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Abstract| Automatic extraction of rules

from datasets has gained considerable inter-

est during the last few years. Several ap-

proaches have been proposed, mainly based

on Machine Learning algorithms, the most

prominent example being Quinlan's C4.5.

In this paper we propose a new method

to �nd rules in large databases, that make

use of so{called Rectangular Basis Functions (or

RecBF). Each RecBF directly represents one

rule, formulating a condition on all or a sub-

set of all attributes. Because not all attributes

have to be used in each rule, rules tend to be

less restrictive and result in a more general-

izing rule set.

The rule �nding mechanism makes use of a

slightly modi�ed constructive algorithm al-

ready known from Radial Basis Functions.

This algorithm allows to generate the \net-

work of rules" on{line. It starts o� with

large, general rules and specializes them in-

dividually, based on con
icts.

In this paper we present the algorithm to

construct the rule base, discuss its proper-

ties using a few data sets and outline some

extensions.

I. Introduction

In recent years the analysis of huge datasets has
gained much interest because modern technical sys-
tems are capable to automatically generate large
amounts of data from the underlying process. To
improve the quality of this process the recorded data
has to be analyzed e�ciently. Existing statistical
methods like a correlation analysis are hard to ap-
ply because there are too many parameters and too
much data to explore all possible combinations of
parameters. This raises the need for methods that
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are capable to analyze huge amounts of numeri-
cal data e�ciently and extract information about
the underlying process. Questions of interest could
range from simple rule extraction (i.e. assigning sim-
ple regions in input space to speci�c classes) to the
extraction of the sensibility of parameters, e.g. which
range of parameters leads to a satisfying quality.
Today many supervised algorithms that can build

classi�ers from data examples (input{class pairs)
are known. Some of them directly generate rules,
others build good classi�ers and allow the extraction
of their knowledge about the relation between inputs
and classes. Usually one concentrates on methods
that generate if{then{rules as knowledge represen-
tation, because these types of rules are easy to un-
derstand by humans and can be used for further
machine{based post{processing (rule minimization,
sorting etc.)
For most applications in process supervision or

control it is desirable to �nd a small set of \good"
rules e�ciently. In this context \good" means that
the condition part of the rules is small (i.e. only de-
pends on a few important attributes) and that each
rule covers a large area of the feature space, mean-
ing it is as general as possible and is highly relevant.
In addition the set of rules should describe the data
used to �nd the rules as complete as possible. A
100% coverage is sometimes undesirable, especially
if the data set is noisy, in that case the resulting
rule{set should describe the important properties of
the data set. A good generalization is desired as
well, resulting in a rule base that also covers un-
known patterns in a meaningful way.
Several approaches to extract rules fromdata were

proposed, the three main directions are based on:

� Knowledge extraction from trained Neural Net-
works,

� Decision tree or rule learning, and
� Methods that learn hyper{rectangles (or rules)
directly.

While Neural Networks have been proven to be
successful in building good classi�ers in many ap-
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plications, nearly all refuse to tell what they have
learned, due to their distributed knowledge repre-
sentation. Nevertheless, there exist some methods
to extract rules of trained neural networks ([16],
[17]). But these approaches have to be used care-
fully for data analysis, because the learning and as
well the complex extraction process can be very time
consuming. In addition, the rules are extracted from
a Neural Network that has been trained on the data.
This can lead to an over simpli�cation if the network
overgeneralizes and adds another in
uencing factor
that has to be carefully adjusted.
Many decision rule algorithms that learn from raw

data have already been proposed, two well{known
ones are AQ15 and CN2 (see [7] and [2]). Both al-
gorithms take all training examples to construct the
rule base. Starting with most general rules they try
to �nd the best matching rules by specializing step
by step. The quality of a rule is evaluated by an
information measure. Additionally, the maximum
number of conditions in each rule is controlled by
an user parameter to reduce the search space. Since
these algorithms are batch oriented (they have to
know all examples before training starts) and are
using beam search, rule generation can be a very
time consuming process. Another group of algo-
rithms builds decision trees, for example Quinlan's
wellknown ID3 and C4.5 (see [11] and [12])). The
underlying idea is to build a classi�er by recursively
dividing the parameter space of numeric (or nom-
inal) attributes into regions that can be assigned
one class. This results in a classi�er in form of a
tree which can be easily transformed into rules by
traversing every path from the root to one leaf and
generating the corresponding rule (In C4.5 a more
sophisticated strategy is implemented, that analyzes
the tree as well as the data). Although C4.5 is a
very e�cient tool, in the context of data analysis
two problems arise. First, the rules generated by
C4.5 are ordered, which makes the interpretation of
isolated rules more di�cult. And secondly, the used
statistical signi�cance tests have the consequence
that the rules do not classify all examples correctly.
This may be helpful for noisy data, but has to be
carefully controlled to avoid over{generalization.
The third kind of algorithm is based on the idea

