
On the Competitive Analysis of Randomized

Static Load Balancing

Peter Sanders

Department of Computer Science

University of Karlsruhe, 76128 Karlsruhe, Germany

E-mail: sanders@ira.uka.de

Abstract

Static load balancing is attractive due to its simplicity and low commu-

nication costs. We analyze under which circumstances a randomized static

load balancer can achieve good balance if the subproblem sizes are unknown

and choosen by an adversary. It turns out that this worst case scenario is

quite close to a more specialized model for applications related to parallel

backtrack search. In both cases, a large number of subproblems has to

be generated in order to make good load balance possible. Nevertheless,

a carefully implemented randomized static load balancer can sometimes

compete with dynamic load balancing on parallel machines with slow com-

munication. The ideas and results derived here can also be used to analyze

and improve existing load balancing algorithms.

1 Introduction

One of the key tasks in parallel algorithm design is load balancing, i.e., evenly

distributing subproblems over the individual processors (PEs). This is particu-

larly di�cult if the subproblem sizes are hard or impossible to predict. A very

simple approach is to randomly distribute subproblems to PEs hoping that for

large enough numbers of subproblems, imbalance will smooth out.

In fact, in papers like [10] it is proved that it is often su�cient to assign

O(log n) subproblems

1

to each of n PEs in order to smooth out load imbalance

on the average. However, the sizes of subproblems are assumed there to be inde-

pendent identically distributed random variables which also have to ful�ll addi-

tional properties like �increasing failure rate�. Unfortunately, for many parallel

applications the subproblem sizes are interrelated in some complicated way be-

cause they stem from a global problem instance which has been decomposed into

subproblems in order to expose su�cient parallelism.

2

In this case, one would

prefer to infer performance guarantees from properties of the problem subdivision

procedure and the fact that subproblems are randomly placed.

In Section 2 we start with an abstract model where an adversary is allowed to

arbitrarily subdivide a root problem into a given number of subproblems subject

1

Throughout this paper �log� stands for the logarithm base 2.

2

There are some applications where modeling loads as independent random variables is very

accurate (e.g. for some Monte Carlo simulation [6, 1]).

1

to a bound on the maximum subproblem size s

max

. We show that by randomiza-

tion good load balancing is achieved with high probability if 1=s

max

2
(n log n).

We then switch to a more specialized setting and look at a model for parallel

tree search based on splitting subproblems into two parts using an inaccurate

splitting function. In Section 3 it turns out that the worst case predictions of

the abstract model are quite close to lower bounds for this tree splitting model.

Then Section 4 shows how randomized static load balancing can be implemented

with very little communication overhead. Section 5 summarizes the results and

sketches how they can be applied to improve and analyze other load balancing

algorithms for parallel tree search. It also reports some preliminary measurement

results.

2 An abstract model

We consider a parallel computer with n PEs numbered 1 through n. m sub-

problems with sizes (sequential execution times) s

1

, : : : , s

m

(s

i

� 0) are to be

distributed to the PEs. The problem sizes are normalized such that

P

m

i=1

s

i

= 1.

The sizes are unknown to the load balancer and can be chosen by an adversary

subject to the constraint that the maximum subproblem size max

m

i=1

s

i

must not

exceed a limit s

max

. There are no computational dependencies between subprob-

lems and it does not matter where and in which order they are processed. In

order to avoid some tedious special case treatments, we assume m � n > 1,

s

max

� 1=n and 1=s

max

2 N. We consider the load balancing strategy of placing

the subproblems independently and uniformly at random. The adversary does

not know the random choices made by the load balancer.

Let the random variable L

j

denote the load allocated to PE j, i.e,

3

L

j

:=

m

X

i=1

s

i

� [subproblem i is allocated to PE j]:

Let L

max

:= max

n

i=1

L

i

denote the maximum load. The goal of the analysis is to

assess under which circumstances the random placement algorithm achieves good

load balancing, i.e., L

max

�

1+�

n

with high probability for some positive constant

�.

4

The goal of the adversary is to maximize EL

max

.

Lemma 1. An optimal strategy for the adversary is to assign the size s

max

to

exactly 1=s

max

subproblems and the size 0 to all remaining subproblems.

