−1
k

)
κkσd

.

On the other hand, (4.10) becomes∫
n(P,F )

∫
LF⊥∩u⊥

k

∫
LL′+L(F )

k

〈F,L⊥〉2f(u, L) dνL′+L(F )
k (L) dνF⊥∩u⊥

k (L′) dωk(u),

Now dim(F⊥∩u⊥) = d−(d−k−1)−1 = k, which means that L′ = F⊥∩u⊥, and νF⊥∩u⊥
k

is a one-point measure. Moreover, |〈F,L⊥〉| = |〈L,F⊥〉| = |〈L,F⊥ ∩ u⊥〉|. Therefore
I(F, f) is proportional to∫

n(P,F )

∫
Lu⊥

k

〈L,F⊥ ∩ u⊥〉2f(u, L) dνu⊥
k (L) dωk(u),

and the constant of proportionality is αd,k,d−k−1. 2

We now return to the volume Vk(P |L) of the projection of a polytope P onto a k-
flat L. In fact, equation (4.12) allows us to make a connection between the measure
S

(d−k−1)
k (P, ·) of a polytope P , and the projection function V (P |·) of P . The following

Corollary states this result. It represents Vk(P |L) as an integral of a function gL with
respect to S(d−k−1)

k (P, ·). In the next chapter we will then show that such a function gL

indeed exists.
The function fd

k that appears in the next corollary was defined in Section 3.2.

Corollary 34. Let 0 ≤ k < d, let P be a polytope and let gL : Sd−1,d−k−1 → R be an
integrable function satisfying∫

Lu⊥
d−k−1

〈E,F⊥ ∩ u⊥〉2gL(u,E) dνu⊥
d−k−1(E) =

σd−k

αd,d−k−1,k
· fd

k (L,F, u)
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4 Generalized support measures

for all F ∈ Ld
k and u ∈ Sd−1 ∩F⊥. Then the following equation for projection functions

holds,

Vk(P |L) =
∫

Sd−1,d−k−1

gL(u,E)S(d−k−1)
k (P, d(u,E)). (4.13)

Proof. This follows from a comparsion of (3.7) and (4.12), where in the latter
equation the roles of k and d− k − 1 have to be exchanged. 2
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5 Integral representations of projection
functions II

5.1 The integral equation

We consider convex bodies K in Rd and their projection functions L 7→ Vk(K|L), L ∈
Ld

k (0 ≤ k ≤ d). We know from (4.13) that there are weakly continuous measures
S

(d−k−1)
k (K, ·) on Sd−1,d−k−1 = Sd−1 × Ld

d−k−1 such that (if K is a polytope)∫
gL(u,E)S(d−k−1)

k (K, d(u,E)) = Vk(K|L),

where gL is any function satisfying∫
Lu⊥

d−k−1

〈E,F⊥ ∩ u⊥〉2gL(u,E) dνu⊥
d−k−1(E) =

σd−k

αd,d−k−1,k
· fd

k (L,F, u)

=


σd−k

αd,d−k−1,k
· 〈u

⊥ ∩ F⊥, u⊥ ∩ L⊥〉2

‖u|L⊥‖d−k−2
, |〈F,L〉| 6= 0,

0, |〈F,L〉| = 0,
(5.1)

for all F ∈ Ld
k and u ∈ Sd−1 ∩ F⊥. However, we have not yet established the existence

of such a function gL. In this chapter we will give such a function explicitly.
We simplify the notation for integrals with respect to a normalized invariant measure

ν in the following way. Instead of dν(E) we write dE, i. e. we leave out the measure ν.
It is clear that we can consider the problem to find a function gL satisfying (5.1) as

the problem to find a function fL′ in u⊥ (or, equivalently, Rd−1), satisfying∫
Ld′

k′

〈E,F ′〉2fL′(E) dE = 〈F ′, L′〉2,

where d′ = d− 1, k′ = d− k− 1, F ′ = F⊥ ∩ u⊥, L′ = L⊥ ∩ u⊥. If such an fL′ exists, we
can put

gL(u,E) =


σd−k

αd,d−k−1,k‖u|L⊥‖d−k−2
· fL⊥∩u⊥(E⊥ ∩ u⊥), u /∈ L,

0, u ∈ L,
(5.2)

to get a function gL satisfying (5.1). From now on, we will only consider this second
problem. Therefore, we will write d instead of d′ etc.
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5 Integral representations of projection functions II

Question. For L ∈ Ld
k, does a function fL : Ld

k → R exist that satisfies the equation∫
Ld

k

〈E,F 〉2fL(E) dE = 〈F,L〉2 (5.3)

for all F ∈ Ld
k?

We first give an alternative form of (5.3). We define an integral operator on C(Ld
k),

the set of continuous real-valued functions on Ld
k.

Ψ : C(Ld
k) → C(Ld

k), f 7→ Ψ(f), where Ψ(f)(F ) =
∫
Ld

k

〈E,F 〉2f(E) dE. (5.4)

Then we need to find a function fL such that

Ψ(fL)(F ) = 〈F,L〉2.

From now on, we will only consider the case d ≥ 2k. The remaining cases can be
solved using orthogonalization, as for d < 2k we have 2(d− k) ≤ d, and thus∫

Ld
k

〈E,F 〉2fL⊥(E⊥) dE =
∫
Ld

d−k

〈E,F⊥〉2fL⊥(E) dE

= 〈F⊥, L⊥〉2

= 〈F,L〉2,

if fL⊥ is a solution for the first case.
We further introduce a scalar product (·, ·) on C(Ld

k),

(f, g) :=
∫
Ld

k

f(E)g(E) dE. (5.5)

This definition allows us to derive some properties of Ψ.

Lemma 35. The operator Ψ is self-adjoint with respect to (·, ·).

Proof. With the definition of Ψ and the definition of the scalar product (5.5), we
get by an application of Fubini’s Theorem

(Ψ(f), g) =
∫
Ld

k

∫
Ld

k

〈E′, E〉2f(E′) dE′ g(E) dE

=
∫
Ld

k

∫
Ld

k

〈E′, E〉2f(E′)g(E) dE′ dE

=
∫
Ld

k

∫
Ld

k

〈E′, E〉2g(E) dE f(E′) dE′

= (f,Ψ(g)).

2

From linear algebra we know that the eigenspaces of self-adjoint linear operators are
orthogonal to each other. For later use, we state this as a Corollary.

Corollary 36. Eigenspaces of Ψ belonging to different eigenvalues are orthogonal.
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5.2 A multilinear function on pairs of matrices

As stated in the last section, we now assume 0 ≤ k ≤ d/2, and L ∈ Ld
k. Let e1, . . . , ed be

an orthonormal basis of Rd such that lin{e1, . . . , ek} = L. (We can assume without loss
of generality that e1, . . . , ed is the standard basis of Rd.) From now on, J , I and M will
denote subsets of {1, . . . , d} with k elements. In a sum of the form

∑
I f(I), I ranges

over all those subsets. J will always be the set {1, . . . , k}. Let

EI := lin{ei | i ∈ I}.

