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Abstract
Four-dimensional geodesy deals with integrated processing of geodetic observations in
order to analyse the network geometry and its variation with time, when these observations
depend on the gravity �eld of the earth and its temporal variation. This consideration
introduces the time dimension into the three-dimensional integrated model.

The shape of the earth and consequently its gravity �eld upon which geodetic observables
depend changes continuously with time due to dynamic processes taking place within the
earth and also due to third body attractions, for example the moon and the sun. This
consideration leads to the requirement of four-dimensional models in precise geodetic
networks. In this study, the model of three-dimensional integrated geodesy is extended to
the four-dimensional geodesy by considering the temporal variation of the network points
both in space and time.

A general derivation of the observation equation for four-dimensional geodesy was carried
out. In this derivation, the time dependent geodetic observations are treated as functions
of position of points involved in each observation and the gravity potential functionals
evaluated at those points. In the �rst step the position of a point at any desired epoch
(time) is decomposed into a provisional position at the initial epoch, a coordinate correc-
tion at this initial epoch and a time varying displacement. In the second step the potential
functional is decomposed into a known non-temporal normal potential and a time varying
disturbing potential. The disturbing potential is further decomposed into two parts: a
part at the initial epoch and another part that varies with time. The gravity potential
functionals are in general considered as non-linear and were therefore linearised by ap-
plying the Taylor series approximation to functionals. In the last step the results of both
the �rst and the second steps were combined and the resulting equation was linearised
leading to formation of the basic general model of four-dimensional geodesy.

The basic general model of four-dimensional geodesy consisted of essentially four di�er-
ent types of parameters - the coordinate corrections, the displacements, the disturbing
potential functionals and their time variations. The coordinate corrections were consid-
ered to be discrete deterministic while the other parameters designated as signals, were
considered as being continuous in both space and time. Following the general model of
four-dimensional geodesy just described speci�c observation equations for most classical
terrestrial geodetic observations as well as some space observations were fully derived.

Noting that geodetic observations are usually only made at discrete points and at discrete
time instants, the signals had to be treated in such a way as to enable their propagation
both in time and space. This treatment was possible through introduction of spatial
covariance functions and time covariance functions. Since a network covering a regional
area was considered, regional spatial covariance functions with respect to commonly used
terrestrial and space geodetic observables were derived. These covariance functions were
based on the model described in [Reilly, 1979] and [Heck, 1984]. Introduction of a
time dependent term on the spatial covariance functions resulted in the time covariance
functions of their respective observables.

Using some pro�le of free air anomaly data, empirical covariance functions were computed
as a test example.These empirical covariance functions were then used to derive values for
the model covariance functions derived for the various observables. A further test example
to demonstrate the application of the covariance functions as a means of expressing the
signals occuring in four-dimensional geodesy was carried out.
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In view of the increasing application of Global Positioning System (GPS) in precise geode-
tic work, it was considered appropriate to conduct a GPS antenna calibration. Through
spectral analysis of the normal equation matrix containing the antenna o�sets, a method
of testing for the signi�cance of the non-estimable vertical component of the antenna
o�sets is presented in the appendix.
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Kurzfassung
Die vierdimensionale Geod�asie besch�aftigt sich mit den integrierten geod�atischen Beobach-
tungen unter der Annahme, dass sich die Geometrie des Netzes und das beobachtete
Schwerefeld im Laufe der Zeit �andern. Damit erweitert diese Betrachtungsweise bekannte
dreidimensionale Modelle mit zus�atzlichen zeitabh�angigen Parametern.

Die Gestalt des Erdk�orpers und damit auch sein Schwerepotential, wovon die geod�atischen
Observablen abh�angig sind, �andert sich auf Grund dynamischer Prozesse innerhalb des
Erdinnern und anderer E�ekte (z.B. Anziehungskraft vom Mond und der Sonne) kon-
tinuierlich. Diese Kinematik ist Grundlage zur Entwicklung von vierdimensionalen Mo-
dellen, die vor allem in Netzen h�ochster Pr�azision bei der Analyse von sehr genauen
geod�atischen Messungen anzuwenden sind. In der vorliegenden Arbeit wird das Modell der
dreidimensionalen integrierten Geod�asie auf das Modell der vierdimensionalen Geod�asie
durch Betrachtung zeitlicher �Anderungen der Netzpunkte erweitert.

Bei der Ableitung einer allgemeinen Beobachtungsgleichung werden zeitabh�angige Beo-
bachtungen sowohl als Funktion des Beobachtungsortes, als auch als Funktion der Schw-
erepotentialfunktion betrachtet. Hierzu werden in einer ersten Stufe die Koordinaten
eines Punktes zu einem beliebigen Zeitpunkt ti zerlegt in N�aherungskoordinaten f�ur einen
beliebig w�ahlbaren Anfangszeitpunkt to, Verbesserungen dieser N�aherungskoordinaten
und eine zeitabh�angige Verschiebung. In der zweiten Stufe der Modellbildung wird
die Schwerepotentialfunktion in ein bekanntes zeitunabh�angiges Normalpotential und ein
zeitabh�angiges St�orpotential zerlegt. Das zeitlich abh�angige St�orpotential wiederum wird
aufgeteilt in einen Anteil zum Anfangszeitpunkt to und einen zeitlichen abh�angigen Teil.
Da die Beobachtungsgleichungen in Abh�angigkeit von der Schwerepotentialfunktion im
allgemeinen nichtlinear sind, werden diese durch entsprechende Taylorreihen approximiert.
In der dritten und letzten Stufe werden die zuvor dargestellten Ergebnisse zusammen-
gefasst. Die Linearisierung dieser Ergebnisse f�uhrt letztlich zum allgemeinen Modell der
vierdimensionalen Geod�asie.

Das in der vorliegenden Arbeit vorgestellte allgemeine Modell der vierdimensionale Geo-
d�asie enth�alt vier verschiedene Gruppen von Parametern. Hierbei handelt es sich um
die Koordinatenunbekannten, die Verschiebungen, die Funktionale des St�orpotentials und
seine zeitliche �Anderungen. Die Koordinatenunbekannten werden als diskrete determin-
istische Gr�ossen betrachtet, die anderen Unbekannten, die als Signale bezeichnet werden,
sind kontinuierlich sowohl im Raum als auch in der Zeit.

Auf der Grundlage des Modells der vierdimensionalen Geod�asie werden individuelle Beo-
bachtungsgleichungen f�ur klassische terrestrische geod�atische Beobachtungen und einige
r�aumliche Beobachtungen abgeleitet. Dabei ist zu ber�ucksichtigen, dass geod�atische
Beo-bachtungen nur auf diskreten r�aumlichen Punkten und zu diskreten Zeitpunkten
durchgef�uhrt werden k�onnen. Eine kontinuisierung im Raum und Zeit erreicht man im
Rahmen eines stochastischen Konzepts, in dem die als Signale bezeichneten Gr�ossen for-
mal als stochastisch betrachtet werden. Dies hat zur Folge, dass hierf�ur die Ableitung
von Kovarianzfunktionen �uber Kovarianzen-Fortpanzung erforderlich ist, wobei sowohl
r�aumliche Kovarianzfunktionen und als auch zeitliche Kovarianzfunktionen ben�otigt wer-
den. Ausgehend von bekannten Modellen r�aumlicher Kovarianzfunktionen ( [Reilly, 1979]
und [Heck, 1984]) werden in der Arbeit Modelle f�ur regionale r�aumliche und zeitliche
Kovarianzfunktionen f�ur die am h�au�gsten auftretenden Beobachtungen abgeleitet.

F�ur ein Pro�l von Freiluftanomalien werden beispielhaft die empirischen Kovarianzfunk-
tionen berechnet. Aus diesen empirischen Kovarianzfunktionen sind dann Kovarianzfunk-
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tionen f�ur andere Observable ableitbar, die wiederum im Modell der vierdimensionalen
Geod�asie einzusetzen sind. Im weiteren Verlauf der Arbeit wird die Nutzung dieser Ko-
varianzfunktionen in den Beobachtungsgleichungen der vierdimensionalen Geod�asie an
Beispielen gezeigt.

In Hinblick auf die verbesserten Einsatzm�oglichkeiten des GPS in hochgenauen geo-
d�atischen Netzen wurde in einem Testfeld eine GPS-Kampagne zur Kalibrierung von GPS-
Empf�angern durchgef�uhrt. Nach der Spektralanalyse der Anteile des Antennen-O�sets in
der entstehenden Normalgleichungsmatrix wird im Anhang eine Methode vorgestellt, um
die nicht sch�atzbare vertikale Komponente eines GPS-Antennen-O�sets auf Signi�kanz
zu pr�ufen.
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Commonly used symbols and abbreviations

In general matrices are represented by bold uppercase while row and column matrices
are represented by bold lowercase. Physical vectors shall also be represented by bold
lowercase. Further the usage of � shall not be restricted to the Euler considerations but
merely as a symbol of convenience. The same applies to the usage of � which is often
used in geodesy to represent an anomaly.

Unless otherwise stated in the text, the symbols and the abbreviations used in this dis-
sertation carry the following meaning:

Abbreviations

GFZ Geoforschungszentrum, Potsdam
GPS Global Positioning System
IAG International Association of Geodesy
ITRF International Terrestrial Reference Frame
IUGG International Union of Geodesy and Geophysics
SLR Satellite Laser Ranging
SVLBI Space Very Long Baseline Interferometry
VLBI Very Long Baseline Interferometry

Some commonly used symbols

A The con�guration or the design matrix
C0 Variance
cov(:; :) Covariance function
�x(t) Vector of coordinate corrections
�x(t) Displacement vector
grad Gradient
�(t) Time dependent astronomical latitude
� Geoid undulation
� Correlation length
l(t) A time dependent single observation
Lap Laplace operator
� Ellipsoidal longitude
�(t) Time dependent astronomical longitude
Pi Denotes a network point
r Distance between two points
R Rotation matrix
s The signal vector
t The time variable
T The disturbing potential
TXi The components of the derivatives of the disturbing potential
U The normal gravity potential
UXi Components of the normal gravity potential gradient
v Vector of residuals
� The gravity vector
W The gravity potential
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W The weight matrix
WXi Components of the gravity potential gradient
�20 Apriori variance of unit weight

�̂2 Aposteriori variance of unit weight
� The magnitude of the gravity vector
 The magnitude of the normal gravity vector
< :; : > Inner or scalar product of two vectors
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1. Introduction

1.1 Geodetic Positioning

The classical de�nition of geodesy was given by F.R. Helmert in 1880 [Helmert, 1880]
as the science of measurement and mapping of the earth's surface. Accordingly the end
product of geodesy has been a map of �xed positions on the earth's surface. Bruns
[Bruns, 1878] had already recognised in 1878 that most of the geodetic measurements
depend on the earth's gravity �eld thus creating a relationship between the geometrical
space and the physical space under which the measurements are made. With advances in
technology and particularly in satellite positioning, Draheim [Draheim, 1971] re-stated
the problem of geodesy as the determination of the �gure and external gravity �eld of the
earth and of other heavenly bodies as functions of time; as well as the determination of
the mean earth ellipsoid from parameters observed on and exterior to the earth's surface.
Draheim's statement brings in explicitly the time aspect in geodesy in recognition of the
earth's continously changing shape as well as its gravity �eld both in time and space.
[Vanicek and Krakiwsky, 1978] referred to a similar de�nition when expounding on the
role of a modern surveyor.

