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Abstract

Data 
ow analysis is the prerequisite of performing optimizations such as common subexpression

eliminations or code motion of partial redundant expressions on imperative sequential programs. To
apply these transformations to parallel imperative programs, the notion of data 
ow must be extended

to concurrent programs. The additional source language features are: common address space (shared

memory), nested parallel statements (PAR), or-parallelism, critical regions and message passing. The
underlying interleaving semantics of the concurrently-executed processes result in the so-called state

space explosionwhich on �rst appearance prevents the computation of the meet over all path solution

needed for data 
ow analysis.
For the class of one-bit data 
ow problems (also known as bit-vector problems) we can show that

for the computation of the meet over all path solution, not all interleavings are needed. Based on

that, we can give simple data 
ow equations representing the data 
ow e�ects of the PAR statement.
The de�nition of a parallel control 
ow graph leads to an e�cient extension of Killdal's algorithm to

compute the data 
ow of a concurrent program. The time complexity is the same as for analyzing a

\comparable" sequential program.
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Introduction and Motivation

1 Introduction and Motivation

The key tool for attacking the Grand Challenge Problems is parallelism. Parallel hardware is becoming
more available and cheaper, but to program these devices is still a di�cult task. Hence high-level
programming languages are needed which have enough expressive power to implement parallel algorithms.
But as usual with high-level languages, when translating them to machine code, some ine�ciencies are
introduced by the compiler. Therefore compilers have to perform so-called optimizations which improve
the program. We may distinguish broadly between two kinds:

� transformations performed on the input language level such asmapping of SIMD programs to MIMD

machines, removal of unnecessary synchronization and communication, clustering of processes, data
placement etc. [Zima et al 90, Philippsen et al 91, Zimmermann et al 94] and

� transformations performed on the machine language level, such as common subexpression elimina-

tion, constant folding, dead code elimination, code motion etc. (for an introduction: [Aho et al 86]).

For the rest of this paper we have only these kinds of optimizing transformations in mind.

Optimizing a program requires analyzing it, and this is often done by solving data 
ow equations for
the program. Traditional data 
ow analysis (DFA) methods [Kennedy 81] are designed for sequential
programs. Hence they may fail when applied to the control 
ow of parallel programs as shown by
[Midki� et al 90]. We give another example showing the problems when \low level" optimizations such
as instruction scheduling are performed on parallel programs.

1.1 Machine Model

We assume that other phases of the compiler have done the more \high-level" transformations already,
and hence our investigation is based on an imperative language with explicit control 
ow parallelism,
dynamic process creation, and shared memory. As a computing model we assume a MIMD (multiple
instruction, multiple data) system, where each process is executed on a separate logical processor.1 Each
processor runs independently of each other and has its own set of registers, which are invisible for other
processors. All processors access a shared memory. The access to a single memory cell is atomic, i.e. at
a given time only one process may read or write a given cell. We assume an interleaving semantics for
the execution of the program with respect to the memory accesses.

1.2 What Might Go Wrong: An Example

This section shows the potential problems, when applying sequential data 
ow analysis to an explicitly
parallel program. The small program2 given in Table 1 executes the processes P1 and P2 in parallel. It
is intuitively clear that critical1 and critical2 are never executed at the same time.

On a �rst glance this program has a race condition [Netzer et al 92], (both processes read and write the
shared variables, without some kind of explicit synchronization) but this race condition is an intended
one: The variables a and b are used to implement a simple synchronization scheme. Extensive work has
been done on analyzing parallel programs for potential races3 but little work has been done to optimize
them.

A simple-minded optimizer could perform the following \optimizations" (which would be correct in
sequential contexts):

� Propagate a = 0 and b = 0 to IF a = 0 and IF b = 0 respectively.

� Then the expressions could be statically evaluated to TRUE.

1A processor may be implemented via a time sharing system.
2[Lamport 79] presents this problem concerning the design of parallel computers.
3for an overview see [Bristow et al 88]
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a := 0; b := 0;
PAR

(P1) (P2)
a := 1; b := 1;
IF b = 0 IF a = 0
THEN critical1; THEN critical2;

a := 0; b := 0;
ELSE else1 ELSE else2
END END

END

Table 1: Part of process synchronization code

� Dead code elimination removes the IF and ELSE parts.

And as consequence, both, critical1 and critical2 would be executed.

But even without traditional optimizations performed by the compiler, things might go wrong when
using an assembler which does instruction scheduling (reordering), to better use the processor's internal
parallelism (i.e. the pipelined processing of instructions): The non-optimized code of process body P1
on a typical RISC processor is given in Table 2. The instruction scheduler could now decide to reorder
the instructions, e.g. to insert another instruction between a register load and an immediately following
register use instruction (e.g. ldc 1,r0; st r0,a) which results in the code for P1 shown in Table 3a. In
this case, it may happen that critical1 and critical2 are both executed, as shown in Table 3b.

ldc 1, r0 Load constant 1 into register r0.

st r0, a Store the content of register r0 in memory at address a.

ld b, r1 Load content of memory at address b into a register.

cmp r1, 0 Compare a register with a constant, set condition code.

jeq then1 Conditional branch to then1, if condition code equal set.

code of else1

: : :

Table 2: Non-optimized code for Process P1

Even worse, some processors, such as the DEC Alpha [DEC 92], are able to reorder the memory accesses
to di�erent addresses to some degree. Hence, even the unchanged code could give the wrong result. To
avoid this situation, the DEC Alpha o�ers a memory barrier instruction, which delays the processor until
all pending memory requests are ful�lled. In our example this instructions must follow every memory
access, which results in a signi�cant slow-down of the program.

On a system with distributed memory, the shared memory access may be implemented by calls to the
operating system, which transports a value from the memory it is stored in to the destination where it is
needed. If these calls are performed asynchronously (e.g. the memory fetch is separated into two calls: a
non blocking ask for value(address) and a blocking wait for value(address)), the same problem arises.

[Lamport 79] o�ers a solution which is formalized by [Afek et al 93]. The memory access must ful�ll the
two conditions:

1. Each processor executes memory access request in the order speci�ed by the program.

2. All accesses to a single memory cell are executed in a �rst-in-�rst-out queue.

4 Data Flow Analysis of Parallel Programs
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ldc 1, r0
ld b, r1
st r0, a
cmp r1, 0
jeq then1
...

3a

time t1 t2 t3 t4 : : :

Processor1: ldc 1, r0; ld b, r1; (r1 = 0) st r0, a; cmp r1, 0; : : : critical1

Processor2: ldc 1, r0; ld a, r1; (r1 = 0) st r0, b; cmp r1, 0; : : : critical2

3b

Table 3: Code and execution of reordered code

It is obvious that these conditions are too restrictive, since optimizations of \real" independent memory
accesses are forbidden.

The transformations shown above are based on information such as the reaching de�nitions4 or avail-
able expressions5. The reason for the above problems is that they use the wrong information, i.e. the
information was calculated in a \sequential context", not considering the parallelism expressed in the
program.

1.3 The Problem

Data 
ow analysis is more or less the estimation of the e�ects caused by program statements. This
estimation is based on two things: an abstraction of the information needed as prerequisite for the
optimizing transformation, and the propagation of the information along the statements of the source
program. The information is usually represented by the elements of a semi-lattice6. The e�ect of a single
program statement is then a function over these semi-lattice values. One execution of a program (up
to the point of consideration) represents an execution path. The propagation is modeled by applying
these functions in the order given by the statements of such an execution path. Since we are looking for
the \worst case information" (only this guarantees that the transformation is correct for all execution
paths leading to this program point) we have to consider the Meet Over all Paths of these information.
[Kildall 73] formalized this idea and gave an e�cient algorithm to compute the data 
ow information for
all points of a program.