Proof. Fix any adversary strategy which maximizes EL

max

(there must be such

a strategy since the set of adversary strategies is a compact set). If it does not

de�ne a subproblem a with 0 < s

a

< s

max

we are done. Else, since 1=s

max

is an

integer, there must also be another subproblem b with 0 < s

b

< s

max

. Without

loss of generality assume s

a

� s

b

. Let
 = f1; : : : ; ng

f1;::: ;mg

denote the set of all

possible subproblem placement functions, i.e., our probability space. We de�ne

the following partition for
.

 =

ab

_

[

a

�

b

_

[

�ab

_

[

�a

�

b

:

3

We adopt the notation from [4] to de�ne [P] := 1 if the predicate P is true and [P] := 0

else.

4

We do not consider the minimum load or other characterizations of imbalance here because

they do not directly in�uence the parallel execution time in our model.

ab

:= The placements which assign both a and b to maximum positions (i.e.

positions j

a

and j

b

with L

j

a

= L

j

b

= L

max

).

a

�

b

:= The placements which assign a to a maximum position and b to a non-

maximum position.

�ab

:= The placements which assign b to a maximum position and a to a non-

maximum position.

�a

�

b

:= The placements which assign neither a nor b to a maximum position.

The random variable L

max

is a mapping from
 to R and its expectation can be

written as

EL

max

=

1

j
j

0

@

X

!2

ab

L

max

(!) +

X

!2

a

�

b

L

max

(!) +

X

!2

�ab

L

max

(!) +

X

!2

�a

�

b

L

max

(!)

1

A

:

If the adversary now changes s

a

to s

0

a

:= s

a

+� and s

b

to s

0

b

:= s

b

�� with

� := min(s

b

; s

max

� s

a

), EL

max

changes as follows:

�

P

f2

ab

L

max

(f) can only increase since every summand where a and b are

assigned to the same maximum position remains the same and when a and

b are assigned to di�erent maximum positions, the summand increases by

�.

�

P

f2

a

�

b

L

max

(f) increases by j

a

�

b

j� because every summand increases by

�.

�

P

f2

�ab

L

max

(f) decreases by at most j

�ab

j�.

�

P

f2

�a

�

b

L

max

(f) can only increase.

Due to s

a

� s

b

we have j

a

�

b

j � j

�ab

j.

5

Therefore, the overall change of EL

max

can only be positive.

By iterating this argument of changing two non-extremal subproblem sizes

�nitely often we arrive at the adversary strategy described in the lemma because

in every step one subproblem size goes to 0 or s

max

. Therefore the strategy from

the lemma must be at least as good as the strategy we started from.

Theorem 2. For every � > 0 and every � > 0 there is a constant c such that

P

�

L

max

>

1+�

n

�

� n

��

if s

max

�

1

cn lnn

and if the adversary uses the strategy from

Lemma 1.

Proof. It su�ces to show that there is a c such that P

�

L

j

>

1+�

n

�

� n

�(1+�)

for

any j. Observing that the zero size pieces cannot contribute to L

max

we can con-

centrate on the 1=s

max

subproblems of size s

max

. We number these subproblems

from 1 to 1=s

max

and de�ne

Y

ji

:= [the nonzero subproblem number i is assigned to PE j]. Then

L

j

= s

max

1=s

max

X

i=1

Y

ji

:

5

I would like to thank Thomas Worsch for pointing out an elegant way to explicate this:

Exchanging the positions of s

a

and s

b

is an injection from

�ab

to

a

�

b

.

Since the Y

ji

are independent for �xed j and P [Y

ji

= 1] = 1=n, a simple Cherno�

bound

6

can be used to conclude

P

�

L

i

>

1 + �

n

�

� e

�

�

2

2ns

max

� e

�

�

2

cn ln n

2n

= n

�

�

2

c

2

� n

�(�+1)

for c � 2(� + 1)=�

2

.

The mixed use of high probability and expected value results may appear

strange, but we felt it to be natural that the adversary tries to make the average

performance of the load balancer as bad as possible while a user prefers high

probability guarantees for the performance of the load balancer. Yet, there are

no technical reasons forcing that. Analogously to the proof of Lemma 1, it can be

shown that the probability that L

max

exceeds a given limit is maximized by the

same adversary-strategy. Vice versa, the performance of the random placement

load balancer under the worst case adversary strategy can also be analyzed in

terms of EL

max

(e.g. using Theorem 5.6 in [22]).