In particular, we have EJ = L.
For k-flats E,L, we have

|〈E,L〉| = |det

〈x1, y1〉 · · · 〈x1, yk〉
...

. . .
...

〈xk, y1〉 · · · 〈xk, yk〉

 |,
where x1, . . . , xk is any orthonormal basis of E, and y1, . . . , yk is any orthonormal basis
of L. We now give a generalization of this definition. For arbitrary vectors x1, . . . , xk,
y1, . . . , yk we consider the determinant of the matrix whose entries are 〈xi, yj〉.

Definition 37. Let X,Y ∈ Rd×k be (d × k)-matrices with columns x1, . . . , xk and
y1, . . . , yk, respectively. Then

〈X,Y 〉 :=

∣∣∣∣∣∣∣
〈x1, y1〉 · · · 〈x1, yk〉

...
. . .

...
〈xk, y1〉 · · · 〈xk, yk〉

∣∣∣∣∣∣∣ . (5.6)

Moreover, let x′1, . . . , x
′
k be the rows of X. We define XI to be the (k × k)-matrix of

the rows x′i with i ∈ I.

For k = 1, this is the standard scalar product in Rd. For k > 1, (5.6) does not define
a scalar product. In this case, 〈·, ·〉 is not bilinear, but multilinear in both components.
For example, if x1, . . . , xk are linearly dependent, 〈X,Y 〉 = 0 for all Y . It is also easy to
see that 〈·, ·〉 is symmetric, as 〈X,Y 〉 = det(X>Y ) = det(Y >X) = 〈Y,X〉.

Now we consider the case of orthonormal columns, i. e. the columns x1, . . . , xk of X
form an orthonormal basis of its linear hull, and the same holds for Y . We note that,
up to the sign, 〈X,Y 〉 depends on E := lin{x1, . . . , xk} and F := lin{y1, . . . , yk} only.
In fact, we have |〈X,Y 〉| = |〈E,F 〉|, and the sign of 〈X,Y 〉 depends on the orientation
of the bases x1, . . . , xk and y1, . . . , yk. In particular, 〈E,F 〉2 = 〈X,Y 〉2, and the most
important special case is

〈EI , E〉2 = |XI |2. (5.7)

Lemma 38. Let X and Y be (d× k)-matrices. Then

〈X,Y 〉 =
∑

I

|XI | |YI |. (5.8)
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5 Integral representations of projection functions II

Proof. We assume for the moment that the columns of X and Y are elements of
{e1, . . . , ed}. We further assume that the columns of X (and those of Y ) are linearly
independent. Then 〈X,Y 〉 = 0 ifX and Y do not have the same columns (not necessarily
at the same positions). In this case, for each I we have |XI | = 0 or |YI | = 0, and
the assertion holds. If X and Y have the same columns (not necessarily at the same
positions), there is a permutation σ ∈ Sk such that the i-th column of X is the σ(i)-th
column of Y . If we apply σ to the columns of the matrix in (5.6), that matrix turns into
the unit matrix. Thus 〈X,Y 〉 is 1 if σ is even, and −1 if σ is odd. On the other hand,
|XI | (and |YI |) does not vanish if and only if I is the set of the indices of the unit vectors
that form the columns of X (and Y ). For this I, the columns of YI are a permutation of
the columns of XI . This permutations is the same σ as above. Thus |XI | has the same
sign as |YI | if and only if σ is even, implying that |XI | |YI | is 1 if σ is even, and −1 if σ
is odd.

The multilinearity of 〈·, ·〉 as well as of | ·I | | ·I | now implies the assertion. 2

Now let X be a matrix with orthonormal columns again. The special case X = Y
gives ∑

I

〈E,EI〉2 =
∑

I

|XI |2 = 〈X,X〉 = 1. (5.9)

For the next corollary, we recall that J = {1, . . . , k}, and thus L = EJ = lin{e1, . . . , ek}.

Corollary 39. Let 0 ≤ k ≤ d. Then∫
Ld

k

〈E,L〉2 dE =
(
d

k

)−1

. (5.10)

Proof. (5.9) and the invariance of νk imply

1 =
∫
Ld

k

∑
I

〈E,EI〉2 dE

=
∑

I

∫
Ld

k

〈E,EI〉2 dE

=
∑

I

∫
Ld

k

〈E,L〉2 dE

=
(
d

k

)∫
Ld

k

〈E,L〉2 dE

2

5.3 Integrals on Grassmannians

Now we compute more constants that arise as integrals of functions containing powers
of 〈E,EI〉2. They will be needed later for the solution of the integral equation.
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Definition 40. Let 0 ≤ j ≤ k and 2k − j ≤ d. The constant c(d)
k,j is defined by

c
(d)
k,j :=

∫
Ld

k

〈E,EJ〉2〈E,E{1,...,j,k+1,...,2k−j}〉2 dE.

It is clear that E{1,...,j,k+1,...,2k−j} could be replaced by EI for any set I with |I∩J | = j.
More generally, we have ∫

Ld
k

〈E,EM 〉2〈E,EI〉2 dE = c
(d)
k,|M∩I|. (5.11)

The following considerations will allow us to calculate c(d)
k,j explicitly.

Proposition 41. Let d /∈ I,M . Then∫
Ld

k

〈E,EI〉2〈E,EM 〉2 dE = Hd,k

∫
Ld−1

k

〈E,EI〉2〈E,EM 〉2 dE (5.12)

with
Hd,k =

(d− k)(d− k + 2)
d(d+ 2)

.

Proof. We note that

A 7→
∫
Ld

k

1E|e⊥d ∈A〈E, e
⊥
d 〉4 dE, A ∈ B(Le⊥d

k ),

is a measure on Le⊥d
k that is invariant with respect to rotations in e⊥d , and thus it is a

multiple of νe⊥d
k . Writing F := lin{e1, . . . , ed−k}, we calculate the factor to∫

Ld
k

〈E, e⊥d 〉4 dE =
∫
SOd

〈ρF⊥, e⊥d 〉4 dρ

=
∫
SOd

〈F, ρed〉4 dρ

=
1
σd

∫
Sd−1

‖u|F‖4 du (5.13)

We further use spherical cylinder coordinates to compute∫
Sd−1

‖u|F‖4 du =
∫

Sd−1∩e⊥d

∫ 1

−1
(1− t2)(d−3)/2‖(ted +

√
1− t2u)|F‖4 dt du

=
Γ(1/2)Γ((d+ 3)/2)

Γ((d+ 4)/2)

∫
Sd−1∩e⊥d

‖u|F‖4 du.

Applying this recursively k times, we get∫
Sd−1

‖u|L⊥‖4 du = π(d−k)/2 Γ((d− k + 1 + 3)/2)
Γ((d+ 4)/2)

∫
Sd−1∩e⊥d ∩...∩e⊥d−k+1

‖u|F‖4 du, (5.14)
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5 Integral representations of projection functions II

and the latter integrand is identical to 1. Thus, applying (5.14) to (5.13), we get

∫
Ld

k

〈E, e⊥d 〉4 dE =
σd−k

σd
π(d−k)/2 Γ((d− k + 4)/2)

Γ((d+ 4)/2)

=
(d− k)(d− k + 2)

d(d+ 2)
.