The data 
ow information of two statement sequences, without any branches, executed concurrently, is
given by the meet of the information of all interleavings7 of the two sequences. It is clear that this may
lead to a \state space explosion" [Chow et al 94], which makes it, on a very �rst view, intractable to

compute the data 
ow information implied by a PAR statement.

1.4 Contribution of this Work

Hence we have to ask:

� which data 
ow information is valid after the PAR statement, and

� which information is valid before each statement in a process body?

4Which de�nition (assignment) of a variable is valid at the program point under consideration.
5Which computed values are valid at some point.
6E.g. boolean values for \the information is present or not".
7The topological sorting of the simple statements of both sequences.
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The main contributions of our paper are:

� The lattice-theoretic based data 
ow framework is extended to cope with parallel programs. The
proposed extension is valid only for the large class of one-bit (also known as bit-vector) data 
ow
problems. They are based on a two-element semi-lattice.

� Simple bit-vector data 
ow equations are derived representing the data 
ow e�ects of the PAR

statement.

� The Parallel Control Flow Graph is de�ned and used as a base for an extension of the well known
and e�cient iterative data 
ow analysis algorithm.

Based on these results, data 
ow analysis of parallel programs is possible and e�cient. Then traditional
optimizations may be applied to these programs without any restriction.

1.5 Related Work

Current approaches in analyzing the data 
ow of parallel programs have either a restricted model of
shared memory, or even disallow it.

[Reif 84] investigates the data 
ow of communicating processes, but these do not share memory: processes
communicate solely through synchronous channels. [Srinivasan et al 91a] describe an e�cient method of
computing the Static Single Assignment Form [Cytron et al 89] for explicitly parallel programs with wait

clauses. The parallel sections must be data-independent, except where explicit synchronization is used.
The same is true for [Srinivasan et al 91b, Wolfe et al 91] who introduce a Parallel Control Flow Graph

and the Parallel Precedence Graph which may form the basis of concrete optimizing algorithms.

[Grunwald et al 93] present data 
ow equations for parallel programs, both with and without synchro-
nization. But this work is restricted to PCF FORTRAN programs, which means that access to shared
variables is done only at synchronization points. For process start and process end they assume a copy
in/copy out semantics. They don't provide a formal, but intuitive derivation of their data 
ow equations,
which solve only the reaching de�nition problem.

[Cousot et al 90] extend abstract interpretation to cope with communicating sequential processes. The
problem there is that the resulting \state space" explodes, which makes it intractable. [Chow et al 92b]
apply abstract interpretation to analysis of parallel programs too, but base their semantics on a labeled

transition system. [Chow et al 92a, Chow et al 94] attack this problem using the stubborn set theory
[Valmari 90] which decreases the state set using some heuristics. Hence the analysis is accurate for some
examples, and less accurate for others.

[Vollmer 94] presents the basic idea of how the number of interleavings may be reduced; the parallel
program is represented by its structure tree. [Vollmer et al 94] use ideas of this report to prove the
Hierarchical Coincidence Theorem which is based on a functional representation [Sharir et al 81] of the
problem.

2 The Sample Language

A simple imperative language will be used in this paper, which has loops, conditional statements, and
a statement to execute other statements in parallel (explicit control 
ow parallelism). Replicators allow
dynamic process creation, and processes share memory. Besides parallelism the two basic concepts of
mutual exclusion and synchronization should be dealt with. Critical regions are basically pieces of the
program code which should be executed by at most one process. If two processes wish to interact, they
may can synchronize and exchange a message over a channel (cf. [Hoare 85]).
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2.1 The PAR Statement

The PAR statement executes all processes speci�ed by ProcessBody in parallel and independently. The
process executing a PAR statement8 is suspended until all child processes have terminated. A ProcessBody

is a list of statements, which may be replicated. That is: max(UpperBound - LowerBound + 1, 0)

processes are forked which all execute the statements following the replicator. Each replicated process
gets its private copy of the replicator variable Identifier, which has in each replicated process a unique
value in the range [LowerBound .. UpperBound]. Replicated processes are also called asynchronous for-

all loops in other languages. All variables can be accessed in each process. No automatic synchronization
is done for the access.

Stmt ::= PAR ProcessBody//"|" END .

ProcessBody ::= [Replicator] Stmt//";" .

Replicator ::= "[" Identifier ":" LowerBound TO UpperBound "]" .

LowerBound ::= Expr .

UpperBound ::= Expr .

Expr ::= usual expressions.

Stmt//";" is a list of statements separated by a semicolon. [Replicator] stands for an optional
Replicator part.

2.2 OR{Parallelism: The POR Statement

The parent process of a PAR statement is suspended until all child processes have terminated. However,
for some applications it may be better if the parent process is reactivated after the �rst child process has
terminated, instead of waiting for all children. Hence we can distinguish between and parallelism (PAR
statement) where all children have to terminate and or parallelism (POR statement) where only one child
has to terminate. The syntax of the POR statement is:

Stmt ::= POR ProcessBody//"|" END .

If now the �rst child process c has terminated, all other children of c's parent process receive a \sig-
nal" that they should now terminate. The parent process resumes its execution as soon as all children
have terminated (either \voluntarily" or forced by the \signal"). Since the child processes are executed
independently, it may happen in some program runs that the POR statement is equivalent to the PAR

statement, i.e. the child processes all terminate \voluntarily", if they receive the \signal" too late.

2.3 Critical Regions

Critical regions are expressed in the program using the following statements:

Stmt ::= InitSemaStmt | LockStmt | TryStmt .

InitSemaStmt ::= INIT "(" SemaVar ")" .

LockStmt ::= LOCK SemaVar DO Stmt//";" END .

TryStmt ::= TRY SemaVar DO Stmt//";" [ELSE Stmt//";"] END .

INIT(SemaVar) initializes the semaphore variable SemaVar, by assigning it a unique identi�cation sema id.
Semaphore variables are ordinary variables, i.e. they may be assigned and passed as parameters.
All statements within LOCK statements, and all statements before the ELSE part of TRY statements, for
which the semaphore variable contains the same sema id, form a critical region. Hence the code of a
critical region can be distributed over the entire program text, and even more, the extent of a critical
region may vary during the program execution, since it depends on the sema id. A critical region can be
\entered" by at most one process at a time.

8
PAR statements may be nested.
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If a process p wants to execute a LOCK statement, and another process p0 has already entered this region,
p is suspended from execution until p0 has exited the region.
If a process p wants to execute a TRY statement, and another process p0 has already entered this critical
region, p continues with the execution of the optional ELSE part9 of the TRY statement. Note that the
statements following ELSE are not part of the critical region.
Weaker versions of this concept allow only constant values for semaphore variables, or allow only one
critical region. In those cases the critical regions can always be discovered statically.

2.4 Message Passing

Synchronous message passing is expressed in the program by the following statements:

Stmt ::= InitChnStmt | SendStmt | ReceiveStmt .

InitChnStmt ::= INIT "(" ChnVar ")" .

SendStmt ::= ChnVar "!" Expr .

ReceiveStmt ::= ChnVar "?" Var .

INIT(ChnVar) initializes the channel variable ChnVar, by assigning it a unique identi�cation chn id.
Channel variables are ordinary variables, i.e. they may be assigned and passed as parameters.

Two processes synchronize and exchange a message (e.g. the value of Expr is assigned to the variable Var),
by executing a SendStmt and ReceiveStmt. The chn id of both channel variables must be equal. Both
processes wait for each other. After exchanging the message they, continue their execution independently.

Weaker versions of these statements have only constants as channel identi�cation, which allows static
determination of the communication partners.

