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Abstract

We present novel hard- and software that efficiently implements communication primitives for
parallel execution on workstation clusters. We provide low communication latencies, minimal pro-
tocol, zero operating system overhead, and high throughput. With this technology, it is possible
to build effective parallel systems using off-the-shelf workstations. Qur goal is to develop a stan-
dard interfaceboard and the necessary software for interfacing any number of computers, from a
workstation to a cabinet full of workstation-boards.

1 Introduction

PCs and Workstations are in widespread use and offer excellent performance per unit cost. There-
fore, bundling together a cluster of workstations into a parallel system would seem to be a straight-
forward solution for computational tasks that are too large for a single machine. However, conven-
tional communication mechanisms and protocols yield communication latencies that make only
very large grain parallelism efficient. For example, typical parallel programming environments like
PVM[BDG93], P4[BL92] and MPI[CGH94] have latencies of several milliseconds. As a conse-
quence, the parallel grain size necessary to achieve acceptable efficiency has to be in the range of
tens of thousands of arithmetic operations.

We developed new hardware that efficiently implements communication operations and pro-
vides low communication latencies, minimal protocol, no operating system overhead, and high
throughput. Our current design is capable of performing basic communication operations with a
total process to process latency of just a few microseconds (i.e., bus for a 32bit transfer). Even
parallel supercomputers have latencies of tens to hundreds of microseconds. Compared to work-
station clusters using standard communication hardware (e.g., Message-passing software like PVM
using Ethernet/FDDI hardware), our adapter shows performance improvements of more than two
orders of magnitude on communication benchmarks. As a result, application benchmarks (i.e.,
LINPACK equation solver and others) execute with nearly linear speedup on a wide range of
different problem sizes.

We are currently working on the second generation of our communication adapter. We expect
a process to process latency below 1us and a throughput of about 20 MByte/s per link. With this
technology, it is possible to build effective parallel systems using off-the-shelf workstations. Our
final goal is to offer a standard interfaceboard, capable of building parallel systems ranging from
a few workstations or PC’s to a cabinet full of workstation-boards.

Related approaches are discussed in section 2. Sections 3 and 4 describe our hardware and
software approach in detail. The ParaPC prototype is introduced in section 5 and benchmark
results are presented in section 6.



2 Related Work

There are several approaches with related goals targeting low-latency and high throughput parallel
computing on workstation clusters. A special issue of IEEE Micro (Feb. 95) presented most
advanced ones.

MINI (Memory-Integrated Network Interface) [MBH95] targets a 1-Gbps bandwidth with 1.2
ps latency interconnect using an ATM network. Communication in MINI is based on Channels
between participating processes using ATM’s virtual channel concept. Presented performance
figures — ATM cell round-trip time of 3.9 ps at 10Mbytes/s — are based on VHDL simulations;
hardware development is in progress.

SHRIMP (Scalable High-Performance Really Inexpensive Multiprocessor) [BDFT95] supports
virtual-memory-mapped communication, allowing user processes to communicate without expen-
sive buffer management and without system calls across the protection boundary separating user
processes from the operation system kernel. Using Pentium PCs as platform, the network interface
is connected to an EISA-Bus (SHRIMP-T) and the Xpress memory bus (SHRIMP-IT). A 16-node
(SHRIMP-I) and a 2-node prototype (SHRIMP-II) is expected to be operational in 2Q/95. No
performance data about latency and throughput was given.

Myrinet [BCFT95] is a new type of local area network based on technology used for packet
communication and switching within massively parallel processors. Measured performance using
Myrinet API functions achieve one-way, end-to-end rates of 250 Mbps on 8-Kbyte packets.

Von Eicken et al. adopted their Active Messages [VECGS92, vEBB95] communication archi-
tecture developed for the CM-5 to a Sun workstation cluster interconnected by an ATM network.
The prototype implementation shows an peak bandwidth of 7.5 MByte/s and a round-trip latency
of 52 ps.

The Berkeley NOW (Network of Workstations) project [ACP95] targets 100+ workstation
clusters using off-the-shelf components. One initial prototype is a cluster of HP9000/735s using
an experimental Medusa FDDI interface. The final demonstration system will use either a second-
generation ATM LAN or a retargeted MPP network, such as Myrinet. No performance figures are
available at the time of this writing.