Moreover, as ed ⊥ EI and ed ⊥ EM , it follows

〈E,EI〉2 = 〈E, e⊥d 〉
2〈E|e⊥d , EI〉

2
,

〈E,EM 〉2 = 〈E, e⊥d 〉
2〈E|e⊥d , EM 〉

2
,

and thus∫
Ld

k

〈E,EI〉2〈E,EM 〉2 dE =
∫
Ld

k

〈E|e⊥d , EI〉
2〈E|e⊥d , EM 〉

2〈E, e⊥d 〉4 dE

=
(d− k)(d− k + 2)

d(d+ 2)

∫
L

e⊥
d

k

〈E,EI〉2〈E,EM 〉2 dE,

which finishes the proof. 2

This allows us to give a recursion formula for c(d)
k,j . First of all, we define ck,j := c

(2k)
k,j

for k > 0, and put c0,0 := 1. We get

c
(d)
k,j = Hd,k · · ·H2k+1,kck,j =

(d− k)!(d− k + 2)!
k!(k + 2)!dd−2k(d+ 2)d−2k

ck,j . (5.15)

Note that the factor does not depend on j.
For j ≥ 1 we can use (5.12) to reduce the dimensions of the spaces involved in ck,j . An

application of this formula gives ck,j = H2k,kc
(2k−1)
k,j . Orthogonalizing, i. e. considering

(2k − 1 − k)-flats instead of k-flats, gives ck,j = H2k,kc
(2k−1)
k−1,j−1. Another reduction of

dimensions finally gives

ck,j = H2k,kH2k−1,k−1ck−1,j−1

=
k(k + 2)

2k(2k + 2)
· k(k + 2)
(2k − 1)(2k + 1)

· ck−1,j−1

=
(k + 2)2k

16 (k + 1)(k + 1/2)(k − 1/2)
· ck−1,j−1.

(5.16)
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5.3 Integrals on Grassmannians

For the case j = 0 we apply (5.9) to (5.10), and get(
2k
k

)−1

=
∫
L2k

k

〈EJ , E〉2 dE

=
∫
L2k

k

〈EJ , E〉2
∑

I

〈E,EI〉2 dE

=
∑

I

ck,|I∩J |

=
k∑

j=0

(
k

j

)(
k

k − j

)
ck,j

The factor
(
k
j

)
is the number of ways to choose j elements of I that belong to J =

{1, . . . , k}, and
(

k
k−j

)
is the number of ways to choose the other k − j elements of I,

which must lie in {k + 1, . . . , 2k}. This yields

ck,0 =
(

2k
k

)−1

−
k∑

j=1

(
k

j

)2

ck,j . (5.17)

Now we are ready to prove an explicit formula for the c(d)
k,j . As c(d)

k,j is a multiple of
ck,j (and we have given the factor in (5.15)), it suffices to give explicit values of ck,j . We
already know c0,0 = 1 from the definition. For k > 0 the following Lemma states the
result.

Lemma 42. Let 0 ≤ j ≤ k and let k > 0. Then

ck,j =
(
k + 2− j

2

)−1 (k + 2)2

8

(
2k + 1
k

)−1(2k − 1
k

)−1

. (5.18)

Proof. For j = k, we apply (5.16) k times recursively to ck,k. We note that

k∏
i=1

(2i+ 1)(2i− 1) =
(2k + 1)!(2k − 1)!∏k
i=1(2i) ·

∏k−1
i=1 (2i)

=
(2k + 1)!(2k − 1)!
22k−1k!(k − 1)!

,

and (5.18) follows:

ck,k =

(
(k + 2)!/2

)2
k!

4k(k + 1)!
∏k

i=1(2i+ 1)(2i− 1)

=
((k + 2)!)2k!k!(k − 1)!

8(k + 1)!(2k + 1)!(2k − 1)!

=
(k + 2)2

8
k!(k + 1)!
(2k + 1)!

k!(k − 1)!
(2k − 1)!

.
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5 Integral representations of projection functions II

Thus we have shown (5.18) for j = k.
We now use induction on k. For k = 1, equation (5.18) is easily verified.
We assume that (5.18) holds for k − 1 and j ∈ {0, . . . , k − 2}, and show (5.18) for k

and j ∈ {0, . . . , k − 1}. (Note that there is no assumption for the base case k = 1.)
We first consider the case j ≥ 1, and leave the case j = 0 for later. From (5.16) we

know
ck,j = H2k,kH2k−1,k−1ck−1,j−1.

We apply the induction hypothesis and get

ck,j =
(

(k − 1) + 2− (j − 1)
2

)−1

H2k,kH2k−1,k−1ck−1,k−1

Applying (5.16) once more yields

ck,j =
(
k + 2− j

2

)−1

ck,k,

which is the desired result.
It remains to compute ck,0. We have(

2k
k

)−1

=
k!k!
(2k)!

= 8
(2k + 1)!(2k − 1)!(k + 1)!

(k + 2)!(k + 2)!(k − 1)!(2k)!
· ck,k.

and (
k

j

)2

ck,j =
(
k

j

)2(k + 2− j

2

)−1

ck,k

=
(
k + 2
j

)(
k

j

)(
k + 2

2

)−1

ck,k.

Thus (5.17) implies

ck,0 =
(

2k
k

)−1

−
(
k + 2

2

)−1 k∑
j=1

(
k + 2
j

)(
k

j

)
ck,k

=

(
8

(2k + 1)!(2k − 1)!(k + 1)!
(k + 2)!(k + 2)!(k − 1)!(2k)!

−
(

2k + 2
k

)(
k + 2

2

)−1

+
(
k + 2

2

)−1
)
ck,k.

(Here we have used the well-known fact
∑k

j=0

(
k+2

j

)(
k
j

)
=
(
2k+2

k

)
.) To prove the desired

result, we have to show that

8
(2k + 1)!(2k − 1)!(k + 1)!

(k + 2)!(k + 2)!(k − 1)!(2k)!
=
(

2k + 2
k

)(
k + 2

2

)−1

,

which is verified easily. 2
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5.3 Integrals on Grassmannians

Lemma 43. Let F ∈ Ld
k. Then

∫
Ld

k

〈E,F 〉2〈E,EM 〉2 dE =
∑

I

c
(d)
k,|I∩M |〈F,EI〉2 =

k∑
j=0

c
(d)
k,j

∑
I:|I∩M |=j

〈F,EI〉2. (5.19)

Proof. For any orthonormal basis x1, . . . , xk of E let X denote the matrix that has
the columns x1, . . . , xk. Similarly, let Y be a matrix whose columns are an orthonormal
basis of F . Then 〈E,EI〉2 = |XI |2, and from (5.8) we know

〈E,F 〉2 = 〈X,Y 〉2 =

(∑
I

|XI ||YI |

)2

.