3 A tree splitting model

In many applications it does not make sense to generate all subproblems in a

single step. Often the parallel algorithm is based on the divide and conquer

paradigm. In this case, subproblems are generated incrementally by recursively

splitting larger problems into a small number of pieces. We can assume without

loss of generality that exactly two subproblems are generated by a divide-step.

If the splitting function is inaccurate and the sizes of the new subproblems are

unknown, our model for randomized static load balancing is appropriate. This

setting is quite typical for many backtracking algorithms. (Refer to [20] for a

more detailed discussion.)

A simple way to model the splitting error in this application domain is the

�-splitting model [11]:

7

The adversary can split a subproblem of size s into

two pieces of size s

a

and s

b

subject to the constraint that s

a

+ s

b

= s and

min(s

a

; s

b

) � �s.

Randomized static load balancing can generate 2

h

subproblems by building a

complete splitting tree for some �xed depth h. This can easily be translated to

the abstract model from Section 2 by setting

s

max

= (1� �)

h

and m = 2

h

:

We can now use Theorem 2 to infer an upper bound for a choice of h which

achieves good load balance.

Theorem 3. For every � > 0 and every � > 0 randomized static load balancing

using tree splitting ensures that P

�

L

max

>

1+�

n

�

� n

��

if

h 2 x(�)(log n+ log log n) +

�

�

�

2

�

with x(�) :=

1

log

1

1��

:

6

P [

P

n

i=1

Z

i

> (1 + �)np] � e

��

2

np=2

for independent 0/1-random variables Z

i

with success

probability p (refer for example to [14]).

7

We actually use a slight generalization of the original model.

Proof. Solving (1 � �)

h

=

1

cn lnn

for h using the c from the proof of Theorem 2

yields

8

h =

1

log

1

1��

(log n+ log log n) +

�

�

�

2

�

:

So, good load balance is guaranteed for the claimed h even if the adversary were

allowed to use its optimal strategy from Lemma 1.

This result is actually quite tight because we can easily infer a lower bound

on h which is only by an O(log log n) additive term smaller:

Theorem 4. No load balancing algorithm which considers 2

h

subproblems as

atomic that are generated by recursively splitting the root problem, can achieve

good load balancing under the �-splitting model if

h < x(�) log n:

Proof. The adversary can always split the problems in the ratio � to 1��. After

less than

1

log

1

1��

log n splits there will always be one subproblem of size at least

1

(1��)n

.

The upper and lower bounds can be interpreted in terms of the number of

subproblems m = 2

h

to be generated for good load balance. We have m � n

x(�)

.

So the exponent is heavily dependent on the value of �, i.e., on the quality of

the splitting function. Figure 2 shows the behavior of the exponent depending

on �. The gap between the upper bound from Theorem 3 and the lower bound

from Theorem 4 is a polylogarithmic factor. The variation due to the tolerated

imbalance and the degree of high probability is a constant factor.

The �-splitting model can be modi�ed and generalized in various ways. Re-

quiring a guaranteed minimum quality for every split operation as in �-splitting

can be quite unrealistic and we do not really need this for the proof of Theorem 3.

It is su�cient to specify in some arbitrary way how many splits are necessary to

su�ciently reduce the size of the generated subproblems. O(log n) splits which

do not yield any size reduction can be tolerated if this is compensated later.

In [19] the splitting factor is considered to be a random variable with range

[0; 1] whose density is symmetric around 1=2. The inaccuracy of the splitting

function is modeled by the distribution's standard deviation �. The lower bounds

inferred there are similar to the ones presented here and can be translated by

setting � = 1=2 � �. The upper bounds only hold on the average and are looser

than here.

4 E�cient implementation

So far, we have ignored the overhead incurred by generating and distributing the

subproblems. Now we describe how this can be done quite e�ciently.

We stick to the tree splitting model from the previous section but the basic

ideas are also valid for many other ways of generating subproblems. Only two

8

The factor needed to convert between log and ln can be shifted into the
.

communication steps are performed: Broadcasting the root problem in the be-

ginning, and collecting the results

9

after all subproblems have been exhausted.

