
Universität Karlsruhe
Fakultät für Informatik

 76128 Karlsruhe

Flexible and Transparent Fault
Tolerance for Distributed

Object-Oriented Applications

M�arz 1995

Dietmar A. Kottmann

Prof. Dr. Alexander B. Schill

Universit�at Karlsruhe

Institut f�ar Telematik

Interner Bericht 20/95

i

This report describes an approach enabling automatic structural recon�gurations of distributed ap-
plications based on con�guration management in order to compensate for node and network failures.
The major goal of the approach is to maintain the relevant application functionality after failures au-
tomatically. This goal is achieved by a dedicated system model and by a decentralized recon�guration
algorithm based on it. The system model provides support for redundant application object storage
and for application-level consistency based on distributed checkpoints. The recon�guration algorithm
detects failures, computes a compensating con�guration, and realizes this new con�guration. The report
emphasizes exibility in the sense of adaptable levels of fault tolerance, as well as transparency in the
sense of fully-automatic reaction to failures.

Key words: Distributed applications, object-oriented systems, dynamic recon�guration, fault toler-
ance, dependability, con�guration management

ii

The work presented in this report describes an integrated approach for providing fault{tolerance to dis-
tributed applications in a transparent manner. The basic idea is to exploit the capabilities of application{
level con�guration management [IEE92], the task of instantiating, allocating, and interconnecting ap-
plication modules initially, as well as during dynamic con�guration changes. The ability to perform
such dynamic changes is the starting point for our approach, that combines recon�guration with means
for percepting node and network failures and for keeping application objects consistent. Concerning
failures, we assume fail-stop behaviour of nodes and network components [SCS83]. In summary, the
major contributions of the report are as follows:

� Distributed and decentralized recon�guration algorithm: We present a new distributed algorithm
performing automatic application recon�gurations after (node or network) failures. Due to its
completely decentralized nature, the algorithm is also able to cover the problem of network par-
titions.

� Mechanisms to guarantee consistency after recon�guration: An important property of the recon-
�guration algorithm is that it guarantees consistency of ongoing computations. This is achieved
by underlying system support for coordinated distributed checkpoints.

� Support for exible levels of fault tolerance: Based on an underlying system model that allows for
selected replication of application data, an application administrator can determine the desired
level of fault tolerance explicitly (in terms of the set of potential failures to be tolerated).

� Determination of replica placement based on the structure of an application: As the con�guration
manager knows about interobject bindings, locations of replicas are selected in a way to ensure
that those part of an object mesh, which are necessary to provide a certain functionality, are
available at speci�c nodes with a high probability. This involves changing the locations of replicas
in the case of a failure, eventually combined with the installation of new replicas.

As a foundation of our approach, we use a dedicated system model based on the passive object model
described in [CHC91]. Objects (data structures encapsulated by a set of operations) are implemented
by a distributed extension of C++; this supports location independent object invocations and a limited
kind of dynamic object mobility similar to [JLH88]. A distributed application consists of communicat-
ing objects distributed to di�erent nodes. Parallel and distributed object computation is initiated by
concurrent lightweight threads, each invoking (potentially distributed) sequences of object operations.
Of the general features of object orientation, data encapsulation is an important prerequisite for our
approach, while inheritance is helpful for the internal implementation but is not a necessary part of
our application model. Concerning distribution of object implementation code, we rely on the simple
assumption that code for a given object type is replicated whereever an object of that type should be
allocated. Dynamic code installation would enable a more exible approach but is rather orthogonal to
the concepts described in this report and could therefore afterwards be integrated.

For our approach, the passive object model has been augmented with the facility to write distributed
object checkpoints during computation, and with a separate, explicit application con�guration man-
agement facility according to [KMS89]. Details of these aspects are described later.

The report is organized as follows: Section 2 describes our approach from a conceptual point of view.
First, the goals of transparency and exibility of fault tolerance are clari�ed. Then our basic con�g-
uration management facilities are described by an example application, and the overall structure of
our recon�guration algorithm is presented. Section 3 discusses the technical details of our approach,
namely the algorithm to map an application con�guration to an underlying distributed system, the
mechanisms to replicate application objects in order to enable recon�guration after failures, and parts
of the techniques to guarantee application consistency after recon�guration. Finally, the recon�guration
algorithm is discussed in more detail based on these technical foundations. Section 4 presents initial
experiences with the approach and section 5 compares our solution to approaches in several related
areas. Section 6 concludes with an outlook to future work.

1

1

2

3

A
8

7

C4 5

6

B

D

Figure 1: Distributed system example

2 Conceptual Approach

2.1 Major Goals

The general guideline of our work is the development of a scheme that provides exible and transparent
fault{tolerance to a distributed application.

Transparencymeans that the functionality is made available without taking explicitly care for depend-
ability within the application code. This is achieved by two correlated means: First, our recon�guration
algorithm performs automatic failure detection, application con�guration analysis, computation of a
new con�guration to compensate failures, and realization of the dynamic recon�guration. Secondly, our
system model enables recon�guration based on location independent invocation, supports the required
information redundancy by the facility for replicated object checkpointing, and guarantees application-
level consistency by coordinating checkpoints globally.

Flexibility can be divided into three issues: compliance to the speci�c failure characteristics and intended
usage of a given distributed system, selectable degree of availability for di�erent parts of a distributed
application, and exible placement of redundant information for those parts. For example, the set of
failures that have to be tolerated by an avionic system is broader than the corresponding one for
an electronic mail system. This diversity should be managed in a manner that is independent from
the application code. Therefore, a separate de�nition of the kind of failures to be tolerated, and of
the availability requirements for di�erent parts of the application is provided to achieve the stated
compliance, whilst the exible placement is computed automatically based on this information.

2.2 An Example

For the exempli�cation of the ideas our scheme is based on, we use the distributed system presented in
�gure 1, together with a simple application presented in �gure 2.

The distributed system consists of a backbone (D) that connects three LANs (A, B, C). The LANs
connect the nodes of two di�erent general departments (f1, 2, 3g, f4, 5, 6g), and the nodes of the
personnel department (f7, 8g).