Thus

σd · · ·σd−k+1

∫
Ld

k

〈E,F 〉2〈E,EM 〉2 dE

=
∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

〈X,Y 〉2|XM |2 dωd−k(xk) . . . dωd−1(x1)

=
∑
I,I′

∫
Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|YI ||YI′ ||XI | |XI′ | |XM |2 dωd−1(x1) . . . dωd−k(xk)

=
∑

I

|YI |2
∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|XI |2|XM |2 dωd−k(xk) . . . dωd−1(x1)

+
∑

I,I′:I 6=I′

|YI ||YI′ |
∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|XI | |XI′ | |XM |2 dωd−k(xk) . . . dωd−1(x1).

In the last expression, the first sum equals

σd · · ·σd−k+1

∑
I

〈F,EI〉2c(d)
k,|I∩M |,

i. e. it is the desired result. We have to show that the second sum is 0. In fact, for
fixed I 6= I ′, we may assume without loss of generality d ∈ I, d /∈ I ′. Moreover, ωd−1

is invariant under reflection about e⊥d . We will now denote by X̃ the matrix X whose
columns are reflected about e⊥d . Then |X̃M |2 = |XM |2, |X̃I′ | = |XI′ |, and |X̃I | = −|XI |.
This lets us evaluate the integral in the summand that belongs to I and I ′ as∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|XI | |XI′ | |XM |2 dωd−k(xk) . . . dωd−1(x1)

=
∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|X̃I | |X̃I′ | |X̃M |2 dωd−k(xk) . . . dωd−1(x1)

= −
∫

Sd−1

· · ·
∫

Sd−1∩x⊥1 ∩...∩x⊥k−1

|XI | |XI′ | |XM |2 dωd−k(xk) . . . dωd−1(x1),

63



5 Integral representations of projection functions II

i. e. it must vanish. 2

From Lemma 43 we see that for a function f : Ld
k → R of the form

f(E) =
∑

I

αI〈E,EI〉2

with real constants αI , we have

Ψ(f)(F ) =
∑

I

βI〈F,EI〉2,

with some real constants βI . If we can choose the αI in such a way that βJ = 1 and
βI = 0 for I 6= J , we have a solution for the integral equation (5.3). We will follow this
approach in section 5.5. There we will get a system of linear equations for the αI . For
given d and k, it is in fact possible to compute the coefficients, i. e. to find a solution
for (5.3). However, using only the system of linear equations, there seems to be no easy
way to show the existence of a solution for all d and k. Therefore, we use a different
approach to show the existence of a solution independently.

5.4 Eigenfunctions of the integral operator

To motivate the following considerations, assume that we knew that some functions were
eigenfunctions of the integral operator Ψ defined in (5.4). Assume further that we can
express 〈·, L〉2 as a linear combination of these eigenfunctions. (Note that every rotation
of an eigenfunction is an eigenfunction, too.) If in this sum we divide every summand
by its eigenvalue, we get a function satisfying the integral equation (5.3).

Consequently, in this section we will give some eigenfunctions. We then show that
〈·, L〉2 is a linear combination of these eigenfunctions.

We recall that in this chapter the set I is always a subset of {1, . . . , d} with k elements.
When selecting a subset of all such sets I (for example in the range of a sum), we will
often not state this condition explicitly, or abbreviate it by |I| = k.

Definition 44. For 1 ≤ n ≤ k we define

Gn := {2, 4, . . . , 2n}, (5.20)
Gn := {I : |I| = k, |I ∩ {1, 2}| = |I ∩ {3, 4}| = . . . = |I ∩ {2n− 1, 2n}| = 1}, (5.21)

and
fn(E) =

∑
I∈Gn

(−1)|I∩Gn| 〈E,EI〉2.

Moreover, we define

G0 := ∅,
G0 := {I : |I| = k}.
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5.4 Eigenfunctions of the integral operator

(Note that the definitions of G0 and G0 formally coincide with (5.20) and (5.21) for
n = 0, respectively. However, in particular the definition of G0 is much clearer if given
explicitly.)

Lemma 45. The functions fn are eigenfunctions of the integral operator Ψ, i.e.∫
Ld

k

〈E,F 〉2fn(E) dE = αnfn(F ). (5.22)

Proof. The left hand side of (5.22) is∫
Ld

k

〈E,F 〉2fn(E) dE =
∑
I∈Gn

(−1)|I∩Gn|
∫
Ld

k

〈E,F 〉2〈E,EI〉2 dE (5.23)

We know from (5.19) that each summand on the right hand side of (5.23) results in
a linear combination of 〈F,EI〉2 (where I, as stated above, ranges over all subsets of
{1, . . . , d} with k elements). Therefore∫

Ld
k

〈E,F 〉2fn(E) dE =
∑

I: |I|=k

βI〈F,EI〉2

for some βI . We have to show that βI = 0 for I /∈ Gn, and that there exists an αn such
that βI = (−1)|I∩Gn|αn for all I ∈ Gn.

Consider the case I /∈ Gn. This means that there is some i ∈ {1, . . . , n} such that
|I ∩ {2i − 1, 2i}| 6= 1. Without loss of generality we assume |I ∩ {1, 2}| 6= 1. Equation
(5.19) yields

βI =
∑

M∈Gn

(−1)|M∩Gn|c
(d)
k,|I∩M |

=
∑

M∈Gn,1∈M

(−1)|M∩Gn|c
(d)
k,|I∩M | +

∑
M∈Gn,2∈M

(−1)|M∩Gn|c
(d)
k,|I∩M |

=
∑

M∈Gn,1∈M

(−1)|M∩Gn|c
(d)
k,|I∩M | +

∑
M∈Gn,1∈M

(−1)|((M∪{2})\{1})∩Gn|c
(d)
k,|I∩((M∪{2})\{1})|.

We now simplify the second sum. The set Gn contains 2, but not 1. Thus, for all M
containing 1 (and therefore not 2), we have

|((M ∪ {2}) \ {1}) ∩Gn| = |M ∩Gn|+ 1,

yielding
(−1)|((M∪{2})\{1})∩Gn| = −(−1)|M∩Gn|.

We have to consider the two cases I ∩{1, 2} = ∅ and I ∩{1, 2} = {1, 2}. In the first case,
I∩((M∪{2})\{1}) = I∩M . In the second case, I∩((M∪{2})\{1}) = ((I∩M)∪{2})\{1}.
In both cases, |I ∩ ((M ∪ {2}) \ {1})| = |I ∩M | follows. Altogether, we get

βI =
∑

M∈Gn,1∈M

(−1)|M∩Gn|c
(d)
k,|I∩M | +

∑
M∈Gn,1∈M

−(−1)|M∩Gn|c
(d)
k,|I∩M |

= 0.
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In the case I ∈ Gn let π ∈ Sd be a permutation for which the sets {1, 2}, . . . ,{2n−1, 2n}
are invariant, and for which π(I) = Gk. Note that M ∈ Gn if and only if π(M) ∈ Gn,
which means that π is a bijection of Gn.