3 Lattice-Theoretic Background of Data Flow Analysis

This section gives the lattice-theoretic background of data 
ow analysis and follows [Kam et al 77]. It
may be skipped by the reader familiar with the notation.
The source program under consideration is represented as a (sequential) control 
ow graph10:

De�nition 1 A control 
ow graph is a triple G = (N;E; n0), where N is a �nite set of nodes (which

contains a list of simple statements, such as assignments). E � N �N is a set of ordered edges between
these nodes and n0 the unique initial node.

A path from n1 to nk is a sequence of nodes n1; n2; : : : ; nk, such that for 1 � i < k all edges (ni; ni+1) 2 E.
Such a path has length k.
For a node n pred[n](succ[n]) is the set of predecessors (successors) de�ned as: pred[n] = fn0 : (n0; n) 2
Eg, and succ[n] = fn0 : (n; n0) 2 Eg.

All nodes of a control 
ow graph are reachable from the initial node, i.e. there is a path from n0 to each

node n. path[n] is the set of all paths from the initial node to n. path[n) is the set of paths from n0 up

to all predecessors of n.

The data 
ow information is represented as a semi-lattice:

De�nition 2 A semi-lattice (L;u) is a set L with a binary meet operation u such that for all a; b; c 2 L

the following holds:

a u a = a Idempotent

a u b = b u a Commutative

a u (b u c) = (a u b) u c Associative

9or the statement following the TRY statement, if the ELSE part is missing.
10Section 10 de�nes the parallel version of a control 
ow graph.
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For two elements a; b 2 L, we de�ne:

a b , a u b = a

a b , a u b = a and a 6= b

a b , a u b = b

a b , a u b = b and a 6= b

(L;u) has a zero-element ? (bottom), if 8x 2 L : x u ? = ? and a one-element > (top), if 8x 2 L :
x u > = x. From now on we assume that (L;u) has a zero-element, but not necessary a one-element.

We can extend the u operation:

n

i=1

xi = x1 u x2 u : : :u xn with

x2;

= >

A sequence of elements x1; x2; : : : ; xn of L is called a chain, if 81 � i < n : xi xi+1. (L;u) is called

bounded11 if for all x 2 L there is a constant bx such that each chain starting with x has length at most

bx. If (L;u) is bounded, we can de�ne for each countably in�nite set S of elements of L: x2S x =
limn!1

n

i=1 xi. Since S is bounded, there is a number m with x2S x =
m

i=1 xi

How a single program statement transforms, by its symbolic execution, the data 
ow information valid
before its execution, is described by a transfer function:

De�nition 3 Let (L;u) be a bounded semi-lattice. A set F of functions on L is called an monotone
function space associated with L, if the conditions [M1] { [M4] are satis�ed. If also [M5] is valid, it is

called a distributive function space associated with L.

[M1] All functions f 2 F are monotone: 8x; y 2 L : f(x u y) f(x) u f(y). This is equivalent to:

8x; y 2 L : x y ) f(x) f(y).

[M2] There is an identity function id 2 F with: 8x 2 L : id(x) = x.

[M3] F closed under composition: 8f; g 2 F : f � g 2 F .

[M4] L is the closure of f?g with respect to the u operation and application of functions in F .

[M5] All functions are distributive: 8x; y 2 L : f(x u y) = f(x) u f(y).

A monotone data 
ow framework is de�ned as:

De�nition 4 A monotone data 
ow framework is a triple D = (L;u; F ) where (L;u) is a bounded

semi-lattice and F is a monotone function space associated with L. An instance of a monotone data 
ow

framework is a pair I = (G;M ) where G = (N;E; n0) is a control 
ow graph and M : N ! F is a

labeling which maps each node from N onto a function of F .

If F is a distributive function space, D is called a distributive data 
ow framework.

The \maximal (or worst case) information reaching a program statement" is given by the following

De�nition 5

p2path[n)

fp(?)

is called the meet over all path and represents the \maximal (or worst case) information reaching a node

n of the program". fp is the transfer function of the path p (see below).

4 Properties of Some DFA Frameworks

First we give some properties of bit-vector data 
ow frameworks DB which is then generalized to DC . At
the end of this section then we apply these results to the transfer functions of statements and statement
sequences.

11or of �nite length [Hecht 77].
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4.1 Properties of the Boolean Semi-Lattice

Since we restrict our investigation to the class of bit-vector data 
ow problems12, we give some general
results for the boolean semi-lattice:

De�nition 6 The data 
ow information of an entity is a value of the set B (Bool) B = f>;?g. For a

given binary meet operation u, ? > must hold.

Observation 1: Obviously there are only two di�erent binary operations which can be the meet operation
of a semi-lattice: ^ (boolean and) and _ (boolean or)13. They are given as shown in Table 4.

u = ^ u = _
> = TRUE > = FALSE

a b a u b a b a ^ b a b a _ b

> > > TRUE TRUE TRUE FALSE FALSE FALSE
> ? ? TRUE FALSE FALSE FALSE TRUE TRUE
? > ? FALSE TRUE FALSE TRUE FALSE TRUE
? ? ? FALSE FALSE FALSE TRUE TRUE TRUE

Table 4: The boolean meet operations.

Observation 2: There are only four functions B ! B: the two constant functions, the identity, and
negation.

use u(>) = > u(?) = >
modify m(>) = ? m(?) = ?
identity id(x) = x

negation > = ? ? = >

Obviously, the negation function is not monotone and not distributive. The other three are both monotone
and distributive. Often, the constant functions are interpreted, respectively as use, which generates or
uses some information, and modify, which modi�es or invalidates it.
We �nish this section with:
Observation 3: For any two-element semi-lattice (B;u), there is exactly one monotone function space
FB =def fu;m; idg associated with B14. It is also distributive. DB = (B;u;FB) is called the one bit data

ow analysis framework. There are only two interpretations of the meet operation: the boolean ^ and
_ operation, respectively. Their DFA interpretation is: the information valid before a node n must be
valid on all (^) (at least one (_)) path reaching n.

4.2 Properties of the Function Space FC

A slight generalization of the DB DFA framework is DC , for which the following lemma obviously holds:

Lemma 1 Let (C;u) be a bounded semi-lattice, and FC a set of functions C ! C, such that FC contains

only the identity function id and for each element c of C its constant function constc with 8x 2 C :
constc(x) = c. Then FC is a distributive function space, and the corresponding constant data 
ow
framework DC is distributive.

12The name one-bit or bit-vector problem comes from the implementation technique usually used: the data 
ow informa-
tion of each entity under consideration (e.g. variable or expression) is either valid or not (hence the boolean semi-lattice)
and this fact may be represented by one bit. Usually several entities are considered at the same time, and their information
is coded within a bit-vector.

13The other possible 14 binary operations over B do not have the required properties, even if some may have an interesting
interpretation such as xor: the data 
ow information is valid, if it is valid in exact one path.

14Note: To be a monotone function space associated with B, all three functions are needed.
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We consider now \composition chains" of functions fn � fn�1 � � � �� f1(x) and show some properties. The
following lemmata helps us to compute the data 
ow information which is valid after a PAR statement:
if for such a composition chain a predicate P holds for all x 2 C, then there is a function fi in it, such
that P holds for all x, and all \following" fj ; j > i do not invalidate the predicate.

Lemma 2 Let f1; � � � ; fn 2 F
C and P a predicate over C.

8x 2 C : P [fn � fn�1 � � � � � f1(x)]
i�

91 � i � n : 8x 2 C : P [fi(x)] and 8i < j � n : 8x 2 C : P [fj(fi(x))]

The lemma can be proved using induction over the number n of functions in the composition chain. The
next lemma is a corollary of the previous one:

Lemma 3 Let f1; � � � ; fn 2 F
C . Then:

91 � i � n : 8x 2 C : fn � � � � � f1(x) = fi(x) and 8i < j � n : fj = id

The next lemmata state that under some circumstances the order of the functions of a composition chain
may be changed and still return the same value.

