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Abstract

In the paper, a complete system of transformation rules preserving the

tree equivalence and a polynomial-time algorithm deciding the tree equiv-

alence of linear polyadic recursion schemes are proposed. The algorithm is

formulated as a sequential transformation process which brings together

the schemes in question. In the last step, the tree equivalence problem

for the given schemes is reduced to a global 
ow analysis problem which

is solved by an e�cient marking algorithm.
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1 Introduction

A recursion scheme is a system of recursive function de�nitions. This model
of recursive programs was �rst introduced and investigated in [1, 7]. The tree
equivalence of recursion schemes was introduced by B. Rosen [9], who pointed
out some subclasses of recursion schemes for which the tree equivalence is de-
cidable. Two schemes are tree equivalent if their determinants are equal. Infor-
mally, the determinant det(S) of a scheme S can be obtained from S in two steps.
First, we \build" the (possible in�nite) unfolding tree of the scheme by sequen-
tial unfolding of function calls using the \parallel outermost computation rule".
The unfolding tree of the example scheme S = hF (h) ;F (x)( f(x; F (gx))i is
the limit of the term sequence !; f(h; !); f(h; f(gh; !)); : : : where ! denotes the
distinguished constant with the value \unde�ned". Secondly, the determinant is
obtained from the unfolding tree by replacing all subtrees having an unde�ned
value in all interpretations by the constant !.

The result of this step depends on what we mean by \all interpretations"
of basic symbols. If we restrict the interpretations I(f) of the symbol f in
our example scheme S by the requirement 8d:I(f)(d;?) = ?, where ? means
\unde�ned", then det(S) = !. If interpretations with 9d:I(f)(d;?) 6= ? are
allowed then det(S) coincides with the unfolding tree.



We introduce and investigate a class of recursion schemes which is larger
than the class of recursion schemes used in the original de�nition [7] where
basic symbols are interpreted only by total functions. In the recursion schemes
considered by B. Rosen [9] all interpretations of a basic symbol f must satisfy
the condition I(f)(?;?; : : : ;?) = ? (i.e. the result is unde�ned if all arguments
are unde�ned). The restrictions on interpretations of basic symbols in schemes
studied in [11] can be described as I(if)(a; b; c) = ? if a = ?_b = ?^c = ? (the
result of a test is unde�ned if the condition or both alternatives are unde�ned),
and I(f)(d1; : : : ; dn) = ? if 9i:di = ? (the result is unde�ned if at least one
argument is unde�ned) for all basic symbols f di�erent from if. For our recursion
schemes much �ner restrictions on interpretations of a basic symbol f can be
formulated by �xing an arbitrary set Strict(f) of strict parameter collections.

All interpretations I(f) of a symbol f have to satisfy the following strictness

condition:

8d1; : : : ; dn:(8� 2 Strict(f): 9i 2 �: di = ?)) I(f)(d1; : : : ; dn) = ?:

In addition, we cancel all syntactical restrictions to conditions in tests.
We de�ne a class of linear recursion schemes, characterised by the property

that actual parameters in calls of such schemes contain neither calls nor the con-
stant ! as subterms. The decidability of the tree equivalence for linear schemes
follows from the results of [13, 2] which present an algorithm with an upper time
bound 22

n

for deciding the equivalence of �nite-turn DPDA's. Since the tree
equivalence problem for linear recursion schemes can be polynomially reduced
to the equivalence problem for one-turn DPDA's [3, 4, 6], the tree equivalence
for linear recursion schemes is decidable with the same triple exponential time
upper bound.

We describe a direct algorithm that decides the tree equivalence of linear
recursion schemes in polynomial time O(n6), where n is the maximum of the
initial scheme sizes. The main ideas of the algorithm are as follows: Firstly,
the algorithm is formulated as a sequential transformation process which brings
together the schemes in question. The algorithm passes through several control
points, in which some conditions are checked (similarity test, key condition
checking); if one of the tests fails, the transformation process will terminate with
the answer \no" to the question of the equivalence. Secondly, after a number of
scheme reducing transformations, we construct the product schemes S1�S2 and
S2 � S1 with an adjusted structure by means of rule applications. Then, again
by means of rule applications, one of the scheme products is transformed into
a scheme which represents the computations of both schemes. Finally, the tree
equivalence problem for the given schemes is reduced to a global 
ow analysis
problem which is solved by an e�cient marking algorithm.

In addition to the algorithm deciding the tree equivalence of linear recursion
schemes we also construct a complete transformation system �lin for the tree
equivalence in this class of schemes. Finally, we extend the results to quasi-
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linear recursion schemes, where the tree equivalence remains decidable but the
algorithm becomes more complicated, and not polynomial.

A partial solution to the stated problems was achieved in [10], but for an es-
sentially smaller class of recursion schemes, where basic symbols are interpreted
only by total functions and all tests are atomic.

2 Recursion scheme de�nition

Let X = fx; y; z; : : :g be a set of variables , Fb = f!; f; g; h; : : :g be a set of basic
symbols , Fd = fF; F1; F2; : : :g be a set of de�ned symbols , F = Fb

S
Fd, and let

r denote the rank function. Every symbol s 2 F of rank r(s) = n is said to
have arity n. The symbol ! stands for \unde�ned", the least informative term;
r(!) = 0. Basic symbols of arity zero are also called constants . Let each basic
symbol f be associated with some subset Strict(f) of the set 2f1;:::;r(f)g. The
set Strict(f) is called the set of strict parameter collections of the symbol f and
restricts the set of all possible interpretations of the symbol f in the following
way: in every interpretation, the term f(d1; : : : ; dr(f)) is unde�ned if for all
� 2 Strict(f) there exists i in � such that the value di is unde�ned.

For a set X of variables, X � X , let T (X) be the minimal set of terms

closed under the following conditions:

� X � T (X)

� s 2 F ; t1; : : : ; tn 2 T (X); n = r(s) ) s(t1; : : : ; tn) 2 T (X).

The �rst symbol s of a term s(t1; : : : ; tn) is called the main symbol of this
term. A recursion scheme is a pair

S = he;DEF i;

where e is a term called the scheme entry and DEF is a �nite set of de�nitions
of symbols in Fd. A de�nition of a symbol F 2 Fd has the form

F (x1; : : : ; xn)( t;

where n = r(F ); x1; : : : ; xn 2 X are di�erent formal parameters of F and
t 2 T (x1; : : : ; xn) is the body of the symbol F .

A symbol F 2 Fd is internal to the scheme S if S contains the (unique)
de�nition of F ; F is external to the scheme S if F occurs in S but S does not
contain any de�nition of F . Denote the sets of all internal and external symbols
of a scheme S by Inner(S) and Outer(S), respectively. Note that every internal
symbol has a unique de�nition since DEF is a set.

The notions of internal and external symbols will be used only in Section 4,
where the notion of a fragment will be introduced. A fragment can be viewed
as a generalised scheme. Here we require Outer(S) = ; for any scheme S, i.e.
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schemes have no external symbols. However, all the de�nitions for schemes take
the case Outer(S) 6= ; into account since they will be also used for fragments.

A term F (t1; : : : ; tn), where n = r(F ) and F 2 Fd is said to be a call to the
symbol F , and its subterms t1; : : : ; tn are actual parameters of this call. A call
is an internal call if F 2 Inner(S), or an external one if F 2 Outer(S).

Example:

S0 =

*
F1(h; h) ;

F1(x; y)( if(px; F2(fx; fy); x)
F2(x; y)( if(py; F1(fy; fx); y)
F3(x) ( if(px; F3(fx); x)
Strict(f) = Strict(p) = ff1gg;
Strict(if) = ff1; 2g; f1; 3gg; Strict(h) = f;g

+

We assume that the set Fb of basic symbols contains the constant !, for
which the condition Strict(!) = ; is satis�ed, and for all other symbols f 2
Fb; f 6= !, we require Strict(f) 6= ;. This means that we have a unique desig-
nator for a constant which can only be interpreted as \unde�ned". Note that
Strict(h) is not empty in the example scheme S0 since it contains the empty
parameter collection ;.

Any occurrence of a subterm in a term or in a scheme can be uniquely
identi�ed by its address , which represents the path from the root of the term-tree
(or from the scheme entry) to the place of the subterm occurrence. The address
of the tree root (or the scheme entry) is the empty word � (if the tree is unique
in the context under consideration), or the entry number in square brackets.
The address of the body of a symbol F is the word [F ]. If an occurrence of a
term f(t1; : : : ; tn) has an address a, then its subterm occurrences t1; : : : ; tn have
the addresses a:1; : : : ; a:n, respectively. For example, the �rst occurrence of the
term fx in the scheme S0 has the address [F1]:2:1, and the �rst occurrence of
the constant h has the address 1. Two addresses are independent i� neither is
a pre�x of the other.