The application consists of front{end objects for the departments (HD1F, HD2F), a front{end object for
the personnel department (PF), and two storage objects (PD, S). The arcs in the �gure depict potential
call relationships between objects. The �rst storage object PD maintains all personnel records of the
employees. The second storage object maintains the quali�cations and rankings of the employees, and
the sum of the employee wages for each department. Object PD has access to S for keeping the sums
consistent to the wages of each employees in case a call to PD changes some wages. To keep the example

2

HD2F

HD1F

PF PD

S

Figure 2: Example application

simple, there is just one object S instead of an object Si for each department, which might be a better
modelling of the application semantics.

An example of recon�guration behaviour that can be achieved automatically with our approach in case
of a failure is as follows: If the backbone fails, we want the system to react automatically in a way that
the personnel department keeps unlimited access to all personnel-related data (stored in objects PD
and S), while accepting access restrictions of the department front{end objects to read{only lookup
operations on data stored in object S. This restriction keeps the managers of the general departments
from updating the rankings, but is necessary to prevent the states of copies of S in di�erent partitions
fromdiverging. Later we will shortly discuss the possibility to use a storage object Si for each department
in order to allow the managers to update the rankings in case of a failure, too.

2.3 Con�guration Management

To provide the required exibility of application management, explicit control of the structure of a dis-
tributed application is needed. This is provided by a con�guration management facilitiy along the lines
of the Conic system [KMS89]. Our approach consists of a declarative con�guration language to specify
an application and system con�guration, and of con�guration managers mapping the speci�cation to
the underlying distributed object-based environment. In general, an application entity at the con�gu-
ration level is mapped to a C++ object of a speci�c class that is a subclass of a dedicated con�guration
management class.

In the following, the con�guration language is illustrated by specifying parts of the example application
of �gure 2 in a simpli�ed way; after specifying the relevant object types, it is shown how the object
instances of these types are declared and interconnected via logical links. These links are used at runtime
for indirect addressing of target objects within remote C++ invocation requests. They originate from
reference variables declared for each object type if required (e.g. for the personnel department); �elds
and arrays of reference variables are also supported as illustrated below. Hence reference variables are
a means for controlling remote access just as the well known concept of smart pointers is a means for
controlling memory usage and allocation. The logical interobject link structure is independent from
the physical node interconnection structure; the latter one is speci�ed by a dedicated topology graph.
Moreover, object operations are declared, too, in order to map them to operations within the C++
extension. For simpli�cation, some of the parameter types are omitted; object placement is also not
shown here (for details see section 3.1 and [SCZ93]).

OBJECT_TYPE StorageSystemType; // Storage of different records

REFERENCES otherStore: StorageSystemType;

// Optional ref. to other store

OPERATIONS store (RecordType,string); // Operation to store a record

retrieve (RecordType,string);

3

END_OBJECT_TYPE

OBJECT_TYPE DepartmentType; // General department

REFERENCES storage[*]: StorageSystemType;

// Reference for logical link

OPERATIONS manageProjectData (...); // Edit project information

performRanking (...); // Ranking tool support

// other operations

END_OBJECT_TYPE

OBJECT_TYPE PersonnelDeptType; // Personnel department

REFERENCES storage[*]: StorageSystemType;

// Reference for logical link

OPERATIONS modifyPersRecord (...); // Access and operate on rec.

addNewEmployee (...); // Add a new employee

// other operations

END_OBJECT_TYPE

OBJECTS HD1F, HD2F: DepartmentType; // General departments

PF: PersonnelDeptType; // Personnel department

PD, S: StorageSystemType; // Storage systems

END_OBJECTS

OBJECT_LINKS HD1F.storage[1] WITH S; // Dept. 1 -> Storage S

HD2F.storage[1] WITH S; // Dept. 2 -> Storage S

PF.storage[1] WITH PD; // Pers. Dept. -> Storage PD

PF.storage[2] WITH S; // Pers. Dept. -> Storage S

PD.otherStore WITH S; // Storage PD -> Storage S

END_OBJECT_LINKS

A compiler for the con�guration language has been implemented using LEX and YACC (see section 4).
The backend generates an internal con�guration representation that is loaded by the initial con�guration
manager in order to set up the initial con�guration.

Dynamic con�guration changes can also be requested in a similar notation shown by a small example
to introduce a new department:

CREATE HD3F: DepartmentType;

LINK HD3F.storage[1] WITH S;

These change requests are given to the dynamic change manager that executes them on the real con-
�guration. However, in the following kernel part of this report, we only rely on a similar procedural
interface to request dynamic recon�guration internally and do not focus on changes based on interactive
requests.

For the speci�cation of the physical structure, a similar language is provided. Physical con�guration
changes, e.g. to include new nodes, can also be requested.

2.4 Dynamic Recon�guration in the Case of Failures

Dynamic recon�guration is performed if a failure is detected that obstructs the normal communica-
tion based operations. Application activity is suspended for a�ected objects, a new con�guration is
established, and the activity is resumed.

The recon�guration may include the allocation of copies of objects that were once placed on a failed
node or a node that isn't reachable any more. For this allocation after failure, the internal state of
objects has to be replicated. If a failure leads to a partitioning, objects may be allocated in all resulting
partitions if the necessary state information is accessible. Consequently, techniques are required for
achieving consistency between objects surviving a failure on one hand, and newly allocated ones on

4

access to duplicates would in general prevent two con�gurations from merging automatically into a
new, consistent one when two partitions are united later after recovery of a failed component.

These considerations lead us to the following algorithm for dynamic recon�guration:

1. Fault detection. The �rst step of the algorithm is to detect a failure. Because several nodes may
detect one failure simultaneously, coordination of concurrent detection is necessary.

2. Reaching a consistent state. After a failure was detected, the objects a�ected by this failure are
identi�ed and set to a globally consistent state based on distributed checkpoints.

3. Computing the new con�guration. Thereafter, the new con�guration is computed based on the
set of continuously accessable nodes and on the available object data. Moreover, a set of recon-
�guration primitives needed for achieving the new con�guration is worked out.

4. Performing the recon�guration. The primitives computed in the last step are distributed and
executed to set up the new con�guration. This con�guration may include access limitations in
order to ensure consistency.

5. Resuming application activity. Finally, the activity of the application is resumed in a way that is
consistent with the new state of the objects implied by steps 2 and 4.

This algorithm is performed in each partition. After detecting the recovery of a node or a subnet/physical
link, the merging of several partitions is perfomed in the same way, with slight modi�cations of the �rst
and third step. The steps of the algorithm are described in further detail in section 3.3.