Traditionally geodesists have approached the problem of the determination of the shape
of the earth from the point of view that the earth's shape and its gravity �eld were
static. Where observations are known to vary with time, a reduction is made so that all
computations are referred to one epoch of measurements. Unfortunately only a few of the
geodetic measurements can be su�ciently well modelled by use of peripheral models so
as to remove the e�ects of time variations. The tidal e�ects on the gravity measurements
are well modelled and can be removed by peripheral models with high accuracy. The
astronomical observations are also corrected by use of peripheral models due to time e�ects
associated with polar motion. The bulk of the other geodetic observables is assumed time
invariant and in a majority of cases the dependency of the observations on the gravity
�eld is ignored.

The solution of the problem of geodetic positioning has been developed over the years. The
classical approach preceded the purely three-dimensional approach. Shortly afterwards
the physical gravity �eld was incorporated in the network adjustment models and this
was the beginning of integrated geodesy.
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1.1.1 Classical Geodetic Networks

In classical geodetic network establishment, respectively positioning, one set out hori-
zontal and vertical networks separate from one another. In this approach, the three-
dimensional space is separated into a two-dimensional horizontal and a one-dimensional
vertical space. A reference ellipsoid is chosen as the basis for the horizontal control within
the horizontal space and the geoid is adopted as a reference for the vertical control. This
separation of the geodetic networks was made due to the human visualisation of heights
and plan whereby both aspects are automatically perceived to be of di�erent nature.
Another reason was the fact that heights were more accurately determined than the hor-
izontal coordinates and there was also the unsolved problem of a combined modelling to
produce three-dimensional positions.

The levelling accuracy is computed from �kmm � pskm where s is the distance in kilo-
metres and k is a constant (usually 0:2mm) for geodetic work. The horizontal accuracy
in position is a�ected by many factors among others, atmospheric refraction, theodolite
errors and errors in distance measurement. The e�ects of vertical refraction are high
particularly in areas of extreme altitude di�erences and vast extent. Since heights in
three-dimensional positions had to be obtained from vertical angles, their accuracy was
limited by the irregular e�ects of refraction. On the other hand e�ects of lateral refraction
are usually small so that the planimetric information obtained from the observations is
still of appreciable accuracy. Spirit leveling combined with gravity measurements along
the leveling line served as the main means of vertical control while triangulation and later
trilateration or a combination of both provided the main means of horizontal control.
Gravity networks were also established as one-dimensional networks. A reference for the
gravity network e.g the IGSN71 network which incorporates various stations covering the
whole world ( [Morelli et al., 1974], [Uotila, 1978]), is required. The means of observa-
tions are the relative gravimeter measurements and absolute gravity measurements using
either the pendulum or the rise and fall method. Accuracies of a few microgals (10�8ms�2)
are obtainable nowadays [Becker, 1984].

The classical approach in geodetic positioning is selective as regards the type of obser-
vations to be used. Classical models are limited to (a) particular type(s) of data thus
ignoring vast and relevant geodetic data including physical data that have been acquired
over the years.

The measuring instruments and the observables react di�erently to the inherent atmo-
spheric and gravity conditions thus requiring other models to �lter these e�ects. The
measurement conditions and the inuences of the atmosphere and gravity �eld are not
static. Repeated measurements at di�erent time instants may di�er due to the changing
nature of these e�ects, thus requiring separate models to predict the shape of the network
with respect to time. The dependency of the observations on the gravity �eld is accounted
for by pheripheral models by way of reductions of the observations. While this procedure
is simple in application, the advantage of the common dependence of the observations on
the gravity �eld is ignored and the conception of three-dimensional space is lost.
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1.1.2 Three-dimensional Networks

Three-dimensional models eliminate the need to reduce the observations to a reference
surface. The original idea of three-dimensional geodesy goes back to H. Bruns in 1878
[Bruns, 1878]. However his ideas could not be practically realised at that time because
it was not possible to obtain the necessary measurements with an appreciable accuracy.
It was not until in the early 1950's when Marussi [Marussi, 1949], [Marussi, 1950],
[Marussi, 1951] revived the idea that was picked up by Hotine [Hotine, 1957] and later
[Wolf, 1963a], [Wolf, 1963b] developed observation equations for three-dimensional geodesy
in the geometric �eld. The parameters of Wolf's model are the three-dimensional coor-
dinates and two parameters per point de�ning the direction of the plumbline, namely:
the astronomical- latitude and longitude. Marussi had considered the problem of three-
dimensional geodesy in a way that included not only the geometric aspects but also the
physical gravity �eld inuencing the observations. This consideration was termed in-
trinsic geodesy and was developed to what was later to become integrated or operational
geodesy.

The main hindrance to establishment of three-dimensional networks has been the obser-
vation of vertical angles whose inuence by the atmospheric refraction is high. However
three-dimensional models can accomodate satellite observations in an optimal way and
the observations can be processed in a uni�ed manner without need for reducing the orig-
inal observations. Satellite methods e. g. the Global Positioning System (GPS) provide a
faster and e�cient way of establishing such networks.

In three-dimensional integrated geodesy the remaining disturbing potential is modelled as
a harmonic function either as a deterministic or a stochastic quantity e.g [Klein, 1997].
The �nal model thus contains deterministic geometric quantities with either deterministic
parameters of the potential function or the parameters of a stochastic function. In the
stochastic case an estimation is made with respect to the deterministic parameters and
a prediction with respect to the stochastic ones. When the gravity �eld parameters
are considered as stochastic, the solution of the parameters follows the least squares
collocation approach proposed by [Krarup, 1971] and further developed in [Moritz, 1973].
Stochastic prior information can also be incorporated in three-dimensional integrated
geodesy [Scha�rin, 1985], [Aduol, 1989].

Basically integrated geodesy di�ers from classical geodesy in that the inuence of the
disturbing potential on the observations is not ignored in integrated networks. Although
both cases take as input discrete geodetic observations, their unknowns are of di�erent
nature. The classical case has discrete unknowns while the integrated case has both
discrete and continous unknowns, (see Table ( 1.1)). The continuous unknown is the
disturbing gravity potential while the discrete parameters are the geometrical parameters
of positioning (the coordinates) and other auxiliary unknowns.

Although the three-dimensional integrated geodesy takes into account the dependency of
the observations on the physical gravity �eld, it ignores the temporal variations of the
observations resulting from the changes of the gravity �eld and also the change of shape
of the network with time.
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Data Analysis Observations Parameters
Classical geodesy Discrete Discrete
Integrated Geodesy Discrete Discrete + Continuous

Table 1.1: Classical and integrated geodesy

1.1.3 Geodynamic Phenomena

About the same time integrated geodesy was being developed the theory of plate tectonics
was widely being investigated and gaining credibilty. When it became clear that the
continents, or the plates which they belong to, are in continuous motion, geodetic accuracy
was becoming higher and the need to monitor the geodetic network stations was emerging.
The idea of plate tectonics pushed geodesy into otherwise purely geodynamic problems.

Why is the geodesist interested in geodynamics? The role of geodesy in geodynamics
is explained in [Lambeck, 1989a] where he has described geodesy as high frequency ge-
ology or low frequency seismology. [Vanicek and Krakiwsky, 1978] refer to geodesy as
contemporary geodynamics with reference to the emerging role of geodesy in geodynamic
studies. For example, the reference system, usually a three-dimensional geocentric carte-
sian coordinate system has its origin at the mass centre of the earth. The Z� axis is
directed along the earth's axis of rotation. Precession and nutation of the pole change
the direction of this axis in inertial space thus inuencing geodetic observations. The
polar motion changes the orientation of this axis thereby altering the orientation of the
reference system. The changes in the angular velocity of the earth a�ect the length of
the day (LOD) with ultimate e�ects on the reference system. Further, tidal forces cause
periodic variations in the gravity �eld thus inuencing the geodetic observations that are
dependent on the gravity �eld. There are also associated deformations from the tidal
forces that a�ect the geodetic observations.

Following the Bullen classi�cation ( [Bullen, 1975]), the earth's interior is made of distinct
layers, namely the upper mantle, the lower mantle, the outer core and the inner core. The
earth's crust is contained in the upper mantle which itself is further classi�ed into an outer
region, the lithosphere and an inner region, the asthenosphere. The lithosphere is rather
rigid while the underlying regions can undergo plastic and elastic deformation. More
causal factors of deformations are discussed below.

Terrestrial mass displacements cause time changes in the gravity �eld as well as the
physical surface of the earth. The mass displacements may be caused by erosion and
sedimentation, volcanic activity and earthquakes, changes in the water table, glacial e�ects
(see [Menard, 1975]) , evaporation etc. For example the postglacial rebounds of the last
10,000 years or so are being observed by geodetic means with uplift rates of about 10mm
per year in Fennoscandia. The resulting melt water becomes another crustal load which
may help explain the rise in sea level (see also [Lambeck, 1989b]). Man-made activities,
for example large constructions - dams, excavations, mining activities, large buildings,
large mass deposits etc. also a�ect the mass distributions of the earth which in turn alter
the gravity �eld upon which geodetic observations depend.

From the theory of plate tectonics it is known that expanding material from the astheno-
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sphere results in the relative movement of the lithospheric plates (see [Le Pichon et al., 1973]).
As the plates slide over the asthenosphere they bend at bumps that they meet on the as-
thenosphere thereby causing displacements of surface points. There are six major plates.
These are the Paci�c plate, the North and South American plates, the Eurasian plate,
the African plate, the Indian plate, and the Antarctic plate. There are also a larger num-
ber of smaller plates as shown in Figure ( 1.1). Whenever two plates collide the heavier
one sinks into the upper mantle and there is subduction. Deep trenches are formed and
mountains are uplifted near the plate boundaries. It is postulated that the density of the
core changes with time. Such changes will have e�ects on the dynamics of the earth which
may cause the plates to move.
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While seismology has been able to provide information on recent crustal motions, ge-
ological past motions have been obtained from paleomagnetic data. Due to the broad
nature of the earth dynamics and the emerging space and computer technology, various
disciplines need to be involved in trying to answer the question 'when the movements may
occur'. In geodetic science this problem has been dealt with mainly under recent vertical
motions and particularly for local regions [Heck, 1984], [Zippelt, 1988]. With the coming
of space technology, particularly GPS, Satellite- and Lunar Laser Ranging and VLBI, it
has become possible to monitor geodynamically large regions including global areas.

Figure ( 1.1) shows the velocity vectors of some IGS stations located on various plates
in comparison with those of NUVEL-1 and ITRF [Gendt et al., 1998]. The results from
GPS observations over the �ve years agree fairly well with geological information indi-
cating a maximum drift of the lithospheric plates of upto nearly 10cm per year (see also
e.g [Lambeck, 1988]). This conformity emphasises the potential of the use of GPS in
geodynamics in crustal deformation monitoring. Tectonic plate motions obtained from
geological evidence have also been con�rmed to agree with evidence from satellite laser
ranging to LAGEOS [Smith et al., 1989].

Gravity changes on the order of 10�8ms�2 per year are also experienced [Torge, 1980].
The integrated four-dimensional approach does not ignore the dependency of the observa-
tions on the gravity �eld and the integrated nature of the observation model is expected
to yield the best possible results about the velocity vectors of surface points.