Let i ∈ {1, . . . , n}. We have 2i ∈ Gn. Moreover, 2i is in I if and only if π(2i) = 2i.
Thus, 2i ∈ π(Gn) if and only if 2i ∈ I. Let M ∈ Gn. Then 2i ∈ M ∩ π(Gn) if and only
if 2i ∈M ∩ I, and 2i− 1 ∈M ∩ π(Gn) if and only if 2i− 1 ∈M ∩ I. It follows that

(−1)|M∩π({2i})| = −(−1)|M∩{2i}|(−1)|I∩{2i}|,

and hence
(−1)|M∩π(Gn)| = (−1)n(−1)|M∩Gn|(−1)|I∩Gn|.

Thus (5.19) yields

βI =
∑

M∈Gn

(−1)|π
−1(M)∩Gn|c

(d)
k,|I∩π−1(M)|

=
∑

M∈Gn

(−1)|M∩π(Gn)|c
(d)
k,|π(I)∩M |

= (−1)|I∩Gn|(−1)n
∑

M∈Gn

(−1)|M∩Gn|c
(d)
k,|Gk∩M |.

Therefore the constants

αn := (−1)n
∑

M∈Gn

(−1)|M∩Gn|c
(d)
k,|Gk∩M |, n = 0, . . . , k, (5.24)

fulfill (5.22), and the proof is complete. 2

We can even give the eigenvalues αn in a more explicit form,

αn = (−1)n
∑

M∈Gn

(−1)|M∩Gn|c
(d)
k,|Gk∩M |

= (−1)n
k∑

j=0

c
(d)
k,j

∑
M∈Gn,|M∩Gk|=j

(−1)|M∩Gn|

= (−1)n
k∑

j=0

c
(d)
k,j

n∑
l=0

(−1)l
∣∣{M ∈ Gn : |M ∩Gn| = l, |M ∩ (Gk \Gn)| = j − l}

∣∣
We now determine the number of elements of

A := {M ∈ Gn : |M ∩Gn| = l, |M ∩ (Gk \Gn)| = j − l}.

For M to be in A, we have
(
n
l

)
ways to choose the l elements of M which must lie

in Gn. (n − l more elements of M are determined by this choice.) We then have(
k−n
j−l

)
ways to choose j − l additional elements, which lie in Gk \ Gn. Finally we have

66



5.4 Eigenfunctions of the integral operator

(
d−k−n

k+l−n−j

)
ways to choose the remaining k + l − n− j elements of M , which must lie in

{1, . . . , d} \ ({1, . . . , 2n} ∪Gk). Thus the set A has
(
n
l

)(
k−n
j−l

)(
d−k−n

k+l−n−j

)
elements, and

αn = (−1)n
k∑

j=0

c
(d)
k,j

n∑
l=0

(−1)l

(
n

l

)(
k − n

j − l

)(
d− k − n

k + l − n− j

)
.

As mentioned before, rotations of the fn are eigenfunctions, too. In particular, the
functions given by

f (a1,b1),...,(an,bn)
n (E) :=

∑
I: |I|=k,|I∩{a1,b1}|=...=|I∩{an,bn}|=1

(−1)|I∩{b1,...,bn}|〈E,EI〉2,

where a1, . . . , an, b1, . . . , bn ∈ {1, . . . , d} are pairwise distinct, are eigenfunctions with
eigenvalue αn.

Let A = {a1, . . . , an} ⊂ {1, . . . , d}, B ⊂ {1, . . . , d} be disjoint sets with n elements.
Sums of rotations of a fixed fn are eigenfunctions., and thus the function

fA,B
n :=

∑
π:A→B,π bijective

f (a1,π(a1)),...,(an,π(an))
n

is an eigenfunction (and does not depend on the order of a1, . . . , an). Another eigen-
function is

fA
n :=

∑
B: B⊂{1,...,d}\A,|B|=n

fA,B
n .

fA
n (E) is certainly a linear combination of the functions E 7→ 〈E,EI〉2, where I ranges

over all subsets of {1, . . . , d} with k elements. We will now determine the coefficients. If
|I ∩A| = j, we know that 〈E,EI〉2 appears in fA,B

n if and only if I \A ⊂ B and that it
then appears j!(n− j)! times. This is the case if and only if n− j of the elements of B
are in I \A (which has k − j elements), and j of its elements are in {1, . . . , d} \ (I ∪A)
(which has d − k − n + j elements). Moreover, whenever 〈E,EI〉2 appears, it has the
sign (−1)|I∩B| = (−1)n−j . Therefore,

fA
n (E) =

n∑
j=0

(−1)n−jγn,j

∑
I: |I∩A|=j

〈E,EI〉2, (5.25)

where

γn,j := j!(n− j)!
(
k − j

n− j

)(
d− k − n+ j

j

)
.

We have

fA
n (E) =

n∑
j=0

(−1)n−jγn,j

∑
S: S⊂A,|S|=j

∑
I: I∩A=S

〈E,EI〉2. (5.26)

We now want to give another form for the inner sum in the last equation, namely

∑
I: I∩A=S

〈E,EI〉2 =
n−j∑
i=0

∑
T : S⊂T⊂A,|T |=j+i

(−1)i
∑

I: T⊂I

〈E,EI〉2. (5.27)

67



5 Integral representations of projection functions II

We will prove this equation by applying the inclusion-exclusion principle. We put
{a1, . . . , an−j} := A \ S, and we define the sets

Mi := {I : S ∪ {ai} ⊂ I}, i = 1, . . . , n− j.

Note that
n−j⋃
i=1

Mi = {I : S ⊂ I} \ {I : I ∩A = S}.

(This equation holds for n− j = 0, too.) Moreover, for 1 ≤ i ≤ n− j,⋂
l1<...<li

Mli = {I : S ∪ {al1 , . . . , ali} ⊂ I}.

We now apply the inclusion-exclusion principle to the function I 7→ 〈E,EI〉2 and the
sets M1, . . . ,Mn−j , which yields

∑
I: S⊂I,I∩A6=S

〈E,EI〉2 =
n−j∑
i=1

(−1)i−1
∑

l1<...<li

∑
I: S∪{al1

,...,ali
}⊂I

〈E,EI〉2

=
n−j∑
i=1

(−1)i−1
∑

T :S⊂T⊂A,|T |=j+i

〈E,EI〉2.

(5.28)

The left hand side of (5.28) is∑
I: S⊂I,I∩A6=S}

〈E,EI〉2 =
∑

I: S⊂I

〈E,EI〉2 −
∑

I: I∩A=S

〈E,EI〉2

= (−1)0
∑

T : S⊂T⊂A,|T |=j+0

∑
I: T⊂I

〈E,EI〉2 −
∑

I: I∩A=S

〈E,EI〉2.

Comparing this to the right hand side of (5.28) and rearranging for
∑

I: I∩A=S 〈E,EI〉2
yields (5.27).

We now apply (5.27) to (5.26) and get

fA
n (E) =

n∑
j=0

(−1)n−jγn,j

∑
S⊂A,|S|=j

n−j∑
i=0

∑
T : S⊂T⊂A,|T |=j+i

(−1)i
∑

I: T⊂I

〈E,EI〉2.