Lemma 4 Let f1; : : : ; fn 2 F
C. From 91 � i � n : 8x 2 C : fn � fn�1 : : : � f1(x) = fi(x), it follows that

for an arbitrary permutation (k1; : : : ; ki�1) of the numbers 1; : : : ; i� 1 holds:

fn � fn�1 � : : : � f1(x) = fn � fn�1 � : : : fi � fki�1
� fki�2

� fk1(x)

Proof (Lemma 4) If fi is a constant function, it returns the same result for all arguments. Hence the
order of the functions which form the argument of fi is not important. If fi is the identity function, all
other functions must also be the identity function, otherwise fn � fn�1 : : : � f1(x) = fi(x) would not hold
for all x.

The following lemmata state some properties of the value of composition chains. They answer the question
which information is valid before a statement inside a PAR statement.

Lemma 5 Let f; g 2 FC. Then for arbitrary x 2 C:

x u f(x) u g(f(x)) = x u f(x) u g(x)

Proof (Lemma 5) If g = constc then: x u f(x) u g(f(x)) = x u f(x) u g(x).
If g = id then: x u f(x) u g(f(x)) = x u f(x) = x u f(x) u g(x).

Using induction over the number n of functions in the composition chain we can conclude:

Lemma 6 Let f1; : : : ; fn 2 F
C . Then for arbitrary x 2 C:

x u f1(x) u f2 � f1(x) u : : : u fn � fn�1 : : : � f1(x) = x u f1(x) u f2(x) u : : :u fn(x)

4.3 Properties of Statement Sequences and Composition Chains

From now on, we consider only the DC data 
ow analysis framework. We now connect the functions
to a statement sequence, which represents an execution path. Then we state properties of the function
composition chains, if two (or more) statement sequences are executed in parallel. This is modeled by
considering the set of topological sortings of the statements contained in the sequences.

De�nition 7 Let s1; : : : ; sn be simple statements, such as assignments, which are executed in the order

p � hs1; : : : ; sni. Let fsi 2 F
C be the transfer function connected to the statement si. fp(x) =def

fsn � fsn�1
� : : : � fs1(x)
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De�nition 8 Let s01; : : : ; s
0
n0 and s

00
1 ; : : : ; s

00
n00 be simple statements, which are executed in the order p0 �

hs01; : : : ; s
0
n0i and p

00 � hs001 ; : : : ; s
00
n00i, respectively. TopSorts(p

0; p00) is the set of statement sequences which

result from a topological sorting of the two sequences p0 and p00. For two statements s0i; s
00
j no order is

de�ned, and s0i must be executed before s0i+1 (also for the statements s00j ).

Lemma 7 Let s01; : : : ; s
0
n0 and s001 ; : : : ; s

00
n00 be simple statements, which are executed in the order p0 �

hs01; : : : ; s
0
n0i and p

00 � hs001 ; : : : ; s
00
n00i, and fs0i ; fs

00

j

2 FC the functions corresponding to the statements s0i
and s00j , respectively. The following holds:

p2TopSorts(p0;p00)

fp(x) = fp0;p00 (x) u fp00 ;p0 (x)

Where p; q is the concatenation of two statement sequences p and q.

Proof (Lemma 7) We prove this lemma in several steps:

1. Let p � hs1; : : : ; sni 2 TopSorts(p0; p00). With lemma 3 we have a 1 � i � n where fp(x) = fi(x)
15

and 8i < j � n : fj = id. If there are several such i, we use the largest one. Now si, the statement
determining the value of the path p, may be contained either in p0 or p00.

2. The set TopSorts(p0; p00) can be split into two disjoint subsets seq0 and seq00, where:
seq0 =def fq 2 TopSorts(p0; p00) j 8x : fq(x) = fi(x) and si 2 p

0g, i.e. seq0 contains all those paths,
whose value is determined only by statements contained in p0. seq00 is de�ned analogously.

Since TopSorts(p0; p00) = seq0 [ seq00, it follows that
p2TopSorts(p0;p00) fp(x) = p2seq0 fp(x) u

p2seq00 fp(x).

3. Proposition: If si 2 p
00, then for all x: fp(x) = fp0 ;p00 (x).

Proof: The proposition is proved, by reordering the sequence p stepwise: The statements sk1 ; sk2 2 p
with 1 � k1; k2 < i may be reordered in a way that all statements sk1 2 p

0 are placed before sk2 2 p
00

and still ful�ll the order constraints of p0 and p00, respectively. Lemma 4 guarantees that the value
of this reordered sequence is still equal to fp(x).

The instructions sk 2 p
0 with k > i may also be placed before si, since fk = id.

The statements sk 2 p
00 with k > i need not be reordered.

Hence if si 2 p
00 then fp(x) = fp0;p00 (x). Analogously, if si 2 p

0 the fp(x) = fp00;p0 (x).

4. Now the statement sequences from seq0 and seq00 may be reordered as shown above, while not
changing their value. Hence p2seq0 fp(x) = fp00 ;p0 (x) and p2seq00 fp(x) = fp0 ;p00(x).

And so: p2TopSorts(p0;p00) fp(x) = fp00 ;p0 (x) u fp0 ;p00 (x).

5 Data Flow Analysis of the PAR Statement

We now solve the data 
ow analysis problem for the PAR statement in two steps:

1. which information is valid before each statement in a process body, and

2. which data 
ow information is valid after the PAR statement?

But before doing this, we need some more de�nitions.

15fi is an abbreviation of fsi .
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5.1 Statement Traces Generated by the PAR Statement

If the maximum (worst case) data 
ow information of some statements is given as the meet over all paths,
the question arises: how can we compute all paths of a parallel program?
We now consider statement traces instead of paths in the control 
ow graph; this simpli�es the presentation
of the next results.

De�nition 9 A statement trace or statement execution sequence is a list of simple statements in the

order they are executed by a single run of a program. The set seq[S] is the set of all traces generated by

statement S. s 2 p 2 seq[S] means that s is a simple statement contained in sequence q.

It is well known how the set of traces is constructed for sequential programs:

� For the concatenation of statements S1;S2
16 the traces produced from S1 and S2 are concatenated.

� For an IF statement, the traces generated by the THEN and ELSE parts are united.

� For loops, all n-fold concatenations of the traces produced by the loop body are united.

Since we assumed an interleaving semantics for the execution of the statements of our PAR statement, it
is obvious that the topological sorting of the traces produced by the process bodies, determines all traces
of the PAR statement.

De�nition 10 For a given trace p the set pre�xes(p) is the set of all pre�xes of p. It includes the empty

trace and the entire trace p. pre�xes(P ) is the extension to a set of traces P , so that it contains all

pre�xes of all traces of p 2 P . For a statement S, pre�xes[S] is the abbreviation of pre�xes(seq[S]).

De�nition 7 is now extended for arbitrary (composite) statements:

De�nition 11 Let S; S1; : : : ; Sn be arbitrary (composite) statements: fS (x) =def p2seq[S] fp(x).

fS1 ;S2 ;:::;Sn (x) =def fSn � fSn�1
� : : : � fS1 (x) is the function corresponding to the statement sequence

S1; : : : ;Sn.

an obvious lemma is:

Lemma 8 Let S1; : : : ; Sn be arbitrary statements and let be S � S1; : : : ;Sn. Then for distributive func-

tions f 2 F : fS1 ;S2 ;:::;Sn (x) = fS (x), while for monotone f 2 F , only fS1 ;S2 ;:::;Sn (x) fS (x) holds.

De�nition 12 Let s be a statement inside a (nested) PAR statement. sibl[s] is the set of all simple

statements which could possibly be executed in parallel to s. If s is part of a replicated process body, all

statements of this process body are also contained in sibl[s] .

Note that the property s0 2 sibl[s] of s0 is a pure syntactical one, which can easily be determined from
the source program.