The PEs independently generate the subproblems they have to process. In or-

der to make this possible, we modify the problem placement process. Instead

of placing problems independently at random we use a random permutation

� : f1; : : : ;mg ! f1; : : : ;mg over the subproblems. PE i generates and processes

the subproblems �(

m

n

(i�1)+1), : : : , �(

m

n

i). Figure 1 summarizes this algorithms

and shows how subproblems are generated from the root problem by splitting it

h = logm times keeping only the currently relevant piece. For simplicity, n is

assumed to be a power of two.

10

(* Input: *)

R : Problem (* Root problem *)

h : N (* (2

h

= m, Number of subsequent splits to be performed *)

Determine a random permutation � : f1; : : : ; 2

h

g ! f1; : : : ; 2

h

g

Broadcast R to each PE

FOR PE i := 1 TO n DOPAR (* asynchronously *)

FOR j := (i� 1)2

h

=n + 1 TO i2

h

=n DO

P := R (* Problem under consideration *)

let (b

0

; : : : ; b

h�1

) be the bit representation of �(j)� 1

FOR l := 0 TO h� 1 DO

IF b

l

= 0 THEN

P := left part of splitting P into two parts

ELSE

P := right part of splitting P into two parts

search subproblem P sequentially

collect results

Figure 1: Generic Algorithm for randomized static load balancing.

Before we can go on to analyze this algorithm, we must �rst explain the

di�erences to the abstract model from Section 2. First, switching to random

permutations does not a�ect the optimal strategy for the adversary. The proof

of Lemma 1 carries over. Furthermore, a random permutation distributes the

subproblems more evenly than a random placement strategy and we therefore

assume that the upper bound from Theorem 2 still applies.

The next problem is that computing a truly random permutation of such a

large size would be very expensive. In particular, it would ruin the communi-

cation economy we wanted to gain with our approach. But for most practical

cases it is su�cient to compute some pseudorandom permutation. One possibil-

ity is to use a linear congruence generator of the form x

n+1

= ax

n

+ c mod m.

According to Knuth [9] this yields reasonable pseudorandom number generators

with full period length for appropriate choices of a and c. Unfortunately, little is

9

This is often possible by applying an associative commutative operation to the results of

the subproblems (like �number of solutions� or �best solution�). In this case, collecting the

results is very simple and e�cient because it can be done locally �rst followed by a single global

reduction operation.

10

By introducing a slight additional imbalance, this constraint can be lifted.

known about using the full sequence as a permutation. We are not even aware

of well established empirical tests for assessing the randomness of a permutation.

Since m = 2

h

is a power of two, pseudorandom permutations can also be com-

puted using the theory of �nite �elds. Let p be a primitive polynomial modulo

2 of degree h. Then the polynomial x

l

mod p (l relatively prime to m � 1) is

a generating element of the multiplicative group of GF (2

h

), i.e., the sequence

((x

l

)

1

; : : : ; (x

l

)

m�1

) enumerates the nonzero polynomials modulo p.

11

Inserting

the 0-polynomial at some random place in this sequence yields the desired pseudo-

random permutation. By interpreting the coe�cients of the polynomials as bits

of a computer word, polynomial arithmetic mod p is quite e�cient. Both classes

of permutations can be generated quickly and without communication using an

integer-power computation for each PE's �rst evaluation of � and a multiplication

for all subsequent evaluations.

4.1 Analysis

Let d denote the network diameter, l the length of the description of the root

problem, T

seq

the sequential execution time (up to know this was 1, i.e. our unit

of time) and T

split

the time for splitting a subproblem. Let us further assume

that collecting results is asymptotically as fast as broadcasting the root problem.

Let m (or equivalently h) be chosen in such a way that good load balance is

achieved, i.e., L

max

� (1 + �)T

seq

. The pseudorandom permutations described

above can be computed so quickly that they do not contribute to the asymptotic

execution time since they need to be evaluated only every h splits. Then the

parallel execution time can be estimated as the subproblem solving time on the

most highly loaded PE plus the time for broadcasting and collecting results plus

the time for doing

h2

h

n

splits, i.e.,

T

par

2 (1 + �)

T

seq

n

+O(d + l) +

h2

h

n

T

split

:

Theorem 3 allows us to express h in terms of n and the splitting factor �. Let

x(�) :=

1

log

1

1��

then

T

par

2 (1 + �)

T

seq

n

+O(d+ l) + T

split

O

�

n

x(�)�1

(log n)

x(�)+1

�

:

The exponent x(�) is depicted in Figure 2.