If |T | = m with T ⊂ A, the coefficient of
∑

I: T⊂I 〈E,EI〉2 in this equation is

n∑
j=0

(−1)n−jγn,j

∑
S: S⊂T,|S|=j

(−1)m−j =
m∑

j=0

(−1)n+mγn,j

(
m

j

)
.

So we get, after rearranging for m = |T |,

fA
n (E) =

n∑
m=0

(−1)n+m
∑

T : T⊂A,|T |=m

m∑
j=0

γn,j

(
m

j

) ∑
I: T⊂I

〈E,EI〉2. (5.29)
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5.4 Eigenfunctions of the integral operator

If f is a function on Ld
k and ρ ∈ SO(d), then the rotated function ρf is defined by

ρf(E) = f(ρ−1E), E ∈ Ld
k.

Definition 46. The linear space spanned by fn and rotations thereof is called

Hd,k,n := lin{ρfn : ρ ∈ SO(d)}.

Hd,k,n is a subspace of the space of continuous (real-valued) functions on Ld
k.

For the next Lemma, the reader is reminded that I is always a subset of {1, . . . , d},
and we always have |I| = k.

Lemma 47. Let A ⊂ {1, . . . , d} and l = |A| ≤ k. Then for gA
l : Ld

k → R defined by

gA
l (E) :=

∑
I: A⊂I

〈E,EI〉2 (5.30)

we have

gA
l ∈

l∑
n=0

Hd,k,n. (5.31)

Proof. The proof is by induction on l. For l = 0 we have g∅0(E) =
∑

I 〈E,EI〉2 =
f0(E), thus g∅0 ∈ Hd,k,0.

If we know (5.31) for 0, 1, . . . , l, the case l + 1 can be proven using (5.29) as follows.

fA
l+1 =

l+1∑
m=0

(−1)l+1+m
∑

T : T⊂A,|T |=m

m∑
j=0

γl+1,j

(
m

j

)
gT
m,

and solving for gT
l+1 = gA

l+1 we get

gA
l+1 =

1∑l+1
j=0 γl+1,j

(
l+1
j

)
fA

l+1 −
l∑

m=0

(−1)l+1+m
∑

T : T⊂A,|T |=m

m∑
j=0

γl+1,j

(
m

j

)
gT
m


fA

l+1 is in Hd,k,l+1 ⊂
∑l+1

n=0H
d,k,n by definition. The rest of the right hand side is the

sum of functions of the form gT
m, where m ≤ l, and we know

gT
m ∈

m∑
n=0

Hd,k,n ⊂
l+1∑
n=0

Hd,k,n.

Therefore gA
l+1 must be in

∑l+1
n=0H

d,k,n also, which completes the proof. 2

Corollary 48. The function 〈·, L〉2 = gJ
k has a representation

〈·, L〉2 =
k∑

l=0

hl,

where
hl ∈ Hd,k,l, 0 ≤ l ≤ k.
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5 Integral representations of projection functions II

The eigenvalue of hl is αl, of course. If the eigenvalues α0, . . . , αk are pairwise distinct,
the sum in (5.31) is a direct sum. As Ψ is self-adjoint, in this case it would even be a
sum of orthogonal spaces.

For the construction of a function satisfying (5.3) it is not necessary that α0, . . . , αk

are pairwise distinct. However, we will see that we need that
∑

i: αi=αl
hi 6= 0 implies

αl 6= 0.

Lemma 49. Let 0 ≤ l ≤ k such that
∑

i: αi=αl
hi 6= 0. Then αl 6= 0.

Proof. Let k̃ := |{α1, . . . , αk}| and {α̃1, . . . , α̃k̃} = {α1, . . . , αk}. Moreover, let l̃ be
the natural number such that α̃l̃ = αl.

The functions
h̃i :=

∑
l:αl=α̃i

hl, 1 ≤ i ≤ k̃

satisfy
k̃∑

i=1

h̃i = 〈·, L〉2

and ∫
Ld

k

〈·, F 〉2h̃i(E) dE = α̃ih̃i(F ), 1 ≤ i ≤ k̃.

Note that for i 6= j we have α̃i 6= α̃j . Corollary 36 implies that the eigenspaces of Ψ in
which h̃i and h̃j lie must be orthogonal. We use this fact and the special case F = L to
get

α̃l̃h̃l̃(L) =
∫
Ld

k

〈E,L〉2h̃l̃(E) dE

=
∫
Ld

k

k̃∑
j=1

h̃j(E)h̃l̃(E) dE

=
k̃∑

j=1

∫
Ld

k

h̃l̃(E)h̃j(E) dE

=
k̃∑

j=1

(h̃l̃, h̃j)

= (h̃l̃, h̃l̃)
> 0.

This clearly implies αl = α̃l̃ 6= 0. 2

We are now in a position to state that a function satisfying (5.3) exists.

Theorem 50. There exists a function satisfying the integral equation (5.3) in the space
spanned by {〈·, EI〉2 : I ⊂ {1, . . . , d}, |I| = k}.
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5.4 Eigenfunctions of the integral operator

Proof. We consider the function

h :=
k∑

l=0,αl 6=0

1
αl
hl.

Then

Ψ(h) =
k∑

l=0,αl 6=0

1
αl

Ψ(hl)

=
k∑

l=0,αl 6=0

1
αl
αlhl

=
k∑

l=0,αl 6=0

hl.

Lemma 49 implies
∑k

l=0,αl=0 hl = 0, and we get

Ψ(h) =
k∑

l=0

hl = 〈·, L〉2.

2

We can give an even more explicit result. First of all, we need more notation. We
define three sequences of functions, which we need for the explicit representation and its
proof.

Definition 51. For i ∈ 0, . . . , k let

pi :=
∑

A:A⊂J,|A|=i

fA
i ,

qi :=
∑

I:|I∩J |=i

〈 · , EI〉2,

gi :=
∑

A:A⊂J,|A|=i

gA
i .

(5.32)

The functions qi, which are, in a sense, the simplest of these functions, will be used
for the representation. We start by showing some relations between these sequences of
functions.
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5 Integral representations of projection functions II

Lemma 52. For 0 ≤ i ≤ k we have

pi(E) =
∑

A:A⊂J,|A|=i

i∑
j=0

(−1)i−jγi,j

∑
I:|I∩A|=j

〈E,EI〉2 (5.33)

=
k∑

m=0

 i∑
j=0

(−1)i−jγi,j

(
m

j

)(
k −m

i− j

) qm(E), (5.34)

gi(E) =
∑

A:A⊂J,|A|=i

∑
I:A⊂I

〈E,EI〉2, (5.35)

and pi is an eigenfunction of Ψ with eigenvalue αi.

Proof. (5.33) follows from (5.25) and the definition of pi. (5.35) follows from (5.30)
and the definition of gi. For (5.34) we write (5.33) as

pi(E) =
i∑

j=0

(−1)i−jγi,j

∑
A:A⊂J,|A|=i

∑
I:|I∩A|=j

〈E,EI〉2.