5.2 Which Data Flow Information Reaches a Statement

Let s be a statement inside a PAR statement. By de�nition the information valid before s is given by
the meet over all traces reaching s. To answer the question which these traces are, let us examine
the following example17: PAR s j s1; s2; : : : ; sn END. s may now be the �rst statement executed in an
interleaving produced by this PAR statement. On the other hand, s1 may be executed before s in another
interleaving, or s1; s2 are executed before s, etc. Hence the set of statements executed before s is given
by pre�xes(hs1; : : : ; sni). Using lemma 6 we can conclude that:

16Capital letters S denote composite statements, whereas small letters s denote simple ones.
17Note that in these traces some statement within the body of the PAR statement may not be included, since they are

executed \after" s.
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p2pre�xes(hs1;:::;sni)
fp(x) = x u

n

i=1 fsi(x). If the process body S of PAR s j S END which is executed
in parallel to s produces more than one execution sequence, the set of execution sequences reaching s is
given by:

S
p2seq[S] pre�xes(p), and hence: p2pre�xes(seq[S]) fp(x) = x u t is a statement from S ft(x).

The fact that there may be statements, which are always executed before s, does not in
uence our
considerations, since the argument x of the function fs re
ects the information reaching s, if no parallel
statements are executed before s.
Since PAR statements may be nested, the following theorem is a consequence of the above:

Theorem 1 Let s be a simple statement in a program, and sibl[s] the set of simple statements possibly

executed in parallel to s. Then for DC data 
ow problems, the following information is valid before s:

x u

t2sibl[s]

ft(x);

where x is the information valid before the PAR statement.

If we use the following de�nition, we can restate the theorem so that it is easier to use as a base for an
implementation.

De�nition 13 For statement s, we de�ne in;[s] as the information reaching s on a \sequential" trace

from the program entry. That is, none of siblings of s are executed before s. And let ink[s] be the

information reaching s if all possible traces are considered.

If a function ft 2 F
C ; t 2 sibl[s] is a constant function, then the value of ft(x) is independent of x:

ft(x) = ft. Otherwise ft is the identity, and ft(x) = x. Then in;[s] is simply the value of x, and the
Theorem 1 can be restated as:

ink[s] = in;[s]u
t2sibl[s]

ft (1)

5.3 Which Information is Valid After the PAR Statement

Lemma 7 is the cornerstone for the following theorems. After extending it to sets of paths we obtain:

Theorem 2 For the DC data 
ow problems and the PAR S1 j S2 END statement the following holds:

p2seq[PAR S1 j S2 END]

fp(x) =
p2seq[S1 ;S2 ]

fp(x) u
p2seq[S2 ;S1 ]

fp(x)

To extend this theorem for PAR statements with more than two process bodies, we de�ne:

De�nition 14 The set of simple permutations s perm of the numbers 1; : : : ; n is given by:

s perm(1; n) =def fh1; 2; : : : ; n� 1; ni; hn; 2; : : : ; n� 1; 1i; h1; n; 3; : : : ; n� 1; 2i; : : :; h1; 2; 3; : : :; n; n� 1ig.
That is, the ith number is exchanged with the last number in the sequence h1; 2; : : : ; ni.
~{ � hi1; i2; : : : ; ini denotes an element of this set. Let S1; : : : ; Sn be statement sequences, and ~{ 2

s perm(1; n). Then S~{ is de�ned to be the statement sequence: Si1 ; : : : ;Sin .

Note that s perm(1; n) has only n elements.
If we have a closer look at the proof of lemma 7, we see that the order of the statements sk, with k < i

has no in
uence on that result. Hence we have the following lemma:

Lemma 9 Let p1; : : : ; pn statement sequences of simple statements. Then:

p2TopSorts(p1;:::;pn)

fp(x) =
~{2s perm(1;n)

fpi1 ;:::;pin (x)
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Note that any other permutation would serve, as long as each statement sequence appears at least once
at the end. Hence we have the following theorem:

Theorem 3 For the DC data 
ow problems and the PAR S1 j : : : j Sn END statement:

p2seq[PAR S1 j ::: j Sn END]

fp(x) =
~{2s perm(1;n)

fSi1 ;:::;Sin (x):

It is easy to see that the result is not changed by a replicated process body [var := lwb TO upb] S

with upb - lwb + 1 > 0, since for the result only S is important. If upb - lwb + 1 � 0, then it may
happen that S is never executed, and the theorem should be adjusted accordingly. We will see in the
implementation section 10, how this could easily be done.

Now we show how to analyze the other language constructs (POR, TRY, LOCK, ?, !). Their analysis is
based on the results of this section.

6 Data Flow Analysis of the POR Statement

Let S1 and S2 be sequences of simple statements. Then the POR S1 j S2 END statement can be \trans-
formed" into a series of PAR statements, where one branch is executed fully, while the other one is executed
only partially. During runtime an \oracle" determines which of the PAR statement is actually executed.
An example is given in Table 5. Under the view of data 
ow analysis this transformation is valid, if the
data 
ow analysis problem is distributive. Now we can apply the previous results.

POR PAR PAR PAR PAR PAR

a := 1; a := 1; a := 1; a := 1; a := 1; a := 3;

a := 2; a := 2; a := 2; a := 2; | a := 4;

| END | | a := 3; END

a := 3; a := 3; a := 3; a := 4;

a := 4; END a := 4; END

END END

Table 5: Example transformation of a POR statement.

We see, that the set of PAR statements which result from the transformation of a POR S1 | S2 END

statement is given by:

fPAR S1 j p ENDjp 2 pre�xes[S2]g [ fPAR p j S2 ENDjp 2 pre�xes[S1]g (2)

But what happens if we have arbitrary statements S1 and S2, such as loops or conditionals? Nothing,
except that the set of pre�xes is potentially in�nite, but over a �nite set of statements.

Since DC is distributive, we can apply Theorem 2 and Lemma 6. Let S1 and S2 be arbitrary state-
ments, q 2 seq[S2] a trace of statements of S2, and p 2 pre�xes(q) a pre�x of that trace. Let us
examine the �rst set of Equation 2. From Theorem 2 we obtain18: fS1kp(x) = fS1;p(x) u fp;S1 (x). If we
now consider all pre�xes of q we have: p2pre�xes(q) fS1kp(x) = p2pre�xes(q) fS1;p(x) u fp;S1 (x). Using

Lemma 6 this equals: s2q fs(fS1 (x))ufS1(fs(x)). Extending this to all traces produced by S2 results in:

p2pre�xes(seq[S]) fS1kp(x) = s2p2seq[S2 ]
fs(fS1 (x)) u fS1 (fs(x)). We still have to consider all statement

traces of S2, but since a trace consists only of simple statements contained in a composite one, this can
be reduced to: s2S2

fs(fS1 (x)) u fS1 (fs(x))

The same considerations can be applied to the second part of Equation 2 and we end up with:

18S1 k S2 is a shorthand for the PAR S1 j S2 END statement.
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Theorem 4 For the DC data 
ow problems and the POR S1 j S2 END statement: 8x 2 V :

p2seq[POR S1 j S2 END] fp(x) = s2S1
fs(fS2 (x) u fS2 (fs(x)) u

s2S2
fs(fS1 (x)) u fS1 (fs(x))

Theorem 1 is also valid for the POR statement. Theorem 4 may be extended quite easily for any number
of process bodies.

7 Data Flow Analysis of Critical Regions

Let S � LOCK vars DO S END, T � LOCK vart DO T END,
 � PAR : : :; S; : : : | : : :; T ; : : : END, and  0 � PAR : : :; S; : : : |: : :; T; : : : END.