3 Technical Solution

This section describes important details of our technical solution, namely the object placement algo-
rithm, the exible replication policy, parts of the consistency support, and details of our overall recon-
�guration algorithm. The results are also applied to our example application by outlining a concrete
dynamic recon�guration after failure.

3.1 Mapping of the Application Con�guration to the Distributed System

The application con�guration has to be mapped to the underlying system con�guration initially, as well
as after a dynamic recon�guration. This mapping process is guided by logical resource requirements
and other placement-related conditions discussed below.

Nodes provide a set of logical resources. Those can be representations of real resources, like printers or
mathematical processors, or pure logical resources, introduced for the sake of modelling administrative
restrictions. On the other hand, objects need direct access to a set of resources. They can only be
located on nodes providing this set. In addition, an object can call for further resources that aren't
needed for the basic functionality. For example, an object can claim desired resources for purposes of
e�ciency. Finally, an object can give a set of direct placement priorities that can be used to state
certain administrative recommendations.

For our example, the nodes in �gure 1 provide the resources in table 1 and the objects in �gure 2
demand or additionally call for these resources as indicated in in table 2; this table also includes direct
placement priorities of the objects. Both of the front{end objects for the departments (HD1F, HD2F)
use logical resources (D1, D2) to make sure that they are only placed on nodes in their department.
The same holds for the front{end object of the personnel department, that use a unique logical resource
to make sure that it is placed on node 8.

5

Node Provided Resources

1 Unix, math proc, D1

2 Unix, math proc, D1

3 Unix, D1

4 VMS, D2

5 VMS, D2

6 Unix, math proc, D2

7 Unix, math proc

8 Unix, $P

Table 1: Outline of the system con�guration

Object Required Resources Desired Resources Placement Priority

PF $P, Unix

PD Unix 7 � 8

S Unix math proc 7 � 8

HD1F Unix, D1 1

HD2F VMS, D2 4

Table 2: Outline of the application con�guration

In addition, collocations between objects can be de�ned. A collocation de�nes that its member objects
should be placed together on one node. This is useful if a set of objects interacts frequently, because
local communication is far more e�cient than remote communication. Table 3 shows a collocation that
states that the objects PD and S should be placed on one node.

The mapping is realized through a penalty heuristics. Penalties are given for the obstruction of place-
ment priorities, for unful�lled collocations, and for desired but not granted resources. With one penalty
point for an unful�lled collocation, two points for each violated placement priority and three points for
a desired, but not granted resource, the penalty table 4 results for our example. Impossible placements
(if mandatory resources cannot be granted) get an in�nite penalty value. If a placement priority is de-
�ned for an object, nodes not mentioned in the priority list of that object get a priority that is exactly
below the last de�ned one. Associated with the assigmnent of object S to node 3, there is 1 penalty
point for the unful�lled collocation, 3 points for the desired but not granted math proc and 4 points for
the violated priority levels 1 (consisting of node 7) and 2 (node 8). The penalty points for unful�lled
collocations are given to each assignment of an object, as all combinations of speci�ed collocations are
seperately computed, if the combination of collocations is possible. For example, if the two collocations
fPF, PDg and fPD, HD1Fg were de�ned, each could be ful�lled, but the combined collocation fPF,
PD, HD1Fg is impossible, as no node provides the resources $P and D1 which are both mandatory for
the combination.

Based on the penalty values, the placement of the objects is computed. Each collocation or object is
assigned to the node with the lowest penalty value. In the �rst steps, penalties for placements using
collocations are computed, eventually using multiple collocations. After that, a placement without
collocations is tested, too. Each of the assignments gets a total penalty value. The assignmnt with the

Collocation Set of objects

Col1 fPD, Sg

Table 3: The de�ned collocations

6

Node
Object

1 2 3 4 5 6 7 8

PF 1 1 1 1 1 1 1 0

PD 5 5 5 1 1 5 1 3

S 5 5 8 1 1 5 1 6

HD1F 0 2 2 1 1 1 1 1

HD2F 1 1 1 0 2 1 1 1

Col2 8 8 11 1 1 8 0 7

Table 4: The resulting penalty values

remaining further assign- total
objects collocations ment penalties

Col1 PF, HD1F, HD2F %

Col1 ! 7
PF ! 8
HD1F ! 1
HD2F ! 2

0
0
0
0

9>>>=
>>>;
0

% PD, PF, S, HD1F, HD2F %

PD ! 8
PF ! 7
S ! 7
HD1F ! 1
HD2F ! 4

0
1
1
0
0

9>>>>>=
>>>>>;
2

Figure 3: Computed assignments

lowest total penalty value is chosen. The computation of our example (consisting of only two steps here)
is outlined in �gure 3. The resulting assignment is shown in �gure 4.

3.2 Achieving Flexibility of Fault Tolerance

The failures the system can tolerate are determined by the location of the so-called replication instances

that replicate critical data in the network. This placement should be implied by the kinds of failures
a speci�c distributed system exhibits. Due to the fact that di�erent parts of the application require
di�erent degrees of fault tolerance, a complete replication of all critical data exhibits undesirable over-
head during normal operation. Considering di�erent degrees of availability for di�erent parts of the
application reduces this overhead signi�cantly. Finally, the problem of duplicated objects in disjunctive
partitions has to be treated. This is done by restricting the functionality of parts of the application
under consideration of administrative requirements.

3.2.1 Placing Replication Instances in the Network

The placement of replication instances (furtheron called RIs) is implied by the de�nition of the set
of failures that has to be tolerated in the worst case (as an example). If a failure happens that isn't
covered by the de�ned set, nevertheless no unrepairable inconsistency is permitted. In such a case the
activity of the application is suspended in a�ected partitions until failed components recover.