to build a classi�er directly by constructing n{di-
mensional rectangles (assuming n attributes). Each
rectangle speci�es a region that belongs to one class
(see [15], [18]) and can be easily transformed into
one if{then{rule. These approaches are primarily
designed to build good classi�ers, which makes it
hard to minimize the number of rectangles or num-
ber of attributes that are used to describe one rect-
angle. As a consequence the resulting rule base can

be very large with many highly specialized rules.
In the following we will present an algorithm that

builds a so{called Rectangular Basis Functions Net-

work (RecBFN). RecBFNs also consist of a set of
hyper{rectangles, but the used training algorithm is
derived from Radial Basis Function Networks. By
extending an e�cient, constructive algorithm the �-
nal rules are as large as possible and use only some
required attributes. This leads to well generalizing
rules with small condition{parts. Another feature
o�ered by this method is the extraction of two types
of rectangles (or rules). One rectangle describes
the region with high con�dence (required rules), the
smallest rectangle that just covers a subset of the
training points belonging to one class. The other
rectangle describes the largest possible region, i.e. a
rule with lower con�dence (su�cient rules), that
just avoids examples from con
icting classes. In ad-
dition, the underlying algorithm enables controlled
overlap between con
icting rules, which can be help-
ful to �nd few, general rules in noisy data.
This paper is organized as follows: section II.intro-

duces the basic unit of RecBFN's, the Rectangular
Basis Function. The next section shows how single
units build up a network. Section IV.presents the
algorithm to construct these networks (as well as
the rulebase) dynamically. In section V.some exper-
iments are discussed and �nally we conclude with a
discussion of RecBFNs, some extensions to the al-
gorithm and ideas for future work.

II. Rules and Rectangles

The approach presented here originated from the
idea that rules are usually local in nature, a rule op-
erates on a part of the feature space in opposite to a
function. This led to the idea of using Neural Net-
works with local nature, the most popular example
being Radial Basis Function Networks (see [8], [1]).
Here each unit can be interpreted independently of
all other units. Unfortunately the radial nature of
these functions only describes the knowledge with a
center and a standard deviation. But in most cases,
rules of the form:

if (x1 2 [xa1; x
b

1]) ^ � � � ^ (xn 2 [xa
n
; xb

n
]) then class c

are desired (with xa
i
being the lower and xb

i
the up-

per bound of the interval corresponding to the i{th
attribute).
The idea of Rectangular Basis Functions (RecBF)

presented in this paper1 allow the one{to{one cor-
respondence between Basis Function and rule.

1Local Basis Functions with rectangular basis were already

used in [10] but with di�erent focus. Here, the rectangular nature

was the result of an approach to get rid of the multiplication

to better suite hardware implementations | an approach long

before used by Intel Corp. for their Ni1000 Radial Basis Function

Coprocessor (see [3]), but never explicitly published.
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Figure 1: Rectangular Basis Functions in 2D{space,
using the Signum function (top) or Gaussian (bot-
tom) as an activation function along each axes.

The well{known activation functions R(�) used for
Radial Basis Functions (RBF, see [8]) are modi�ed
slightly to the following form:

R(~x) = min
1�i�n

A(xi; ri; �i) (1)

were the function A(�) computes the projection on
dimension i of the chosen activation function. ~x de-
notes the input vector and ~r the reference vector of
the RecBF. Instead of using only one radius (which
results in the radial{symmetric nature) n individual
radii �i are used. Now, the �i represent a set of in-
dividual radii along each dimension. Two examples
for two{dimensional RecBFs are shown in �gure 1.
For these examples, A(�) would have been for the
Signum function:

A(xi; ri; �i) =

�
1 : jxi � rij � �i
0 : else

(2)

and if the Gaussian is used:

A(xi; ri; �i) = e

(x
i
�r

i
)2

�
2
i (3)

The Signum function allows an easier | or at
least more obvious | rule extraction, while Gaus-
sians would result in a smoother function of a clas-
si�er.
Each RecBF has an additional super{script c, that

indicates the class the RecBF belongs to. Now each

y

x

z

Figure 2: A rectangle in 3D that has �nite radii par-
allel to the y{ and z{axes but is not limited along the
x{axis. This rectangle represents a rule depending
only on the attributes y and z.