A substitution is an arbitrary map � : X ! T (X ) satisfying the condition
�x 6= x for only a �nite number of variables x from X . The substitution � map-
ping the variable xi on a term ti for i = 1; : : : ; n is denoted by [t1=x1; : : : ; tn=xn].
The notion of a substitution can be extended in a natural way to arbitrary terms:

�s(t1; : : : ; tn) = s(�t1; : : : ; �tn)

for s 2 F and n = r(s). For example, if � = [g(y)=x; h(x)=y], then �f(x; y) =
f(g(y); h(x)). We denote by t[a  � ] the term obtained from the term t by
replacing the term occurrence at the address a in t by the term � . If N is a
set of mutually independent addresses of subterm occurrences of a term t then
t[N  � ] denotes the term obtained from the term t by replacing all subterm
occurrences at addresses from N by the term � .

Each scheme S de�nes a map

� : T (X )! T (X )
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which corresponds to the \parallel outermost computation rule", i.e. it performs
one step unfolding of all outermost calls in a term.

�t =

8>>>>>><
>>>>>>:

x; if t = x, where x 2 X ,
f(�t1; : : : ; �tn); if t = f(t1; : : : ; tn), where n = r(f)

and f 2 Fb [ Outer(S);
��; if t = F (t1; : : : ; tn);where F 2 Inner(S);

� = [ t1=x1; : : : ; tn=xn ]; and
F (x1; : : : ; xn)( � is the de�nition of F in S.

3 Interpretation and the tree equivalence

A domain is a triple hD;�;?i, where D is an arbitrary set, ? is the bottom
member of D (the \unde�ned value") and � is a partial order on D satisfying
the following two conditions:

� 8d 2 D. ? � d.

� Completeness condition: for every linearly ordered subset (chain) C of D
the least upper bound lub(C) belongs to D, i.e. d � lub(C) for all d in C,
and lub(C) � u for all u in D such that d � u for all d in C.

For example, the boolean domain B consists of three elements

B = f?; false; trueg

such that ? � false;? � true, but :(true � false) and :(false � true).
The universal term domain U = hTU ;v; !i is constructed in the following

way: we consider the set T1 of the terms under the signature hX ;Fbi which
contains all variables x 2 X and is closed under application of the rule

f 2 Fb ^ t1; : : : ; tn 2 T1 ^ 9� 2 Strict(f):8i 2 �: ti 6= ! ) f(t1; : : : ; tn) 2 T1:

The partial order v on T1 is introduced by setting t1 v t2 i� there exists a set
N of mutually independent addresses in t2, such that t1 = t2[N  !].

Let ~T1 be the set of all in�nite chains of the form t1 v t2 v : : : with elements
from T1. There is a unique (in�nite) tree t corresponding to such a chain ~t.
Finally, TU = ~T1= �=t is the factor set of the set ~T1 under the equivalence
relation �=t de�ned by ~s �=t

~s0 , s = s0. The elements of the set TU will be
called (in�nite) terms (trees). One can prove that U is a domain with the partial
order 'v' (t1 v t2 i� there is a (possibly in�nite) set N of mutually independent
addresses in t2 such that t1 = t2[N  !]) and bottom !.

A function ' : D ! D0 between two domains is monotone i�

8d; d0 2 D: d � d0 ) 'd � 'd0:

A monotone function is continuous if it preserves the least upper bounds of
non-empty linearly ordered subsets L of D, i.e. '(lub(L)) = lub('(L)).

An interpretation I �xes a domain D and assigns

5



� a member I(x) 2 D to each variable x 2 X ,

� a continuous function I(f) : Dr(f) ! D to each symbol f 2 Fb. This
function must satisfy the following strictness condition:

8d1; : : : ; dn:(8 � 2 Strict(f): 9i 2 �: di = ?)) I(f)(d1; : : : ; dn) = ?:

For example, the natural way to bound the interpretations of the ternary symbol
if is to settle

Strict(if) = ff1; 2g; f1; 3gg:

Thereby we restrict all possible interpretations of the symbol if to functions
cond for which the condition

8 d; d0 2 D: (cond(?; d; d0) = ?) ^ (cond(d;?;?) = ?)

holds. Another example is the binary symbol '+', Strict(+) = ff1; 2gg with

8d 2 D: 8I: (I(+)(?; d) = ?) ^ (I(+)(d;?) = ?):

Since Strict(!) = ;, the constant ! can only be interpreted by the value ?.
By an induction de�nition we can extend the notion of an interpretation I

to arbitrary �nite terms:

I�(t) =

8>><
>>:

I(x); if t = x, where x 2 X ;
I(f)(I�(t1); : : : ; I

�(tn)); if t = f(t1; : : : ; tn), where n = r(f)
and f 2 Fb;

? otherwise.

For in�nite terms t = lubf tn : n � 0 g we set

I�(t) = lubf I�(tn) : n � 0 g

because I(f) is continuous for each f 2 Fb.
An important example of an interpretation is the universal interpretation J

with the domain U , and J(x) = x for variables x 2 X ; for f 2 Fb; n = r(f) and
t1; : : : ; tn 2 TU we set

J(f)(t1; : : : ; tn) =

8<
:

f(t1; : : : ; tn); if 9 � 2 Strict(f)
8 i 2 � ti 6= !;

! otherwise.

The universal interpretation is extended to calls F (�t) by setting J(F (�t)) = !,
and we de�ne the approximation sequence of a term t by

App(S; t) = fJ(�nt) j n � 0g
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where �0 = id and �n = �n�1� for n > 0. The determinant det(t) of a term

t is the least upper bound of the approximation sequence App(S; t), and the
determinant det(S) of a scheme S is the determinant of the entry of the scheme
S.

For the scheme

h
F (u);F (x)( f(x; F (gx));
Strict(f) = ff1g; f2gg; Strict(g) = ff1gg

i

the �rst elements of the approximation sequence are

J(�0F (u)) = !;

J(�1F (u)) = f(u; !);
J(�2F (u)) = f(u; f(gu; !));

J(�3F (u)) = f(u; f(gu; f(ggu; !))); etc.

Two schemes S1 and S2 are tree equivalent (for short: S1 � S2, see also [9])
i� det(S1) = det(S2).

4 Fragments and their equivalence

The notion of a fragment di�ers from the notion of a scheme only in that a frag-
ment may have an arbitrary, possibly empty, set of entries, and the restriction
Outer(S) = ; is relaxed. Assume the entries of a fragment to be enumerated
by non-negative integers. The entry number enclosed in square brackets will be
used for its address. We omit this number if the fragment has a single entry.
We also omit the angle brackets in the representation of a fragment if it does
not contain de�nitions and has a single entry. In this case the fragment simply
is reduced to a term.

Let Entries(G) be the set of numbers for all entries of a fragment G. In
order to extend the notion of the tree equivalence to fragments G1 and G2
which have equal entry number sets we consider the symbols from the set
O = Outer(G1) [ Outer(G2) in exactly the same way as the symbols from
Fb, setting, in particular, Strict(F ) = f;g for F 2 O.

Two fragments G1 and G2 that have equal entry number sets are tree equiv-
alent i� for all i 2 Entries(G1) the schemes G

i

1 and G
i

2 are tree equivalent which
are obtained from G1 and G2 by

� deleting all entries except for the entries with the number i, and

� including the symbols from Outer(G1)[ Outer(G2) into the basic symbol
set,

Note that two fragments with empty entry sets are always tree equivalent.
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Let us denote by G # a the term at address a in a fragment or term G, by
V ar(a) | the variable set of the term at address a, and by G[a  t] | the
fragment obtained from G by replacing the term at address a by a term t.

Let G = h1 : e1; : : : ; n : en;DEF i be a fragment. Two terms �; � are called
tree equivalent in G (for short: � �G � or simply � � � if G is clear from the
context), i� h�;DEF i � h�;DEF i. The term t is called tree empty in G i�
t � !.

5 The de�nition of linear schemes and formal

transformations

Let TB be the set of all terms which do not contain calls and the constant !
as subterms. A linear term is a term which contains only terms from TB as
actual parameters in calls. More precisely, the set TL of linear terms is de�ned
as the minimal set of terms closed under the following conditions:

� TB � TL.

� �1; : : : ; �n 2 TL; f 2 Fb; n = r(f)) f(�1; : : : ; �n) 2 TL.

� �1; : : : ; �n 2 TB; F 2 Fd; n = r(F )) F (�1; : : : ; �n) 2 TL.

A symbol F 2 Fd of a scheme S is linear if its body is a linear term. A scheme
is linear if its entry and all internal symbols are linear.