Assuming the given system satis�es the fail{stop fault model, any failure can be seen as a partitioning.
Consequently, a speci�c fault scenario that has to be tolerated can be de�ned by a set of potential
partitions. Getting back to the distributed system in �gure 1, we want the following fault sceanrio
to be tolerated in the worst case. Any node, LAN C, and the backbone may fail. If another failure

7

1

2

3

A 8

7

C4 5

6

B

D

HD1F PF

PD

S

HD2F

Figure 4: Initial application con�guration

Failure of component Resulting set of partitions

1 f2, 3, 4, 5, 6, 7, 8g

2 f1, 3, 4, 5, 6, 7, 8g

3 f1, 2g, f4, 5, 6, 7, 8g

4 f1, 2, 3, 5, 6, 7, 8g

5 f1, 2, 3, 4, 6, 7, 8g

6 f1, 2, 3, 7, 8g, f4, 5g

7 f8g f1, 2, 3, 4, 5, 6g

8 f1, 2, 3, 4, 5, 6, 7g

C f8g, f1, 2, 3, 4, 5, 6, 7g

D f1, 2, 3g, f4, 5, 6g, f7, 8g

Table 5: Using potential partitions to describe a fault scenario

occurs before the handling of a failure is completed, the system is allowed to suspend the activity in
some partitions; this case is assumed as being relatively unlikely. The fault scenario implies the set of
potential partitions in table 5. Based on this set, RIs are allocated in a way that each potential partition
contains at least one RI. As the computation of the minimal set of RIs that ful�lls the stated property
is NP-hard, we use a heuristics to allocate the RIs. For the given fault scenario, this heuristics leads
to the RI locations at nodes 1, 4 and 8. If a failure occurs, the application activity in each resulting
partition that contains an RI can continue. After a failure, the same algorithm is executed in each
a�ected partiton, leading to a new set of RIs in each partition. If a resulting partition does't contain
an RI, the system activity is blocked in this partition.

The set of potential partitions used to describe a fault scenario may exhibit exponential growth in the
number of nodes the network contains. To avoid this undesirable behaviour, all potential partitions
that are supersets of other partitions can be excluded from the set of potential partitions. Applying
this strategy to the fault scenario we want to tolerate in the example, the set of potential partitions
outlined in table 6 results. This leads to the same set of RIs.

f8g

f1, 2g

f4, 5g

Table 6: The reduced set of potential partitions

8

Appl. funcionality on object Application group

PF fPF, PD, Sg

HD1F fHD1F, Sg

HD2F fHD2F, Sg

Table 7: The notion of application functionalities and groups

A further improvement of this scheme would be possible by introducing a hierarchical subnet structure.
In this case, the computations outlined above could �rst be performed for each subnet separately, before
integrating them by treating each subnet as a node during global computation.

The set of potential partitions and the resulting RI locations have to be computed after each failure
or recovery of a node or network. The latter is necessary even if all nodes still can communicate, as
the failure of a network may reduce the connectivity which could lead to a broader set of potential
partitions under the same fault scenario. At the moment, we only provide limited user-level support
for specifying the fault scenarios that have to be tolerated; explicit program-level speci�cations by the
system manager are required.

3.2.2 Avoiding complete replication

An object can be allocated in a partition during recon�guration after failure or recovery if this partition
contains an RI that replicates the state of the object. Those replicating RIs have to be chosen under
the consideration of speci�c availability degrees that objects should exhibit.

Our strategy to select the RIs for replicating particular objects is based on the notion of an application

functionality, i.e. some operation that is directly invoked by an end user and represents a service
provided by the distributed application. Each application functionality leads to an application group
that is de�ned as the set of objects that might be invoked by calling an operation on an object via an
application functionality, i.e. an application group is the set of objects implementing the application
functionality directly or indirectly. Those groups can be inferred from the logical object links speci�ed
in the application con�guration (section 2.3).

With the application outlined in �gure 2 and with application functionalities de�ned for all front end
objects (HD1F, HD2F, PF), the application groups in table 7 result.

Each of the potential partitions contains a number of objects of each application group. Avoiding
complete replication now works as follows: Let n be the number of objects in that potential partition
that has the maximum number of objects among all potential partitions for a given application group.
Then the critical data for the objects of this group are replicated in an RI in each potential partition
for which the number of objects of the group in this partition is greater than a prede�ned percentage
of n. Each application functionality is attributed with such a percentage. If no percentage is de�ned,
the default percentage of 100% is used; this percentage leads to replication in just those potential
partitions that contain n objects, hence at least in the potential partition from which n is computed. A
percentage of 0% leads to complete replication of the objects of the application group, as any potential
partition contains at least 0% of n objects. Furtheron we call this algorithm the threshold concept.
Those computations are performed after each failure or recovery for each application functionality.
Consequently, the set of RIs replicating objects changes dynamically with failures or recovery.

If we assume for the sake of our example, that each front{end object carries an application functionality
and no threshold percentages are explicitly de�ned, the default percentage of 100 % is used and the
RIs as indicated in table 8 that have to replicate the state of the application groups result. This leads
to the locations of replication for the objects, presented in table 9.

With possible extensions towards dynamic code installation (lifting the restrictions of section 1), the

9

Appl. funcionality on object Replicating RIs

HD1F 1

HD2F 4

PF 8

Table 8: RIs replicating state of the application groups

Object Replicating RIs

PF 8

PD 8

S 1, 4, 8

HD1F 1

HD2F 4

Table 9: RIs replicating state of the objects

best approach is to replicate code at the same RIs where the associated objects are replicated.

The major advantage of this approach is, that replication is coupled to the notion of application
groups, not to isolated objects. Hence the states of all objects that jointly provide an application
functionality are available in those RIs that are determined according to the threshold concept. However,
the described approach has some limitations: it uses the complete set of potential partitions to compute
the desired set of RIs. This set might become rather large if the system grows. But as the stated
computations only have to take place after failures or recoveries, this limitation isn't a severe restriction
in practice.

3.2.3 Avoiding Inconsistencies among Partitions

The con�guration management system may allocate duplicates of objects in di�erent partitions. Un-
limited access to duplicates has to be prohibited to enable automatic merging of partitions after failure
recovery.

To achieve this, we use the notion of a primary partition for each dedicated set of objects described
by a so-called mark. Exactly one mark is assigned to each object, the same mark can be assigned
to di�erent objects to group them. Unlimited access to an object is only possible in the partition
that is the primary partition for the mark of the object. Computing primary partitions is done with
an enhanced version of the Voting-Class replication control scheme developed by Tang [TAN90]. The
entities that are attributed with weights are the nodes not the RIs. Each node gets a speci�c weight
for each mark. The cited scheme performs dynamic adjustment of the cumulated votes necessary to get
a majority, according to the initial vote assignment and the number of votes that participated in the
previous majority. Our enhancement provides additional exibility to manage the dynamic evolution
of the system.