RecBF can be straightforward (without any addi-
tional processing) interpreted as a rule of the form:

if 81 � i � n : xi 2 [ri��i; ri+�i] then class c (4)

One of our primary goals was to extract rules,
which operate only on some signi�cant attributes.
So far, every rule has a �nite width parallel to each
axe, which is equivalent to a rule depending on each
and every attribute. One solution to solve this dil-
emma are radii that are allowed to be in�nite. This
results in rectangles that can have in�nite dimen-
sions parallel to a subset of coordinate{axes, repre-
senting rules that do not depend on the attributes
associated with these axes. Figure 2 shows an exam-
ple of a rectangle that has �nite dimensions parallel
to the y and z axes but is not limited along the x{
axis. This would represent a rule not depending on
the attribute x:

if (ymin � y � ymax)^(zmin � z � zmax) then class c

III. Rectangular Basis Function Networks

Rectangular Basis Function Networks (RecBFN) are
equivalent in structure to Radial Basis Function Net-
works, also consisting of an input, one hidden, and
an output layer. The only major di�erences are
the activation functions of the hidden units and the
propagation rule. RecBFNs use rectangular basis
functions in contrast to the radial ones used for
RBFNs. Furthermore RecBF Networks can be seen
as using a Manhattan distance that replaces the Eu-
clidean distance used by RBFNs.
An example of a full RecBF Network is shown

in �gure 3. For classi�cation the trained network
receives vector ~x as an input and Ri indicates the
activation of one RecBF{unit with reference vector
~ri. In this illustration the weight vector that con-
nects all input units to one hidden unit represents
the center of the Rectangle. Each RecBF computes
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weighted connections

input nodes

output units

RecBF units

Figure 3: The structure of a Rectangular Basis
Function Network (RecBFN).

a value that indicates the membership of vector ~x to
the class this RecBF belongs to. This will either be
a value equal to 1 if the input vector lies within the
boundaries of the rectangle or 0 if not. In case of
more complex activation functions (i.e. Gaussians or
even membership functions as used in Fuzzy rules)
the activation of the RecBF indicates the degree
of membership. The output layer only computes a
weighted sum of the activations of the hidden units;
often this sum is than fed through a squashing func-
tion like a sigmoid. The weights are simply set to
the number of training patterns that were covered
by the speci�c RecBF.
Additionally extraction of rules is easy (since each

RecBF represents one rule) and all rules can be com-
bined into a disjunctive form:

if Rc

1 _ � � � _Rc

mc

then class c (5)

where mc indicates the number of rules for class c.
In section IV.an example is shown how a RecBF

Network is being constructed in two{dimensional
feature space.

IV. Training of RecBFNs

Since RecBFs are very similar to Radial Basis Func-
tions and their structure is actually the same, us-
ing already existing algorithms for RBF Networks
seems a reasonable approach. To avoid problems
with a{priori �xed number of units in the hidden
layer, which is common for most known algorithms
(see for example [8], [19]) a constructive algorithm
is more appropriate.

A. The Dynamic Decay Adjustment Algorithm

We use the Dynamic Decay Adjustment Algorithm
(DDA) that was introduced recently in [1] which
extends the RCE{algorithm (see [6], [13]). In short
the main properties of the DDA{algorithm are:

� constructive training: new RBF{nodes are
added whenever necessary. The network is built
from scratch, the number of required hidden

Figure 4: Three ways to shrink a rectangle to avoid
a con
icting point

units is determined during training. Individual
radii are adjusted dynamically during training.

� fast training: usually about �ve training cy-
cles (epochs) are needed to complete training,
due to the constructive nature of the algorithm.

� guaranteed convergence: the algorithm can
be proven to terminate.

The introduction of this algorithm made the appli-
cation of RBFNs easy since neither network archi-
tecture (i.e. number of hidden units) nor critical
parameters have to be determined manually. The
algorithm is based on two steps:

� commit: if a new pattern is not covered by
a prototype of the correct class a new hidden
unit will be introduced. Its reference vector will
be the same as the new training instance and
the width will be as large as possible, without
running into con
ict with already existing pro-
totypes.