Example 1: if Strict(f) = ff1g; f2g; f3g; f4gg then

R1 = hF1(a; a); F1(x; y)( f(x; y; gb; F1(gx; gy))i , and

R2 =

*
F1(u; v)( f(u; u; F2(gb); F3(gu; hv))

F1(a; c); F2(u)( u

F3(u; v)( f(u; u; F2(gb); F1(gu; ggv))

+

are two tree equivalent linear recursive schemes.
Example 2: Let n � 1; Strict(f) = Strict(g) = Strict(h) = ff1g; f2gg;

Ln =

* F1(a);
F1(x)( h(F2(x); Fn+3(x))
Fi(x)( Fi+1(f(x; x)); i = 2; : : : ; n+ 1
Fn+2(x)( x

Fi(x)( g(Fi+1(x); Fi+1(x)); i = n+ 3; : : : ; 2n+ 1
F2n+2(x)( g(Fn+2(x); Fn+2(x))

+
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and

Un =

* D1(a);
D1(y)( h(Dn+3(y); D2(y))
Dj(y)( Dj+1(g(y; y)); j = 2; : : : ; n+ 1
Dn+2(y)( y

Dj(y)( f(Dj+1(y); Dj+1(y)); j = n+ 3; : : : ; 2n+ 1
D2n+2(y)( f(Dn+2(y); Dn+2(y))

+

are also two tree equivalent linear recursive schemes. These two examples will
be used to illustrate the described algorithm for deciding the tree equivalence of
linear schemes. The second example is more representative and demonstrates
the main di�culty of the problem: there are two essentially di�erent ways for
computation of long terms in equivalent linear schemes | the \top down" way
and the \bottom up" way.

An occurrence of a fragment G1 in a fragment G2 is a part of G2 such that

� G1 is a fragment itself, and

� it contains all calls to F in G2 if F 2 Inner(G1).

A transformation rule is a pair G1 $ G2 of fragments G1;G2 that satis�es
the conditions

Entries(G1) = Entries(G2) and (i 6= j ) Inner(Gi) \Outer(Gj ) = ;):

An application of a transformation rule G1 $ G2 consists of replacing an occur-
rence of G1 by G2 or replacing an occurrence of G2 by G1 where each entry is
replaced by the entry with the same number. A rule scheme is a description of
an arbitrary decidable set of transformation rules. A rule scheme application

consists in the application of some rule from this set.
Example: Applying the rule�

F1(u; u); F1(v; v);
F1(x; y)( if(x; y; F1(fx; fy))

�
$

�
F2(u); F2(v);
F2(x)( if(x; x; F2(fx))

�

to the fragment

hg(F1(u; u); F1(v; v));F1(x; y)( if(x; y; F1(fx; fy))i

we may get
hg(F2(u); F2(v));F2(x)( if(x; x; F2(fx))i:

6 The transformation system �lin

In Sections 6.1 { 6.7, we describe seven rule schemes for equivalent transforma-
tion of linear schemes.

The relevant address set of a fragment G is the minimal set of addresses
closed under the following conditions:
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� The entry addresses are relevant.

� If G # a = f(t1; : : : ; tn) for a relevant address a where f 2 Fb [ Outer(S)
then a:i is a relevant address for each i = 1; : : : ; n:

� If G # a = F (t1; : : : ; tn) for a relevant address a where F 2 Inner(G), then
[F ] is a relevant address. In addition, if some address of an occurrence of
the i-th formal parameter of F in the body of F is relevant, then a:i is a
relevant address.

All other addresses of the fragment G are irrelevant.

6.1 Deletion/introducing of useless de�nitions

We call a de�nition of a symbol F useless in a fragment G if no call to F has a
relevant address. The rule scheme delete/introduce useless de�nitions contains
all rules G1 $ G2, where the fragment G2 is obtained from G1 by deleting a
useless de�nition of a symbol F and by replacing all remaining calls to F by
(an arbitrary) constant C 2 Fb.

6.2 Replacement of irrelevant term occurrences

The second rule scheme, replace irrelevant term occurrences, contains all rules
G $ G[a  t] where a is an irrelevant address of the fragment G, and t is an
arbitrary term, t 2 T (V ar(a)).

Example: In the fragment

hF (u; v);F (x; y)( if(px; x; F (fx; fy))i

the addresses 2, [F ]:3:2 and [F ]:3:2:1 are irrelevant, hence the transformation�
F (u; v);
F (x; y)( if(px; x; F (fx; fy))

�
$

�
F (u; v);
F (x; y)( if(px; x; F (fx; b))

�

is an application of the replace irrelevant term occurrences rule.

6.3 Deletion/adding of redundant parameters

A formal parameter of a symbol F 2 Inner(G) is called redundant if the body
of F does not contain any occurrence of this parameter. Let G be a fragment
containing exactly two de�nitions

F (x1; : : : ; xi; : : : ; xn)( t; and

F 0(x1; : : : ; xi�1; xi+1; : : : ; xn)( t
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where xi is a redundant parameter of F . The rule scheme delete/add redundant

parameters contains all rules G $ G0, where G0 is obtained from G by replac-
ing some calls F (t1; : : : ; ti; : : : ; tn) in G (e.g., in the bodies of F and F 0) by
corresponding calls F 0(t1; : : : ; ti�1; ti+1; : : : ; tn).

Example:

*
h(x; F (u; x)) ;
F (x; y)( if(px; x; F (fx; gx))
F 0(x)( if(px; x; F (fx; gx))

+
$

*
h(x; F 0(u)) ;
F (x; y)( if(px; x; F 0(fx))
F 0(x)( if(px; x; F 0(fx))

+

6.4 Simple folding and unfolding

Let G be a fragment containing exactly one de�nition F (x1; : : : ; xn) ( t, and
let a be an address of an occurrence of a call F (t1; : : : ; tn) not in the body of
F . The rule scheme simple fold/unfold contains all rules G $ G[a �t], where
� = [t1=x1; : : : ; tn=xn].

6.5 Copying and identifying

Let K = K1 [ K2 [ : : :[ Km be a partition of the set of all internal symbols of
the fragment G in non-empty and disjoint classes. We call the symbols belonging
to the same class of the partition K-similar . Assume that any two K-similar

internal symbols F; F 0 in the fragment G have de�nitions F (x1; : : : ; xn) ( t

and F 0(y1; : : : ; yn) ( t0, respectively, such that the term t0 can be obtained
from the term [y1=x1; : : : ; yn=xn] t by replacing some occurrences of internal
symbols by K-similar ones. Then the rule scheme copy/identify contains all rules
G $ G0 where the fragment G0 is obtained from the fragment G by replacing
some occurrences of internal symbols by K-similar ones.

Example: K1 = fF1; F2g,

*
F1(a);
F1(x)( f(x; F2(gx))
F2(x)( f(x; F1(gx))

+
$

*
F1(a);
F1(x)( f(x; F1(gx))
F2(x)( f(x; F1(gx))

+

The de�nition of the symbol F2 is uselesss in the second fragment and can be
deleted.

6.6 Replacements for hopeless terms

The exit set of a fragment G of a linear scheme is de�ned as the minimal set of
addresses closed under the following \marking rules":

1. The addresses of variable occurrences are exits.

2. If G # a = f(t1; : : : ; tn) where f 2 Fb, and 9 � 2 Strict(f):8 i 2 � the
addresses a:i are exits then the address a is an exit.
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3. If F 2 Fd and the address [F ] is an exit then all addresses of calls to the
symbol F are exits.

Each address which is not an exit is called hopeless . The rule scheme replace
a hopeless term contains all rules G $ G[a !], where a is an arbitrary hopeless
address in G.

Example: Let Strict(f) = ff2gg. Then

*
F1(u);
F1(x)( f(x; F2(x))
F2(x)( f(x; F1(x))

+
$

*
!;
F1(x)( f(x; F2(x))
F2(x)( f(x; F1(x))

+

is a replace hopeless term rule.

6.7 Context replacement

If the value of an actual parameter in each call to a symbol F coincides with the
value of a term t, then any occurrence of the corresponding formal parameter
in the body of F can be replaced by the term t. For example, in the scheme

hF (a; a);F (x; y)( f(x; F (gx; gy))i

the formal parameters x; y are equal in all calls to the symbol F , so we could
replace y by x in the body of F and obtain a tree equivalent scheme:

hF (a; a);F (x; y)( f(x; F (gx; gx))i:

Such functional dependencies of formal parameters (like x � y in example above)
can be detected for linear schemes algorithmically. In this Section, we will
describe an e�cient algorithm for detecting functional parameter dependencies
in linear schemes and use it in the context replacement transformation rule.

We formulate a data 
ow analysis problem for a graph Graph(S) obtained
from a scheme S in the following way: The nodes of this graph will be the entry
address and the addresses of bodies of the internal symbols of the scheme S.
The edges will be the call addresses. We draw an edge a from an address b to
an address [F ], if a is an address of a call to F , occurring in the term at address
b.

We analise the functional dependencies of formal parameters of the de�ni-
tions and use formal grammars to represent such functional dependencies. Let
X be a �nite set of variables, X � X . Below we use the semi-lattice L(X) of
very simple context-free grammars G describing �nite languages L(G) of term
equalities. These grammars G have terminal sets � = Fb [ X [ f�; (; ); ;g and

� exactly two rules S ! x � A and A ! x for each x 2 X , where S;A are
nonterminals, S 6= A, and S is the initial nonterminal of the grammar;
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� at most one rule of the form A! f(A1; : : : ; An) for each nonterminal A,
with nonterminals A;A1; : : : ; An di�erent from S;

� �nite languages L(G).