For how many A does a fixed I satisfy the condition of the last sum, |I ∩ A| = j? If
|I ∩ J | = m, there are

(
m
j

)
possibilities for the elements of A that lie in I, and

(
k−m
i−j

)
possibilities for the elements of A in J \ I. This means∑

A:A⊂J,|A|=i

∑
I:|I∩A|=j

〈E,EI〉2 =
k∑

m=0

(
m

j

)(
k −m

i− j

)
qm(E).

Substituting this into the last equation and rearranging we get (5.34). pi is an eigen-
function, as fA

i is an eigenfunction for each A, and the eigenvalue must obviously be the
same. 2

Lemma 53. For i ∈ {0, . . . , k} we have

gi, pi ∈ lin{q0, . . . , qk}, gi ∈ lin{p0, . . . , pi}.

Proof. pi ∈ lin{q0, . . . , qk} follows directly from (5.34). An immediate consequence
is gi ∈ lin{q0, . . . , qk}, if gi ∈ lin{p0, . . . , pi}, which is all that remains to show. We will
use induction on i.

For i = 0 we have g0(E) =
∑

I:∅⊂I 〈E,EI〉2 = 1 from (5.35) and (5.9). On the other
hand, from (5.34) we get

p0(E) =
k∑

m=0

(
(−1)0−0γ0,0

(
m

0

)(
k −m

0− 0

))
qm(E)

=
k∑

m=0

qm(E)

=
∑

I

〈E,EI〉2

= 1.
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5.4 Eigenfunctions of the integral operator

This shows g0 ∈ lin{p0}. We use (5.29) once again to get

pi(E) =
i∑

m=0

(−1)i+m
m∑

j=0

γi,j

(
m

j

) ∑
A:A⊂J,|A|=i

∑
T :T⊂A,|T |=m

∑
I:T⊂I

〈E,EI〉2.

For how many A does a fixed T ⊂ J occur in this sum? The i −m elements of A \ T
can be chosen from among the k−m elements of J \T , therefore T occurs

(
k−m
i−m

)
times.

As
∑

T :T⊂J,|T |=m

∑
I:T⊂I 〈E,EI〉2 = gm(E), we have altogether

pi =
i∑

m=0

(−1)i+m
m∑

j=0

γi,j

(
m

j

)(
k −m

i−m

) gm. (5.36)

The coefficient of gi is not 0, and thus we can solve this equation for gi and see that
gi is a linear combination of pi, g0, . . . , gi−1. From the induction we know that gj ∈
lin{p0, . . . , pj} ⊂ lin{p0, . . . , pi−1} for j < i, showing that gi ∈ lin{p0, . . . , pi}. 2

Lemma 54. The sets {p0, . . . , pl}, {q0, . . . , qk} and {g0, . . . , gk} are bases of the same
(k + 1)-dimensional linear subspace of continuous functions of Ld

k.

Proof. We start with the linear independence of q0, . . . , qk. For this, it suffices to
show that for i ∈ {0, . . . , k} there is an E(i) ⊂ Ld

k such that qj(E(i)) = 0 for j 6= i and
qi(E(i)) = 1. Such a flat is given by E(i) = EM with M = {1, . . . , i, k + 1, . . . , 2k − i},
because

〈EM , EI〉2 =

{
1, M = I

0, M 6= I
,

and I = M occurs in (5.32) only for i = |M ∩ J | (and then exactly once).
Lemma 53 gives

lin{g0, . . . , gk} ⊂ lin{p0, . . . , pk} ⊂ lin{q0, . . . , qk}.

It remains to show lin{q0, . . . , qk} ⊂ lin{g0, . . . , gk}. The summands of gi in (5.35)
are of the form 〈·, EI〉2 with |I ∩ J | ≥ i. These summands appear in qj for j ≥ i only.
Together with the linear independence of q0, . . . , qk this shows that g0, . . . , gk are linearly
independent. Thus lin{q0, . . . , qk} and lin{g0, . . . , gk} are two (k+ 1)-dimensional linear
spaces, one of them containing the other. Therefore, these subspaces must be identical,
and the assertion follows. 2

Theorem 55. There exists exactly one solution of (5.3) of the form

fL =
k∑

i=0,αi 6=0

aiqi =
k∑

i=0,αi 6=0

ai

∑
I:|I∩J |=i

〈·, EI〉2. (5.37)

Proof. gk = 〈·, EJ〉2 can be written as a unique linear combination
∑k

i=0 ãipi. As in
Lemma 49, we see that αi = 0 implies ãi = 0. Thus, we have Ψ(

∑k
i=0,αi 6=0

ãi
αi
pi) = gk.

Each pi can be expressed as a unique linear combination pi =
∑k

j=0 a
′
i,jqj . Thus (5.37)

with aj =
∑k

i=0,α 6=0
ãi
αi
a′i,j gives the unique solution to (5.3). 2
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5 Integral representations of projection functions II

5.5 Symmetry approach

We now give a method to compute the coefficients ai in (5.37) directly. The form we
assume for fL is

fL =
k∑

i=0

a
(d,k)
i qi, (5.38)

where a(d,k)
j (0 ≤ j ≤ k) are real constants. Under this assumption, we have from (5.19)

∫
Ld

k

〈E,F 〉2fL(E) dE =
k∑

i=0

a
(d,k)
i

∑
I: |I∩J |=i

∫
Ld

k

〈E,F 〉2〈E,EI〉2 dE

=
k∑

i=0

a
(d,k)
i

∑
I: |I∩J |=i

∑
M

c
(d)
k,|M∩I|〈F,EM 〉2

=
k∑

i=0

a
(d,k)
i

∑
I: |I∩J |=i

k∑
m=0

∑
M : |M∩J |=m

c
(d)
k,|M∩I|〈F,EM 〉2

=
k∑

i=0

k∑
m=0

a(d,k)
m

∑
I: |I∩J |=i

∑
M : |M∩J |=m

c
(d)
k,|M∩I|〈F,EI〉2.

For symmetry reasons,

d
(d,k)
i,m :=

∑
|M∩J |=m

c
(d)
k,|M∩I|

depends only on d, k, and i = |I ∩ J |, m = |M ∩ J |. Using the definition of qi, we get

Ψ(fL) =
k∑

i=0

qi

k∑
m=0

a(d,k)
m d

(d,k)
i,m .

Thus fL satisfies (5.3) if the a(d,k)
i satisfy the following system of linear equations.

D(d,k)


a

(d,k)
0

a
(d,k)
1
...

a
(d,k)
k−1

a
(d,k)
k

 =


0
0
...
0
1

 . (5.39)

Here D(d,k) is the matrix with coefficient d(d,k)
i,m in row i, column m. Moreover, from the
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definition of d(d,k)
i,m it follows

d
(d,k)
i,m =

∑
M :|M∩J |=m

c
(d)
k,|M∩I|

=
k∑

j=0

c
(d)
k,j

∑
M :|M∩J |=m,|M∩I|=j

1

=
k∑

j=0

c
(d)
k,j

k∑
l=0

(
i

l

)(
k − i

m− l

)(
k − i

j − l

)(
d− 2k + i

k + l −m− j

)
.