1.2 The Statement of the Problem

The shape of the earth and its gravity �eld upon which geodetic observables depend
changes continuously with time due to dynamic processes taking place within the earth
and also due to the attraction e�ects of the earth by third body e�ects - the moon, sun
and the planets. The major tectonic plates of the earth have been shown to be in motion
by use of geological methods and lately by use of GPS techniques ( [Gendt et al., 1995]).
For global and continental or regional networks these motions are normally taken care
of by pheripheral models. The geodetic observables are reduced to a particular reference
time and the network is computed for this particular time reference. The re-observation
of the network is usually made after some time, say two or three years, and the shape of
the network within this period can be then interpolated.

There are two discrete aspects as far as the observation of any geodetic network is con-
cerned. These are:

� geodetic measurements are made at discrete points that make up the network, and

� geodetic measurements are made at discrete time epochs.

However, the elements of the gravity �eld and the time aspect upon which the geodetic
measurements depend are continuous. If the ordinary methods of network computa-
tion are followed, then only positioning elements at the discrete network points and at
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discrete time epochs are obtained. What about the positioning elements at the other
non-observation points of the network? Based on this reasoning the problem of study can
be summarised as follows: equipped with discrete observations at discrete time epochs
how can the positioning elements, not only at the discrete network points, but also those
of other points as well as between measurement epochs, be estimated while taking into
account the dependency of the measurements on the continuous nature of gravity �eld
and time?

In this study a model for computation of a four-dimensional integrated network taking
into consideration all available common geodetic observables within a uni�ed adjustment
model is proposed. The proposed model is an extension of the three-dimensional inte-
grated case into a four-dimensional situation considering that the network measurements
are made only at a few points while the network displacements occur at an in�nite number
of points (i. e. over the continuum). From measurements we can determine displacements
at network points only. What are the displacements in other points outside those of the
network points? Put in another way, how can the estimation of displacements in space be
continued or propagated?

The geodetic observations are made at a given time epoch, say within a week, short
enough for there to be no changes in the observables. If a campaign is performed at some
other epoch, then we would wish to know how the displacements changed with time.
The question asked is how can the estimation of displacements within the time interval of
observation campaigns be continued? Figure ( 1.2) is a two-dimensional discrete- epoch
model representation with one axis showing time and the others are spatial axes. The
spatial axis are related to the elements of a three-dimensional integrated geodesy while
the time axis consists of campaign epochs. The aim is to determine the geometrical
elements of positioning as well as the physical aspects concerning the gravity �eld when
their temporal variations are considered as continuous.

As part of the main problem of study and taking into account the promising future of the
GPS in crustal deformation studies, it was found necessary to carry out a study leading
to improved GPS evaluation and in particular the calibration of the GPS antenna.

1.3 Outline of the Report

An overview about the past developments and possibilities of four-dimensional geodesy is
provided in Chapter Two. Following the model of three-dimensional integrated geodesy,
a model of four-dimensional geodesy is derived in Chapter Three. Observation equations
for common geodetic observables, both terrestrial and spatial are derived in Chapter Four
according to the model of four-dimensional geodesy derived in Chapter Three. In Chapter
Five possibilities of handling the parameters appearing in the four-dimensional model
mentioned above are discussed. In particular, covariance functions for signals appearing
in this model are derived. Some test results are presented in Chapter Six to demonstrate
the application of the proposed model of four-dimensional networks. Conclusions are
presented in Chapter Seven and a GPS anntena calibration test and results are reported
in Appendix A.
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Figure 1.2: Diagramatic illustration of space and time - discrete epoch model
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2. Historical Development of

Four-dimensional Geodesy

2.1 General Remarks

The earth appears as a rigid structure that does not undergo deformation when viewed
with respect to the life span of a human being. A few exceptions occur when such
events like powerful earthquakes occur and tear apart parts of the earth's crust suddenly.
However, when the earth dynamics is studied over a long period of time, say thousands
or millions of years, the picture is di�erent. Paleomagnetic evidence indicates that the
earth must have undergone strong deformations over the years. Again seismological in-
struments register continuous but small motions. Two scenerios are thus evident: low
frequency dynamic phenomena (from paleomagnetic evidence) and a high frequency one
(from seismology). A middle frequency dynamic phenomenon is required to link and
complete the above deformation spectrum (see also [Lambeck, 1989a]).

Improved instrumentation in geodetic science has led to observations whose low noise
level can reveal deformation e�ects that occur within geodetic operation periods while
the determination of that part of the deformation spectrum that occurs very slowly still
remains the task of geology. Geodetic operation periods vary between a few minutes or
hours to even a century. Geodesy then �ts well to serve as the missing link between the
low frequency paleomagnetic evidence and the high frequency seismological evidence in
the deformation spectrum. A summary of this link is given in Figure ( 2.1). At the ends
of either side (paleomagnetic or seismological) the geodetic link serves as a check.

From repeated geodetic data, displacements are obtained and are transformed into strain
and relative velocities which can be directly compared with paleomagnetic evidence.

2.2 The Beginning of Four-dimensional Geodesy

In section 1.1 the development of classical geodetic networks through the purely geomet-
rical three-dimensional networks and �nally the three-dimensional integrated geodesy was
discussed in detail. A common feature that seems to have triggered each development is
the increased demand for higher accuracy in geodetic positioning and also improvement
in geodetic instrumentation. Nowadays the invention of space surveying techniques, par-
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Figure 2.1: Summary of crustal deformation spectrum

ticularly the GPS and the VLBI, have continued to exert the pressure for more precise
geodetic positioning models to compete with the high precision measurement they are
o�ering as it was mentioned in the last section. This means that the high reputation
three-dimensional integrated geodesy of the last two decades is not the culmination for
the quest of highly precise modelling of geodetic networks. This development will be
briey reviewed in the following discussion.

An improvement of the three-dimensional integrated geodesy brings into consideration
the time dependency of the geodetic observables and also the time dependency on the
gravity potential functionals upon which most geodetic observations depend. The intro-
duction of this time dependency on the three-dimensional integrated geodesy leads to
four-dimensional geodesy. A brief review of three- dimensional geodesy leading to the
coming of four-dimensional geodesy follows.

The three-dimensional integrated geodesy implies integrated data processing in which all
available and relevant data are used for the determination of the coordinates and gravity
potential in one uni�ed model. The traditional reductions of observations which lead to
horizontal and vertical networks or even reductions based on normal gravity �eld resulting
in purely geometric three-dimensional networks are avoided. In integrated geodesy the
remaining part of the disturbing potential is taken into account.

The present concept of integrated geodesy was introduced by [Krarup, 1971],
[Eeg and Krarup, 1975] and various works on integrated three-dimensional geodesy are
found in [Moritz, 1973], [Grafarend, 1978a], [Grafarend, 1978b], [Grafarend, 1981],
[Hein and Landau, 1989] [Hein, 1986], [Hein et al., 1987]. Further relevant work is also
reported in [Aduol, 1989], [Jinsheng et al., 1992], [Dermanis, 1991a], [Dong et al., 1998]
among others. Also in [Scha�rin, 1986] estimation and prediction techniques for deter-
mination of crustal deformations when prior information, e. g. in the form of geophysical
data is available are discussed.

Four-dimensional geodesy on the other hand deals with processing of integrated geodetic
observations in order to analyse the network geometry and its variation with time, when
these observations depend on the gravity �eld of the earth and its temporal variation.
Thus the time dimension is introduced into the three-dimensional integrated model. Previ-
ous work on four-dimensional geodesy is reported in [Grafarend, 1979], [Grafarend, 1982],
[Collier et al., 1988], [Dermanis and Rossikopoulos, 1988] and [Dermanis, 1991b] just to
mention a few.
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Integrated geodesy is also referred to as operational geodesy. It is operational in that it
uses the available observations to extract all possible geodetic information as opposed to
the model approach whereby a model is �rst designed and then limits itself only to some
particular data. The situation in geodesy today is that a lot of di�erent types of data is
available. Therefore, in order to realise the goal of the determination of the shape of the
earth and its (external) gravity �eld e.g. [Torge, 1980] presently, the problem should be
best approached from the operational way.

As geodesy became involved in geophysical research, at least in studies involving crustal
deformations, contradictions within the discipline emerged. For example geodetic posi-
tions once determined are treated and published as if they are time invariant information.
Furthermore the classical approach of positioning was used which separated the three-
dimensional approach within which displacements occur.

In order to harmonise the operations of geodetic positioning, the IAG appointed a Special
Study Group 4.96 in 1983 at the IUGG Assembly in Hamburg to study models in four-
dimensional positioning. The rationale for appointing this group is summarised in the
following quotation [Vanicek et al., 1987]: "There is a clear dichotomy in the present ap-
proaches to geodetic positioning, both horizontal and vertical. On the one hand, positioning
(terrestrial and extra-terrestrial) is used to detect and quantify the movements (deforma-
tions) of the earth's surface. . . . . On the other hand, positions (of control network points)
are published and treated in most other applications as invariant in time except perhaps
in regions of very signi�cant co-seismic movements, . . . ." The study group looked into
matters concerning the causes of deformations with a view to mapping out strategies for
four-dimensional positioning.

The forces leading to earth deformations are in general not known. However it is believed
that secular, periodic and episodic deformations occur. If the whole spectrum of forces or
the deformation is known, then this may explain some of the mysteries of the earth, for
example, the rise in sea level and also help in weather and earthquake prediction etc.

2.3 Suitability of Classical Geodetic Networks in Four-

Dimensional Positioning

Classical national networks consist of a horizontal and a vertical network. Both types of
networks were established in some hierachical order. The �rst order networks consisted
of widely spaced points or marks and were of higher accuracy than lower order networks.
The lower order networks were a densi�cation of the higher order networks.

The horizontal �rst order networks were formed by means of triangulation and network
points had to be established at higher grounds where intervisibility was assured. The
scale of the network was provided for by measuring a baseline. Lower order networks
were established by means of both triangulation and a system of traverses. Due to the
requirement of intervisibility more often than not extra auxiliary survey points had to be
established to enable the control reach desired areas.
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In the computation of the horizontal control, the three-dimensional space is projected onto
a two-dimensional surface of a reference ellipsoid. This is done because of lack or poor
quality observations of vertical angles and astronomical- latitudes and longitudes. The
vertical angles measured during triangulation are used in determination of the height of
the triangulation points at very low accuracies. In other areas observations like deection
of the vertical, heights and geoidal heights that are necessary for the projection of the
three-dimensional space onto the two-dimensional reference surface are lacking. The result
is a poor projection leading to distortions. In addition not all all measurements could be
processed by use of least squares method due to lack of computing power. Sub-networks
were each separately adjusted by non-rigorous methods which led to more errors.

In order to control the accuracy of geodetic networks, IAG at its XIII Assembly in
1963 set out a resolution requiring that the fundamental networks be established such
that the standard error of relative positions between two points in an absolutely oriented
system should not exceed S=100; 000 or 10 ppm (S is the distance between the two points).
Such accuracies are too low for applications concerning crustal motion studies considering
that such accuracies allow a metre discrepancy in every hundred kilometres. It can be
generally concluded that earlier data on horizontal positioning is thus not useful for earth
deformation studies even for detection of non cyclic deformations.

The datum for the heights in national control networks is the mean sea level (MSL)
which is assumed to coincide with the geoid. The MSL is determined by tide gauge
measurements which have an accuracy of about 1 to 2 metres. Generally the MSL does
not coincide with an equipotential surface and its departure from the geoid gives rise to
sea surface topography (SST), see e. g. [Vanicek and Krakiwsky, 1982].