Like Myrinet, our network was originally designed for a MPP System (Triton/1)! and is now
retargeted to a workstation cluster environment. In contrast to all other approaches, we focus on
a pure message passing environment rather than a virtual shared memory. As von Ficken at al.
pointed out [vVEBB95], recent workstation operating systems do not support a uniform address
space, so virtual shared memory is difficult to maintain. The major difference, however, is that
our prototype adapter is operational and performance figures are based on measurements on real
benchmarks running on a real system.

3 Communication Hardware

Using standard communication hardware (i.e.: Ethernet, FDDI, ATM) as communication links for
parallel programming on workstation clusters suffers from some or all of the following problems:

e Unreliable transport mechanisms. Data can be lost during transmission, forcing the protocol
to support buffering, handshaking and retransmission. This increases latency and decreases
throughput.

e Fixed or inappropriate packet size. Sending small messages within a fixed-size or large packet
wastes time and bandwidth.

e Overdesign at the link level. Parts of the related protocols are implemented in hardware. For
a parallel application however, only a part of the link-level packet header contains necessary
information. All other information to be provided counts as overhead for the application.

ITriton/1 is a mixed mode SIMD/MIMD architecture, built with 256 processing elements at the university of
Karlsruhe [PWTH93, HWTP93]



e Unscalability of network topologies. Available bandwidth on buses and rings is shared among
the connected stations, so connecting more stations results in less bandwidth per station.

To overcome these deficiencies, we took — with slight modifications — the Triton/1 network,
which can be characterized as follows:

The network topology i1s based on an two-dimensional torodial mesh. For small systems a
ring topology is sufficient. Data transport is done via a table-based, self-routing packet switching
method, which uses virtual cut-through routing. Every node is equipped with its own routing
table and with three input buffers: two for intermediate storage of data packets coming from
other nodes and one for receiving packets from its associated processing element (workstation).
An output buffer delivers data packets to the associated workstation. The buffering temporally
decouples the network from local processing. Packets contain the address of the target node, the
number of data words contained in the packet, and the data itself. The size of the packet can vary
in the range of 1 to 508 bytes. Packets are delivered in order and no packets will be lost.
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For both topologies — ring and torodial mesh — we provide a deadlock-free routing scheme.
Deadlock-free routing on a ring is simple, as long as the network is prevented from overloading.
Inserting new packets into the network only when both channel fifos are empty solves this problem.
Deadlock-free routing on a torodial mesh is done by using X-Y dimension routing. First a packet
is routed along the x-axis of the grid until it reaches it’s destination column. Then it is routed
along the y-axis to it’s final destination node. Providing similar insertion rules as in the ring
routing for both dimensions and giving the y-axis priority over the x-axis, prevents deadlock.

The current prototype implementation of our communications processor involves a routing
delay of about 1.2us per node and offers a maximum throughput of 10 MByte/s per link. The
new prototype board will offer a routing delay of about 600ns per node and a maximum throughput
of 20 MByte/s per link. Additionally, the new interfaceboard will provide a hardware mechanism
for fast barrier synchronization.

4 Communication Software

Message-passing environments on workstations like MPI, PVM, P4 [CGH94, BDG'93, BL92] and
others suffer from some or all of the following problems:

e Operating System overhead. Communication hardware is controlled by the operating system.
Sending or receiving a message implies at least one system call and copying the message
buffer between user- and kernel-space. This takes more time than transmitting the message,
especially for small messages and leads to large latencies and lower throughput.

e Several parallel applications per processor. Running several parallel application on a work-
station cluster results in scheduling and synchronization delays. Execution time of each
application takes much longer than running the applications one after another.

e Several parallel threads per process. Most message-passing environments allow multiple
threads of one application running on one processor. Thus the operation system or the
message-passing library has to handle the relationship between incoming messages and as-
sociated threads.



e Using decoupled send/receive primitives to exchange messages. Sending large messages,
which cannot be buffered by the network, implies automatic message acception and buffering
at the destination node, unless the receiving process is setup for receipt. Otherwise, the
application would run into a deadlock. Automatic message acception and buffering involves
interrupt handling and copying the message between kernel- and user-space which counts as
overhead.

