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Abstract

We present an AXIOM environment called JET for geometric conputations with par-
tial differential equations wthin the framevork of the jet bundle formalism This
comprises especially the conpletion of a given differential equation to an invol utive
one according to the Cartan Kuranm shi Theoremand the setting up of the determni ng
systemfor the generators of classical and non-classical Lie syrmetries. Details of the
inpl erentation are described and examples of applications are given. An appendix
contains tables of all exported functions.



1 Computer Al gebra and Differential Equations

Most casual users of conputer al gebra systems thi nk that conputer al gebra and di fferenti al
equations concerns basically the design of solution algorithma. But the real situationis
fairlydiferent. Athough mst general purpose systems provide a kind of solve command
fi ferential equations, they actually ernpl oy mainly vell-known techni ques and sone
heuristics to choose and app y them Bpecially for partial di ferential
hmtreating reasonabl y general and conplicated systers is
do not treat themat all.
ferential equations tend to verk
if the sol ution space.
-al gebra



so-called Dferenti al Gobner Bises [29] can al so be seen as an extension of this approach.
In georetric theories the notion of a passive systemis replaced by invol ution. Hirtley
| Ticker [18] inplererted the Gurtan Khler approach [6] using exterior systers. /o
our AXI OM inplerentation of the formal approach vas pubished in

ideal t heory. Hreom tries tofind a diférential extension of al ge-
theory. Mny of the ideas can already be found in the book of Rtt [39]. The
Cbrer bases or characteristic sets. Since the ring of diffrential
Noetherian, this generalization runs irto probl ems, for
1l gori thrmdo not termnate in gereral [8]. /&
npl erented) so-called Dffr-
ker properties

o for a diferertial anal og of
s Theory resern

and



di ferences to more standard systers. The followng four section describe in sone detail
the impl erentation of JET, vhereas Sections 10 and 11 gi ve exarples of its application
al 1y, sone concl usions are gi ven. An appendi x contai ns tables of the exported functions
nce.

1tion

uses a georetric approach to di ferential equations based on the jet bundle
 scope of this paper to give a detailed introduction into the

er s referred to the literature [ 31, 47].

e system although the vhole theory can

the space of the independent

4" be fiber coordinates for

- are written in multi-index notation

-+ is the length of the multi-index

7, up to order ¢ defines a local coordinate sys-

1dle J,& Asystemof diflerential equation Ry of order gcan
|1y by

B {@T(ag,qf‘,gﬂ) =0, 7=1,...,p |g<q. (1)

his represents a fibered submanifold of J£&
1st some of the ideas behind the concept of invol ution can be understood best

by considering the order by order construction of a fornmal power series solution. For
this purpose, we introduce the symbol M, of a differential equation 7. If 7gis locally
described by the system(1), thenits symbol is the sol ution space of the foll

systemof (algebraic!) equations in the unknowns v%

n

(By abuse of 1anguage, we will refer to both the linear sys

the synbol ).

The +f provi de coordi nates of the finite-dir
introduce one coordinate for each d

considering a quasi-1
For such



The remni ni ng coeffti ents can be conputed by linear al gebra only. For the coeffcients
of order g+r we use the prol onged systens 7., which are obtained by differenti
each equationin g rtines formallywithrespect toall independent var
formal derivative is defined by

. 8 o T
D; @ & "’;ﬁ "’Zﬁﬂi'

a, p

Hence all prolonged equations are quasi-linear. If we subs?
into By and eval uate at #, we get an i nhomge
of order ¢g+r Its homogeneous part is
the synbol of T3, .
The Tayl or coefiti ents d4; o
side of thislinears

the coefl



The above defini tion of the éqk) is obviously coordinate dependent. Thus it seens,
as if the involution of a symbol depends on the chosen coordinate system toc
can, however, show that almost every coordinate systemleads to the
the éqk). These val ues are characterized by the property
k=1,...,n, are maximl.? Acoordinate system:
§-regul ar. Definition 2 assumes that
There exist ways to ci
a generic line



systemuntil its symbol becomes involutive. The outer 1oop checks then for integrability
condi tions and adds them The difltult part of the proof is to showthe term nat

inner 1oop. The termination of the outer one follows froma sinple

Invol ution of a synbol can be checked easily using L

coordinate systemis & regul ar what we will d

Wiether or not integrabilit:

a di mensional a

Denote th

Its di



are of course not possible. The only possibility for integrability conditions is the prol«
gation of lower order equations. For partial differential equations we rec
integrability conditions can al ways be found by considerin
to non-nul tiplicative variables.
T conclude this section we brief
arbitrariness of the ge
but thei