Note that any two terms t; t0 2 L(G) derivable in the grammar G from a nonter-
minal A(6= S) are uni�able, i.e. there exists a substitution � = [t1=x1; : : : ; tn=xn]
that satis�es �t = �t0. Such a grammar G can be reduced in linear time to a
reduced grammar

Red(G) = hN;�; S; P i;

satisfying the following conditions

� L(G) = L(Red(G)) is a �nite language,

� 8A;B 2 N: L(A) \ L(B) = ;,

� 8A 2 N: L(A) 6= ;, and

� 8A 2 N: 9�; � 2 fN [ �g�: S
�
! �A�.

The meet operation u on reduced grammars corresponds to the language in-
tersection and can be de�ned in the following way. Let Gi = hNi;�; Si; Pii
for i = 1; 2 be two reduced grammars. Let G = hN;�; S; P i where N =
N1 �N2; S = hS1; S2i,

P = fS ! x � hA1; A2ij(Si ! x � Ai) 2 Pi; i = 1; 2; x 2 Xg [

fhA1; A2i ! f(hB1
1 ; B

2
1i; : : : ; hB

1
n
; B2

n
i)j(Ai ! f(Bi

1; : : : ; B
i

n
)) 2 Pi; i = 1; 2g

[ fhA1; A2i ! xj(Ai ! x) 2 Pi; i = 1; 2; x 2 Xg:

Finally, we de�ne G1 uG2
def

= Red(G).
Lemma 1. L(G1 uG2) = L(G1) \ L(G2).
For reduced grammars G1; G2, the grammar G1 uG2 can be constructed in

time O(kn), where n = max(jG1j; jG2j) and k = jX j.
The partial order v on reduced grammars is introduced by the de�nition

G1 v G2
def

= L(G1) � L(G2). The grammar fS ! x � Ax; Ax ! x j x 2 Xg
will be denoted by OO, L(OO) = fx � x j x 2 Xg, thus 8 G:OO v G. We denote
by L(X) the set of all reduced grammars augmented by a new distinguished
element 11 that satis�es 11uG = G u 11 = G. The equality relation on L(X) can

be de�ned by G1 = G2
def

= G1 v G2 ^G2 v G1: A nonterminal A of a grammar
is said to know a term t if A

�
! t. For a grammar G and a term t 2 TB, a

grammar G+ t having a unique nonterminal A that knows t can be built in the
following way:

If the grammar G already has a nonterminal that knows t or G = 11 then

set G + t
def

= G. Otherwise if t is a variable x then add a new nonterminal

13



A and a rule A ! x to the grammar G; if t = f(t1; : : : ; tn), we build the
grammar G0 = (: : : (G + t1) : : : + tn), add a new nonterminal A and a rule
A ! f(A1; : : : ; An) to the grammar G0, where Ai is the nonterminal in G0,
which knows the term ti, for i = 1; : : : ; n. This construction of the grammar
G+ t can be done in time proportional to the sum of the sizes of the grammar
G and the term t.

For an address a of a call F (t1; : : : ; tn) in a scheme we de�ne the grammar
transformer

[[call(a)]] : L(V ar(a) [ V ar(�))! L(V ar([F ]) [ V ar(�)):

Set [[call(a)]]11
def

= 11. For G 6= 11, let G0 = (: : : (G + t1) : : : + tn). Let Ai be the
nonterminal of G0 that knows the term ti, and let Bi be the nonterminal of G

0

that knows the i-th formal parameter xi of the symbol F (i = 1; : : : ; n). For all
i = 1; : : : ; n, if Ai 6= Bi, then we delete the rules S ! xi � Bi and Bi ! xi
from the grammar G0 and add the new rules S ! xi � Ai and Ai ! xi. Finally,

de�ne [[call(a)]]G
def

= Red(G0).
Lemma 2. For all addresses a of a scheme [[call(a)]] is a distributive gram-

mar transformer, i.e.

[[call(a)]](G1 uG2) = [[call(a)]]G1 u [[call(a)]]G2:

Proof. De�ne three elementary grammar transformers:

� [[x := t]] for a term t, new variable x not occurring in t and in the grammar

G to which this transformer is applied. Set [[x := t]]11
def

= 11. For G 6= 11,
let G0 = (G+ t) and let A be the nonterminal of G0 that knows the term
t. Now we add the new rules S ! x � A and A ! x to the grammar G0

and de�ne [[x := t]]G
def

= G0.

� [[forget(x)]] for a variable x. The grammar [[forget(x)]]G is obtained from
the grammar G by deleting all the rules that contain the variable x and
reducing the result.

� [[ren(x; y)]] for variables x; y, where variable y does not occur in the gram-
mar G, to which this transformer is applied. The grammar [[ren(x; y]]G is
obtained from the grammar G by renaming all occurrences of the variable
x in the rules of the grammar G by the variable y.

To prove the distributivity of the transformer E = [[x := t]], i.e.

E(G1 uG2) = EG1 uEG2;

we assume (y � �) 2 L(E(G1 uG2)) and consider the three cases.
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1. x 6= y and x does not occur in � . Then

(y � �) 2 L(E(G1 uG2))$ (y � �) 2 L(G1 uG2)$
(y � �) 2 L(G1) \ L(G2)$ (y � �) 2 L(EG1) ^ (y � �) 2 L(EG2).

2. x 6= y and x occurs in � . Let � = � [t=x], then

(y � �) 2 L(E(G1 uG2))$ (y � �) 2 L(G1 uG2)$
(y � �) 2 L(G1) \ L(G2)$ (y � �) 2 L(EG1) ^ (y � �) 2 L(EG2).

3. x = y. Then x does not occur in t and (x � t) 2 L(EG) for
G = G1; G2; G1 uG2, hence (x � �) 2 L(E(G1 uG2))$
9�; � = [�1=x1; : : : ; �m=xm]�t = �� ^ 8i (xi � �i) 2 L(E(G1 uG2))$
8i (xi � �i) 2 L(G1 uG2)$ 8i (xi � �i) 2 L(G1) \ L(G2)$
9�; � = [�1=x1; : : : ; �m=xm] �t = �� ^ 8i (xi � �i) 2 L(EG1)\L(EG2)$
(x � �) 2 L(EG1) \ L(EG2):

The distributivity of the transformers [[forget(x)]] and [[ren(x; y)]] is obvious.
Now, for an address a of a call F (t1; : : : ; tn), the transformer [[call(a)]] can be
represented as the composition of the elementary transformers

[[zi := ti]]; [[forget(xj)]]; and [[ren(zi; yi)]]

where y1; : : : ; yn are the formal parameters of the symbol F , z1; : : : ; zn are aux-
iliary new variables, and xj 2 V ar(a). Finally, the composition of distributive
transformers is distributive. 2

Now we state a data 
ow analysis problem for Graph(S) by �xing

� an initial marking �0 that associates the grammar OO to the entry node �
and the grammar 11 to all other nodes of Graph(S),

� a semantic function which associates a distributive grammar transformer
[[call(a)]] to any edge a of Graph(S).

Let w be a path in Graph(S), i.e. a sequence of adjacent edges, and let

�w(G) =

�
G; if w does not contain any edge,
[[call(a)]]�w0(G); if w = w0a, where a is an address of a call.

Our data 
ow analysis problem consists of �nding the \meet over all paths
solution"

mop([F ]) =uw2W�w(OO)

for all nodes [F ] in Graph(S), where W is the set of all paths in Graph(S) from
the entry node to a node [F ].

It is well known [8] how a meet over all paths problem can be solved. We
use a marking algorithm which e�ectively builds a stationary marking � of
Graph(S) such that �[F ] = mop([F ]) for all nodes [F ].

15



A reachable marking �0 is either the initial marking or a marking which is
obtained from a reachable marking � by an application of the following marking
rule to an edge a leading from a node u to a node v in Graph(S):

�0v = �v u ([[call(a)]]�u)

for the node v and �0v0 = �v0 for all other nodes v0 in Graph(S).
A reachable marking is called stationary, if it is not changed by any appli-

cation of the marking rule.
The semi-lattice of reduced grammars satis�es the descending chain condi-

tion, and all grammar transformers [[call(a)]] are distributive. So it follows from
the results proved in [8] that there exist a unique stationary marking � that
satis�es �[F ] = mop([F ]) for all nodes [F ] of the graph Graph(S).

Since the stationary marking � is a solution to a meet over all paths problem,
the condition (x � t) 2 L(�[F ]) is true for a node [F ] and for a formal parameter
x of F i� S � S[a  t] holds for all addresses a of the occurrences of x in the
body of the symbol F .