The spirit level and a levelling sta� are used to determine the level of points further
inland. Generally regional levelling networks have existed in some countries for about 100
years with gradual densi�cation and probably with a clear repetition in about 50 years.
Owing to the SST common points at the boundaries of national networks established
using di�erent tide gauges are expected to di�er by an amount up to several metres.
Older levelling networks have accuracies of about 1.5 to 4mm/

p
km compared to present

accuracies of 0.5 to 0.8mm/
p
km. Thus older levelling networks may be used in regional

crustal motion investigations to some extent.

The modern trends in positioning point towards increased use of electronic devices and in
particular space technology. The electronic distance measuring (EDM) instruments came
into use in 1950's and have improved distance measurement accuracies since. Horizontal
control has been provided by combined angular and distance measurements. The precision
of EDM has reached about 0.5 to 5 ppm with EDM having capabilities of measuring
distances to several tens of kilometres. Networks derived by means of EDM can be thus
useful in investigating local and regional crustal motions.

The �rst of the satellite positioning techniques was the Transit system whose accuracies
never exceeded about 30 cm for relative positioning. The problem was poor orbit de-
termination, low quality oscillators and poor vehicle con�guration. Observation periods
were also too long. The result was that the quality of data from the Transit system was
too low for crustal motion studies.
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Next came the GPS that reached the full operational capability (FOC) in 1995. The
system has a relative accuracy level of a couple of millimetres and is capable of measuring
points hundreds of kilometers apart while still maintaining the high accuracy levels. The
observation periods may range from a few minutes to a few hours. With improvement in
modelling of further GPS error sources, GPS or similar satellite navigation systems are set
to be the standard means of measurement in future positioning. The GPS provides three-
dimensional coordinates of points or baselines referenced to a world geocentric coordinate
system. The system has already been used in crustal deformation investigations on global
extent (see Figure 1.1) and can be as well applied to both local and regional networks
even in combination with triangulation data e. g. [Asteriadis and Schwan, 1998].

Other space techniques are the satellite laser ranging (SLR) and the VLBI methods. The
SLR has relative accuracy of about 1 cm and is capable of positioning points several
hundred kilometres apart. Most SLR equipment is built on permanent bases and this
makes SLR only suitable as additional data source for global studies concerning crustal
motions. The VLBI delivers the most accurate baselines over long distances (relative
accuracies of 0.01 ppm have been reported). The system has no terrestrial limitation
on distance separation between points and is readily useful in investigating global crustal
motions. A further improvement in the VLBI system is the space VLBI (SVLBI) whereby
the baseline distance is tremendously increased by mounting a VLBI antenna on to a
satellite ying at high altitudes (say 30,000 km). The extended baseline between a ground
antenna and a space antenna results to an equivalent single antenna with a diameter
greater than the earth which in turn gives higher accuracies in baseline determinations
(see e. g. [Adam, 1990], [Kulkarni, 1992]). SVLBI is expected to become an essential
tool in crustal motions and one expects its application to be extended even to crustal
motion studies of other space bodies, e. g. the moon.
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3. The Integrated Four-dimensional

Model

3.1 The Coordinate Reference Systems

3.1.1 Establishment of a Coordinate Reference System

Coordinate reference systems serve as the basis for description of positions in space. A
geodetic coordinate system can be realised through a set of points regarded as �xed.
However, while the earth is in continuous motion and deformable, for example through
tides, plate motions, postglacial rebound, seismicity etc. (see also Chapter Two), there are
no such �xed points in existence. Two principal types of reference systems are identi�ed
(see also [Moritz, 1979], [Mueller, 1982], [Mueller, 1988], [Heck, 1991]): the celestial
reference system often used in geodetic astronomy and whose axes show no rotations.
The other system is the terrestrial reference system which is de�ned with the origin at
the geocenter. The terrestrial reference system is a quasi-inertial system because the
origin shows some irregular motions.

The introduction of the aspect of time dependency in coordinate reference systems requires
that the coordinate reference systems should not just serve as basis for position of points in
the geometrical sense but should also carry an extra piece of information - time. Thus six
positioning elements (X; Y; Z; _X; _Y ; _Z) (the (_) represents station velocities) for description
of position and velocity are required.

On a regional scale material points (network) on the earth's surface that are accessible to
geodetic observations have to be put in place to act as the reference system. The network
points can be observed using space techniques e.g. GPS satellite methods and at the initial
epoch only the three geometrical coordinates (X; Y; Z) per station are estimated. A later
epoch of observations of the same network can be adjusted under certain conditions, for
example that there is no net rotation of the network (e.g. [Drewes, 1995], [Moritz, 1979]),
so as to establish a deformation model. Each region can be divided into deformation
zones depending on local motions and a no net rotation model used for adjustment. This
way a kinematic reference system is established. The International Terrestrial Reference
Frame (ITRF) reference system is established on similar basis as discussed above and
regional networks (e.g. South American Geocentric Reference System [SIRGAS, 1997],
[Kaniuth et al., 1996]) can be tied to it. It is here noted that a kinematic coordinate
reference frame can be used to provide the provisional displacement �eld required by
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some of the approaches for four-dimensional geodesy discussed in Chapter Five.

The usual positioning of geodetic points is based on a choice of coordinate systems in a
three-dimensional Euclidean space. Next are presented some of the coordinate systems in
common use.

3.1.2 The Physical Coordinate System

The geocentric Cartesian coordinate system

The origin of this system is at the center of mass of the earth. The Z� axis coincides
with the average axis of the earth's rotation. The X� axis is at right angles with Z� axis
and lies in the equatorial plane and is parallel to the Greenwich meridian. The Y � axis is
orthogonal to the X� axis and completes the right-handed system. The positional vector
of a point P is expressed in this system by the column vector x

x =

2
64 X�

Y �

Z�

3
75 :

The curvilinear natural coordinate system

At point P the coordinates (�P ;�P ) de�ning the direction of the plumbline and the
potential (WP ) are used as natural coordinates of the point P . The coordinates (�P ;�P )
are determined from observations of �xed stars. The di�erences of WP with respect to
some datum e.g. the geoid are obtained by means of spirit levelling combined with gravity
measurements along the levelling line.

The local Cartesian coordinate system

This is a topocentric coordinate system with the origin at the observation point P . The
Z� axis points in the direction of the local zenith. The X� axis is perpendicular to the
Z� axis but lying on the tangential plane to the equipotential surface at P and pointing
in the direction of astronomical north. The Y � axis is orthogonal to the X� while lying
on the same plane and points in the direction of east. The system is a left-handed one.

The position vector of a point P is expressed by the column vector x�

x� =

2
64 X�

Y �

Z�

3
75 :
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3.1.3 The Model Coordinate System

This system is based on some conventionally chosen reference frame, mostly related to
a reference ellipsoid. As above, an ellipsoidal- global cartesian, curvilinear and local
coordinate systems are derived.

The ellipsoidal Cartesian coordinate system

The z� axis coincides with the semi-minor axis of the ellipsoid and is positive in the in the
direction of the north pole. The x�y�- plane is orthogonal to the z�- axis, thus coinciding
with the model equatorial plane. The direction of x� is that of Greenwich while y� is
perpendicular to x� and completes the right-handed system.

The position vector of a point P is expressed in this system by the column vector x�

x� =

2
64 x�

y�

z�

3
75 :

The ellipsoidal curvilinear coordinate system

The ellipsoidal latitude ' is the angle between the ellipsoidal normal at P and the ellip-
soidal equator. The ellipsoidal longitude � is the angle between the meridian containing
the x�- axis and the meridian passing through P . The ellipsoidal height h is the distance
between the ellipsoidal surface and the point P as measured along the ellipsoidal normal.

3.1.4 The Epoch Coordinate Transformation

Di�erent observations may be related to di�erent coordinate systems. In order to make
the computations in one coordinate system, coordinate transformations have to be done.
Rotation matricesR are used in all coordinate transformations involving two orthonormal
frames, e. g. x and x0. The two frames are related as x0 = Rx where x = [X; Y; Z]T

and x0 = [X 0; Y 0; Z 0]T with R being either a Euler matrix, RE(�1; �2; �3) = R3(�1)R2(
�
2
�

�2)R3(�3) or the Cardanian matrix,RC(�1; �2; �3) = R3(�3)R2(�2)R1(�1). The components
of the matrix R are

R1(�1) =

2
64 1 0 0
0 cos �1 sin �1
0 � sin �1 cos �1

3
75

R2(�2) =

2
64 cos �2 0 � sin �2

0 1 0
sin �1 0 cos �2

3
75
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R3(�3) =

2
64 cos �3 sin �3 0
� sin �3 cos �3 0

0 0 1

3
75

where �1; �2; �3 are rotation angles about respective coordinate axes. Transformations
of the frames discussed above are visualised by means of a commutative diagram (see
[Grafarend and Richter, 1978]).

3.2 Similarity Transformations

In four-dimensional geodesy observations are repeated at di�erent time epochs (refer to
Figure ( 1.2)) which results to a discrete time situation. When these observations are
described with respect to some coordinate frame, there exists a datum problem at each
epoch and all epoch solutions need to be interrelated to each other in some way. The
choice of datum at each epoch can give rise to apparent deformations if datum dependent
parameters such as coordinates are used. In order to avoid this situation the practice is
to solve the datum problem at the initial epoch to and then use this datum de�nition to
solve for all other epochs. This way ensures that the choice of datum for all epochs is
close together as much as possible.

The epoch solutions can be interrelated together either by a similarity transformation
when no distances or distances from di�erent groups are involved e. g. EDM and GPS
derived baselines or by orthogonal transformations when distances have been observed.

Let xo(to) be the datum de�nition at the initial epoch and xi be a datum de�nition at
the i� th epoch. The solution xo(to) can be transformed onto the solution at the i� th
epoch by the similarity transformation

xi = �R(�)xo(to) + t: (3.1)

The parameters are three rotation angles (�), three displacement parameters (t), a scale
factor � and the time element t upon which the coordinate vector xo depends.

The orthogonal transformation is expressed as

xi = R(�)xo(to) + t: (3.2)

where the scale factor � has now been omitted.

In cases where the geodetic observations are registered on a continuous basis, for example
the Permanent Geodetic Survey Array (PGSA) in South California [Bevis et al., 1997]
and the National GPS Array in Japan [Tsuji et al., 1995], the transformation param-
eters are replaced by time dependend functions [Dermanis, 1995]. Thus the similarity
transformation becomes

xi(t) = �(t)R(�(t))xo(t) + t(t) (3.3)
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and the orthogonal transformation becomes

xi(t) = R(�(t))xo(t) + t(t): (3.4)

3.3 The IntegratedModel in a Three-dimensional Space

The three-dimensional integrated model is here briey outlined since it provides the basic
form from which the four-dimensional integrated model is developed.

Consider the observation l that depends on the position x and the gravity potential
functional LW (x). The operator L is in general a non-linear operator acting on W . The
observation l may thus depend in various forms on the potential W , for example the
gravity potential W in case of potential di�erences or the derivatives of W in case of
absolute gravity. The gravity potential W is usually decomposed into two components:
the gravitational potential V and the centrifugal potential �.

Symbolically the dependency of the observation on the position vector and the potential
functional can be represented as follows:

l = F (x; LW (x)) (3.5)

with

x =

2
64 X
Y
Z

3
75 ;

W = V + �

and

� =
1

2
!2r2 cos2 '; where r = (X2 + Y 2 + Z2)1=2

and ' is the geocentric latitude. The position vector x is de�ned with respect to a �xed
origin O (e.g the geocenter).