4 Symmetry Theory

The nmost general definition of a symmetry sinply states that it is a transformation tl
maps solutions into solutions. W will consider here di ffeonorphisns ¢ : «

thema Li e point symmet ry of the diflerential equation 7

usuallyinpossible tofind all such symmetries.

infinitesinmal transformation, i.e.

o

Using the chainruleit is s
acting on f¢

where the coeflt

If nowalc

hol ds



solution #(#) satisfles not only the considered differential equation 7 but in addition
the it nvartant surface condition

n

Y l(zyf =f(zd, o=1,...,m

2=l

These are quasi-linear, first-order equations. Inthe case of ahi
al gebra we must add one such set of conditions fo

the general sol ution of (19), one subst

tion. Or, if we assune v

deri vati ves



mark AXI OM. W are currently using Version 1.2. It is rather different conpared with
other general purpose computer algebra systems. Systems 1ike REDUCE, Maple, |
matica etc. differ not much in their principal structure: they have one bz
symbolic expressions and the core of the systemconsists of
ences between the systems layin the sinplific
packages (e.g. factorization, i
user interface
AXl OMh



to ask whether a gi ven dommin has a certain attribute.

This is useful, when dommins or
categories are passed as arguments (see bel ow).

AXI OM' s approach to symbolic conputation has several advantages. It
grammer toensure the correctness of his conputations. Sincei

every object must have a type, i.e. it bel ongs -
of operations can be performed with i

sound, only well- defined op

ring el emer



whi chtries toderive the types of the objectsintheinput line. Onlyif there are anbiguitie
or the structure of the input is too conplicated, the user nust declare the t
some objects explicitly. The only informmtion this mechani
(here often called node maps) of all used operat
Ref. [56]).
Because of the huge size of 1
at the start of a
“expc



This problemcoul d be avoided by inpl enenting a general purpose environment for
geonetric computations. Such an environment shoul d conprise basic datastructures
procedures for jet bundl es and di flferenti al equati ons as they are typi cal
this environment it would then be possible to inplement p
like completion to aninvolutive system const
W have started wi th the devel oj
within the jet bundle fo
such a proje
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echel on forms, whereas LUDecomposition i mpl ements the LU deconposition nethod for
the standard matri x type of AXI OM. JetCoordinateTransformation prol ongs coordi nate
transformations in the base space £into the jet bundle.

JetBundleCategory JBC
JetBundle JB
IndexedJetBundle IJB
JetBundleSymAna JBSA
JetBundleFunctionCategory JBFC
BaseFunctionCategory BFC
JetBundleExpression JBE
JetBundleXExpression JBX
JetBundlelinearFunction JBLF
JetLazyFunction JLF
DifferentialEquation DE
VectorField VF
Differential DIFF
CartanKuranishi CK
SymmetryAnalysis SYMANA
SparseEchelonMatrix SEM

JetCoordinateTransformation | JCT

LUDecomposition LUD

Figure 3: Abbrevi ations of the newcategories, donnins, and g

Examnpl es of the applicationof this environment in concre
in Sections 10 and 11. They contain conplete
sessions. Tables with most of the expo

al so containshort descripti

7 ITmple:



indexis needed for derivatives. IJBrecognizes two different notations for the l ower i ndex.
Internally al ways standard mul ti-index notationis used. For in- and output
choose between this and repeated i ndex notation whichis the def
conveni ent for derivatives of loworder. The nota
setNotation.
Jet variables are generated with t
one i ndependent or only

of the -



subst substitutes a gi ven expression for a jet variable in another gi ven expression.