Using Theorem 2 we have: f:::;S;:::;T ;:::(x) u f:::;T ;:::;S;:::(x) = f (x). The sequentialization of S and T
now re
ects the semantics of LOCK. Hence we have the following theorem:

Theorem 5 For the DC data 
ow problems and the LOCK statements: f (x) = f 0(x), independently of

the value of semaphore variables of the LOCK statements.

If the values vars and vart are equal, then the statements of S can not be executed in parallel to T . This

fact may be used when computing ink[s] with s 2 S, and s 2 T , respectively.

The TRY statement can be modeled for the data 
ow analysis by IF : : : THEN LOCK var DO : : : END

ELSE : : : END.

8 Data Flow Analysis of Message Passing

If we have a closer look at the statement
PAR S'; ch ! expr; S'' | T'; ch ? var; T'' END

we could use the knowledge that S' (S'') is never executed in parallel to T'' (T'), if they use the same
channel. But if these statements are contained in loops, this fact does not hold any more:

PAR LOOP S'; ch ! expr; S'' END | LOOP T'; ch ? var; T'' END END

Now S' (S'') may be executed in parallel to T'' (T'). Hence we have to consider this worst case situation
and we have the following theorem:

Theorem 6 For the DC data 
ow problems and the ! and ? statements, Theorems 1 and 2 hold.

9 Bit-Vector Implementation

From now on, we consider only the DB data 
ow analysis framework.

Until now we considered only one program entity, such as a single program variable or a single expression.
When implementing data 
ow analysis, usually all entities are considered at the same time. Hence we
are dealing with sets of informations, valid at a program point. Each entity is coded by a number
1 : : : j entities j. For the class of one-bit data 
ow problems DB there is a quite e�cient implementation
of sets: the bit-vector.

De�nition 15 A bit-vector is the characteristic function vec of a �nite set of of object numbers 1 : : :n =
j entities j. vec : f1 : : :ng ! fTRUE;FALSEg with 1 � n. Usually vec(i) is denoted as vec[i].

The set operations [;\; are de�ned for bit-vectors, by element wise application of the boolean operations

_;^; . The set di�erence is de�ned by a� b =def a \ b.

The empty set ; is represented by the bit-vector, in which all values are FALSE.
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Usually for each statement and basic block the following four sets are de�ned [Aho et al 86]: gen, kill, in
and out. gen (kill) is the set of information generated (invalidated) by this statement/basic block. in is
the set of information valid immediately before execution of this statement and out the information valid
immediately after that point.

As seen before, the u operation is either set union or set intersection. The DFA problems using set union
(intersection) as meet operations are called may problems (must problems), since the information must
reach a given program point on at least one (on all) paths leading to that point.

We de�ne now the four sets in terms of the transfer functions. Each statement s has a separate transfer
function for each entity e, denoted by fes .

De�nition 16 Let s be a statement,

gens[e] = TRUE i� fes = u (use),

kills[e] = TRUE i� fes = m (modify),

ins[e] = TRUE i� p2path[s) f
e
p (?) = > and

outs[e] = TRUE i� p2path[s] f
e
p (?) = >.

Obviously: gens \ kills = ;

We will �rst formulate the result of Theorem 1 in the form of Equation 1 using the DFA sets. Note that
we are now using DB:

In the equation inks[e] = in;s[e]u t2sibl[s] f
e
t , all ft are constant functions. The right hand side is >, i�

both parts of it evaluate to >. The following equivalences hold:

t2sibl[s] f
e
t = >, 8t 2 sibl[s] : fet = >,6 9t 2 sibl[s] : f

e
t = ?,

V
t2sibl[s] gens[e] = TRUE,W

t2sibl[s] kills[e] = FALSE.

We now distinguish:

u = ^;> = TRUE

t2sibl[s] f
e
t = >,

V
t2sibl[s] f

e
t = TRUE,

W
t2sibl[s] kills[e] = TRUE

u = _;> = FALSE

t2sibl[s] f
e
t = >,

W
t2sibl[s] f

e
t = FALSE,

V
t2sibl[s] gens[e] = FALSE ,W

t2sibl[s] gens[e] = FALSE,
W
t2sibl[s] gens[e] = TRUE.

And we can state the following theorem:

Theorem 7 The information of a one-bit DFA problem reaching a statement s can be computed by:

for u = ^ : inks = in;s �
S

t2sibl[s]

killt with in;s0 = > = TRUE

for u = _ : inks = in;s [
S

t2sibl[s]

gent with in;s0 = > = FALSE

(s0 is the �rst statement of the program).

The next step is the adaptation of Theorem 3. Before doing so, we restate the equations for in and out
in the sequential case, as they may be found e.g. in [Aho et al 86]:

For a simple statement the relation is given by:

outs = gens [ ins� kills (3)

For sequential composition of statements s � s1; s2:

outs = out2[ out1� kill2 = gen2 [(gen1� kill2) [ (ins�(kill1 [ kill2))
19 (4)
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and more generally: s � s1; : : : sn

outs =

n[
i=1

0
@geni�

n[
j=i+1

killj

1
A [

0
@ins � n[

i=1

killi

1
A (5)

For branches in a sequential program:

ins = p2pred[s] outp
outs = gens[ ins� kills

(6)

Using these equations we can compute the right hand side of the equation from Theorem 3:

~{2s perm(1;n) fSi1 ;:::;Sin (x). We again have to distinguish between may and must problems. Hence the

following theorem can be given (the proof is given in the appendix):

Theorem 8 The information outS of a one-bit DFA problem valid after the PAR S1 j : : : j Sn END

statement S can be computed as:

for u = ^ : outS =

  
n[
i=1

geni

!
�

 
n[
i=1

killi

!!
[

 
in;S �

n[
i=1

killi

!

for u = _ : outS =

n[
i=1

geni [

 
in;S �

n[
i=1

killi

!

where in;S is the information valid before the PAR statement, and geni and killi are the sets corresponding
to the process bodies Si.

Now we have to determine which information is generated and invalidated by a PAR statement as a whole.
Again we start with the sequential composition of statements (following [Aho et al 86]): For S � S1;S2
we have:

genS = gen2[ gen1� kill2 (7)

killS = kill2[ kill1� gen2

Hence we can follow the same arguments as for outPAR, with the simpli�cation that the term
in�(kill[ : : :) does not exist. We note here that if the \In-Out-problem20" is a may-problem, then
the \Gen-Problem21" is a may-problem too, while the corresponding \Kill-problem" is a must-problem,
and vice versa, if the In-Out-problem is a must-problem. So the next theorem can be stated:

Theorem 9 The information of a one-bit DFA problem generated and invalidated by a

PAR S1 j : : : j Sn END statement S can be computed as:

In-Out-problem u = ^ : genS =

 
n[
i=1

geni

!
�

 
n[
i=1

killi

!

killS =

n[
i=1

killi

19The symbol Xsi is abbreviated to Xi.
20Which information is valid before/after a statement.
21Which information is generated by the statement.
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In-Out-problem u = _ : genS =

n[
i=1

geni

killS =

 
n[
i=1

killi

!
�

 
n[
i=1

geni

!

Having all these theorems, we see that we have avoided the state-space explosion problem.
These results are given for an \isolated" PAR statement. The next section will put them in the context
of a parallel control 
ow graph and we will see how this gives us an elegant algorithm for computing the
data 
ow information of a parallel program.