In particular, for k = 2 the matrix D(d,2) is

D(d,2) = c
(d)
2,0 ·


(−1+d) d

2 2 d 1
(−3+d) d

2 −1 + 3 d 2
(−3+d) (−2+d)

2 4 (−2 + d) 6

 .

Now we can easily find a function satisfying (5.3) for k = 2 (and d ≥ 4).

fL =
(

2
(d+ 1)d

f
(0)
L − 1

d+ 1
f

(1)
L + f

(2)
L

)
· d

3(d+ 2)c(d)
2,0

.

Using the same technique, we can compute the function fL for any k (and d ≥ 2k).
This works only if (5.39) has a solution. From Theorem 55 we know that such a solution
exists.

We have used the computer algebra system Maple to compute the coefficients for
k ≤ 50, yielding

a
(d,k)
j = (−1)k−j

(
d+ 1
k − j

)−1 d+ 2− k

(k + 1)(d+ 2)c(d)
k,0

.

This would hold in the general case, i. e. for all k, if the following Conjecture is true.

Conjecture 56. For 0 ≤ i ≤ k ≤ d/2

d+ 2− k

(k + 1)(d+ 2)

(
k + 2

2

) k∑
m=0

(−1)k−m

(
d+ 1
k −m

)−1 k∑
j=0

(
k + 2− j

2

)−1

k∑
l=0

(
i

l

)(
k − i

m− l

)(
k − i

j − l

)(
d− 2k + i

k + l −m− j

)
=
{

0, 0 ≤ i < k
1, i = k

.

In fact, for each k ≤ 50, the solutions stated above are unique. This also means that
the eigenvalues α0, . . . , αk are non-zero.
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5.6 The projection function for general convex bodies

From Theorem 55 we know that exactly one solution of the integral equation (5.3) exists.
Equation (5.2) yields a function gL(u,E) on Sd−1,k,

gL(u,E) =


σd−k

αd,d−k−1,k‖u|L⊥‖d−k−2
· fL⊥∩u⊥(E⊥ ∩ u⊥), u /∈ L,

0, u ∈ L.

If this function is integrable, Corollary 34 states that for polytopes P we have the
following integral representation of projection functions,

Vk(P |L) =
∫

Sd−1,k

gL(u,E)Sd−k−1
k (P, d(u,E)). (5.40)

The integrability of gL(u,E) is not clear, because gL(u,E) has both positive and nega-
tive summands, and is not bounded. The following Theorem states in which cases the
integrability of gL(u,E), and therefore the representation (5.40) has been established.

Theorem 57. Let 0 ≤ k ≤ d− 1, L ∈ Ld
k, and let K ∈ K be a convex body. The integral

representation of the projection function (5.40) holds in the following cases:

(i) k ≥ d− 2,

(ii) K is a polytope in general relative position to L⊥,

(iii) k = 1, and K is a polytope.

Proof. The function (u,E) 7→ fL⊥∩u⊥(E⊥ ∩ u⊥) is bounded. To show that gL is
integrable it therefore suffices to show that

(u, L) 7→ h(u, L) :=


1

‖u|L⊥‖d−k−2
, u ∈ L,

0, u /∈ L,

is integrable.
For k ≥ d − 2 the function h is bounded by 1. The measure S(d−k−1)

k is finite. Thus
h is integrable in case (i).

For case (ii) we note that S(d−k−1)
k is concentrated on the set

A :=
⋃

F∈Fk(K)

{(u, L) ∈ Sd−1,k : u ∈ n(P, F )}.

However, if u ∈ n(P, F ) for some F ∈ Fk(K), u is in F⊥. The general relative position
of F and L⊥ implies that u /∈ L. Therefore, h is bounded, and thus integrable in case
(ii).

In case (iii), we have to show∫
Sd−1,d−2

h(u, L)S(d−2)
1 (K, d(u, L)) <∞.
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5.6 The projection function for general convex bodies

According to Corollary 33 and equation (4.12) we have to show that for any F ∈ Fd
1 (K)∫

n(P,F )

∫
Lu⊥

d−2

〈E,F⊥ ∩ u⊥〉2h(u, L) dνu⊥
d−2(E) dωd−2(u) <∞.

Because h(u, L) does not depend on E, it suffices to show∫
Sd−1∩F⊥

h(u, L) dωd−2(u) <∞.

For F in general relative position to L⊥, the integrand is bounded, and the asssertion
is clear. Now assume that F and L⊥ are not in general relative position. Then some
v ∈ Sd−1 ∩ F⊥ ∩ L exists. Because dimL = 1, we have L = lin(v). We use spherical
cylinder coordinates to compute∫

Sd−1∩F⊥
h(u, L) dωd−2(u) =

∫
Sd−1∩F⊥∩v⊥

∫ 1

−1
(1− t2)

d−4
2 h(tv +

√
1− t2u, L) dt dωd−3(u)

=
∫

Sd−1∩F⊥∩v⊥

∫ 1

−1
(1− t2)

d−4
2

1
√

1− t2
d−3

dt dωd−3(u)

= σd−2

∫ 1

−1
(1− t2)

d−4−(d−3)
2 dt

= σd−2 · π,

which finishes the proof of (iii). 2

Up to now, we have considered the k-th intrinsic volume of the projection of some
body K onto a k-flat L. We now consider the j-th intrinsic volume of the projection,
where 0 ≤ j ≤ k.

Theorem 58. Let 0 ≤ k ≤ d − 1 and L ∈ Ld
k. Let K be a convex body such that gL is

integrable by S(d−k−1)
j , j = 0, . . . , k. Then

Vj(K|L) =
∫

Sd−1,k

gL(u,E)S(d−k−1)
j (K, d(u,E)).

Proof. We apply Theorem 30 to sets of the form η = Rd × η′, yielding

S
(d−k−1)
k (K + ρBd, η′) =

k∑
j=0

ρj

(
k

j

)
S

(d−k−1)
k−j (K, η′), ∀ρ > 0. (5.41)

It is clear that gL is integrable by the measure on left hand side. Integrating gL by the
measures in (5.41) yields

Vk((K + ρBd)|L) =
k∑

j=0

ρj

(
k

j

)
vk−j ,
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5 Integral representations of projection functions II

where the coefficients are

vj =
∫

Sd−1,k

gL(u,E)S(d−k−1)
j (K, d(u,E)), j = 0, . . . , k.

We note that Vk((K + ρBd)|L) = Vk

(
(K|L) + ρ(Bd|L)). A comparison with Steiner’s

formula (2.8) in the k-dimensional space L now yields

vj = Vj(K|L),

which finishes the proof. 2
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Mengen und geometrische Punktprozesse, Dissertation, Universität Karlsruhe
(TH), Karlsruhe (1992).

[5] Hug, D., Measures, curvatures and currents in convex geometry, Habilitations-
schrift, Albert-Ludwigs-Universität, Freiburg im Breisgau (1999).
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