order yiel ds the order as differential equationof afunction; itis conputec

of the leading derivative obtained fromleadingDer. The defaul

latter one in turn calls jetVariables and determi nes

Wereas subst operates purely al gebraic,

given jet variable. This is

For partial der

obje



As ve vill seeinthe next sectionthe power and the effti ency of the simplificati onrou-
tines and here especially of simplify are crucial for the performance of our ens
inalnost any cal cul ati on. Thus special care should be applied tot
tation of any dommin belonging to JBFC. It is e.g. ver;
systemin such a formthat its synbol is al
This does not only nmake the
that the sinplifi
The



The i npl ement ati on of simplifyin JBE tries therefore to avoid the use of the AXI OM
groebner procedure as mich as possible. The nmrin strategy rests on the observa
that diflerential equations are usually sparse, i.e. not every jet vari
equation. Alarge part of the sinplification can ofte
equations according to their leading deriv
sane |l eading derivative, s:
this case this e



conpute a partial derivative but only stores a pointer to the function to be differentiated
and the variable withrespect towhichit is diflerentiated. Onlyif later the:
is needed, the diflerentiationis actually performed.
Such lazy eval uati on schenes have been success:
of infinite objects like series [7]. Tt
monentaril y necessary, but
case the ideai
de:



eval uation was performed. Otherwise it starts using the procedure evall to eval uate as
many of the lazy terns as necessary to obtain a sharp bound.
W have already mentioned that zero? (and simlarly one?) is based on:
But many procedures inplenented categorically in JBFC use zero?
to avoid vanishing entries. This would lead to many un
introduced the attribute lazyRep to distinguist
mechanism In the case of such a dom
mi ght cause eval uation as
discussed in Sect
As expl ai
e



Because of this list we try to keep track of the equati ons during sinplification. If an
equationis a conbinationof several other equations, thenits val ue in Derivi
by the mi ni numof the val ues of the other equations. This strate
but it is the best one which can be realized withreas

The central operations in DE are prolong,
ones for symbol and tableau. simplify

in JBFC and assumes that i
starting wit



can thus be used to conpute ktableaux. T enter one-forms the donmnin Differential
mist be used. It represents together with the donnin VectorField the renninder of th
thirdlayer. The impl erentation of bothis somewhat rudi nrentary, as we hope
day AXIOMwill contain a reasonabl e environment for differential
and thenit should be used i nstead of some special dc
Both use anidentical representation cc
ficients, the other one the
The one for th
bel on



one procedure detSys to set up the deternini ng systemfor symmetry generators. There
exist diflerent mode maps for this procedure. One can e.g. provide a special ans:
the symmetry generator or alist of derivatives for which the equati o
be sol ved. The default is the nost general ansatz and eac

l eadi ng deri vati ve.

If the general ansatz is chosen, d
data type, nanely as functi
variables. Inthi
and fuw



for matrices with pol ynomi al entries is, however, not correct and essentially due to his
incorrect inpl enentation.

Mst of the matrices studied by Berchtold were still fairly dense cc

matrices typicallyappearing as synbols. For such matrices G

essentially to sorting the rows according to the

that two rows have their pivots i:

Another result of Ber

the Barei



The package JetCoordinateTransformation provi des two procedures transform to
prol ong coordinate transformations of the base bundle £into higher order jet bundles.
paraneters are two jet bundles and two vectors (one for the independent a
dependent variables) containing expressions for the old coor
ones. One procedure conputes the transformation
one transforms an expressionin the c
Inthe current i npl emen
for this restri



and of all found integrability conditions. The output is directly in X The conputa-
tion follows exactly the steps of the treatment in Ref. [33]. It is, however,
fact that the programproduces the integrability conditions i
Fig. 4. Actually many nore integrability conditi
alot of non-multiplicative variabl
independent. complet
equations



In- and output are shown in Fig. 5 on page 33. The input is very simlar to the
previous exanple. The main difference is that we use another donmmin for the equat:
nanel y JBE. They can now be arbitrary expressions in the i ndependent
variables. The integrability condition can be obtained by taki
Dequations and subtracting the ¢ deri vati ve of f

D

Y add

1,54

Due to the sinplificati on procedures t
appear different in the out;

tries to sol ve ec

C



amnpl e.