To keep the job of an administrator manageable, marks don't have to be speci�ed for each object.
Instead marks are assigned explicitly to application functionalities and are propagated along the logical
links between objects, as de�ned in the application con�guration. This may lead to the collision of
marks on objects, that are used by more than one application functionality. To handle this correctly,
priorities between marks can be de�ned. If no mark is assigned to an application functionality, the mark
sys default will be assigned automatically.

Assume the marks P, D1 and D2 are de�ned for our example, together with the priorities P � D1 and
P � D2. That leads to the priority graph in �gure 5. Each user de�ned mark has a higher priority than

10

D2

D1

sys_defaultP

Figure 5: The priorities between marks

HD2F

HD1F

PF PD

S

P P

PD1

D2

Figure 6: The resulting assignment of marks to objects

sys default. The graph has to remain acyclic, so that it can be transferred into a linear ordering through
topological sorting. One possible result of this sorting is the ordering P � D1 � D2 � sys default. If
D1 is assigned to the application functionality on object HD1F, D2 to the one on HD2F and P to the
one on PF, the assignment of marks to objects in �gure 6 results.

Marks can be used to handle administrative requirements. If only the nodes of department 1 are
weighted with positive votes for mark D1 and analogous weighting is performed for the other marks
and departments, the front end objects will exhibit unlimited functionality in their departments if a
partitioning occurs. Object S will exhibit the intended unlimited behaviour in the personnel department,
whilst duplicates are allocated in the other departments; however, they only support lookup invocations.
The latter behaviour is achieved with the speci�cation of the stated priorities between marks. If we
access of department 1 to objects used by more than one department is more important than access of
the personnel department to those shared objects (priority D1 � P), object S would have been marked
with D1. It consequently would exhibit unlimited behaviour at the nodes of department 1 in case of
a partitioning. If we had modeled the application with multiple storage objects Si (as mentioned in
section 2.2) and speci�ed that the marks of the general departments had higher priority as the one of
the personnel department, the following scenario would result: Managers could change the ratings of
their employees whilst the personnel department could only perform lookup{calls to (eventually old)
copies of the storage objects Si.

Note that restricting access to lookup{calls in all partitions but the primary one isn't su�cient to
guarantee one{copy{serializability of threads. An object O1 with mark M1 might be available without
limitations in a partition P1 and available for lookup in a partition P2. An object O2 with mark M2

would have the reverse properties. A thread that updates O1 after having performed a lookup{call to
O2 might succeed in P1 and a thread that updates O2 after a lookup{call to O1 might succeed in P2.
Those threads aren't serializable. This behaviour was introduced with purpose, but can be enhanced to

11

to objects that are in their primary partition. Moreover, lookup{access to objects that aren't in their
primary partition is only allowed for threads that don't comprise update calls and only touch objects
for which the last update took place in the same partition (those pure lookup threads can securely 'run
in the past' as in the View{approach [ABT89]).

3.3 Dynamic Recon�guration revisited

After having introduced the basic foundations, we are now in a place to describe the algorithm for
dynamic recon�guration in more detail. The description focuses on the di�erent steps of the algorithm,
outlined in section 2.4. More details of steps one, two and �ve, especially concerning the modi�cations
to the checkpointing scheme of [LIA90], can be found in [SKK93].

3.3.1 Step one

The �rst step has to detect failures and perform necessary preparations for the subsequent steps. Failures
are detected through the direct, timeout{controlled acknowledgement of messages. This \lazy" approach
may lead to the situation that a failure is detected in some of the resulting partitions, whilst it isn't
detected in the other partitions; this problem is addressed within the next steps. Recovery of physical
components is generally detected through watch{dog instances, probing failed network components or
special messages send by recovering nodes.

After the detection of a failure or recovery, the extent of the current partition is analyzed through test
messages that are also used for the coordination of concurrent activations. Thereafter, the marks for
which the current partition is the primary one are computed. At the end of the step, each node in the
new partition is informed about the extent of the partition and about the marks for which the partition
is the primary one.

3.3.2 Step two and �ve

Consistent distributed checkpointing is used to achieve a consistent state before the recon�guration
takes place. Our checkpointing scheme is an enhancement of the Clouds approach for global consistent
checkpointing [LIA90]. Our scheme can be used without a transaction shell and without access to the
stack segments of invocations on objects.

The key problem without a transaction shell was to continue the computations in a consistent way.
The checkpoint{ and rollback{dependencies, introduced in [LIA90] are extended by work{ and call{
dependencies that reect the call history of a thread. Those additional dependencies are installed by
a thread{call and released by a thread{return. Consequently, they can be used to repeat thread-calls
to objects on failed nodes, and to resume threads that have been partially discarded by a rollback
operation. The enhancement guarantees exactly{once semantics for update calls and at{least{once
semantics for lookup calls.

Renouncing on the access to the stack segments implies that objects have to be passive at the time
they are checkpointed; this is guaranteed by a deadlock{free synchronization scheme between check-
point operations and threads. The scheme is based on the wound{die deadlock avoidance scheme, �rst
described in [RSL78].

We choose global consistent checkpointing instead of independent checkpointing (e.g. the schemes de-
scribed in [JUV91]) for one major reason: objects on a failed node may be reallocated on a di�erent
node if the object state is available in an RI in the new partition. Therefore, we have to spread all data
needed by the checkpointing algorithm for rolling back objects (i.e. installing the correct state) to all
RIs that are selected for replication according to the threshold concept. As independent checkpointing

12

to the RIs atomically. That would result in too much message tra�c during normal operation.

3.3.3 Step three

The new con�guration in a resulting partitioning is computed in the same way as the initial con�gura-
tion, i.e. through the usage of the con�guration mapping.

Unless the system or application con�guration is changed, the penalty values used by the con�guration
mapping remain the same. Consequently, they needen't be computed again after a failure. Only the last
step of the mapping has to be performed for the subset of the system con�guration that corresponds
to the current partition.

It may happen that objects aren't placeable in a partition. In this case, dummy objects are allocated
in the partition that respond to invocations with de�ned exeption values. Dummy objects are also
allocated for objects for which no valid state is replicated in RIs within the new partition.

In the pure checkpointing mode, the caller is informed about the invocation of a dummy object in
order to make speci�c reactions possible. The required exception handling could be performed in an
application-speci�c way. The future integration of distributed transactions would allow for a fully trans-
parent abort and restart. Analogous protocols are used to handle an update call on an object that isn't
in its primary partition.