It is now aimed at determining the positions of material points on the surface (or in ex-
ternal space) of the earth and the gravity potential function on and outside the earth's
surface. The gravity potential functional LW (x) and the function F are nonlinear func-
tions of position x. These functions are linearised using Taylor series approximations with
linear terms only.

A model form of W denoted by U is identi�ed. U is the normal or reference potential
e.g. Somigliana-Pizzetti �eld or a low degree spherical harmonic expansion. The normal
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potential is a known function of position, given by an analytical expression. W can be
decomposed into this known model part U and an unknown part T - the disturbing po-
tential [Heiskanen and Moritz, 1967]. The true position vector x is similarly decomposed
into a known, approximate position xo and a residual, unknown part �x. Thus

x = xo +�x

W = U + T (3.6)

where xo consists of approximate values of x and �x are unknown parameters to be
added to the approximate values of xo. Like the gravitative part of the normal potential
function U , the disturbing potential function T is also harmonic outside the attracting
masses. Thus the Laplacian of T

Lap T = 0:

Then the linearization of equation ( 3.5) can be related to the Taylor point (xo; U).

For the three-dimensional integrated geodesy, the general linearized observation equation
is of the form e.g [Hein, 1986]

�l = A�x + LT + v (3.7)

�l is the column vector of reduced observation in the sense observed minus computed. The
linear operator L acts on the disturbing potential T and v is an inconsistency random
column vector of observational errors.

Various methods for the solution of ( 3.7) have been proposed and applied by various
authors e.g. [Moritz, 1978], [Grafarend, 1978b] depending on how the operator L is
applied (see also section 3.1).

3.4 The Integrated Four-dimensional Model

In order to derive the basic model of four-dimensional integrated geodesy, the concept of
three-dimensional integrated geodesy is applied but now considering the time dependency
of the observations as well as the coordinates and the disturbing potential. Following
equation ( 3.5) in the previous section the observation l is expressed as a function of time
as

l(t) = F (x(t); LW (x(t); t)): (3.8)

The argument t is used to indicate an arbitrary epoch while to refers to the reference
epoch, usually taken as the initial epoch of the measurements.
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The expression ( 3.8) represents the general functional form of four-dimensional geodesy.
Simpler expressions are derived from this general model depending on whether the obser-
vations are inuenced by the gravity potential or not; for example distance measurements
are not dependent on the gravity �eld and therefore the gravity function W is discarded
as follows:

l(t) = F (x(t)) (3.9)

In the derivation of the general model of four-dimensional geodesy the general functional
form ( 3.8) is considered. The principles according to [Dermanis and Rossikopoulos, 1988]
are also taken into account.

Considering the position vector of a material point x(to) at epoch to, x(to) can be expressed
as a sum of the approximate coordinates xo(to) at the initial epoch and a small increment
�x(to)

x(to) = xo(to) + �x(to) at the initial epoch to

x(t) = x(to) + �x(t) at epoch t

= xo(to) + �x(to) + �x(t)

= xo(to) + �x(t) (3.10)

where xo(to) refers to the approximate position vector at the reference epoch to (t > to),
�x(t) = �x(to)+�x(t) is the di�erence between the approximate coordinates at the �xed
epoch to and the true coordinates of a material point at an arbitrary epoch t. This quantity
consists of the discrepancy between the approximate coordinates at epoch to (�x(to)) and
coordinate changes between epochs to and t due to temporal position changes giving rise
to a displacement �x(t).

The potential W is also decomposed into a model part U and a disturbing part T as
follows:

W (x(t); t) = U(x(t)) + T (x(t); t) (3.11)

The approximate coordinates are considered time independent i.e. xo(t) = xo(to) and
therefore constant for all epochs, and the model potential U remains �xed in time. How-
ever, due to the movement of the points, U also changes according to U(xo(to))! U(x(t)).
The potential U remains time independent as far as �xed points in space are considered.

The model potential U usually contains all available (the best) prior information about
the potential function. Further, the model part U can be decomposed into a simple part
(e.g the Somigliana- Pizzetti �eld) and a computable second part describing the shorter
wavelength features.

The disturbing potential function is further decomposed into two components: the part
at the initial epoch T (x(t); to) = W (x(t); to) � U(x(t); to) and the part corresponding
to the temporal change of the potential function at a �xed point in space denoted by
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�T (x(t); t). It is assumed that the temporal positional changes induce negligible changes
in the potential function so that T (x(to); to) � T (x(t); to), which is consistent with the
postulated degree of approximation. From here onwards the notation T (x(to); to) will be
used to imply either of the two representations. Thus

T (x(t); t) = T (x(t); to) + �T (x(t); t)

� T (x(to); to) + �T (x(t); t): (3.12)

Introducing the decomposed position vector ( 3.10) into the disturbing potential function
( 3.12), the disturbing potential function can be written as

T (x(t); t) = T [xo(to) + �x(to) + �x(t); to]

+�T [xo(to) + �x(to) + �x(t); t] (3.13)

Linearization of equation ( 3.13) gives

T (x(t); t) =

= T (xo(to); to) + gradxT (x
o(to); to) � [�x(to) + �x(t)]

+ �T (xo(to); t)| {z }
potential change W (to)!W (t)

+ gradx�T (x
o(to); to) � (�x(to) + �x(t))| {z }

inuence on potential due to displacement - negligible.

(3.14)

The second braced part in ( 3.14) is a second order quantity of �T and can be neglected
as being small.

Considering ( 3.11) and substituting ( 3.10), W (x(t); t) can be expressed as

W (x(t); t) = U(x(t)) + T (x(t); t)

= U [xo(to) + �x(to) + �x(t)] + T (x(t); t): (3.15)

Linearization gives

W (x(t); t) =

= U(xo(to)) + (xo(to); to)
T � (�x(to) + �x(t))

+ T (xo(to); to) + �T (xo(to); t)

+ gradxT (x
o(to); to) � (�x(to) + �x(t))| {z }

negligible

+ gradx�T (x
o(to); to)) � (�x(to) + �x(t))| {z }

inuence on potential due to displacement - negligible.

(3.16)
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Using equations ( 3.10) and ( 3.16) the observation functional l(t) in equation ( 3.8) can
be written in the form

l(t) = F (x(t); LW (x(t); t))

= Ffxo(to) + �x(to) + �x(t); LW (xo(to) + �x(to) + �x(t); t)g: (3.17)

Linearization of ( 3.17) yields

l(t)� Ffxo(to); LU(xo(to))g
= gradxF [x

o(to); LU(x
o(to))] � (�x(to) + �x(t))

+ @F
@LU

(xo(to); LU(x
o(to))) � fgradxLU(xo(to)) � (�x(to) + �x(t))

+ L(T (xo(to); to) + �T (xo(to); t))g: (3.18)

Rearranging equation ( 3.18) gives

l(t)� Ffxo(to); LU(xo(to))g =

fgradxF [xo(to); LU(xo(to))] + @F

@LU
(xo(to); LU(x

o(to))) � gradxLU(xo(to))g

�(�x(to) + �x(t)) +
@F

@LU
(xo(to); LU(x

o(to)))

fL(T (xo(to); to) + �T (xo(to); t))g: (3.19)

Adding the observational noise vi, equation ( 3.19) can be written using simpler notation
as

yi = Ai � (�x(to) + �x(t)) +BiT (x
o(to); to) +Bi�T (x

o(to); t) + vi (3.20)

where i is the running number of observations, Ai is i-th row in the design matrix and
Bi is a linear operator. Equation ( 3.19) or ( 3.20) becomes the general model of four-
dimensional geodesy in the framework of operational geodesy. The next step is to derive
the observation equations for each of the various geodetic observables according to ( 3.20).
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4. Observation Equations for

Integrated Four-dimensional

Geodesy

4.1 The General Scheme for Purely Gravity Depen-

dent Observables

The common purely gravity dependent observables are

� astronomical latitude �,

� astronomical longitude �,

� absolute gravity �,

� gravity di�erences,

� potential di�erences.

These observables depend entirely on the functional LW either directly on W or through
its derivatives and only relate to the position vector implicitly through LW .

The gravity vector � is related to the astronomical- latitude and longitude by
e.g. [Heiskanen and Moritz, 1967] p. 57

�� =

2
64 � cos� cos �
� cos� sin�

� sin�

3
75 (4.1)

and the gravity vector � is also the gradient of the gravity potential. Thus

�� = gradW =

2
64 WX

WY

WZ

3
75 (4.2)
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where

WX =
@W

@X
; WY =

@W

@Y
; WZ =

@W

@Z
: (4.3)

X; Y; Z refer to a geocentric Cartesian coordinate system (see section (3.1.2) ). Corre-
sponding to the potential W is the reference potential U whose derivatives are denoted
by UX ; UY ; UZ. The absolute gravity is denoted by  where

� = gradU =

2
64 UX

UY

UZ

3
75

and

UX =
@U

@X
; UY =

@U

@Y
; UZ =

@U

@Z
; (4.4)

Transformation to curvilinear coordinates

2
64 UX

UY

UZ

3
75 = �

2
64  cos� cos�
 cos � sin�

 sin�

3
75 : (4.5)

The geocentric coordinates can be obtained from curvilinear coordinates by the following
relationship

2
64 X
Y
Z

3
75 =

2
64 (N + h) cos� cos�

(N + h) cos� sin�
(N(1� f)2 + h) sin�

3
75 : (4.6)

The coordinates (�; �) indicate the direction of the normal vertical and in general � � �
for a rotationally symmetric normal �eld while � 6= �.

After linearization the gradient of the disturbing potential is represented in the following
form:

2
64 TX
TY
TZ

3
75 =

2
64 WX

WY

WZ

3
75�

2
64 UX

UY

UZ

3
75

=

2
64 � sin� cos� � sin� cos � cos�

� sin� sin� cos� cos� sin�
cos� 0 sin�

3
75 �

2
64 �� 
�� �
�� �

3
75 (4.7)
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The general observation equation of this group of observations is derived from the four-
dimensional observation equation ( 3.19) as

l(t)� Ffxo(to);(xo(to))g =
= [gradF (x

o(to);(x
o(to)))]

T � gradx(xo(to)) � (�x(to) + �x(t))

+[gradF (x
o(to);(x

o(to)))]
T � gradx(T (xo(to); to) + �T (xo(to); t)): (4.8)

The derivative of F with respect to the position vector x as seen in the general linearised
equation ( 3.19) vanishes since this group of observations does not depend explicitly on
the position vector x, thus gradxF � 0.

4.2 One Point Observations

4.2.1 Astronomical Latitude

Let �(t) denote the astronomical latitude observed at the standpoint P1 at epoch t. The
expression for astronomical latitude in terms of the potential W is

�(t) = arctan
�WZ(x(t))q

[WX(x(t))2 +WY (x(t))2]

= F (x(t); LW (x(t); t)) (4.9)

or in symbolical vectorial form e.g [Heck, 1987]

�(t) = arcsin (< n; f3 >) (4.10)

where <;> denotes the inner or dot product of vectors and WX ;WY ;WZ denote the �rst
derivatives of W with respect to the coordinate directions indicated by the indices. n is
the unit vector in the direction of local zenith while fi (i = 1(1)3) are base vectors of
a global quasi-geocentric orthonormal system with f3 coinciding with the earth's axis of
rotation.