Consider the system

{|I 7&2"'1)742:::07
1 -0,

R { Yy B
', % =V,

g =0.

(25)

The conpl etion runs conpl etel y anal ogously to the classical Janet exanple, i.e. th

jections occur at the same pl aces and 7%2) is involutive. The only differ

second projection two further integrability conditions

3,

21?:%:::: + sl

2% Yrx —3'02z =0.

It is obvious that here the simplificati onroutines
time for this exanpleis slightly nore

simplificati on modulo 1o
10 hours!

W showed

Wit



later in more detail. Here we just want to point out that in several equations the con-
straint was not used for sinplification; inthe thirdprojecti onw even obtaint

equations. Both effects are mainly due to current restrictions i
of JBE.

11 Examples I I —Ot her Ap;

One of the classical exanples
SYMANA to calcul ate
further



The timing of the first transfornation also contains the time needed for the precom
putation of aninverse Jacobian. Sinceits result is stored, subsequent transfor
be faster. In this exanple this effect is neclectable, as the i:
unchanged and the menti oned Jacobi an neasures th
variables. JCT further keeps as hash
second call with the sam



jb:=JB([’x,’y,’z],[’ul)
jbx:=JBX jb
jbl:=JBLF(jb, jbx)
de:=DE(jb, jbl)
ck:=CK(jb, jbl)

eql :
eq2 := DCu,[’y,’y])$jb::jbl
janet:de := generate [eql,eq2]
setOutModeg14)$ck

setRedlode(1)$ck
complete janet

D(’u,[’z,’2])$jb::jbl + ’y::jb::jbl * D(’u,[’x,’x])$jb:

:jbl

Syrhol Mo not imvol uti ve! Dramsion: 4

Syrhol M imvol wbive! Dramsion: 4
Equation B3 not ivolubive! Drarsion: 12

1. Projection

Integrahility condi tion(s)

Y, 2, 2 =0

| mvol utive! Drarsion
e! Dmersion: 2

drarsion: 13




jb:=LJB(’x,’u,’p,4,3)

jbe:FJBE jb

de:=DE(jb, jbe)

ck:=CK(jb, jbe)

eql:[jbe := P(1,[4]) + U(1)*P(1,[1]) + U(2)*P(1,[2]) + U(3)*P(1,[3])
eq2:[jbe := P(2,[4]) + U(1)*P(2,[1]) + U(2)*P(2,[2]) + U(3)*P(2,[3])
eq3:[jbe := P(3,[4]) + U(1)*P(3,[1]) + U(2)*P(3,[2]) + U(3)*P(3,[3])
eq4:jbe := P(1,[1]) + P(2,[2]) + P(3,[3])

euler:de := generate [eql,eq2,eq3,eq4]

setOgtMode(14g$ck

setSimpMode(1)$ck

compllete euler

Syrhol M imvol utive! RDrarsion: 8

Ruation B not imvol utive! Dremsion: 11

1. Rojection

Integrahility condi tion(s)

2P32 1?3 ‘*'21’31 1} ‘1‘21?22 ‘1‘21}1 1?2 ‘1‘21?1 1}2 ‘1‘21}12 =0

)
Rl Hoetriotiiciiicioi
| a1 ve!

marsion 14

—0,
:_1?1?11}2_1?1}1

7 imvolutive! Dmarsilon 7

uation (23).