The computed new con�guration is �nally compared with the old one, available in any RI in the par-
tition. This comparison leads to a set of change primitives that are then applied to the distributed
con�guration. Objects that are subject to those primitives are rolled back. These operations are neces-
sary to keep the objects consistent with the replicated states of other objects.

3.3.4 Step four

Step four distributes the recon�guration primitives. This is done with two di�erent protocols. The �rst
one is used for critical global information, like the current location of RIs, the second one for partition
dependent information.

The protocol used for critical information is a standard two phase protocol to guarantee consistent
atomic change even if a failure occurs. As this protocol guarantees atomicity, it necessarily contains the
problem of potential blocking [SKS83].

The protocol used for partition speci�c information concerning recon�guration is a nonblocking protocol
that guarantees atomicity in the case of uninterrupted action. If a failure during protocol execution
occurs, a consistent state is reached atomically in each new partition. We achieved the nonblocking
behaviour in renouncing on consistency between partitions. This is unnecessary for partition speci�c
information. The only thing that matters here is the consistency and atomicity within each resulting
partition.

The protocol works in three phases:

Phase 1: A coordinator spreads the whole partition speci�c information to all RIs and additionally
to each node all information that the node has to know for recon�guration. All RIs write the
information tentatively to stable storage and each node tentatively performs recon�guration.
They all answer to the coordinator.

Phase 2: After collecting all replies, the coordinator informs the RIs to make the information perma-
nent. After performing this, the RIs send an acknowledge message to the coordinator.

Phase 3: After collecting the acknowledgements, the coordinator sends a message to each node to
switch to the new con�guration.

13

1

2

3

A 8

7

C4 5

6

B

D

HD1F PF

PD

S
S

S

HD2F
1

2

3

A 8

7

C4 5

6

B

D

HD1F PF

PD

S

HD2F

Figure 7: Application structure before and after recon�guration

In the case of a partitioning, the fate of a resulting partition depends on how far the RIs in it got in
the protocol. If one RI in a resulting partition made the new con�guration permanent, the new con�g-
uration is adopted by all RIs and nodes in the new con�guration. If no RI made the new con�guration
permanent, the tentative information is cleared. Di�erent resulting partitions could come to di�erent
decisions, but the decision reached inside each partition is consistent and is the starting point for the
recon�guration that is necessary to adopt to the new partition.

3.4 Example: The Failure of the Backbone Revisited

If the backbone D in �gure 1 fails, the system reacts as described below (the initial con�guration and
the con�guration after automatic recon�guration are shown in �gure 7).

We assume that the failure is recognized in each partition (although this is not a necessary precondition).
Under the assignment of votes for the department{related marks to the corresponding departments ,
and the assignment of marks to objects, presented in section 3.2.3, the department nodes are the
primary nodes for the corresponding marks. Each resulting partition contains an RI if we use the fault
scenario from section 3.2.1. Under the threshold strategy presented in section 3.2.2, the checkpointing
information of object S is replicated in the RI of each partition. Data of the front end objects are only
replicated in the RIs belonging to the departments, whilst data of object PF is only replicated in the
RI of the personnel department.

This leads to the situation that the subcon�guration consisting of the objects PD, PF and S is newly
installed in the personnel department, allowing unlimited access to all operations. In the other de-
partments, a con�guration is reached that consists of the front end objects of the departments with
unlimited access, and of a duplicate of S with restricted access.

Finally, according to the fault{scenario, new sets of potential partitions are computed, new RIs are
allocated in the partitions, and the replication strategy of the objects in each partition is adjusted to
the new con�guration. Finally watch{dog instances are set up that probe the backbone.

4 Initial Experience

The implementation of the overall approach consists of three major components, namely the distributed
C++ extension, the general con�guration management support, and the di�erent mechanisms for fault
tolerance.

Distributed C++ extension:This component (described in detail in [SCH92]) has been implemented
as a C++ class library under Unix (Ultrix) on DECStations 5000 and 3100. For low{level network

14

process are implemented by a modi�ed version of the AT&T C++ threads package.

All distribution{related object management operations are de�ned within a speci�c class DObject and
are inherited by application{speci�c classes. In addition to remote invocation, basic operations for
migration of non{activated objects between nodes and for related locating, �xing and un�xing purposes
are supported:

class DObject { // ... instance variables

public: DObject (LogicalNode*); // constructor to create at node

~DObject (); // destructor

LogicalNode *locate (); // to locate the object

boolean move (LogicalNode*); // to move the object

void fix (); // to fix the object (avoid move)

void unfix (); }; // to release the object

All objects are identi�ed via globally unique numbers, consisting of their birthnode address and a locally
unique identi�er. For an object invocation, the global identi�er is either mapped to a local address (for
local objects), or is mapped to a forwarding address for remote objects; the object can then be located
at the indicated node or at a subsequent node.

The current performance is in the order of 10ms for a Null{RPC between two DECStations 5000 via
Ethernet; most of the time caused by local protocol handling and object management tasks.

The remote invocation facilities of the C++ extension are used as a base for the distributed con�guration
management mechanisms.

Distributed con�guration management: The con�guration language is transformed into the inter-
nal representation by a compiler implemented with LEX and YACC. The tool consists of the regular
compiler components. The installation of the initial con�guration is performed by the initial con�gura-
tion manager written in C++. The most important task of it is computation of object placement. Our
implementation does not use exactly the same scheme as described in section 3.1 but still an earlier,
somewhat more complicated version based on a larger set of placement conditions. The new scheme
has been developed based on experiences with the former heuristics. All objects declared in the con�g-
uration language are mapped to C++ objects of subclasses of DObject. They are �xed and therefore
are not subject of dynamic migration.

Dynamic con�guration change requests are issued by the fault tolerance components via a small proce-
dural interface. They are executed in a decentralized way on di�erent nodes by change managers; the
internal management protocol is also based on remote C++ communication.

Fault tolerance support: Of the described fault tolerance components to perform the automatic
recon�guration algorithm, the new approach to map a con�guration, the distributed checkpointing
scheme and the extended voting class algorithm have been implemented within a speci�c test envi-
ronment. This environment allows interception and interactive delay of all remote messages to objects.
This way, inherent race conditions and time-dependent problems could be tested in a deterministic way.
The relevant protocols for both parts are based on C++ object interactions between objects of several
internal auxiliary classes.