Our �nal transformation rule scheme context replacement contains all rules
S $ S[a  t] where a is an address of an occurrence of a formal parameter x
in the body of a symbol F , and the condition (x � t) 2 L(�[F ]) is satis�ed for
the stationary marking � of Graph(S).

Example:�
F (h; h);
F (x; y)( if(px; F (fx; fy); gx)

�
$

�
F (h; h);
F (x; y)( if(px; F (fx; fx); gx)

�

Here (x � y) 2 L(�[F ]) holds for the stationary marking � of the former scheme.
The transformation system �lin contains all the rules generated by the rule

schemes described in Sections 6.1 { 6.7.

6.8 Correctness of the transformation system �lin

Theorem 1. If G $ G0 is a rule of the transformation system �lin then G � G0.
Proof. Useless de�nitions, terms at irrelevant addresses, redundant para-

meters and applications of the copying and identifying rule do not a�ect the
process of the approximation sequence construction for a term.

Simple fold/unfold a�ects only the \speed" of the approximation sequence
construction, but not the determinant. If G $ G0 is a simple fold/unfold rule,
and A;A0 are the approximation sequences of the corresponding entries of the
fragments G and G0, respectively, then 8n9mAn v A0

m
^8n9mA0

n
v Am. Thus,

the least upper bounds of these sequences coincide. Note that each application
of our simple fold/unfold to a fragment that contains the de�nition F (�x) ( �

cannot destroy this de�nition, i.e.�
F (h);
F (x)( a

�
$

�
F (h);
F (x)( F (x)

�
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is not a simple fold/unfold rule.
To prove G # a � ! for a hopeless address a in a fragment G it su�ces

to show that if t 6� ! for t = G # a then the address a is an exit. We can
prove this statement �rst for terms t without calls by induction on the height
h(t) of the term t. If h(t) = 0 then t is a variable or a constant di�erent
from !. Hence the address a will be declared an exit by the application of
marking rule 1 (variable) or 2 (constant) from the de�nition of an exit. Suppose
the statement is true for all terms (without calls) of height n, and consider a
term t of height n + 1. Then t = f(t1; : : : ; tm) and from t 6� ! it follows that
9� 2 Strict(f): 8i 2 �: ti 6� !. By the induction hypothesis we conclude that
there exists a collection � 2 Strict(f) such that for all i 2 � the address a:i is
an exit. Therefore, the address a will be declared an exit of t by application of
the rule 2 from the de�nition of an exit. Suppose now t contains a call. Then
9n: J(�n) 6= ! and therefore J(t0) 6= ! for t0 = (�nt)[N  !] where N is the set
of all call addresses in �nt. The term t0 does not contain calls, so the process of
determination of exits in t0 by means of rules 1-2 applications will declare the
root address of t0 an exit. Adding the applications of the rule 3 after declaring
a body of a de�ned symbol in G to be an exit we obtain from this process the
process for determining the exits of the fragment G. Since the root address of
t0 was an exit, so is the address a.

Context replacement preserves the tree equivalence because it uses the meet
over all path solution of the parameter dependence analysis problem described
in this Section. 2

7 Linear schemes reduction

A linear scheme S is called reduced if

1. there are no useless de�nitions in S,

2. there are no hopeless addresses in S other than addresses of occurrences
of the term !,

3. the entry of the scheme S is either a call or the term !,

4. the body of each internal symbol is either a variable, or a call, or a term
of the form f(t1; : : : ; tn), where n = r(f) � 0; f 2 Fb; and each term ti
for i = 1; : : : ; n is either a call or the term !.

Thus, only three kinds of de�nitions may occur in reduced linear schemes:
projective de�nitions , where the body is a variable, chain de�nitions , where
the body is a call, and basic de�nitions , where the body is a term of the form
f(t1; : : : ; tn); n = r(f) � 0; f 2 Fb; and each term ti for i = 1; : : : ; n is either a
call or the term !.
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Note that there is a unique reduced linear scheme which is tree equivalent
to !, namely the scheme ! itself. The two tree equivalent but di�erent schemes
Ln and Un from Example 2 show that reduced linear schemes are not unique
up to renaming of formal parameters and de�ned symbols.

Theorem 2. By application of rules from �lin any linear scheme S can be

transformed into a reduced linear scheme S0 such that S � S0.

Proof. The �rst reducibility condition is achieved by application of the
delete useless de�nitions rule. The bodies of such de�nitions have irrelevant
addresses which can be detected in linear time.

Let us bound the time needed for detection of all exits of a linear scheme.
We assume that the scheme contains a description of the strict parameter col-
lections for each basic symbol of the scheme. Using a marking algorithm for
detection of the scheme exits, we have to apply the marking rules at most
once to any address of a term from TB or of a call. To any address of a term
t = f(t1; : : : ; tm); f 2 Fb; t 62 TB, the marking rule is applied no more thanm+1
times. The proper application of the marking rule to the term f(t1; : : : ; tm) re-
quires time proportional to the length of the writing of the strict parameter
collection of the symbol f . Hence we can take the cube of the scheme size as
a rough upper bound for the time needed for detection of all exits of a linear
scheme. After replacing all terms at hopeless addresses by ! we obtain a scheme
that satis�es the second reducibility condition.

If the entry t of the scheme S is neither a call nor the term !, we introduce
a de�nition F (x1; : : : ; xn)( t of a new useless symbol F (i.e. not appearing in
S) into the scheme S, where x1; : : : ; xn are all variables of the term t. By simple

fold rule application replace the entry of the scheme by the call F (x1; : : : ; xn).
As a result, the third reducibility condition for S also becomes true.

If the body of a symbol F in S has the form f(t1; : : : ; tm), where f 2 Fb,
then each subterm ti; ti 6= !; i = 1; : : : ;m, of the body can be transformed into
a call in exactly the same way as it has been done above for the scheme entry.
As a result, some new de�nitions may occur, and we have to reduce their bodies.
It is clear, however, that this process terminates, since the dephts of the bodies
in the new de�nitions decrease. When the process terminates, each de�nition in
the scheme becomes either projective or chain or basic. The size of the obtained
reduced scheme is O(k � n), where n = jSj is the size of the given scheme and k
is the maximal number of formal parameters of the symbols de�ned in S. 2

The reduction of the schemes R1 and R2 from Example 1 results in the
reduced schemes

R0
1 =

* F1(a; a);
F1(x; y) ( f(F2(x); F2(y); F3; F1(gx; gy))
F2(x) ( x

F3 ( gF4
F4 ( b

+

18



and

R0
2 =

* F1(a; c);
F1(u; v) ( f(F2(u); F2(u); F2(gb); F3(gu; hv))
F2(u) ( u

F3(u; v) ( f(F2(u); F2(u); F2(gb); F1(gu; ggv))

+

respectively. The schemes from Example 2 are already reduced.

8 The similarity of reduced schemes

In the following, we suppose the schemes under consideration to be not tree
empty, since after reducing a tree empty scheme to the scheme !, the tree
equivalence and transformation problems become trivial for such schemes. We
will introduce a decidable similarity relation for reduced linear schemes. The
similarity of reduced linear schemes will be shown to be a necessary condition
for their tree equivalence.

We de�ne a preliminary (in general, not symmetric) binary compatibility

relation on de�ned symbols of reduced schemes S1 and S2. First of all, if Fi is
the main symbol of the entry of the scheme Si; i = 1; 2, then F1 is compatible
with F2. Further, if a de�ned in S1 symbol F1 is compatible with a de�ned in
S2 symbol F2, then

� if Si # [Fi] = f(t1
i
; : : : ; tk

i
) for i = 1; 2, and t

j

i
is a call to F

j

i
then F

j

1 is

compatible with F j

2 ;

� if the body of the symbol Fi is a call to some symbol F
0
i
(i = 1; 2) then F 0

1

is compatible with F 0
2;

� if the de�nition of the symbol F2 is projective any symbol called in the
body of F1 is compatible with F2;

� if the de�nition of the symbol F1 is basic, and the body of the symbol F2
is a call to some symbol F 0, then the symbol F1 is compatible with F 0;

� if the body of the symbol F1 is a call to some symbol F
0 and the de�nition

of the symbol F2 is basic, then the symbol F 0 is compatible with F2.

All other symbols are incompatible.
A de�ned symbol F of a scheme S is fruitless , if det(F (x1; : : : ; xr(F ))) is a

�nite term. Otherwise, the symbol F is said to be fruitful .
Call two reduced linear schemes S1 and S2 similar (for short: S1 ./ S2),

if the compatibility relation on de�ned symbols of these schemes satis�es the
following conditions:

� fruitful symbols are incompatible with fruitless ones, and vice versa; and
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� if F (�x) ( f(t1; : : : ; tn) and F 0(�y) ( g(t01; : : : ; t
0
m
) are basic de�nitions of

two compatible symbols, then f = g and for all i = 1; : : : ; n either both
terms ti and t0

i
are equal to !, or both di�er from !.