10 The Parallel Control Flow Graph

The following explanation is based on our implementation of the parallel languageModula-P [Vollmer 89,
Vollmer et al 92] developed in the Compare project. To express parallelism in the intermediate lan-
guage CCMIR-P22 we de�ne some additional CCMIR statements and de�ne a parallel control 
ow graph

(PCFG).
Looking at the results of this theory, we observe that the PAR statement and its processes are treated by
it as a single statement with a complex behavior. The idea for integrating the analysis of a PAR statement
is to treat it like other CCMIR statements such as assignment or procedure call, except that it has a
more complex DFA behavior. The DFA e�ects of the PAR statement are determined solely by its process
bodies.
The central idea of our parallel control 
ow graph (PCFG) is that it is a forest of disjoint CFG's. Each
process body and procedure body constitutes a separate CFG. Since jumps into or out of process bodies
are forbidden in the source language, there are no jump edges connecting the CFG's.
To form a PCFG of a procedure we connect these separate CFG's by adding parallel edges between the
CFG of a process body and the mirParallel statement containing this process body.
For the program fragment shown in Table 6 the PCFG is given in Figure 1.

REPEAT ..;

IF ..

THEN

x:=..;

PAR

..; PAR Body1a | Body1b END; ..;

| Body2

| Body3

END

p (..); z := f (..);

PAR Body4a | Body4b END;

ELSE ..

END;

UNTIL ..

Table 6: A program fragment with nested PAR statements.

After parsing a source program, we obtain a list of all basic blocks, constituting an entire procedure.
There is no speci�c order in this list. From that, we compute for each basic block the list of predecessors
and successors (cf. [Aho et al 86]). Each basic block has zero, one or two successors. It has none, if it has
as its last statement the EndProcedure or EndProcess statement. It has one, if the last statement is a

22Common Compare Medium Intermediate Representation, Parallel extension; the intermediate language of the Com-
pare compilers.
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goto ...

Body 2 Body 3Body 1

Body 1a Body 1b

p (...):

x := .....

z  := f (...)

mirParallel

mirParallel

mirParallel

The dashed lines are parallel edges connecting the separate CFG's of the process bodies to their mirParallel

statement. The grey boxes are CFG's of the process bodies. The other boxes are part of the procedure body's

CFG.

Figure 1: A PCFG for the program fragment of Table 6.

mirGoto, and two if this is a mirIf statement. Entry basic blocks are marked by the BeginProcedure

and BeginProcess CCMIR instructions: their basic blocks have no predecessors. To �nd the roots of
the CFG's we simply scan the procedure's list of all basic blocks for basic blocks having no predecessors.

If a replicator speci�es that no process should be created, then we draw an extra jump edge from the
process body entry to its exit. This solves the problems mentioned in the note to Theorem 3.

Our de�nition of a PCFG di�ers from the one given in [Wolfe et al 91] in the way that their PCFG has
two kinds of nodes: \ordinary" basic blocks and super nodes (or parallel blocks). Such a super node
represents the entire process body.

11 Solving the Data Flow Equations of Concurrent Programs

Let's assume we do not have nested PAR statements. Then we must analyze a program in the following

order:

1. Compute gen and kill information for all process bodies and the mirParallel statement itself.

2. Compute gen and kill information for all statements of the procedure's CFG.

3. Compute in and out for all statements of the statements of the procedure's CFG.

4. Since we know the exact information reaching the mirParallel statement, we can compute the in
and out information of the valid at the statements of the process bodies: the information reaching
the mirParallel statement reaches the entry of each process body.

Now it is obvious how to deal with nested PAR statements:
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1. Visit the deeply-nested process bodies �rst and compute their gen and kill information. This
corresponds to a depth-�rst traversal of the PCFG along the parallel edges. This is called inside-

out computation of Gen/Kill.

2. Compute gen and kill of all other statements of the procedure's CFG.

3. Compute in and out for all statements of the procedure's CFG.

4. Visit the mirParallel statements from outside-in (the reverse order of inside-out) and compute in
and out of the process bodies. Outside-in is the top-down traversal of the PCFG along the parallel
edges.

This kind of computation of the data 
ow information is a mixture of the structural [Babich et al 78],
[Aho et al 86, page 611] (for the e�ect of the mirParallel statement) and iterative (all other statements)
method.

A similar idea has been presented for DFA of sequential problems by [Horwitz et al 87]. They partition
the CFG into strongly connected components (scc) and visit them in topological order, while the DFA
inside an scc is done using rPOSTORDER (scc-iteration algorithm).

The computation of the in and out information must be done using an iterative algorithm [Kildall 73,
Aho et al 86]. At a �rst glance the same seems to be true for the computation of gen and kill23. But this
iterative approach for gen and kill solves a broader problem: it computes for each basic block b the set
of gen and kill information reaching b. But we need only the gen and kill information which is valid at
the end of a process body. We can therefore use a simpler algorithm which combines the computation of
the local gen and kill with the computation of the gen and kill of a set of basic blocks. We visit the basic
blocks in the reverse depth �rst order, which guarantees that at the end of the process we have the same
result than using the iterative method.

11.1 The Inside-Out/Outside-In Algorithm

Most tasks in analyzing a parallel program need to traverse nested PAR statements in the previously
mentioned Inside-out/Outside-In Order. Here is a sketch of an algorithm for doing this.

The assignments to the variable info  : : : below an abbreviation, for \compute info in some way, using
possibly : : :".

The function tInfo doit io (LIST(mirBasicBlock) bbl) and void doit oi (LIST(mirBasicBlock)

bbl, tInfo info) do the \real work" on the list of basic blocks bbl, representing a CFG.

Algorithm 11.1 Inside-Out

TASK: Visit all basic blocks of all processes of the PAR statement in Inside-Out order. Compute some
information and propagate it Inside-Out.

SIGNATURE: tInfo visit in out (mirParallel stmt)

METHOD:

tInfo info; =� the \information" passed around �=

forall processes p in stmt->Processes do

forall mirParallel stmts s in p do =� Visit the PAR statements, nested in this process. �=

info  visit in out (s)

end

info  doit io (process->cfg) =� Visit the body of this process �=

end

return info;

23Note: We have to compute the gen and kill info for a set of basic blocks. In the sequential DFA, this information is not
needed.
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Algorithm 11.2 Outside-In

TASK: Visit all basic blocks of all processes of the nested PAR statement in Outside-In order. Use
some information passed from the \outside".

SIGNATURE: void visit out in (mirParallel stmt, tInfo info)

METHOD:

tInfo info; =� the \information" passed around �=

forall processes p in stmt->Processes do

doit oi (p->cfg, info) =� Visit the body of this process �=

forall mirParallel stmts s in p do =� Visit the PAR statements, nested in this process. �=

visit out in (s, info)

end

end

Algorithm 11.3 Driver for Inside-out /Outside-In

TASK: visit all basic blocks of a procedure in Inside-Out and then Outside-In order.

SIGNATURE: void do all (mirProcGlobal proc)

METHOD:

tInfo info; =� the \information" passed around �=

=� A: Inside-Out, compute information info and propagate it inside-out. �=

forall mirParallel stmts s in proc do =� Visit the all PAR statements Inside/Out. �=

info  visit in out (s)

end

info  doit io (proc->cfg) =� Visit the body of this procedure �=

=� B: Outside/In, propagate information info from outside-in. �=

doit oi (proc->cfg, info) =� Visit the body of the procedure �=

forall mirParallel stmts s in proc do =� Visit the all PAR statements �=

visit out in (s, info)

end

11.2 Computing Gen/Kill and InS/Out for a CFG

Here we give the algorithms which compute Gen/Kill and InS/Out information for the basic blocks of a
CFG. Using the Inside/Out and Outside-In strategies of the previous section, we can compute the DFA
information valid for each basic block of the PCFG.

Algorithm 11.4 Gen/Kill of a CFG

TASK: Compute for all basic blocks of a CFG and for the CFG itself the Gen/Kill information. This
routine will be called inside-out for the procedure under consideration.

SIGNATURE: void gen kill cfg(LIST(mirBasicBlock) cfg, SET *GenOut, SET *KillOut);

INPUT: cfg is the list of basic blocks constituting this CFG; the list is ordered in reverse depth �rst
order, i.e. the �rst (last) list element is the entry (exit) basic block of this process/procedure.