The mechanisms for failure detection and the RI related protocols, however, are only emulated in a
preliminary way within the test environment.

The con�guration management support makes structural management of applications simpler. Most
important, the declarative language is quite easy to handle. Additional features like module hierarchies
or multilanguage support as found in Conic [KMS89] or REX [MKS90], respectively, would be desirable
but were outside the scope of our work.

Most important, the fault tolerance concept proves that automatic structural recon�guration of dis-
tributed applications is possible, in general, and that a high level of transparency (automatic reaction

15

5 Related Work

Communication base and object management: Our system model and management approach re-
lies on the RPC-/object interaction paradigm as the pure base of communication. There have been sev-
eral developments in the �eld of object{oriented distributed systems (e.g. Emerald [JLH88] or Amadeus
[HOC91]); Our C++-based approach inherits major concepts from these systems and mainly adds con-
�guration management support (see below), as well as extended thread management. As standardized
implementations of the RPC paradigm are becoming more popular (especially the OSF DCE [OSF91]),
we intend to use their broader functionality instead of using TCP/IP access directly and expect to
experience a gain in performance, with using the DCE thread{package. Moreover, fault tolerant com-
munication mechanisms as found in the ISIS system [BIJ87] could be used to facilitate a simpler
implementation of some of our distributed protocols (e.g. distribution of con�guration data).

Distributed con�guration management: The best known system providing our notion of con�g-
uration management in a very sophisticated way is Conic [KMS89]. Compared to Conic, our approach
emphasizes automatic handling of failures but does not address advanced structuring concepts like
Conic. Achieving fault tolerance with Conic was also realized in a di�erent way [KMY90], [LOK86];
the main di�erence to our system is that we do not rely on special purpose code tailured to the spe-
ci�c application, but use generic techniques that can be customized to the requirements of a speci�c
environment and application. System support for dynamic recon�guration, comparable to Conic, is
also exhibited by other con�guration management systems. All those systems have been designed un-
der di�erent goals (e.g. the integration of modules written in multiple programming languages (REX
[MKS90], the successor of Conic), or support for system level programming in Lady [WYB90]). Ex-
tended system support for Fault{Tolerance within a con�guration management system is also found in
Durra [BDW90]. Durra provides an interface for automatic replication of data; however, consistency
issues have to be handled by the application code.

Replication control and consistency: The scheme used for replication control is a direct extension
of the Voting Class algorithm, described in [TAN90]. We chose this algorithm among all possible voting
schemes (e.g. dynamic voting) because of its exibility. Our extension allows for dynamic evolution of the
number of controlled replicas.The functionality our approach currently exhibits can best be compared
to the concept of Views [ASC85]. Views can briey be described as an approximation of the set of
available objects, where object replication normally (but not necessarily) follows a read{one, write{all
approach. If writing fails or a recovering node is detected, a new view with a new set of accesible
objects could be installed (depending on the tracking strategy) with a view{change protocol. This is
similar to our approach of a primary paritition for marks, within which all RIs have to be reached to
write a checkpoint. Also the idea of using the properties of advanced voting protocols with views is not
new. A combination based on an other dynamic voting protocol could be found in [ABD91]. Our novel
feature is that we decouple votes from replicas and couple them to nodes. This gives us the necessary
exibilty to allocate or deaalocate RIs even in small non{primary partitions as no votes have to be
included or excluded for the price that it may happen in rare cases, that we have a primary partition
for some marks, but no current state for the objects attributed with the marks, as not all nodes that
carry votes also carriy an RI. The latter case is detected by partition{IDs that are rather compareable
to the view{IDs necessary in the View approach.

The platform of our consistency mechanisms is an enhancement of the scheme used in the Clouds system
[LIA90]. The extension allows the use of checkpointing to achieve exactly{once semantics for update{
calls and at{least{once semantics for lookup{calls. Furthermore this extension allows the use of standard
thread{packages as it doesn't rely on the ability to checkpoint the stack{segments of threads. As an
additional feature, the scheme can be used as a base to implement a transaction facility, comparable to
TABS [SBD85] and Argus [LIS83]; however, this has not been done by us yet.

An alternative approach for achieving fault tolerance is based on forward recovery using replicated

16

during normal operation. Fault tolerance support based on dedicated distributed operating system and
communication platforms has been implemented in the Delta-4 [POW91] andMARS [KDK89] projects.
Such a system-level approach is not within the scope of our work but is an important alternative if
special hardware and operating system support is available, or tolerating failures beyond the fail{stop
case is of importance. Moreover, a good survey of architectural considerations and mechanisms in the
distributed fault tolerance area is found in [JAL94]

6 Conclusion

The report has described a new approach supporting transparent recon�guration of distributed appli-
cations after failures. It is centered around the capabilities of con�guration managers in distributed
systems. We were only interested in support for replication and checkponting as far, as was necessary
for turning the con�guration manager in an utility that provides fault{tolerance to an application in a
transparent manner. This transparency doesn't comprise the system administrator, who has to specify
several con�guration details.

The major bene�ts of the approach are maintenance of application functionality in the case of system
failures, provision of consistency of ongoing computations, and exibility of the level of desired fault
tolerance. The latter comprises compliance to the failure characteristics that should be tolerated by
the speci�cation of fault scenarios, the degrees of availability for di�erent parts of the application by
the properties of our threshold concept and �nally the exible placement of replication instances based
on the stated speci�cations. In addition administrative requirements could be speci�ed, comprising the
locations of high availability by the assignment of mark speci�c votes to selected nodes and availability
trade{o�s between applications assigning priorities between marks. The technical concept has the major
advantage of exploiting the capabilities of a con�guration manager to infer the set of objects that have
to work together to provide a speci�c application functionality. Hence the concepts for fault{tolerance
aren't tied to isolated objects, but moreover to object groups, providing advanced application-level
functionality.

Future work can be divided into completing the implementation on one hand, and into conceptual en-
hancements on the other. Our implementation work will focus on support for distributed transactions in
addition to checkpoints, on extended support for con�guration management (e.g. regarding hierarchies
of application objects), and into exploiting how far the con�guration capabilities of traders [ISO92]
could be exploited to be a further base beyond the con�guration manager.