� shrink: if a new pattern is incorrectly classi-
�ed by an already existing prototype of con
ict-
ing class, this prototype's width will be reduced
(e.g. shrunk) so that the con
ict is solved. In
the case of RBFs this shrinking only a�ects the
standard deviation of the radial activation func-
tion. In the case of rectangles shrinking is more
complicated as will be shown later.

B. Extending the Algorithm to Rectangular Basis

Functions

As illustrated in �gure 4 there is no unique way of
shrinking a rectangle so that a speci�c point will lie
outside of the modi�ed rectangle. Instead only one
of the dimensions or even a combination of them can
be shrunk. All these approaches would result in a
smaller rectangle where the con
icting point would
lie on the outside. Obviously there are two goals in
shrinking a RecBF:
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1. the con
icting point has to lie outside of the
shrunken rectangle.

2. the rectangle should shrink as little as possible,
to avoid RecBFs that are too small (i.e. highly
specialized rules).

It is easy to show that it is not necessary to shrink
more than one dimension:

� A point ~x = (x1; � � � ; xn) lies inside of a rectan-
gle i if and only if:

81 � j � n : xj 2 [ri;j � �i;j; ri;j + �i;j] (6)

� It is su�cient to decrease one �i to guaran-
tee that ~x lies outside of the rectangle because
negation of equation 6 leads to:

91 � j � n : xj 62 [ri;j � �i;j; ri;j + �i;j] (7)

� It is critical to select the dimension to shrink
carefully to maximize the volume of the remain-
ing rectangle. The loss in volume, if dimension
j is shrunk, can be expressed as follows:

(�i;j � jri;j � xjj)
Y

1�k�n;k 6=j

�i;k (8)

= (�i;j � jri;j � xjj)

Q
1�k�n�i;k

�i;j
(9)

The constant term
Q
���
�i;k can be omitted and

minimization of the following expression is suf-
�cient to �nd the optimum dimension along
which to shrink:

(�i;j � jri;j � xjj)

�i;j
(10)

RecBFs with in�nite dimensions add some di�-
culties. Restricting a previously in�nite dimension
to a �nite interval would alwaysmean loosing an \in-
�nite volume". Therefore shrinking of already �nite
dimensions would be preferred and the rectangle
would degenerate to a thin line stretched out along
n�1 dimensions. To avoid this kind of dilemma, one
restriction is enforced on each dimension �i, namely
a minimum value �i;min.
The patches to the DDA algorithm required to

train Rectangular Basis Functions are now easy to
apply. The only di�erence is the procedure \shrink"
that has to deal with a set of radii instead of one
standard deviation. According to the criteria shown
above it selects the dimension where the minimum
loss in volume is to be expected and shrinks the
rectangle along this axis. The complete algorithm
will be shown in the next paragraph.
One additional patch includes asymmetric rect-

angles. In the case of a signum activation function,

1

2

3 4

Figure 5: Depending on the order of training pat-
terns, three symmetric rectangles are needed in the
worst case (left). For asymmetric RecBFs the order
of patterns looses its in
uence and only one RecBF
is needed (right).

symmetry of the rules towards their reference vec-
tor is not necessary. Therefore a second set of radii
is introduced and the (hyper{) rectangle can have
di�erent radii in the positive and negative direc-
tion of each coordiante axe. In addition this fea-
ture makes the shrinking of rectangles almost inde-
pendent on the order of training patterns. Figure 5
shows an example where the normal algorithm intro-
duces 3 RecBFs, while only one asymmetric RecBF
is needed. This example demonstrates nicely how
starting with pattern 3 would have resulted in only
one rectangle. Using asymmetric rules this e�ect
can be supressed.

C. The modi�ed DDA{algorithm for RecBFNs

Before presenting the modi�ed DDA{algorithm for
RecBFNs, a few de�nitions are required: each RecBF
or prototype pc

i
of class c with index i (1 � i � mc,

mc being the number of prototypes of this class )
consists of:

� an activation Rc

i
(�)

� a reference vector (center): ~rc
i
= (rc

i;1; � � � ; r
c

i;n
)

� an amplitude (or weight): Ac

i

� two sets of \radii" (or standard deviations in
the case of Gaussians):

{ set of axes along which the rectangle is
spread out towards in�nity: K1

{ set of axes Ke along which the rectangle is
restricted with a radius of �j. Only here
the �j are meaningful.