We intend to minimize overhead as far as possible to speed up message transfer to its max-
imum. This includes no operation system overhead, no interrupt handling and no buffering of
messages. To avoid operating system overhead, all interfacing to the hardware is at user-level.
A packet simply contains the address of the target node, the number of data words contained in
the packet, and the data itself. Code for sending/receiving small messages (i.e. word transfers)
is inserted as inline assembler macros directly into the application code. For large messages, we
use a highly optimized library function, which runs at user-level and needs no system call. While
sending a message, data is copied directly from user-space memory to the interfaceboard and the
receiving function does the same thing vice versa eliminating all intermediate buffering. To avoid
interrupt handling and buffering while exchanging large messages, special exchange functions are
provided rather than using send/receive for the same purpose. These functions send and receive
messages simultaneously, so the application cannot deadlock. Multiple parallel applications on
the workstations cluster are supported by handling the execution order within the start-up code
of each application. In case there i1s another parallel application running, the second one is put
in a queue and execution is delayed until the running application has finished. Having multiple
threads per parallel process on one node can simply (and efficiently) be done by simulating them
in software using for-loops.

5 ParaPC Prototype

Our current prototype testbed consists of two 33 MHz, EISA-Bus based Intel 486 PC’s connected
through two ParaPC interfaceboards. We use BSD/OS V2.0 (BSD 4.4 from BSDI) as operation
system. The ParaPC interfaceboard is a slight modification of a board used to connect the PC
to the Triton/1 network. Modifications were simple, but has lead to some deficiencies: The board
is only accessible through I/O-commands (i.e.: in and out instructions of the 486) making fast
DMA transfer impossible. Lack of DMA causes the bottleneck in the current prototype design.
Second, to interface to the Triton/1 network we needed only one of the two possible network links
as shown in section 3. Thus, we can only build a ring as network topology with the prototype —
but for a two workstation configuration this is no limitation. Our new PCI-Bus based design will
remove these deficiencies and will support fast DMA transfer as well as two-dimensional torodial
mesh as network topology.

Although having to live with these problems, it was possible to get reasonable performance.
Using carefully designed assembler routines and some EISA-Bus specific features (automatic 32 to
16 bit translation), communication latencies of 5.5 ps and transfer rates up to 4.8MByte/s could be
achieved. Bypassing the operation system in BSD/OS is very simple by using the ioport command
to allow user-level access to all registers of the interfaceboard. Bear in that all performance figures
presented in the following sections are performed on the relatively slow EISA-Bus interfaceboard
and not on the new PCI-Bus design.

6 Benchmark Results

Our benchmark suite consists of several benchmarks and applications collected from literature.
For each problem of the communication benchmarks (ping, pingpong [NN94] and pairwise ex-
change), we implemented the same algorithm using P4/Ethernet and ParaPC. Then we measured
the runtime respectively communication latencies using two PC’s? connected both via ethernet

2Tn lack of more ParaPC interfaceboards we are currently limited to two PC’s.



and the ParaPC interface. Detailed results for all communication benchmarks are presented in
section 6.1. To evaluate speedup and efficiency, we also implemented two application benchmarks
— heat diffusion and LINPACK [Don95]. One version of each application benchmark is running
on a uniprocessor system, while the parallelized version is running in parallel on two PC’s using
the ParaPC interface. We use the UNIX clock function (getrusage()) to determine the sum of
system and user time. The results of these benchmarks can be found in section 6.2 and 6.3.

6.1 Communication Benchmarks
6.1.1 Ping

The purpose of the Ping benchmark is to measure communication latency as well as the effective
bandwidth of ParaPC by sending messages from one processor to another. The sender keeps
sending data unless it is blocked, and the receiver keeps consuming data. This communication
pattern is common to many types of parallel applications and 1s used to distribute and collect
data between the involved processors.

The algorithm for Ping is straightforward. Sending out a message is one iteration of the Ping
sender. We measure the elapsed time of k iterations, and compute the average delay accordingly.