Ignoring polylogarithmic factors, and assuming that l and T

split

grow slowly

when T

seq

is scaled, we can achieve good net e�ciency if the root problem size is

scaled as a polynomial function of n with an exponent which is heavily dependent

on the quality of the splitting function. For � close to 1=2, the parallelization

overhead can be dominated by the communication expense. For example for

� > 0:37::: (� > 0:29:::) communication costs asymptotically dominate splitting

costs on a mesh-connected (ring-connected) machine. In these cases, randomized

static load balancing outperforms the best known dynamic load balancing algo-

rithm because these involve an
(dl) term for the communication expense [20].

(But note that these algorithms work e�ciently for any � and even for splitting

functions which cannot be characterized by any � > 0.)

11

At least from the point of view of cryptographers this method seems to yield quite random

permutations since inverting them is related to the discrete logarithm problem. (I would like

to thank Thorsten Minkwitz and Jörn Müller-Quade for pointing this out.)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
alpha

x(alpha)

Figure 2: Development of the exponent x(�).

5 Conclusion

Even if subproblem sizes are unknown and determined by an adversary, random-

izes static load balancing can achieve good load balancing with high probability

provided there is a bound on the subproblem size such that a logarithmic number

of subproblems cannot overload a processor. This is a signi�cant generalization

compared to previous results which show that good load balance can be achieved

on the average if the PE loads are sums of logarithmically many independent and

�well-behaved� random variables. If the bound on the subproblem size is large

compared to the average subproblem size this result is �bad news� because the

handling of large numbers of tiny subproblems severely limits e�ciency.

For divide-and-conquer applications where subproblems are generated by an

inaccurate splitting function, this situation of very unevenly distributed subprob-

lem sizes occurs quite naturally. On the other hand, randomized static load

balancing can be implemented using only a single broadcast of the root problem

and a locally computed pseudorandom permutation. If communication is slow

and the splitting error is not too large, this approach of trading computation

for communication is superior to otherwise more robust dynamic load balancing

algorithms.

5.1 Applications to existing tree search algorithms

The approach to use static tree decomposition for parallelizing tree search is quite

old [2]. Assigning a single subproblem to each PE achieves only very poor balanc-

ing but it can be helpful as an initialization scheme for dynamic load balancing

[13, 12, 17, 7]. If the (pseudo)random permutations described in Section 4 are

used, the initialization can actually lead to an asymptotic improvement: In any

subnetwork of su�cient size the average load will be about the same. So, global

communication (which is for example important for the basic random polling al-

gorithm [17]), is no more necessary. It can be shown that on an r-dimensional

mesh the communication distance can be reduced by a logarithmic factor for any

splitting factor � > 0.

In [16] a combined static/dynamic load balancing algorithm is described which

starts by allocating several subproblems to each PE. Later, idle PEs get work from

nearby busy PEs. In this phase, subproblems are never split in order to avoid

the negative e�ects of splitting in the context of neighborhood communication

described in [15]. The author reports problems due to uneven sizes of the sub-

problems. This can be explained quite naturally by our splitting model � the

lower bound from Theorem 4 also applies to this algorithm.

A somewhat di�erent model of parallel tree search underlies the idea to search

for a single solution in a tree with unevenly distributed solution nodes using ran-

domized successor ordering [8, 3]. In some cases, this can yield large superlinear

average speedups compared to a sequential depth �rst search. But if there is no

solution at all, the speedup is smaller than one. Our approach o�ers a way to

improve this situation. Even if subproblems are decomposed and searched ran-

domly, they are always guaranteed to remain disjoint. If there is no solution, the

e�ciency analysis from Section 4.1 predicts good speedups for large problems.

5.2 Current work

Randomized static load balancing has been implemented as one of the load bal-

ancers in the parallel tree search library PIGSeL [18]. However, it cannot cur-

rently compete with the �Random Polling� dynamic load balancing algorithm

[17] which achieves almost perfect speedup on a 1024-PE mesh-connected trans-

puter system for quite small problem instances of irregular tree search problems

like the knapsack problem, the 15-Puzzle and search for �Golomb rulers� [21].