Now the following equations hold:

{ K1
\Ke = ;

{ K1
[Ke = f�1; � � � ; �ng

In addition a set of \minimal radii" is de�ned:
(�1;min; � � � ; �n;min)

(possibly de�ned via the variance of the single com-
ponents in the training data).
This leads to a new shrink{procedure for the al-

gorithm as shown in table 1. Three cases are consid-
ered. If an existing �nite dimension can be shrunk
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PROCEDURE shrink

// compute new �'s for three cases:
// 1) the largest new � for a previously
// in�nite one:
�max;i = maxfjri � xij : �i 2 K1

g

// 2) the � with the smallest loss in volume
// for a �nite one:
�min;j = minfjrj � xjj : 81 � l � n; j 6= l :

�j � jrj � xjj

�j
�

�l � jrl � xlj

�l
g

// 3) same as 2), but with � � �min:
�best;k = minfjrk � xkj : 81 � l � n; k 6= l :

(
�k � jrk � xkj

�k
�

�l � jrl � xlj

�l
)

^(�i � �i;min)g
IF �best does exist THEN

�k = �best;k
ELSEIF �max;i � �best;j

�i = �max;i

ELSE

�j = �min;j

ENDIF

END PROCEDURE

Table 1: The new shrink{procedure for RecBFNs.

without shrinking below �min the one with the small-
est loss in volume will be chosen. If this is not the
case either one of the remaining in�nite dimensions
will be shrunk, or if this would result in a new radius
smaller than �min one of the existing �nite dimen-
sions will be shrunk below �min.
The complete code using this procedure to per-

form training for one epoch is shown in table 2.
First, all weights are set to zero because other-

wise they would accumulate duplicate information
about training patterns. Next all training patterns
are presented to the network. If the new pattern
is classi�ed correctly, the weight of the closest pro-
totype is increased; otherwise a new prototype is
introduced, having the new pattern as its center.
The last step must include shrinking all prototypes
of con
icting classes if their activations are too high
for this speci�c pattern.

D. How does the Algorithm work?

Figure 6 demonstrates how the modi�ed DDA{al-
gorithm works for a small experimental data set in
two{dimensional feature space. The dataset con-
sists of four patterns, one of class A and three be-
longing to the other class B. After presenting the
�rst pattern (class A) one RecBF with in�nite axes
is created | so far the network was empty. The
second pattern, belonging to class B, results in a

ALGO DDA{RecBFN
// reset weights:

FORALL prototypes px
i
DO

Ax

i
= 0:0

ENDFOR

// train one complete epoch

FORALL training pattern (~x; c) DO:
IF 9pc

i
: Rc

i
(~x) = 1 THEN

Ac

i
+ = 1:0

ELSE

// \commit": introduce new prototype

add new prototype pc
mc+1

with:
~rc
mc+1

= ~x

FORALL 1 � i � n DO

�i =1

FORALL k 6= c; 1 � j � mk DO

pc
mc+1

:shrink(pk
j
)

Ac

mc+1
= 1:0

mc+ = 1
ENDIF

// \shrink": adjust con
icting prototypes

FORALL k 6= c; 1 � j � mk DO

pk
j
:shrink(~x)

ENDFOR

END ALGO

Table 2: The DDA{algorithm. pc
i
indicates proto-

type i of class c, Ac

i
the corresponding weight, ~rc

i
the

center vector and �c
i
the standard deviation. See

text for further explanation.

(1) (2)

(1)

(4)

x

y

(3)

(2)

(1) (2)

(3)

class A

class B

x

y

x

y

Figure 6: A small example in two{dimensional fea-
ture space to illustrate how the RecBF DDA algo-
rithm works. See text for further explanation.

con
ict with the existing RecBF. Therefore the one
dimension (x+) which results in the smaller \loss of
volume" is shrunk. For class B a �rst RecBF is be-

6



ing committed, with an in�nite dimension parallel
to y and x+ and a �nite width along x�, to avoid a
con
ict with the already existing prototype of class
A. Pattern 3 is covered by the RecBF of class B

and does again result in a con
ict with A | it is
shrunk along x+. Pattern 4 �nally lies outside of
the B{RecBF, thus resulting in a second RecBF of
class B and shrinks y+ of the existing prototype of
class A.
The structure of the resulting network will not

change during subsequent presentations of the four
training patterns. With real world data it could
happen that shrinking of prototypes leads to un-
covered patterns which would result in a few new
RecBFs during the next epochs. Typically training
takes only about 3{5 epochs.