From ( 4.8) and considering a time independent normal gravity �eld the following is
established:

Ffx;(x)g := arctan
�Z(x)q

((X(x))2 + (Y (x))2)
= �(x) (4.11)

[gradFfx;(x)g]T =
1

2
�

2
6664

XZp
((X (x))2+(Y (x))2)

Y Zp
((X (x))2+(Y (x))2)

�
q
((X(x))2 + (Y (x))2)

3
7775 (4.12)
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gradx(x
o(to)) =

2
64 UXX UXY UXZ

UY X UY Y UY Z

UZX UZY UZZ

3
75 (4.13)

gradxT (x
o(to)) =

2
64 TX
TY
TZ

3
75 (4.14)

gradx�T (x
o(to)) =

2
64 �TX
�TY
�TZ

3
75 (4.15)

Putting equations ( 4.11) through ( 4.15) into equation ( 4.8) gives the linearised equation
for astronomical latitude in the form:

�(t)� �(to) = ��x + ���x + �TX + ���TX + v� (4.16)

The signals appearing in equation ( 4.16) can be treated in various ways (see Chapter
Five). Equation ( 4.16) is expanded to obtain the expression for the observation equation
for astronomical latitude.

Using index 1 to indicate the stand point P1 and further using letters to represent the
associated coe�cients, the observation equation for latitude is thus:

�(t)� �(to) = a1��X + b1��Y + c1��Z

+ a1��X + b1��Y + c1��Z

+ d1�TX + e1�TY + f1�TZ

+ d1��TX(t) + e1��TY (t) + f1��TZ(t) + v�:

(4.17)

The coe�cients are

a1� =
UZ

2 �
q
(U2

X + U2
Y )

� [UX � UXX + UY � UY X ]�
q
U2
X + U2

Y � UZX

2

b1� =
UZ

2 �
q
(U2

X + U2
Y )

� [UX � UXY + UY � UY Y ]�
q
U2
X + U2

Y � UZY

2

c1� =
UZ

2 �
q
(U2

X + U2
Y )

� [UX � UXZ + UY � UY Z ]�
q
U2
X + U2

Y � UZZ

2
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d1� =
UZUX

2 �
q
(U2

X + U2
Y )

e1� =
UZUY

2 �
q
(U2

X + U2
Y )

f1� = �
q
(U2

X + U2
Y )

2

(4.18)

and

�(to) = arctan
�UZ(x

o(to))q
[UX(xo(to))2 + UY (xo(to))2]

(4.19)

�t = t� to (4.20)

4.2.2 Astronomical Longitude

Like astronomical latitude, this observable is only implicitly related to the position vector
x. Both astronomical- latitude and longitude give the direction of the plumbline while
the corresponding model values � and � give the orientation of the normal vertical.

Introducing a time argument in the usual equation for astronomical longitude
(e.g [Heiskanen and Moritz, 1967]), the equation for astronomical longitude becomes:

�(t) = arctan
WY (x(t))

WX(x(t))

= F (x(t); LW (x(t); t)) (4.21)

or in symbolic vectorial form [Heck, 1987]

� = arcsin (< n� f3; f1 >) (4.22)

where the symbol � indicates the cross product of vectors.

Considering a time independent normal gravity �eld, the general equation ( 4.8) has the
following terms for the astronomical longitude:

Ffx;(x)g := arctan
Y (x)

X(x)
= �(x) (4.23)

[gradFfx;(x)g]T =
1

(2X + 2Y )
�
2
64 �Y

X
0

3
75 (4.24)
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gradx(x
o(to)) =

2
64 UXX UXY UXZ

UY X UY Y UY Z

UZX UZY UZZ

3
75 (4.25)

gradxT (x
o(to)) =

2
64 TX
TY
TZ

3
75 (4.26)

gradx�T (x
o(to)) =

2
64 �TX
�TY
�TZ

3
75 (4.27)

Putting equations ( 4.23) through ( 4.27) into equation ( 4.8) gives the linearised equation
for astronomical longitude in the form:

�(t)� �(to) = ��x + ���x + �TX + ���TX + v� (4.28)

�(t)� �(to) = a1��X + b1��Y + c1��Z

+ a1��X + b1��Y + c1��Z

+ d1�TX + e1�TY + f1�TZ

+ d1��TX(t) + e1��TY (t) + f1��TZ(t) + v�: (4.29)

The coe�cients are expressed by the following functionals

a1� =
1

(U2
X + U2

Y )
� [�UY � UXX + UX � UY X ]

b1� =
1

(U2
X + U2

Y )
� [�UY � UXY + UX � UY Y ]

c1� =
1

(U2
X + U2

Y )
� [�UY � UXZ + UX � UY Z]

d1� =
�UY

(U2
X + U2

Y )

e1� =
UX

(U2
X + U2

Y )

f1� = 0

and

�(to) = arctan
UY (x

o(to))

UX(xo(to))
: (4.30)
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4.2.3 Gravity Intensity

Let �(t) denote the gravity intensity at some network point P1 and epoch t. The gravity
intensity is expressed as the absolute value of the gradient of the gravity potential function
as

�1(t) = [W 2
X(x(t); t) +W 2

Y (x(t); t) +W 2
Z(x(t); t)]

1=2

= F (LW (x(t); t)) (4.31)

having introduced a time argument. The model intensity of gravity is computed from the
approximate coordinates at epoch to and is denoted by (xo(to)) and expressed as

(to) = [U2
X(x

o(to); to) + U2
Y (x

o(to); to) + U2
Z(x

o(to); to)]
1=2

(4.32)

Following equation ( 4.8), it is established that

Ffx;(x)g :=
q
2X + 2Y + 2Z (4.33)

[gradFfx;(x)g]T =
1


�
2
64 UX

UX

UX

3
75 (4.34)

gradx(x
o(to)) =

2
64 UXX UXY UXZ

UY X UY Y UY Z

UZX UZY UZZ

3
75 (4.35)

gradxT (x
o(to)) =

2
64 TX
TY
TZ

3
75 (4.36)

gradx�T (x
o(to)) =

2
64 �TX
�TY
�TZ

3
75 (4.37)

Substituting equations ( 4.33) through ( 4.37) in equation ( 4.8) gives the linearised
equation for gravity intensity as:

�(t)� o(to) = ��x + ���x + ��TX + ���TX + v� (4.38)
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which in a more explicit form and considering a discrete deterministic gravity �eld as
before can be written as

�1(t)� o(to) =

= a1��X + b1��Y + c1�Z�Z

+ a1��X + b1��Y + c1��Z

+ d1�TX + e1�TY + f1�TZ

+ d1��TX + e1��TY + f1��TZ + v� (4.39)

with coe�cients expressed by the following functionals:

a1� =
1

(xo(to))
� (UX � UXX + UY � UY X + UZ � UZX)

b1� =
1

(xo(to))
� (UX � UXY + UY � UY Y + UZ � UZY )

c1� =
1

(xo(to))
� (UX � UXZ + UY � UY Z + UZ � UZZ)

d1� =
UX


(xo(to))

e1� =
UY


(xo(to))

f1� =
UZ


(xo(to)): (4.40)

4.3 Two Point Observations

4.3.1 Gravity Intensity Di�erence

The derivation of this observation equation follows that of the gravity intensity. Using
subscripts to denote the gravity at di�erent network points, at points P1 and P2, the
gravity intensity at each of the two points is expressed as

�1(t) = [W 2
X1(x(t); t) +W 2

Y 1(x(t); t) +W 2
Z1(x(t); t)]

1=2

�2(t) = [W 2
X2(x(t); t) +W 2

Y 2(x(t); t) +W 2
Z2(x(t); t)]

1=2
(4.41)

so that the gravity di�erence is expressed by

�2(t)� �1(t) =

= [W 2
X2(x(t); t) +W 2

Y 2(x(t); t) +W 2
Z2(x(t); t)]

1=2

� [W 2
X1(x(t); t) +W 2

Y 1(x(t); t) +W 2
Z1(x(t); t)]

1=2
: (4.42)
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Following the same procedure as with the case of gravity intensity, the gravity intensity
di�erence observation equation can be deduced to be

�2(t)� �1(t) � 2(to) + 1(to) =

� a1��X1 � b1��Y1 � c1�Z�Z1

+ a2��X2 + b2��Y2 + c2�Z�Z2

� a1��X1 � b1��Y1 � c1��Z1

+ a2��X2 + b2��Y2 + c2��Z2

� d1�TX1 � e1�TY 1 � f1�TZ1

+ d2�TX2 + e2�TY 2 + f2�TZ2

� d1��TX1 � e1��TY 1 � f1��TZ1

+ d2��TX2 + e2��TY 2 + f2��TZ2 + v�� (4.43)

with the coe�cients given as in equations ( 4.39) and 4.40).

4.3.2 Spatial Distances

Let S12(t) denote the spatial distance between two geodetic network points P1 and P2 at
some epoch t. The usual expression for the spatial distance is

S12(t) =
q
(X2(t)�X1(t))2 + (Y2(t)� Y1(t))2 + (Z2(t)� Z1(t))2

= F (x(t)) (4.44)

Since there is no inuence of gravity potential on the distance S12(t) the gravity potential
functional LW in the equation for four-dimensional geodesy ( 3.19) vanishes. Thus the
linearised equation for spatial distance observation in four-dimensional geodesy becomes

S12(t)� so12(to) = gradxF (x
o(to)) � [(�x(to) + �x(t))2 � (�x(to) + �x(t))1] (4.45)

where so12(to) is the model distance as computed at the initial or reference epoch and given
by

so12(to) =
q
(Xo

2(to)�Xo
1(to))

2 + (Y o
2 (to)� Y o

1 (to))
2 + (Zo

2(to)� Zo
1(to))

2:

(4.46)

The observation equation for distances can be then written as

S(t)� so(to) = �Sx + �S�x + vs (4.47)
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or in expanded form as

S(t)� so(to) =

= a2s�X2 + b2s�Y2 + c2s�Z2

� a1s�X1 � b1s�Y1 � c1s�Z2

+ a2s�X2 + b2s�Y2 + c2s�Z2

� a1s�X1 � b1s�Y1 � c1s�Z1 + vs (4.48)

with coe�cients given by

a1s = a2s =
�Xo(to)

so12(to)

b1s = b2s =
�Y o(to)

so12(to)

c1s = c2s =
�Zo(to)

so12(to)
(4.49)

and

�Xo(to) = Xo
2(to)�Xo

1(to)

�Y o(to) = Y o
2 (to)� Y o

1 (to)

�Zo(to) = Zo
2(to)� Zo

1(to): (4.50)

4.3.3 Zenith Angles

Let P1 be the standpoint and P2 be the target point to which the zenith angle Z12 is
referred. Z12 is represented in vectorial form [Heck, 1987] p. 92 with modi�cation as

Z12(t) = arccos
< �x12(t);��(x1(t); t) >
j �(x1(t); t) j � j �x12(t) j (4.51)

Expanding equation ( 4.51) at the epoch t results in

Z12(t) = arccos
(��XWX ��YWY ��ZWZ)p

WX
2 +WY

2 +WZ
2 �

q
(�X2 +�Y 2 +�Z2)

: (4.52)

The zenith angle can be also represented using polar coordinates by considering equations
( 4.1) through ( 4.4) as

Z12(t) = arccos
�X cos � cos � +�Y cos � sin� +�Z sin�p

�X2 +�Y 2 +�Z2

= F (x(t); LW (x(t); t)) (4.53)
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where �, � refer to the observation point P1 at the epoch t. Both expressions ( 4.52) and
( 4.53) are equivalent.