Lemma 3. Tree equivalent reduced linear schemes are similar: S1 � S2 )
S1 ./ S2:

Proof. It follows from the de�nition of the compatibility relation that if
S1 � S2 and the symbols F; F 0 are compatible, then there exist some calls
tF and tF 0 to these symbols such that det(tF ) = det(tF 0). If :(S1 ./ S2),
then there exists a pair of compatible symbols, for which at least one of the
similarity conditions is violated. Then any two calls to these symbols have
di�erent determinants. 2

The algorithm deciding the similarity for reduced linear schemes follows
directly from the de�nition of the compatibility relation for de�ned symbols of
the schemes. The detection of all fruitful symbols of a scheme needs time linear
in the scheme size. Then we build the compatible symbol pairs and check the
two conditions from the similarity de�nition for all compatible pairs. The upper
bound for the complexity of this algorithm is the square of the maximum size
of the schemes.

9 The product of reduced schemes

Suppose we are given a pair of (not tree empty) similar reduced linear schemes:

S1 = ht; fFi(x1; : : : ; xki)( �i; i = 1; : : : ; n1gi;

S2 = ht
0; fF 0

j
(y1; : : : ; ylj )( � 0

j
; j = 1; : : : ; n2gi:

We can assume all de�ned symbols of these schemes to be pairwise disjoint. If
a symbol H is de�ned in both schemes replace all occurrences of H in one of
the schemes (for example, in the �rst one) by a new symbol H 0 which does not
occur in either scheme. Let us show how this transformation can be carried out
by means of application of rules from �lin. Let H(�x) ( � be the de�nition of
H in the �rst scheme, and let � 0 be the term obtained from � by replacement
of all occurrences of the symbol H by the symbol H 0. Introduce a new useless
de�nition H 0(�x) ( � 0 in the �rst scheme, and by application of the copy rule
replace the main symbol of each call to H in the �rst scheme by H 0. As the
result, the de�nition ofH in the �rst scheme becomes useless and can be deleted.

Let us �x a map P : Fd � Fd ! Fd which maps di�erent pairs of de�ned
symbols to di�erent de�ned symbols. Denote

Hi;j = P(Fi; F
0
j
) and H 0

j;i
= P(F 0

j
; Fi):

A product S1 � S2 of the schemes S1 and S2 is the reduced linear scheme

S1 � S2 = ht
00; fHi;j(x1; : : : ; xki)( �i;j j Fi is compatible with F 0

j
gi
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where t00 = Hp;q(t1; : : : ; tkp) for some p; q such that Fp(t1; : : : ; tkp) is the entry
of the scheme S1, and F 0

q
is the main symbol of the entry of the scheme S2. If

the de�nition of the symbol Fi is projective then �i;j = �i for all j such that Fi
is compatible with F 0

j
; if Fi has a chain de�nition, and �i = Fp(t1; : : : ; tkp) for

some p then

�i;j =

�
Hp;q(t1; :::; tkp); if � 0

j
is a call to F 0

q
,

Hp;j(t1; :::; tkp); if � 0
j
is not a call.

Finally, if Fi has a basic de�nition, �i = f(: : : ; Fp(t1; : : : ; tkp); : : :) for some p,
and f 2 Fb, then

�i;j =

8<
:

Hi;q(x1; :::; xki); if � 0
j
is a call to F 0

q
;

f(:::Hp;q(t1; :::; tkp):::); if � 0
j
= f(:::F 0

q
(t01:::; t

0
lq
); :::);

f(:::; Hp;j(t1; :::; tkp); :::); if �
0
j
is a variable.

Lemma 4. The product scheme S1 � S2 can be obtained from the scheme

S1 by application of transformation rules from �lin, thus S1 � S2 � S1.

Proof. To get a compact description of our transformation process we call
a pair (i; j) singular if the symbol Fi with a basic de�nition is compatible with
the symbol F 0

j
with a chain de�nition.

The �rst step in constructing the product scheme consists of introducing
useless de�nitions of new symbols Hi;j ; r(Hi;j) = r(Fi), with the bodies �i,
for all pairs (i; j) such that Fi is compatible with F 0

j
. After this step, for the

partition

Ki = fFig [ fHi;j j Fi is compatible with F 0
j
g; i = 1; : : : ; n1

the premise of the copy rule is satis�ed, and by applying this rule we replace the
main symbols of the entry and of the bodies of symbols Hi;j for non-singular
pairs (i; j) by the elements from class Ki, which have been de�ned in the de-
scription of the product scheme. Let (i; j1); : : : ; (i; jq) be a sequence of singular
pairs such that q � 1, the term � 0

jl
is a call to F 0

jl+1
for l = 1; : : : ; q, and the

pair (i; jq+1) is non-singular. Such a sequence is �nite since the scheme S2 does
not contain hopeless addresses di�erent from occurrences of the term !. By
applying the copy rule for \�nal singular" pairs (i; jq) replace the symbols of
the class Ki occurring in the body of Hi;jq

by elements of this class such that
after replacement this body will coincide with the body of the symbol Hi;jq+1

.
By applying the simple fold rule replace the body of the symbol Hi;jl

by the
call Hi;jl+1

(x1; : : : ; xkj
l+1

), for l = 1; : : : ; q. After this transformation all de�ni-

tions of the symbols Fi for i = 1; : : : ; n1 become useless, so we can delete these
de�nitions and get the scheme S1 � S2. 2

While constructing the scheme S2 � S1 we will use symbols H 0
j;i

instead of
Hi;j . Then the de�ned symbol sets of the schemes S1 � S2 and S2 � S1 will be
disjoint.
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Lemma 5. The mapping �(Hi;j) = H 0
j;i

of the de�ned symbols of the

scheme S01 = S1 � S2 into de�ned symbols of the scheme S02 = S2 � S1 satis�es

the following conditions

� if the entry of the scheme S01 is a call to a symbol F , then the entry of the

scheme S02 is a call to the symbol �(F );

� the symbol F is fruitful i� the symbol �(F ) is fruitful;

� if both de�nitions for F and �(F ) are not projective, then

{ either both de�nitions for F and �(F ) are basic,

S01 # [F ] = f(�1; : : : ; �m); S
0
2 # [�(F )] = f(�01; : : : ; �

0
m
);

and for all i = 1; : : : ;m either �i = �0
i
= ! or H 0

i
= �(Hi) holds for

the main symbols Hi and H 0
i
of the terms �i and �0

i
, respectively;

{ or de�nitions for F and �(F ) are both chain de�nitions, and H 0 =
�(H) holds for the main symbols H and H 0

of their bodies.

Proof. The following table shows how the body �i;j of the symbol Hi;j

depends on the kinds of de�nitions of the symbols Fi and F 0
j
:

F 0
j
�y ( f(:::F 0

q
(�t0):::) F 0

j
�y ( F 0

q
(�t0) F 0

j
�y ( yl

1 2 3

Fi�x( f(:::Fp(�t):::) 1 f(:::Hp;q(�t):::) Hi;q(�x) f(:::Hp;j(�t):::)

Fi�x( Fp(�t) 2 Hp;j(�t) Hp;q(�t) Hp;j(�t)

Fi�x( xk 3 xk xk xk

If one of the symbols F and �(F ) is fruitful but the other one is fruitless then
we immediately get a contradiction to the similarity of the given schemes. The
other properties of the map � follow from the description of the schemes S01 and
S02 and can be easily proved by case analysis of various combinations of kinds
of de�nitions of the given schemes S1 and S2:

line; row S01 : Hi;j S02 : �(Hi;j) = H 0
j;i

1; 1 : Hi;j(�x)( f(:::; Hp;q(�t); :::) H 0
j;i
(�y)( f(:::; H 0

q;p
(�t0); :::)

2; 1 : Hi;j(�x)( Hp;j(�t) H 0
j;i
(�y)( H 0

j;p
(�y)

3; 1 : Hi;j(�x)( xk H 0
j;i
(�y)( f(:::; H 0

q;i
(�t0); :::)

1; 2 : Hi;j(�x)( Hi;q(�x) H 0
j;i
(�y)( H 0

q;i
(�t0)

2; 2 : Hi;j(�x)( Hp;q(�t) H 0
j;i
(�y)( H 0

q;p
(�t0)

3; 2 : Hi;j(�x)( xk H 0
j;i
(�y)( H 0

q;i
(�t0)

1; 3 : Hi;j(�x)( f(:::; Hp;j(�t); :::) H 0
j;i
(�y)( yl

2; 3 : Hi;j(�x)( Hp;j(�t) H 0
j;i
(�y)( yl

3; 3 : Hi;j(�x)( xk H 0
j;i
(�y)( yl 2
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For schemes R0
1 and R0

2 from Example 1 we can build the product scheme

* H1;1(a; a);
H1;1(x; y)( f(H2;2(x); H2;2(y); H3;2; H1;3(gx; gy))
H1;3(x; y)( f(H2;2(x); H2;2(y); H3;2; H1;1(gx; gy))
H2;2(x)( x

H3;2 ( gH4;2

H4;2 ( b

+

10 Completeness of the system �lin

This Section is entirely concerned with the proof of the completeness theorem
for the system �lin.