V. Experiments

The proposed algorithm for Rectangular Basis Func-
tions was applied to several small data sets to il-
lustrate how the algorithm performs. Results from
C4.5 ([12], own experiments) and Thrun's VI{ana-
lysis (from [16]) were added to compare the rules
found by the RecBFN to other approaches.

A. The MONKs data set

All MONKs problems are discrete classi�cation prob-
lems de�ned in an arti�cial \robot" domain. The
three data sets were used in [4] to compare the per-
formance of di�erent learning algorithms. Robots
are described by six di�erent attributes describing
their appearance. Three attributes have 3 values,
one has 4 and two attributes are binary. In our ex-
periments with RecBFNs all attributes were coded
as numerical values. For a larger range of values for
one attribute it would be bene�cial to use a 1{of{n
coding to better suite the RecBFN approach.

A.1. The �rst MONKs problem

is de�ned by the following target:

if (head{shape = body{shape)
or (jacket{color = red)

then M1

Running the RecBF DDA{algorithmon this prob-
lem produces 4 rules for class M1:

� (x1; � � � ; x6) 2 (round, round, {, {, {, {)
� (x1; � � � ; x6) 2 (square, square, {, {, {, {)
� (x1; � � � ; x6) 2 (octagon, octagon, {, {, {, {)
� (x1; � � � ; x6) 2 ({, {, {, {, red, {)

Considering that it is not (yet?) possible to have
rules of the form xi = xj represented by RecBFs this
set of four rules is describing class M1 in the best
possible way. The �rst three rules describe the fact
that head{shape = body{shape and the fourth

rule represents the other possibility jacket{color
= red.
Experiments with C4.5 resulted in the same four

rules as produced by the RecBF{DDA. In [16] nine
rules are found that need further manual simpli�ca-
tion to �nd the �nal rule.

A.2. The second MONKs problem

has a more complex target (note that it is not easily
expressed in a simple disjunctive form):

if exactly two of the six attributes
have their �rst value

then M2

It is clear that there is no simple compact solution
for this problem (see also [16]) because M2 is a parity
problem. Therefore the RecBF{DDA �nds a set of
small, very specialized rules that describe class M2.
The RecBF network contains 43 rules for class M2

which describe the problem in a disjunctive form.
Although C4.5 produces only 3 special and 1 de-

fault rule to describe M2, these rules do not rep-
resent the underlying target concept in an under-
standable way | resulting in an error rate of more
than 15% on the training data. In [16] an automatic
rule extraction is not reported, only the veri�cation
of more complex rules that were applied at hand is
described.

A.3. The third MONKs problem

is de�ned by:

if ( (jacket{color = green)
and (holding = sword))

or ( (jacket{color = not blue)
and (body{shape = not octagon))

then M3

Note that in this problem the training set contains
noisy instances.
This problem is being classi�ed by the RecBF

Network using 14 rules for class M3. Some of them
were only committed to cover noisy patterns, but
sorting the rules according to their weight results in
an ordered list of rules, starting with:

� (x1; � � � ; x6) 2 ({, not octagon, {, {, red, {)
� (x1; � � � ; x6) 2 ({, round, {, {, not blue, {)
� (x1; � � � ; x6) 2 ({, square, {, flag, green, {)
� ...

Note that the �rst two rules do overlap and almost
describe the second part in M3. The missing case
(square body and green jacket) is covered by several
smaller rules.
Using C4.5 in standard con�guration results in 6

rules to describe M3, also di�cult to interpret. But
if the grouping option of C4.5 is used, the underlying
concept is represented by the two M3{rules. In [16]
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only 6 rules are generated for this dataset, which is
due to the fact that these rules are extracted from
a Neural Network trained on the data, rather than
from the data itself. In this scenario the Neural
Network already took care of the noisy patterns.