12

This may change with the development of better and faster splitting functions.

On the theoretical side the next step is to reconcile the abstract model with

the implementation by �nding a �universal�

13

set of permutations which are easy

to compute and which can be proved to perform similarly well as a truly random

placement.

References

[1] C. Casari, C. Catelli, M. Guanziroli, M. Mazzeo, G. Meola, S. Punzi, A. Scheinine,

and P. Stofella. Status report on ESPRIT project p9519 palace: Parallelization of

GEANT. In International Conference Massively Parallel Processing Applications

and Development, Delft, 1994. Elsevier.

[2] O. I. El-Dessouki andW. H. Huen. Distributed enumeration on between computers.

IEEE Transactions on Computers, C-29(9):818�825, September 1980.

[3] W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen.

PhD thesis, TU München, 1992.

[4] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison

Wesley, 1992.

[5] R. Gupta, S. A. Smolka, and S. Bhaskar. On randomization in sequential and

distributed algorithms. ACM Computing Surveys, 26(1):7�86, 1994.

12

A note to the referees: If desired I can expand on some of these measurements.

13

In the sense which is used for the term universal hashing [5].

[6] P. Heidelberger. Discrete event simulations and parallel processing: Statistical

properties. SIAM Journal of Statistical Computation, 9(6):1114�1132, 1988.

[7] D. Henrich. Lastverteilung für Branch-and-bound auf eng-gekoppelten Parallelrech-

nern. PhD thesis, Universität Karlsruhe, 1994.

[8] V. K. Janakiram, E. F. Gehringer, D. P. Agrawal, and R. Mehotra. A randomized

parallel branch-and-bound algorithm. International Journal of Parallel Program-

ming, 17(3):277�301, 1988.

[9] D. E. Knuth. The Art of Computer Programming � Seminumerical Algorithms,

volume 2. Addison Wesley, 2nd edition, 1981.

[10] C. P. Kruskal and A.Weiss. Allocating independent subtasks on parallel processors.

IEEE Transactions on Computers, 11(10):1001�1016, 1985.

[11] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

[12] R. Lüling and B. Monien. Load balancing for distributed branch & bound algo-

rithms. In Int. Parallel Processing Symposium (IPPS), 1992.

[13] R. P. Ma, F. S. Tsung, and M. H. Ma. A dynamic load balancer for a parallel branch

and bound algorithm. In 3rd Conference on Hypercubes, Concurrent Computers,

and Applications, pages 1505�1530, Pasadena, 1988. ACM.

[14] S. Rajasekaran. Randomized algorithms for packet routing on the mesh. In L. Kro-

nsjö and D. Shumsheruddin, editors, Advances in Parallel Algorithms, pages 277�

301. Blackwell, 1992.

[15] V. N. Rao and V. Kumar. Parallel depth �rst search. Part II. International Journal

of Parallel Programming, 16(6):501�519, 1987.

[16] A. Reinefeld. Scalability of massively parallel depth-�rst search. In DIMACS

Workshop, 1994.

[17] P. Sanders. A detailed analysis of random polling dynamic load balancing. In In-

ternational Symposium on Parallel Architectures, Algorithms and Networks, pages

382�389, Kanazawa, Japan, 1994.

[18] P. Sanders. Portable parallele Baumsuchverfahren: Entwurf einer e�zienten Bib-

liothek. In Transputer Anwender Tre�en, pages 168�177, Aachen, 1994. IOS Press.

[19] P. Sanders. Randomized static load balancing for tree shaped computations. In

Workshop on Parallel Processing, TR Universität Clausthal, pages 58�69, Lessach,

Österreich, 1994. ISSN 0943-3805.

[20] P. Sanders. Better algorithms for parallel backtracking. InWorkshop on Algorithms

for Irregularly Structured Problems, number 980 in LNCS, pages 333�347, Lyon,

1995. Springer.

[21] P. Sanders. Some implementation results on random polling dynamic load balanc-

ing. Technical Report 40/95, Universität Karlsruhe, August 1995.

[22] J. S. Vitter and P. Flajolet. Average case analysis of algorithms and data struc-

tures. In Handbook of Theoretical Computer Science, volume A: Algorithms and

Complexity, chapter 9, pages 431�524. Elsevier, 1990.