References

[ABD91] El Abbadi A., Dani S.N.: A dynamic accessibility protocol for replicated databases; Data & Knowl-

edge Engineering, 1991, pp. 319-332

[ABT89] El Abbadi A., Toueg S.: Maintaining Availability in Partitioned Replicated Databases; ACM Trans-

actions on Database Systems, Vol. 14, No.2, June 1989, pp.264-290

[ADL90] Ahamad, M., Dasgupta, P., LeBlanc, R.J., Wilkes, C.T.: Fault Tolerant Atomic Computing in an

Object-Based Distributed System; Distributed Computing, Vol. 4, 1990, pp. 69-80

[ASC85] El Abbadi A., Skeen D., Cristian F.: An e�cient fault{tolerant protocol for replicated data man-

agement; Proc. of the 4th International ACM Symposium on Principles of Database Systems, 1985,

pp. 215-229

[BDW90] Barbacci, M.R., Doubleday, D.L., Weinstock, C.B.: Application-Level Programming; Int. Conf. on

Distributed Computing Systems, Paris, 1990, pp. 458-465

[BIJ87] Birman, K.P., Joseph, T.A.: Reliable Communication in the Presence of Failures; ACM Trans. on

Computer Systems, Vol. 5, No. 1, Feb. 1987, pp. 47-76

17

veys, Vol. 23, No. 1, March 1991, pp. 91-124

[HOC91] Horn, C., Cahill, V.: Supporting Distributed Applications in the Amadeus Environment; Computer

Communications, Vol. 14, No. 6, July/Aug. 1991, pp. 358-365

[IEE92] Proc. of the Int. Workshop on Con�gurable Distributed Systems, London, March 1992, Institute of

Electrical Engineers (IEE), London

[ISO92] ISO/IEC JTC1/SC21/WG7: A structural speci�cation of the ODP trader with federating included,

1992

[JAL94] Jalote P. Fault Tplerance in Distributed Systems Prentice Hall, Englewwod Cli�s, New Jersey, 1994

[JLH88] Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-Grained Mobility in the Emerald System; ACM

Transactions on Computer Systems, Vol. 6, No. 1, Feb. 1988, pp. 109-133

[JUV91] Juang T. T-Y., Venkateson S.: Crash Recovery with little Overhead; Proc. 11th Int. Conference on

Distributed Computer Systems, Arlington, Texas, May 1991, pp. 454-461

[KDK89] Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., Zainlinger, R.: Distributed

Fault-Tolerant Realtime Systems: The MARS Approach; IEEE Micro, Feb. 1989, pp. 25-40

[KMS89] Kramer, J., Magee, J., Sloman, M.: Constructing Distributed Systems in CONIC; IEEE Trans. on

Software Engineering, Vol. 15, No. 6, Juni 1989, pp. 663-675

[KMY90] Kramer, J., Magee, J., Young, A.: Towards Unifying Fault and Change Management; 2nd IEEE

Workshop on Future Trends of Distributed Computing Systems; Cairo, Sept. 1990, pp. 57-63

[LIA90] Lin L., Ahamad, M.: Checkpointing and Rollback{Recovery in Distributed Object-Based Systems;

20th Symposium on Fault Tolerant Computing, University of North Carolina, June 1990, pp. 97-104

[LIS83] Liskov, B., Scheier, R.: Guardians and Actions: Linguistic Support for Robust, Distributed Pro-

grams; ACM Trans. on Programming Languages and Systems, Vol. 5, 1983, pp. 381-404

[LOK86] Loques, O.G., Kramer, J.: Flexible Fault Tolerance for Distributed Computer Systems; IEE Proc.

Part E: Computers and Digital Techniques, Vol. 133, No. 6, Nov. 1986, pp. 319-332

[MKS90] Magee, J., Kramer, J., Sloman, M., Dulay, N.: An Overview of the REX Software Architecture;

2nd IEEE Workshop on Future Trends of Distributed Computing Systems, Cairo, Sept. 1990, pp.

396-402

[OSF91] Open Software Foundation: OSF Distributed Computing Environment - An Overview; OSF, Cam-

bridge, MA, 1991

[POW91] Powell, D. (Ed.): Delta-4: A Generic Architecture for Dependable Distributed Computing Springer{

Verlag New York Berlin Heidelberg, 1991

[RSL78] Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: System Level Concurrency Control for Distributed

Databases; ACM Trans. on Database Systems, Vol. 3, No. 2, June 1978, pp. 178-198

[SBD85] Spector, A.Z., Butcher, J., Daniels, D.S., Duchamp, D.J., Eppinger, J.L., Fineman, C.E., Heddaya,

A., Schwartz, P.M.: Support for Distributed Transactions in the TABS Prototype; IEEE Trans. on

Software Engineering, Vol. 11, 1986, pp. 520-530

[SCH92] Schill, A.: Distributed Object Management within a Loosely-Coupled Repository Environment;

OpenForum Technical Conf., Utrecht, Nov. 1992

[SCS83] Schlichting, R.D., Schneider, F.: Fail-Stop Processors: An Approach to Designing Fault-Tolerant

Computing Systems; ACM Trans. on Computer Systems, Vol. 3, No. 1, Feb. 1983, pp. 15-30

[SCZ93] Schill, A., Zitterbart, M.: A System Framework for Open Distributed Processing; Journal of Network

and Systems Management, Vol. 1, No. 1, 1993

[SKK93] Schill A., Kottmann D., Keller L.: Fehlertoleranz durch dynamische Rekon�guration verteilter

Anwendungen (Fault Tolerance by Dynamic Recon�guration of Distributed Applications); Proc.

ITG/GI-Fachtagung Kommunikation in verteilten Systemen (ITG/GI-Conference Communication

in Distributed Systems), March 1993, Munich, Informatik-Fachberichte, Springer, pp. 340-354

18

on Software Engineering, Vol.SE-9, No.3, May 1983, pp. 219-228

[TAN90] Tang, J.: Voting Class { an Approach to Achieving High Availability for Replicated Data; 2nd

International Symposium on Databases in Parallel and Distributed Systems, Dublin 1990, pp. 146-

156

[WYB90] Wybranietz, D., Buhler, P.: The LADY Programming Environment for Distributed Operating Sys-

tems; Future Generation Computer Systems, Vol. 6, No. 3, Dez. 1990, pp. 209-223

19