Linearization of equation ( 4.52) or ( 4.53) is done in two steps: �rst the functional LU
is di�erentiated with respect to x during the Taylor series approximation to give

Wi(x(t); t) =
@U

@xi
(xo(to)) +

@2U

@xi@xj
(xo(to)) � [�xj(to) + �xj(t)]

+
@T

@xi
(xo(to)) +

@�T

@xi
(xo(to); t) (4.54)

and secondly the general function F is di�erentiated with respect to the position vector
x. The zenith angle depends on the vector x both directly and implicitly. The linearized
observation equation for zenith angle ( 4.52) can be thus written as

Z12(t)� �o12(to) =

=
@Z(xo(to)

@Ui
� f @2U

@xi@xj
(xo(to)) � [�xj(to) + �xj(t)]1

+
@T

@xi
(xo(to)) +

@�T

@xi
(xo(to); t)g

+
@Z(xo(to)

@xi
� [(�xi(to) + �xi(t))2 � (�xi(to) + �xi(t))1]

+ vZ : (4.55)

(having used the Einstein's summation convention). Writing out the coe�cients explicitly

Z12(t)� �o12(to) = a2Z�X2(to) + b2Z�Y2(to) + c2Z�Z2(to)

� (a1Z + a2Z)�X1(to)� (b1Z + b2Z)�Y1(to)

� (c1Z + c2Z)�Z1(to)

+ a2Z�X2 + b2Z�Y2 + c2Z�Z2

� (a1Z + a2Z)�X1 � (b1Z + b2Z)�Y1

� (c1Z + c2Z)�Z1

+ d1ZTX(to) + e1ZTY (to) + f1ZTZ(to)

+ d1Z�TX(to) + e1Z�TY (to) + f1Z�TZ(to)

+ vZ : (4.56)

The coe�cients are expressed by

a1Z =
�1

2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

� [

�Xo � (2UXX � X � (XUXX + YUXY + ZUXZ))

+ �Y o � (2UXY � Y � (XUXX + Y UXY + ZUXZ))

+ �Zo � (2UXZ � Z � (XUXX + YUXY + ZUXZ))] (4.57)
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b1Z =
�1

2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

� [

�Xo � (2UY X � X � (XUXY + YUY Y + ZUZY ))

+ �Y o � (2UY Y � Y � (XUXY + Y UY Y + ZUZY ))

+ �Zo � (2UY Z � Z � (XUXY + YUY Y + ZUZY ))] (4.58)

c1Z =
�1

2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

� [

�Xo � (2UZX � X � (XUXZ + Y UY Z + ZUZZ))

+ �Y o � (2UZY � Y � (XUXZ + YUY Z + ZUZZ))

+ �Zo � (2UZZ � Z � (XUXZ + YUY Z + ZUZZ))]: (4.59)

The other coe�cients are

a2Z =
(so12)

2 � X ��Xo � (�XX +�Y Y +�ZZ)

(so12)
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

b2Z =
(so12)

2 � Y ��Y o � (�XX +�Y Y +�ZZ)

(so12)
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

c2Z =
(so12)

2 � Z ��Zo � (�XX +�Y Y +�ZZ)

(so12)
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

(4.60)

which correspond to [Heck, 1987]. The other coe�cients are

d1Z =
2 ��Xo � (�XX +�Y Y +�ZZ) � X
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

e1Z =
2 ��Y o � (�XX +�Y Y +�ZZ) � Y
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

f1Z =
2 ��Zo � (�XX +�Y Y +�ZZ) � Z
2
q
2 � (so12)2 � (�XX +�Y Y +�ZZ)2

:

(4.61)

4.3.4 Astronomical Azimuth

Let A12 denote the astronomical azimuth of the observation line between the geodetic
network points P1 and P2. The expression for the astronomical azimuth A12 is

A(t) = arctan
��X sin� +�Y cos �

��X sin� cos ���Y sin� sin� +�Z cos �
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= F (x(t); LW (x(t); t)) (4.62)

where a time argument t, has been introduced and �, � are taken at point P1. The
azimuth can also be expressed in terms of the gravity potential as

A(t) = arctan
(W 2

X +W 2
Y +W 2

Z)
1=2(WY�X �WX�Y )

�WZ(WX�X +WY�Y ) + (W 2
X +W 2

Y )�Z
(4.63)

where again a time argument has been introduced.

Equation ( 4.63) is linearized in two steps: �rst as a functional of W with respect to the
position vector x as in equation ( 4.54)

Wi(x(t); t) =
@U

@xi
(xo(to)) +

@2U

@xi@xj
(xo(to)) � [�xj(to) + �xj(t)]

+
@T

@xi
(xo(to)) +

@�T

@xi
(xo(to); t) (4.64)

and secondly as an explicit function of F with respect to the position vector x. In equation
( 4.64) the Einstein summation convention has been used. All higher order terms including
products of �rst order terms of T or �T with (�x(to) + �x(t)) are ignored.

Thus the �nal linearised observation equation for astronomical azimuth in four-dimensional
geodesy is

A(t)� �(to) =
@A(xo(to))

@Ui
� f @2U

@xi@xj
(xo(to)) � [�xj(to) + �xj(t)]1

+
@T

@xi
(xo(to)) +

@�T

@xi
(xo(to); t)g

+
@A(xo(to))

@xi
� [(�xi(to) + �xi(t))2 � (�xi(to) + �xi(t))1]

+ vA: (4.65)

Now letting

�Ax = (
@A(xo(to)

@Ui
�Mij +

@A(xo(to)

@xi
)�x(to)

�A�x = (
@A(xo(to)

@Ui

�Mij +
@A(xo(to)

@xi
)�x(t)

�ATX =
@A(xo(to)

@Ui
� Tixo(to))

�A�TX =
@A(xo(to)

@Ui

� �Ti(xo(to); t)
(4.66)
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and

M =Mij =

2
664

@2U(xo(to))
@X2

@2U(xo(to))
@X@Y

@2U(xo(to))
@X@Z

@2U(xo(to))
@Y @X

@2U(xo(to))
@Y 2

@2U(xo(to))
@Y @Z

@2U(xo(to))
@Z@X

@2U(xo(to))
@Z@Y

@2U(xo(to))
@Z2

3
775

is the normal gravity tensor matrix. The observation equation can be thus written as

A(t)� �o(to) = �Ax + �A�x +�ATX + �A�TX + vA (4.67)

or explicitly in terms of the parameters as

A(t)� �(to) =

a2A�X2(to) + b2A�Y2(to) + c2A�Z2(to)

� (a1A + a2A)�X1(to)� (b1A + b2A)�Y1(to)

� (c1A + c2A)�Z1(to)

+ a2A�X2 + b2A�Y2 + c2A�Z2

� (a1A + a2A)�X1 � (b1A + b2A)�Y1

� (c1A + c2A)�Z1

+ d1ATX(to) + e1ATY (to) + f1ATZ(to)

+ d1A�TX(t) + e1A�TY (t) + f1A�TZ(t)

+ vA (4.68)

where the coe�cients are given by

a2A =
1

v2 + u2
f

[v(
(UXUY�X � U2

X�Y )


� �Y )� u(�UZ�X + 2UX�Z)]UXX

+ [v(
(U2

Y�X � UY UX�Y )


+ �X)� u(�UZ�Y + 2UY�Z)]UY X

+ [v(
UZ(UY�X � UX�Y )


) + u(UX�X + UY�Y )]UZX g

(4.69)

b2A =
1

v2 + u2
f

[v(
(UXUY�X � U2

X�Y )


� �Y )� u(�UZ�X + 2UX�Z)]UXY

+ [v(
(U2

Y�X � UXUY�Y )


+ �X)� u(�UZ�Y + 2UY�Z)]UY Y
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+ [v(
UZ(UY�X � UX�Y )


) + u(UX�X + UY�Y )]UZY g

(4.70)

c2A =
1

v2 + u2
f

[v(
(UXUY�X � U2

X�Y )


� �Y )� u(�UZ�X + 2UX�Z)]UXZ

+ [v(
(U2

Y�X � UXUY�Y )


+ �X)� u(�UZ�Y + 2UY�Z)]UY Z

+ [v(
UZ(UY�X � UX�Y )


) + u(UX�X + UY�Y )]UZZ g

(4.71)

d1A =
1

v2 + u2
fv[ (UXUY�X � U2

X�Y )


� �Y ]� u(�UZ�X + 2UX�Z)g

e1A =
1

v2 + u2
fv[ (U

2
Y�X � UXUY�Y )


+ �X ]� u(�UZ�Y + 2UY�Z)g

f1A =
1

v2 + u2
fv[UZ(UY�X � UX�Y )


] + u(UX�X + UY�Y ) g

(4.72)

where

u =
q
(U2

X + U2
Y + U2

Z) � (UY�X � UX�Y )

v = �UZUX�X � UZUY�Y + U2
X�Z + U2

Y�Z: (4.73)

The other values evaluated at the observation point P1 are

a1A =
1

(u2 + v2)
� [v � UY + u � UXUZ ]

b1A =
1

(u2 + v2)
� [�v � UX + u � UY UZ ]

c1A =
1

(u2 + v2)
� [�u � (UX

2 + UY
2)]:

(4.74)

4.3.5 Horizontal Directions

The horizontal direction observation equation di�ers from an azimuth observation equa-
tion in that an orientation parameter O1 at the observation station is required in the case
of horizontal direction observation.
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Let 	12(t) represent the observed horizontal direction between the network points P1 and
P2 at observation epoch t. Then

	12(t) = A12(t) +O1(t) + v	 (4.75)

where A12 is the corresponding azimuth of the same line P1�P2 at the same observation
epoch. Thus the linearised observation equation of horizontal direction observation follows
that of the astronomical azimuth equation ( 4.63) containing the orientation parameter
O1. It may be written thus

	(t)�  (to) = �	x + �	�x +�	TX + �	�TX +O1 + v	: (4.76)

The functionals �	x, �	�x, �	TX , �	�TX have the same expressions as those of azimuth,
respectively �Ax, �A�x, �ATX , �A�TX (see equations ( 4.69) through ( 4.74)).

4.3.6 Gravity Potential Di�erences

The gravity potential di�erence is an observation arising from the combination of spirit
levelling and gravity measurements along the same lines of the network. Let W1(t) and
W2(t) denote the potentials at network points P1 and P2 respectively. The di�erence in
potential �W12 between the two points becomes

�W12(t) =W2(t)�W1(t) (4.77)

which according to equation ( 3.8) is written

�W12(t) = F (x(t); LW (x(t); t))

= LW (x(t); t)): (4.78)

The gravity potential depends on the position vector x only implicitly and therefore
gradxF (x(t); LW (x(t); t)) � 0.

The linearised equation for gravity potential di�erence is therefore developed according
to equation ( 3.16) considering that it is a di�erence between two potentials, as:

�W12(t)� [U2(x
o(to))� U1(x

o(to))] =

[Ui(x
o(to))[�xi(to) + �xi(t)]]2 � [Ui(x

o(to))[�xi(to) + �xi(t)]]1

+LT2(x
o(to))� LT1(x

o(to))

+L�T2(x
o(t))� L�T1(x

o(t)) + v�W :

(4.79)
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In terms of the geocentric coordinates the above equations can be expressed as

�W12(t)� [U2(x
o(to))� U1(x

o(to))] =

a1p�X1 + b1p�Y1 + c1p�Z1 + a2p�X2 + b2p�Y2 + c2p�Z2

a1p�X1 + b1p�Y1 + c1p�Z1 + a2p�X2 + b2p�Y2 + c2p�Z2

+T2(x
o(t))� T1(x

o(t)) + �T2(x
o(t))� �T1(x

o(t)) + v�W (4.80)

where

a1p = �UX(X
o(to); P1)

b1p = �UY (Y
o(to); P1)

c1p = �UZ(Z
o(to); P1)

a2p = UX(X
o(to); P2)

b2p = UY (Y
o(to); P2)

c2p = UZ(Z
o(to); P2) (4.81)

and T; T2; �T1; �T2 refer to the approximate coordinates x(to).