Sender: Receiver:
measure start-time; measure start-time;
DOi1=1k DOi1=1k
send(message) receive(message)
ENDDO ENDDO
measure stop-time; measure stop-time;
calculate latency and throughput; calculate latency and throughput;

The following table contains the results from the Ping benchmark, while varying message size
from 1 to 508 bytes®. Transmitting larger messages can be done by fragmentating them into
several smaller packets. To get accurate timing information, we measured runtime of one million
iterations (k = 10° in the above codefragment) for each packet size. For very short message sizes
(word transfer), we use specialized routines with less overhead than the general block transfer

routine.
message size | latency | throughput || message size | latency | throughput
in bytes in ps | in MByte/s in bytes in ps | in MByte/s
word transfer block transfer

1 5.50 0.181 4 6.52 0.612

2 5.51 0.362 8 7.31 1.092

4 5.80 0.685 16 8.95 1.786

8 6.99 1.138 32 12.29 2.596

64 19.10 3.348

128 32.47 3.937

256 59.57 4.292

508 112.81 4.499

For small message sizes, we archive transmission latencies (user- to user-process on UNIX) as
low as 5.5us, which includes the send/receive code and the surrounding loop as overhead — exactly
as shown in the code fragment. For larger message sizes, using a block transfers, we get a total
throughput of up to 4.5 MBytes/s. Increasing the message size does not increase the latency
by the same factor. Overhead decreases for larger messages and the code to send a message is
somewhat faster than to receive a message, which causes the sender to run ahead of the receiver.
The decoupling of sender and receiver is done by the network interface and its buffers.

3508 bytes user data is the maximum packetlenght of the ParaPC interface.



6.1.2 PingPong

The PingPong benchmark is aimed at measuring the end-to-end delay by sending a message back
and forth between two processes. Unlike Ping, the processor takes turns to become sender and
there is only one sender at a time. This implies that sender and receiver are synchronized on each
message transfer and results in a worst case scenario for exchanging messages.

Processl: Process2:

measure start-time; measure start-time;

DOi1=1k DOi1=1k
send(message) receive(message)
receive(message) send(message)

ENDDO ENDDO

measure stop-time; measure stop-time;

calculate latency and throughput; calculate latency and throughput;

We perform our PingPong benchmark with the same scenario as the Ping benchmark. We use
message sizes from 1 to 508 and all runtimes were measured with k& = 10° iterations.

message size | latency | throughput || message size | latency | throughput
in bytes in ps | in MByte/s in bytes in ps | in MByte/s
word transfer block transfer

1 18.04 0.110 4 25.55 0.312

2 18.05 0.221 8 28.34 0.564

4 18.79 0.425 16 34.68 0.927

8 26.18 0.610 32 45.85 1.393

64 70.63 1.811

128 119.36 2.141

256 215.77 2.370

508 406.40 2.496

Message transfer times are — as expected — about 3.5 times slower compared to the Ping
benchmark. A factor of 2 1s obvious, because twice the amount of data has to be transferred and
the remaining factor of 1.5 1s due to implicit synchronization between sender and receiver on each
message transfer. So both sender and receiver face the complete transmission overhead.

To compare our interface (hardware and software) to standard communication mechanisms, we
have implemented the PingPong benchmark using P4 message passing software. The P4/Ethernet
implementation shows latencies of 4.3ms for small messages and is therefore about 240 (1) times
slower compared to the ParaPC interface. Comparing throughput performance difference is some-
what better — about 850kbyte/s vs. 2.5Mbyte/s for large messages — but this is caused by the
maximum ethernet throughput of 1Mbyte/s.

6.1.3 Pairwise Exchange

The Pairwise Fxchange benchmark is aimed to measure the end-to-end delay. Two processes
send a message to each other simultaneously, and then receive simultaneously. Unlike PingPong,
process two does not wait for receipt of a message before transmitting. This is a more practical
scenario for two processes exchanging messages.