Theorem 3. �lin is a complete system of transformations preserving the

tree equivalence of linear recursion schemes.

Proof. We say a pair of recursion schemes S1; S2 satis�es the separation

condition if any formal parameter and any de�ned symbol does not occur in
both schemes S1 and S2. In the previous Section, we constructed the schemes
S1 � S2 and S2 � S1 such that no de�ned symbol occurs in both schemes.
Let us show how the separation condition can be achieved by means of rule
applications for variables of an arbitrary pair S; S0 of recursion schemes. Assume
that the variable x 2 X is a formal parameter of both a symbol H from S

and a symbol from S0. We replace the de�nition H(: : : ; x; : : :) ( � in S by
H(: : : ; y; : : :)( [y=x] � , where y is a new variable, not occurring yet in either of
the schemes S and S0. By application of the rules from �lin this transformation
can be done in the following way: �rst of all, introduce a useless de�nition
F (: : : ; x; y; : : :) ( � . By applying the adding of redundant parameters rule
replace each call H(: : : ; t; : : :) by the call F (: : : ; t; t; : : :). Now the de�nition
of the symbol H becomes useless and is deleted. Since the actual parameters,
corresponding to the formal parameters x and y, coincide in all calls to F , we
have (x � y) 2 L(�[F ]) for the stationary marking � of Graph(S). Thus, by
applying the context replacement rule we can replace all occurrences of x by
the variable y. As a result, the formal parameter x of the symbol F becomes
redundant. We introduce again a useless de�nition H(: : : ; y; : : :) ( [y=x] � , by
applying the delete redundant parameters rule we replace each call F (: : : ; t; t; : : :)
by the call H(: : : ; t; : : :). Then we delete the useless de�nition of the symbol F .

We can assume that the given tree equivalent reduced linear schemes are not
tree empty. Thus, due to Lemma 4 it is su�cient to transform one of the two
tree equivalent reduced linear schemes from the pair S01 = S1�S2; S

0
2 = S2�S1

satisfying the separation condition into another one by applying rules from �lin.
In the next step, we add the formal parameters y1; : : : ; ylj (of the symbol

F 0
j
) to the symbol Hi;j . To this end, for all pairs (i; j) such that the symbol Fi

is compatible with F 0
j
, we introduce a useless de�nition Ki;j(�z) ( S01 # [Hi;j ]

of a new symbol Ki;j ; r(Ki;j) = r(Fi) + r(F 0
j
), to the scheme S01. By applying
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the adding of redundant parameters rule we replace the occurrence of each call
Hi;j(t1; : : : ; tki) by the call Ki;j(t1; : : : ; tki ; b; b; : : : ; b) where b is an arbitrary
constant (but not !!). As a result, the de�nitions of all symbols Hi;j become
useless and are deleted. Now, all addresses of the inserted actual parameter
occurrences of the constant b are irrelevant. Applyingi the replace irrelevant

term occurrences rule we replace

� each call Kp;j(t1; : : : ; tkp ; b; : : : ; b) that occurs in the body of Ki;j by the
call Kp;j(t1; : : : ; tkp ; y1; : : : ; ylj ) if Fi has a chain de�nition, but F 0

j
not, or

if Fi has a basic de�nition, but F 0
j
has a projective one;

� each call Kp;q(t1; :::; tkp ; b; :::; b) that occurs in the body of Ki;j by the call
Kp;q(t1; :::; tkp ; t

0
1; :::; t

0
lq
), if F 0

j
has a chain de�nition F 0

j
�y ( F 0

q
(t01; :::; t

0
lq
);

� each call Kp;q(t1; : : : ; tkp ; b; : : : ; b) at address [Ki;j ]:m (i.e. the m-th sub-
term of the body) by the callKp;q(t1; : : : ; tkp ; t

0
1; : : : ; t

0
lq
), if both de�nitions

for Fi and F 0
j
are basic, and S2 # ([F

0
j
]:m) = F 0

q
(t01; :::; t

0
lq
):

We denote the obtained scheme by Ŝ1. Applying the algorithm described in
Section 6.7, we construct a stationary marking � of Graph(Ŝ1). This marking
is needed in the last step of the transformation of the scheme Ŝ1 into S2 � S1.

We call a de�ned symbol Ki;j of the scheme Ŝ1 critical if either its de�nition
is projective or the scheme S2 � S1 contains a projective de�nition for H 0

j;i
. It

is clear that each critical symbol is fruitless. A critical symbol Ki;j is said to

be minimal , if there exists a non-critical symbol of the scheme Ŝ1, whose body
contains a call to Ki;j . The following condition is called the key condition for a
critical symbol Ki;j :

There exists a nonterminal of the grammar �[Ki;j ], which knows both terms

det(Ŝ1 # [Ki;j ]) and det((S2 � S1) # [H
0
j;i
])

(at least one of these terms is a variable).
We can prove that if Ŝ1 � S2 � S1 then the key condition is satis�ed for

each minimal critical symbol of the scheme Ŝ1. Indeed, if the key condition is
false for a minimal critical symbol Ki;j with a projective de�nition Ki;j(ẑ)( x

(the symmetric case when the de�nition of H 0
i;j

is projective can be considered
similarly) then there exists a path w that leads from entry node to the node
[Ki;j ] in Graph(Ŝ1) such that (x � det((S2 � S1) # [H

0
j;i
])) 62 L(�w(OO)) holds.

But then det(Ŝ1) # a 6= det(S2 � S1) # a for some address a which contradicts
det(Ŝ1) = det(S2 � S1).

Now we have to replace the body of each minimal critical symbol Ki;j of the

scheme Ŝ1 by the body of the symbol H 0
j;i
. This can be done by applying rules

from �lin in the following way.
If the de�nition of Ki;j is projective then add to the scheme Ŝ1 the new

de�nitions of all symbols called from the body of H 0
j;i

directly or indirectly.
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Furthermore, using the truth of the key condition for Ki;j and applying the
context replacement rule, we replace the body of the symbol Ki;j by the term
det((S2 � S1) # [H

0
j;i
]), after that it only remains to fold this term into term

(S2 � S1) # [H
0
j;i
].

If the de�nition of Ki;j is not projective we carry out these transformations
in the opposite direction: �rst we apply the simple fold/unfold rule and replace
the body of the symbol Ki;j by its determinant which due to the truth of the
key condition can be replaced by the variable that coincides with the body of
H 0
j;i
. After that it only remains to delete some useless de�nitions possibly arisen

in the last step.
Note that after this transformation step all occurrences of the formal pa-

rameters x1; : : : ; xki of Ki;j are subterms of actual parameters in some calls.
Therefore, all addresses of actual parameters corresponding to these formal
ones, become irrelevant. We replace all terms at such irrelevant addresses by
a constant b. As a result, all formal parameters x1; : : : ; xki of the symbol Ki;j

become redundant, and we delete them by applying the delete redundant pa-

rameters rule. Now the schemes can di�er only in designations of non-critical
symbols. Their renaming can be achieved by application of the copy rule as it
was done in the beginning of this section to reach the separation condition for
schemes. 2

For our schemes from Example 2 we have
L̂n =

*
K1;1(a; a);
K1;1(x; y)( h(K2;n+3(x; y);Kn+3;2(x; y))
Ki;n+3(x; y)( Ki+1;n+3(f(x; x); y); i = 2; : : : ; n+ 1
Kn+3;j(x; y)( Kn+3;j+1(x; g(y; y)); j = 2; : : : ; n+ 1
Kn+2;n+3(x; y)( x

Ki;n+2(x; y)( g(Ki+1;n+2(x; y);Ki+1;n+2(x; y)); i = n+ 3; :::; 2n+ 1
K2n+2;n+2(x; y)( g(Kn+2;n+2(x; y);Kn+2;n+2(x; y))
Kn+2;n+2(x; y)( x;

+

Un � Ln =

*
H 0
1;1(a);

H 0
1;1(y)( h(H 0

n+3;2(y); H
0
2;n+3(y))

H 0
n+3;i(y)( H 0

n+3;i+1(y); i = 2; : : : ; n+ 1

H 0
j;n+3(y)( H 0

j+1;n+3(g(y; y)); j = 2; : : : ; n+ 1

H 0
j;n+2(y)( f(H 0

j+1;n+2(y); H
0
j+1;n+2(y)); j = n+ 3; :::; 2n+ 1

H 0
2n+2;n+2(y)( f(H 0

n+2;n+2(y); H
0
n+2;n+2(y))

H 0
n+2;n+2(y)( y:

+

The stationary marking of the scheme L̂n can be described in the following
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short form:

K1;1(x; y) : fx � y � ag;

Ki;n+3(x; y) : fx � f̂ i�2(y); y � ag; i = 2; : : : ; n+ 2;
Kn+3;j(x; y) : fy � ĝj�2(x); x � ag; j = 2; : : : ; n+ 2;
Ki;n+2(x; y) : fy � ĝn(x); x � ag; i = n+ 3; : : : ; 2n+ 2;
Kn+2;n+2(x; y) : fy � ĝn(x); x � ag;

where

f̂n(u) =

�
u; if n = 0;

f(f̂n�1(u); f̂n�1(u)); if n > 0:

The minimal critical symbols are Kn+2;n+3 and Kn+2;n+2, and the key condi-
tions for them are satis�ed due to

det(L̂n # [Kn+2;n+3]) = x(� f̂n(y));

det(Un � Ln # [H
0
n+3;n+2]) = f̂n(y);

det(L̂n # [Kn+2;n+2]) = ĝn(x)(� y);

det(Un � Ln # [H
0
n+2;n+2]) = y:

11 A polynomial decision algorithm

Theorem 4. The tree equivalence of linear recursion schemata is decidable in

time O(n6).
Proof. We extract the algorithm deciding the tree equivalence of schemes

from the description of the transformation process turning a linear scheme into
another tree equivalent one.