Ruation B not irvol ubive! RDramsion: 8

1. Rojection
Integrahility condi tion(s)

22z Ryy Rea=0

ﬁlz) not imvolutive! Dramsion: 7
oj ection
a(s)

2 LA 4L HIE) £ =0




v:vi := ansatz()$sym

tau D + xi D + eta D
t X u

ds := detSys([eq]l)$sym

[- 2tau , - 2tau , - xi , — tau , eta - 2xi , — 2tau - 2xi
u bd u,u u,u u,u u,Xx u,Xx
2eta - xi + xi , - tau - 2xi + tau , eta - eta ]
u,Xx X,X t X,X X t X,X t

lds:List jbl2 := [retract(eq) <for eq in ds]
r2:de := generate lds

setOutMode (4)$ck

setRedMode (1) $ck

complete r2

$okkokdkkdkkkkkkkkk Final Result skokskskskskskokskskskskkkk

(4)
Equation R involutive!
3
System without prolonged equations. Dimension: 13

tau =0
t,t,t
eta =0

o
o
©
+
1
o
©
=]
1l
[e)

Cartan characters: 2,0,0

Figure 7: Determining systemfor the Heat Equation.
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burgers:jbel := P [2] - P [1,1]

2
(8) -u +u -u
X,X t X
Time:
transform(burgers)$jct
-v + v
y.y s
(8) ——-m-m-——m-
v
Time:
transform(burgers)$jct
-v + v
y.y s
(10) -————————-
v
Time:

- P([1])**2

0.33 (IN) + 0.23 (EV) + 0.80 (0T)

0.22 (IN) + 2.02 (EV) + 1.54 (0OT)

0.01 (IN) + 0.35 (EV) + 0.05 (OT)

1.36 sec

3.78 sec

0.41 sec

Figure 8: Cole- Hopf transformmtion of the Burgers Equation.
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12 Outlook and Discussion

It shouldbe clear fromthe discussionsofar, that this environnent is by far
There are permanent changes andinprovenents. Mst changes a

for non-1linear equations. The sinplification and redu

are still tooinefftient for more complica

as a substitute for a spe

are mpinly c

¢



system Otherwiseit will prolong and prol ong and prol ong wi thout ever findi ng an i nvo-
lutive synbol. In principle one couldinplenent the method presented in Ref. [
ktableaux. W have refrained fromthis approach, because it becone

tionally very denandi ng.

Conputing rowechel on forms of synbolic matrices |
conputer al gebra a matrix is considered as
col umms (of course this depenc
could partially rem

handl e



mathémnti ques in Mntréal and at the School of Physics and Miterials in Lancaster. 1
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A Exported Procedures

The purpose of this appendixis toprovidetables of most procedures currentl yim
in our environment for geometric conmputations with partial differe

al so contain brief descriptions of the tasks of the di

not comment on the i npl ementationor th

text. The same hol ds for exanpl

The order of the tabl

start with



The sinplificati on procedures can be divided into tw classes. simplify, simpMod
and simpOne use only algebraic operations. One of the mpin tasks of simplify i
exhibit integrability conditions, if any are present. Otherwise no mnix
di fferent order happens. reduceMod and autoReduce al so use
correspond to al gorithms used in differential a
There are currentl y three i nstance
JetBundleExpression (JBE),
(JLF). JetBundleXExpressi
the sub-categor
space X

Hi ghe



allRepeated

L NNI -> L L PI Grmites

index|as repeated index

all possibe realizations of a given mlti-

|| class | L NNI -> NNI | Rturs the class of a mlti-index ||
|| class | $ -> NNI | Rturrs the class of ajet variade. ||
|| coerce | $ > EI | (Oerces ajet variab e into an expression ||
oerce | $ > s | (Oerces ajet variabe into a syrhol. ||

rativeOf? | ($, $) -> L NNI
the secand ore. Returms either the diffrence of thei

f positive, or an ermpty list.

ml ti-indices, i

(ecks whether the first argurert is a de

[ vabive of
r

PT) —> JﬂeDfErertiates ajet variabes wth respect tq the in-
depe

n($,"0")

1t variable labeled by the second argurant.

order.

Rturrs the (fiber) dimarsiondf the jet bundle of the

the dimersion of S,7” X ® V€ for the given

tly wed notation

x of ajet variade.

h respect to an indepx
ot possibe.