Processl: Process2:
measure start-time; measure start-time;
DOi1=1k DOi1=1k
send(message) send(message)
receive(message) receive(message)
ENDDO ENDDO
measure stop-time; measure stop-time;
calculate latency and throughput; calculate latency and throughput;




As above, we increased the message size from 1 to 508 bytes and used k = 10° iterations for
each size.

message size | latency | throughput || message size | latency | throughput
in bytes in ps | in MByte/s in bytes in ps | in MByte/s
word transfer block transfer

1 10.17 0.196 4 15.26 0.523

2 10.17 0.393 8 16.10 0.992

4 10.57 0.756 16 19.06 1.676

8 15.26 1.047 32 24.78 2.579

64 36.06 3.546

128 60.78 4.207

256 111.26 4.597

508 210.94 4.811

With simultaneous sending and receiving messages, the resulting runtime is about twice as
long as to the Ping benchmark, because twice the amount of data has to be transferred. Pairwise
Frchange actually shows even better maximum throughput than Ping (4.8 MByte/s vs. 4.5
MByte/s). Both processes start with sending a message, so there is no delay for receiving the first
message.

6.2 Heat diffusion

The Heat diffusion benchmark starts with an even temperature distributions on a metal plate.
On all four sides different heat sources and heat sinks are asserted. The goal is to compute the
final heat distribution of the metal plate. This can easily be done with a Jacobi- or Gauss-Seidel
iteration, by calculating the new temperature of each gridpoint as average of it’s four neighbours.

Parallelizing this algorithm is simple: We use a block-distribution of rows of the n x n matrix.
So during each iteration each process has to exchange two rows with its neighboring processes.
To visualize the progress, all data is periodically collected by one process. The following table
shows the effective speedup for different problem sizes. Each experiment was measured with at
least 1000 iterations, visualizing the result every 20 iterations.

size | time for 1 workstation | time for 2 workstations | speedup
(n) [ms/iter] [ms/iter]
32 5.16 3.40 1.52
64 19.91 11.07 1.80
128 79.96 41.77 1.91
256 330.96 164.47 2.00
512 1371.30 699.15 1.96
1024 5526.37 2841.46 1.94

As expected, execution time on uniprocessor and multiprocessor configuration quadruples as
problem size is doubled. This is obvious, because the asymptotic work of a Jacobi-iteration on a
n x n matrix is O(n?). For a wide range of problem sizes (starting with n=128 up to n=1024), an
ideal speedup and therefore an efficiency of more than 95% is achieved. Only when benchmarking
very small problem sizes, we see a decreasing speedup because the overhead for collecting and
visualizing the data is quite large compared to computational task within the Jacobi-iteration.

6.3 Linpack

The Linpack benchmark is an equation solver using LU decomposition with partial pivoting and
backsubstitution. We have parallelized the core routine (SGEFA). We use a cyclic distribution of
lines to achieve an optimal load balance. Thus, pivot searching, scaling and row elimination can
be done in parallel.

The following table shows runtime, achieved Mflops and effective speedup for different problem
sizes.



size 1 workstation 2 workstations speedup
(n) || time[s] | Mflop || time[s] | Mflop

100 0.39 1.76 0.22 3.14 1.78
200 2.96 1.80 1.57 3.45 1.92
500 46.1 1.82 23.1 3.62 1.99
1000 368 1.82 183 3.64 2.00
1500 1255 1.80 627 3.60 2.00

The measured performance in Mflops of the uniprocessor configuration is quite stable over
the whole range of different problem sizes and compares well to results presented by J. Dongarra
[Don95] for a 33MHz 80486. Using two workstations we obtain a perfect speedup (greater than
1.98) and therefore an efficiency close to the maximum for all relevant problem sizes.

7 Conclusion

The integrated and performance oriented approach of designing fast interconnection hardware
and a message-passing library has lead to a workstation cluster environment that is well suited
for parallel processing. With low communication latencies, minimal protocol, and no operating
system overhead it is possible to build effective parallel systems using off the shelf workstations.
Our final goal is to offer a standard interfaceboard, capable of building parallel systems ranging
from a few workstations or PC’s up to a cabinet full of workstation-boards.

Status and schedule

Prototype boards based on EISA-Bus are operational. Currently we are designing new PCI-Bus
boards, which will be manufactured and tested in summer 1995. Our next testbed will consist of
an eight DEC-Alpha workstation cluster which should be running by December 1995.
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