1. First, reduce the given linear schemes S1 and S2.

2. If both schemes reduce to the scheme ! then stop with the answer "Yes".
If one of the schemes reduces to !, but the other does not, then stop with
the answer "No" .

3. Using the algorithm described in the Section 8 check the similarity of the
obtained reduced schemes. If they are not similar the algorithm terminates
with the answer "No" .

4. If S1 ./ S2 then construct the product schemes S1 � S2, S2 � S1, the
scheme Ŝ1, and the stationary marking � of Graph(Ŝ1).

5. Check the key condition for each minimal critical symbol of the scheme
Ŝ1. If it is false for at least one minimal critical symbol the algorithm
terminates with the answer "No" otherwise it stops with the answer "Yes"
.
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Let us approximate the complexity of this algorithm as a function of n =
max(jS1j; jS2j) and the maximum k of the formal parameter numbers of the
de�ned symbols of the schemes, k � n. The scheme reduction requires no more
than O(n3) elementary steps. The similarity test, constructing the product
schemes, and the scheme Ŝ1 need no more than O(kn2) steps. The sizes of
the schemes Ŝ1 and S2 � S1 do not exceed O(kn2). The maximal size of the
grammars arising in the course of constructing the stationary marking � of
Graph(Ŝ1) does not exceed O(kn2). The length of the maximal chain in L(X)
is no greater than 3jX j � 6k. The time needed for execution of a meet operation
and of an application of the mark transformer [[call(:)]] to marks of size O(kn2)
is proportional to O(kn2). Summing up, we get the upper bound O(n6) for the
complexity of the stationary marking � construction algorithm. Now we want
to check the key condition for a minimal critical symbol Ki;j without explicitly

building the terms det(Ŝ1 # [Ki;j ]) and det((S2�S1) # [H
0
j;i
]), because it would

require too much time. In Example 2, the determinant of the term H 0
n+3;n+2(y)

has the size O(2n), although the size of the scheme Un � Ln is O(n). We wish
to reduce the key condition check to testing a more general condition Test.

Test(A;F;G): A nonterminal A of a reduced grammar G knows the deter-

minant of the body of a fruitless symbol F de�ned in the scheme S2 � S1.
To check Test(A;F;G), we can use the following relations.

� If (S2�S1) # [F ] is a variable x, then Test(A;F;G) is true, i� A knows x.

� If (S2 � S1) # [F ] is a call to a symbol F 0, then

Test(A;F;G) = Test(A;F 0; [[call([F ])]]G):

� If (S2 � S1) # [F ] = f(t1; : : : ; tm), and Fi is the main symbol of the
term ti, then Test(A;F;G) is true, i� the grammar G contains a rule
A ! f(A1; : : : ; Am), and Test(Ai; Fi; [[call([F ]:i)]]G) is true for all i =
1; : : : ;m.

� Test(A;F;G1) ^ Test(A;F;G2), Test(A;F;G1 uG2).

We describe a procedure TEST (A;F;G) checking Test(A;F;G) for a scheme
S, where S = Ŝ1 or S = Ŝ2, by application of a tabular technique. To pre-
vent repeated execution of calls to TEST , use a table Gram for maintaining
in Gram[A;F ] the meet of all grammars, for which TEST (A;F;G) has been
processed, and a table Answer for maintaining in Answer[A;F ] the result of
TEST (A;F;Gra[A;F ]).

TEST (A;F;G) : forall A, F do Gram[A;F ] := 11 od;
if Gram[A;F ] v G then return Answer[A;F ]
else Gram[A;F ] := Gram[A;F ] uG;

if S # [F ] = x then Q := (A knows x)
elsif S # [F ] = F 0(t1; : : : ; tm) then Q := TEST (A;F 0; [[call([F ])]]G)
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elsif S # [F ] = f(t1; : : : ; tp)
then Q := (G has a rule A! f(A1; : : : ; Ap)) ^

(8i = 1; : : : ; p TEST (Ai; Fi; [[call([F ]:i)]]G),
where Fi is the main symbol of the term ti

�

Answer[A;F ] := Q; return Q

�

We can assume that each of the original schemes contains no more than one
projective de�nition, hence the number of minimal critical symbols of the scheme
Ŝ1 is no greater than O(n). For a critical symbolKi;j , there exists a simple (with

pairwise disjoint edges) path w to the node [Ki;j ] in Graph(Ŝ1). An application
of a transformer [[call(a)]] can increase the grammar's size by no more than the
sum of actual parameter size of the call at address a, thus j�w(OO)j � O(n) holds.
The applications of the meet operation can increase this size by a factor of k, so
a reduced grammar �Ki;j in the stationary marking � has a size bound O(kn).
Let us approximate the time needed for execution of a call TEST (A;F;G). This
call leads to no more than O(n3) further calls of TEST . Using the algorithm
described in [5] for the acyclic congruence closure we can perform the operations
[[call(:)]], u, and v for grammars of size O(kn) in O(kn) time. The total amount
of time for executing TEST (A;F;G) is O(n5). Summing up the time bounds
for all algorithm steps we get the upper time bound O(n6) for the complexity
of the algorithm deciding the tree equivalence of linear recursion schemes. 2

12 Quasi-linear schemes

Consider a class of quasi-linear recursion schemes, which di�er from the lin-
ear ones only in that actual parameters may contain the constant !. We can
transform each quasi-linear scheme S into a linear one by

� replacing each subterm t of an actual parameter by ! if t � !, and

� for each de�nition F (x1; : : : ; xn) ( � of the scheme S, and for every
partition of the set f1; : : : ; ng = �[ �0 into two non-intersecting subsets
� 6= ; and �0, we introduce a useless de�nition

F�(xj1 ; : : : ; xjn�k
)( [!=xi1 ; : : : ; !=xik ] �

of a new symbol F� where � = fi1; : : : ; ikg;�
0 = fj1; : : : ; jn�kg, and

� repeatedly applying the simple fold/unfold rule to replace each call

F (t1; : : : ; tn) by the call F�(tj1 ; : : : ; tjn�k
)

where � = fijti = !g;
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� �nally, deleting all useless de�nitions of the scheme obtained.

Thus, the transformation system �lin will be complete also for the tree equiv-
alence of quasi-linear schemes, and we obtain an algorithm deciding the tree
equivalence of quasi-linear schemes. However, from the described reduction we
cannot derive a polynomial bound for the complexity of this algorithm because
of the exponential size growth in the transformation of quasi-linear schemes into
linear ones.

13 Conclusion

In [9], B. Rosen described a technique that reduces the tree equivalence problem
in subclasses of recursion schemes to the equivalence problem in some subclasses
of context-free grammars. In this reduction, the scheme determinant is encoded
by the words of the modelled grammar.

Our method to decide the tree equivalence problem reminds the Parallel

Stacking and Alternate Stacking techniques described by L. G. Valiant [12] and
used for solving the equivalence problem for subclasses of (non-singular) DPDAs.
In these techniques, the two DPDA's are simulated simultaneously using one
stack. Alternate Stacking involves simulating two DPDA's A1 and B2 with one
non-deterministic PDA C whose stack contents a1b1 : : : anbn are encodings of
the stack contents a1 : : : an and b1 : : : bn for A and B, respectively. The non-
deterministic stack machine C accepts an input i� A and B are inequivalent.
Since the emptyness of C is decidable, it follows that the equivalence of A and
B is decidable. This technique is only successful if the top stack segments can
be kept uniformly bounded.

The tree equivalence problem for the whole class of recursion schemes is
inter-reducible to the equivalence problem for deterministic pushdown automata
[3, 4, 6].
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