B. The IRIS{data

This very famous dataset from Fisher ([5]) contains
three classes of 50 instances each, where each class
refers to a type of iris plant. One class is linearly sep-
arable from the other two; the latter are not linearly
separable from each other. A good rule extraction
system should at least be able to make use of this
fact and �nd the one linear rule that separates the
�rst class from the other two.
RecBFN �nds eight rules after three training cy-

cles. One rule for class 1, three for class 2 and four
for class 4. The single rule for class 1 is exactly the
one to divide class 1 linearly from the other two:

if x3 2 (�1; 3:0) then class 1

C4.5 does not �nd the one rule that separates
class 1 from the other two. Class 1 is represented
through the default{class and one specialized rule.
This makes it hard to �nd the one underlying global
rule. Thrun does not report results on this dataset.

C. Further Results

This approach was also applied to the breast{cancer
dataset (see [9]), originating from a real world ap-
plication. This dataset contains about 700 patterns,
each pattern described by 9 real{valued attributes.
Interestingly the RecBF network trained on the data
performed also very well as a classi�er. Only a
5% error rate on the testdata (using 10{fold cross{
validation) was achieved, which compares well to
existing classi�ers (C4.5: 4%, MLP (using RPROP,
see [14]): 5%).
In all cases the RecBF network was trained al-

most instantaneous and needed only about 2{4 cy-
cles through the training data.

VI. Discussion

One obvious problem with all rule �nding systems
that are based on simple geometric structures (i.e.
hyper{rectangles or lines) is the fact that they are
not able to �nd complex rules, xor{relationships for
example. The second MONKs problem shows that
if the underlying rules can not be represented in
a disjunctive form, the RecBFN{approach will �nd
lots of small rules that describe the data. In the fu-
ture we will include a post{processing which is logic
based and will extract rules not only in disjunctive
form.
Obviously noise makes it di�cult for the under-

lying DDA{algorithm to construct large rectangles.

Figure 7: This �gure illustrates how the larger, suf-
�cient rectangle covers an area that is not fully oc-
cupied by patterns of its class. The smaller, required
rectangle barely covers the patterns of its class, re-
sulting in a rule with a higher con�dence.

This is demonstrated by the third MONKs prob-
lem, where too many small rules are generated, that
also try to classify the noise. This could be solved
by a \hit"{counter for con
icting patterns. If there
is only one con
ict in a speci�c area it is assumed
that this pattern is an outlier and it does not lead
to a shrinking of the rule. But this rather heuristic
method would add another parameter to the algo-
rithm. Another idea would be to use a non{signum
activation function, maybe of triangular or Gaussian
shape. Using the two thresholds introduced in [1],
one can allow a certain overlap between rectangles of
con
icting classes. For the third MONKs problem
preliminary experiments show that this approach re-
sults in the extraction of only few rules. This rule
base does not classify 100% of the training data, but
generalizes much better than the \exact" solution.
In addition, we noted that the underlying DDA{

algorithm tends to build the rectangles purely based
on con
icts. No information about the correct pat-
terns is used to determine the shape of the rule. This
leads to very general rules (or large rectangles). We
call this type of rectangle su�cient rule. Without
any complex computation, the DDA can addition-
ally be used to �nd the smallest rectangle (called
required rule) inside each su�cient rule. This rect-
angle will be completely inside the larger su�cient
rectangle and will just barely cover all patterns that
are covered by the surrounding su�cient rule. Fig-
ure 7 shows an example for the two types of rectan-
gles. This feature can be used to extract regions of
higher vs. regions of lower con�dence. In addition,
fuzzy{like soft rules can be de�ned, using the two
intervals as boundaries for the trapezoid.

VII. Conclusions

In this paper we have proposed an extension to Ra-
dial Basis Functions that allows an easy extraction
of rules. The resulting network has Rectangular Ba-
sis Functions which have a clear one{to{one resem-
blance to rules in their disjunctive form. The Net-
work can be constructed dynamically without any
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a{priori knowledge about number of rules (i.e. num-
ber of hidden units). The resulting network has one
hidden unit for each rule and allows rules that de-
pend only on a few attributes. This leads to a rule{
set that contains a small number of general rules.
RecBF Networks are constructed automatically and
during training no user{interaction is needed.
We have used a few small datasets to show that

RecBFNs are actually able to extract meaningful
rules from datasets and that the time needed to con-
struct these networks is low. If there is not much
noise the number of rules extracted is close to the
optimum number of rules needed to represent the
underlying model in a disjunctive form. In the case
of noisy data, a modi�cation of the underlying train-
ing algorithm can be used to reduce the number of
rules found.
We are well aware that this is work in progress. A

deeper evaluation of the algorithm, scalability with
larger datasets and behaviour with real world data
are issues of current work.
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