» the indepen-

—




|| autoReduce | L$—>L$ | Reduces a systemwth respect toitself.
|| class | $ -> NNI | (ass of an expression ||
const? $ > B (ecks whether an exgression depends on jet
variahl es.
|| coerce | JB > $ | Tarsforma a jet variade into a function ||
denominator | $ >3 | Rromnator of an expression ||

srentiate | ($, JB) > %

| Dferentiation wth respect to ajet variabe. ||

X

(L $, SEM, NNI)

Dmmsion of asystermmthgivenJacohaninthe jgt

-> NNI budle of given order.
, JB, $) > ¢ | Iike subst but takes also derivatives into accourt. ||
SEM | Btracts syrhol fromthe Jacoh an ||

dert, val
s for
os it

Formal difrentiation [wth respect to an indepen-
riabe given by its labe]l. There exist further

system and wth nore

alled out-

is also possibe to pasg the

r gurart

pencs ona g venjet

]



ven syrhol .

PS

analyseSymbol | SEM -> MVREC Grmputes a row echelon formof a gy
Guts the mitigicative variabes and determr
the rank of the mtrix
copy | $ > % | Rturs a copy of a diferential equation ||
nsion ($, NNI) -> NNI Grputes the dimarsionof a glvendi ferentipl equa-
tion comsidered as subranifold of a jet bunde
given order.
-> 0UT Rints mst of the information stored about a dif-
feremtial equation: equatiors ordered by their order,
for each order the Jacobian, whether the systemis
I ready simplified and so on.

ts the syrhol fromthe
e equation. If the s
formis cormuted.

Jacob an of the hi ghest

ecord argipart

tion from a g ven

, diffrertial

]




|| coefficient | ($, JB) > D | Rturrs the coeffiiert in a given direction

|| coefficients | $ >LD | Rturns the coefliierts of a vector field

|| commutator | (3, $) > % | Grputes the commtator of tvo gi ven vector fiel ds. ||
copy | $ > % | Rturs a copy of a given vector field ||
| JB > §$ | (trerates bese vector field wth given direction ||
(PI, L NNI) -> $ | Grerates base wector feld in direction of a
deri vative.
PT —> $ WLK@mrates bese vector field in direction of adepen—‘
dert

iade.
(érerates bese vector field in direction of an indg
pendent variade.
Rturrs a list of the directions of the bese||vectors
tere the vector fiel ds has non- vari shi ng coefhii erts.
vector field to a function ||
e derivative of a given vector field
her vector field TT
oan& toafeldonthe

1 list of]




alpha (NNI, L NNI) -> Grmputes the Grtan characters for a diffrenti

L NNI equation of g ven order fromthe ,3( 5) .
alphaHilbert UP("r",FI) -> L Gmute the Grtan characters for a given Hlber
NNI pol ynormal .
arbFunctions (WNI, I, L NNI) Uses the Grtan characters to commite||the mmher
-> LI of arbitnary functiors of a fixed di ferentiation order
for a diferential equation of gl ven order.

NI, NNI, NNI) Grputes a bound §n, mg) for the mrher of pro-
> NNI 1 ongati ons [needed to render a syrhol 1ol ubive.
Gl etes a givendiferential equation to animol v
ne. M result is returned, but inflormation on
n process is dispayed The anourt
ing setOutput.
turrs a record cortaining
set of equations,
nrher of

n




* (MDD, $) > % Teft mltipication of a sparse matrix wth a wual
mabrix
* (MFD, $) >% Teft mltipication of a sparse matrix wth|a wual
matrixiover the quotiert field of D. Amilabe onlyif]
D belongs to IntegralDomain.
1lIndices $ >LC | Yelds alist of all indices wed tolabel col ums. ||
1.dRow ! ($, ROWREC) —> Ak arewrowas last row
Void
ols! | $ —> Void Reroves col ums cortainingonl yzercs. This efets,
hovever, [besically only the valwe of allIndices.
MD | (erces amatrix fromSEM to the usual matrix type. ||

-> Mk arewrowas frst row Aguert is changed,

structiwel y.

lds a copy of a mtrix

the indi cated row
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