OUTPUT: GenOut and KillOut give the Gen/Kill information of the entire CFG, i.e. valid after the
exit basic block of this CFG.
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METHOD:

=� Initially the Gen/Kill sets of all basic blocks are empty. �=

forall bb in cfg do

=� Compute local Gen/Kill information. �=

bb->Gen  =� Gen of this basic block �=;
bb->Kill  =� Kill of this basic block �=;

=� Gen/Kill reaching this bb �=

=� If the in/out problem is a u problem, then Gen is a u problem and Kill is a t problem. �=

g  pp2bb�>pred pp�>Gen;
k  

F
pp2bb�>pred pp�>Kill;

=� Don't worry about Gen/Kill of basic blocks which are not computed yet. These basic blocks will

be considered later in the cfg list, and contribute their Gen/Kill then. This is valid, since we are not

interested in a �xed point, but rather in the Gen/Kill valid after the exit basic block of this CFG. �=

=� Gen/Kill valid at the end of this bb �=

bb->Gen  g - bb->Kill;
bb->Kill  k - bb->Gen;

end

pp = LAST(cfg); =� last basic block of the basic block list. �=

GenOut = pp->GenOut; KillOut = pp->KillOut

Algorithm 11.5 In/Out of a CFG

TASK: Compute for all basic blocks of a CFG and for the CFG itself the In/Out information. This
routine will be called outside-in for the procedure under consideration.

SIGNATURE: void in out cfg (LIST(mirBasicBlock) cfg);

INPUT: cfg is the list of basic blocks constituting this CFG; the list is ordered in the reverse depth
�rst order, i.e. the �rst (last) list element is the entry (exit) basic block of this process/procedure.

OUTPUT: for each basic block, InS and Out.

METHOD:

We use the iterative algorithm of [Kildall 73], as given in e.g. [Aho et al 86].

=� Initially the In/Out sets of all basic blocks are empty. �=

entry = FIRST(cfg);

if entry basic block is a process entry basic block then

entry->InS = InS of the mirParallel statement, containing the process; =� Everything reaching

a mirParallel statement reaches each of its processes. �=

else

entry->InsS = >; =� No information is valid at the procedure entry �=

end

=� Compute �xed point �=

while no changes in any bb->Out do

forall bb in cfg do

bb->InS  pp2bb�>pred bb�>Out;
bb->Out  bb�>Gen [ bb�>In � bb�>Kill;

end

end
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12 Complexity of this DFA Algorithm

To estimate the complexity of this algorithm, we use as complexity measure the number of visits of a basic
block during the iterative computation of the DFA information. A \comparable" sequential program is
one where the PAR statement and its process bodies are executed sequentially.
For the computation of the gen and kill sets, we have to visit each basic block once, both in the sequential
and parallel case.
During the computation of in and out we apply the iterative algorithm several times to di�erent (and
disjoint) sets of basic blocks: �rst, we compute the DFA information for the basic blocks of the procedure's
CFG. Second, we compute in and out for the sets of basic blocks corresponding to process bodies. The
process bodies are considered in the outside-in order of the PAR statement.
The number of iterations needed to compute the DFA information is determined by the loop nestedness

[Hecht et al 75] of the source program.
Since we don't have jump edges between basic blocks of di�erent process bodies, we are always computing
the DFA information of disjoint sets of basic blocks. Hence the loop nestedness is the same for the parallel
and the comparable sequential program. Hence the overall number of basic block visits is equal in the
parallel and the comparable sequential program.
As a result the data 
ow analysis of a parallel program has the same complexity as a comparable sequential
one.
This result is supported by [Horwitz et al 87], who stated the following theorem:

An application of the scc iteration will visit no more nodes than an application of rPOST-
ORDER iteration.

13 Current and Future Work

Currently the algorithm of [Knoop et al 94] for elimination of partial redundancies is implemented in the
Compare compiler for the source languageModula-P [Vollmer 89, Vollmer et al 92], which is an extension
of Modula-2 [Wirth 85] with CSP (Communicating Sequential Processes) [Hoare 78].
As part of the project \analyzing and optimizing parallel programs", the next step is to adapt the
static single assignment form [Cytron et al 89] to cope with parallelism, without having the restrictions
of [Srinivasan et al 91a].

14 Conclusion

This work shows that data 
ow analysis of parallel programs is possible, and can be done as e�ciently
as for sequential programs. The novelty is that there is no restriction in the kind shared memory access,
nor in the \accuracy" of the resulting DFA information. Hence it is now possible to apply optimizing
transformations, which are well known from the sequential context.

To show this, we proved some nice properties of the semi-lattice based data 
ow frameworks DC and DB,
which allowed us to reduce the number of interleavings needed for the computation of the meet over all

paths solution of the DFA problem. Then we extended these results to bit-vectors, and obtained simple
set equations, computing the DFA information valid inside and after a PAR statement. Based on that we
gave a simple algorithm to compute the DFA information valid at all program points. This algorithm is
a slight variant of the usual iterative DFA algorithm, but the basic blocks are visited in a special order:
inside-out and outside-in of the nesting structure of the PAR statement.
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Appendix A: Additional Proofs

Proof (Theorem 8)

Using equation 5, we see:

~{2s perm(1;n)
fSi1 ;:::;Sin (x)
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(x)

= (genn [ genn�1� killn [ genn�2�(killn�1 [killn) [ : : : (gen
1
�

Sn

j=2
killj) [ (ins�

Sn

j=1
killj))

u

(gen
1
[ genn�1� kill1 [ genn�2�(kill1 [killn�1) [ : : : (genn�

Sn�1

j=1
killj) [ (ins�

Sn

j=1
killj))

u

: : :
(geni [ genn�1�killi [ genn�2�(killi [killn�1) [ : : : (gen

1
�

Sn

j=2
killj) [ (ins�

Sn

j=1
killj)

u

: : :
(genn�1 [ genn� killn�1 [ genn�2�(killn�1 [killn) [ : : : (gen

1
�

Sn

j=2
killj) [ (ins�

Sn

j=1
killj)

(8)

For u = [ we can conclude:
Sn
i=1 geni[ ins�

Sn
i=1 killi.

Now let's consider u = \. Generally for arbitrary sets ai;j it holds:

(a1;1 [ a1;2 [ : : : [ a1;n)\
(a2;1 [ a2;2 [ : : : [ a2;n)\
: : :
(an;1 [ an;2 [ : : : [ an;n)\

=

(a1;1 \ a2;1 \ : : : \ an;1)[
: : :
(a1;k1 \ a2;k2 \ : : : \ an;kn )[
: : :

(9)

where the n-tuples (k1; : : : ; kn) take all values in the range f1; : : : ; ngn.
In equation 8 the \isolated" term geni may be replaced without any changes by geni� killi, since
geni \ killi = ;. Hence all elements of a row of equation 8 have the form: gj � (

S
l2L killl), where

L � f1; : : : ; ng.
Since the resulting union the elements of in�

Sn
i=1 killi are contained, all intersection terms which contain

also this term in�
Sn
i=1 killi may be removed. According to equation 9 for one row we have (where

ji 2 f1; : : : ; ng):
a1;k1 \ a2;k2 \ : : :\ an;kn
= (genj1 �(kill1 [ : : :)) \ (genj2 �(kill2[ : : :)) \ : : :\ (genjn �(killn[ : : :))

= genj1 \ genj2 \ : : :\ genjn \kill1 \ kill2 \ : : :\ killn
From equation 9 it follows that there are rows, in which all ji are equal.
Since genj1 \ genj2 \ : : :\ genjn \kill1 \ kill2 \ : : :\ killn � genj1 \kill1 \ kill2 \ : : :\ killn it follows that
equation 8 evaluates to
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