4.4 Three Point Observations

4.4.1 Horizontal Angles

A horizontal angle is a di�erence between two directions. If 	12 represents the direction
of P1 to P2 and 	13 that of P1 to P3 then

	123(t) = 	13(t)�	12(t) (4.82)

is the horizontal angle between the rays to points P2 and P3 at point P1. The orientation
unknown is eliminated by subtraction so that the horizontal angle remains a di�erence
between two azimuths. Thus

	123(t) = A13(t)� A12(t): (4.83)

The derivation of the observation equation of horizontal angle follows that of a di�erence
between two azimuths. Referring to equation ( 4.68),

A13(t)� A12(t)� �13(to) + �12(to) =

a3A�X3(to) + b3A�Y3(to) + c3A�Z3(to)

� a2A�X2(to)� b2A�Y2(to)� c2A�Z2(to)

52



+ (a2A � a3A)�X1(to) + (b2A � b3A)�Y1(to) + (c2A � c3A)�Z1(to)

+ a3A�X3(t) + b3A�Y3(t) + c3A�Z3(t)

� a2A�X2(t)� b2A�Y2(t)� c2A�Z2(t)

+ (a2A � a3A)�X1(t) + (b2A � b3A)�Y1(t) + (c2A � c3A)�Z1(t)

+ d1ATX(to) + e1ATY (to) + f1ATZ(to)

+ d1A�TX(t) + e1A�TY (t) + f1A�TZ(t)

+ v	123
(4.84)

is the form of the observation equation for horizontal angle. The coe�cients of ( 4.84) are
found in equations ( 4.69) through ( 4.74).

4.5 Space Observations

4.5.1 GPS Observations

The Global Positioning System (GPS) provides two basic observables:

� code pseudoranges and

� carrier phase pseudoranges.

The pseudorange is a measure of the distance between the satellite and the receiver at
the epochs of transmission and reception of the signals. The pseudorange measurements
are based on timing systems in both the satellite transmitter and the receiver. Timing
and synchronization errors contribute to pseudorange measurements, too.

In carrier phase measurements, the di�erence between the phase of the carrier signal of the
satellite, measured at the receiver, and the phase of the local oscillator within the receiver
system at the time of measurements is observed. The code pseudorange measurement
involves measuring the time taken by the satellite signal to arrive at the receiver. The
measured time is multiplied by the speed of light to obtain the range which is biased by
clock errors and other noise.

From either of these observations, network points which have been occupied by a satel-
lite receiver can be coordinated. In usual geodetic applications the GPS raw mea-
surements are �rst pre-processed by appropriate software e.g. Bernese GPS software
[Rothacher et al., 1993]. This pre-processing may be done in two ways: either as uncor-
related baselines whereby observations at a pair of network points are processed together,
or as a network whereby all network points are pre-processed simultaneuosly, usually as a
free-network. This study does not go into the details of the pre-processing of the raw GPS
data and details may be found in e.g. [Leick, 1990], [Hofmann-Wellenhof et al., 1992],
[Kleusberg and Teunissen., 1996].

The pre-processing stage yields baselines or coordinates together with their full covariance
matrices. The adjusted observations are used as quasi-observations in further adjustment
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with other geodetic data. Usually only station coordinates enter the second adjustment
as parameters although other parameters e.g. orbital elements may be also included.

In the present work the observation equations for GPS quasi-observations are derived for
both baselines or absolute coordinates. Further, and of particular importance is the use of
GPS in the �eld of geodynamics as being carried out among others by the International
GPS service for Geodynamics (IGS). Here the accuracy requirement is quite high - in
the range of millimetre level. This high accuracy requirement can only be realised if all
known systematic biases in the GPS are controlled. One such source of error is associated
with the antenna phase center i.e. the location at the GPS antenna to which the GPS
signal is referred. The next subsection is devoted to the GPS antenna calibrations and
the observation equations follow shortly.

The GPS antenna calibration

The GPS antenna converts the energy in the electromagnetic waves that it receives from
the GPS satellites into an electric current, which is processed to yield the required param-
eters for positioning. The electric point which the measurement of these electromagnetic
waves is referred to is the antenna phase centre and generally does not coincide with the
physical antenna centre which on the other hand is used as the reference for the actual
ground point (see also [Langley, 1995]). Studies have shown (e. g. [Geiger, 1988]) that
this di�erence is not just a constant o�set but a variation depending on several factors e. g.
the antenna type, frequency of the received signal, elevation and azimuth of the emitting
satellite. For the GPS antennas only two frequencies need to be considered, the L1 and
the L2 which the GPS satellites transmit. The usual way to �nd the phase centre varia-
tions is by �rst estimating the mean antenna phase centre o�sets and �nally estimating
the elevation - and azimuth dependent phase centre variations.

Two distinct methods of GPS antenna calibration exist. These are:

� Anechoic chamber calibrations or laboratory methods

� Field calibration methods.

Anechoic chambers assumed free from electromagnetic signal reections are used. The
GPS antenna is mounted on an arm that can be rotated in both azimuth and elevation
while a source transmitting at GPS frequencies (comparable with the satellite emissions)
is kept at a �xed position. By varying both the azimuth and the elevation of the an-
tenna, the antenna characteristics are determined (e. g. [Schupler et al., 1995]). While
this method provides absolute results, inconsistencies still remain when the method is
used alone ( [Rothacher et al., 1995]). This method is also expensive and generally not
accessible to the antennas that are already in the �eld since anechoic chamber facilities
are limited.

In most geodetic applications, di�erential GPS procedures are applied, relying on two
receivers and antennas of the same type. For short baselines, the satellite con�guration at
both end points are (nearly) the same. Assuming that the antennas of one and the same
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product show the same characteristics, the antenna o�sets will cancel. This property
will not hold for large baselines or when receiver/ antenna types are mixed. In the
second method, a terrestrial network established by geodetic methods of high accuracy
is used. The GPS antennas to be calibrated are then used to recontrol this network so
that direct GPS data is used for calibration of the antennas. Basically the procedure
involves comparison of the GPS antenna results with those of the ground control (e. g.
[Geiger, 1988]; [Vogel and J�ager, 1994]; [Breuer and Wohlleben, 1995]). The antennas
are exchanged between the test network points during the campaign and are oriented in
the same direction during each session. The antenna directions are alternated by 180
degrees between the sessions. By so doing only the vertical o�sets essentially remain in
the di�erential GPS solution. Rotation of the antennas by 180 degrees after each session
also helps to detect the multipath e�ect if azimuth curves are plotted.

In this study the �eld calibration method is considered and only mean o�sets are esti-
mated. In particular a new approach within the minimum norm solutions in the de�nition
of height datum is used. Since resulting parameters are non-estimable the approach of
[Koch, 1978] for testing of non-estimable parameters is used in the hypothesis testing.
The results and more details are found in Appendix A.

The GPS observation equations

Like with distances, the derived GPS baselines or absolute coordinates (observations)
are independent of the gravity potential function LW in the main linearised equation of
four-dimensional geodesy.

Following the general equation of four-dimensional geodesy ( 3.19),

xs(t) = xs(to) + �xs(to) + �xs(t)

� F (x(t); t) (4.85)

holds in a conventional coordinate system induced in the evaluation of GPS data. Re-
ferring these GPS observations to a global frame e.g. the geocentric coordinate frame
(WGS84)

xs(t) = �R(xo(to) + �x(to) + �x(t)) + tx

� = �o + ��; �o = 1

R = I+ �R

(4.86)

results. R is a rotation matrix containing the values of the trigonometrical functions of
the angular deviations between the corresponding axes of the two coordinate systems (see
e.g. [Heck, 1987]). When the rotation angles are small (usually less than 10"), R is
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expressed as

R(to) =

2
64 1 �z � �y
��z 1 �x
�y � �x 1

3
75 ; �R(t) =

2
64 0 ��z � ��y
���z 0 ��x
��y � ��x 0

3
75

where (�x; �y; �z) are the rotation angles between the WGS84 system and the conventional
coordinate system under consideration. The translation parameters are contained in the
vector tx and � is a scale factor. �R is a di�erential rotation matrix.

Expanding the equations in ( 4.86) and substituting ( 4.85) above

xs(t)� xo(to) = �Rx(t) + tx � xo(to)

= (1 + ��)(I+ �R)[xo(to) + �x(to) + �x(t)]� xo(to) + tx

(4.87)

results. The products of small order quantities will be left out as being small, such that
equation ( 4.87) can be now written as

xs(t)� xo(to) = �x(to) + �x(t) + �R � xo(to) + �� � xo(to) + tx:

(4.88)

Absolute GPS coordinates: The linearised observation equation for a GPS observa-
tion at a station P1 is derived from ( 4.88) as

xs1(t)� xo1(to) = �x1(to) + �x1(t) + �R � xo1(to) + �� � xo1(to)
+ tx + vAGPS

(4.89)

or expanded in a matrix form as

2
64 xs1(t)� xo1(to)
ys1(t)� yo1(to)
zs1(t)� zo1(to)

3
75 =

2
64 �x1(to)
�y1(to)
�z1(to)

3
75 +

2
64 �x1(to)
�y1(to)
�z1(to)

3
75 + �� �

2
64 xo1(to)
yo1(to)
zo1(to)

3
75

+

2
64 0 ��z � ��y
���z 0 ��x
��y � ��x 0

3
75
2
64 xo1(to)
yo1(to)
zo1(to)

3
75+

2
64 tx
ty
tz

3
75+

2
64 vx
vy
vz

3
75
AGPS

(4.90)

with vAGPS occuring as an observational error. The di�erential rotation angles (�x; �y; �z),
the scale factor �� and the translation parameters tx; ty; tz enter the equation as additional
unknown parameters.
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GPS baselines: The linearised observation equation for a GPS baseline considered as
an observation at a pair of points P1 and P2 is derived from ( 4.88) as

xs2(t)� xs1(t)� xo2(to) + xo1(to) = �x2(to)��x1(to) + �x2(t)� �x1(t)

+ �R � xo2(to)� �R � xo1(to)
+ �� � xo2(to)� �� � xo1(to) + vDGPS (4.91)

where vDGPS is an observational error in a GPS baseline observation. Equation ( 4.91)
can be written as a matrix in the form

2
64 �xs12(t)��xo12(to)
�ys12(t)��yo12(to)
�zs12(t)��zo12(to)

3
75 =

2
64 �x2(to)��x1(to)
�y2(to)��y1(to)
�z2(to)��z1(to)

3
75+

2
64 �x2(t)� �x1(t)
�y2(t)� �y1(t)
�z2(t)� �z1(t)

3
75

+

2
64 0 ��z � ��y
���z 0 ��x
��y � ��x 0

3
75
2
64 �xo12(to)
�yo12(to)
�zo12(to)

3
75

+ �� �
2
64 �xo12(to)
�yo12(to)
�zo12(to)

3
75 +

2
64 v�x
v�y
v�z

3
75 (4.92)

where

�xs12(to) = xs2(to)� xs1(to) (4.93)

�ys12(to) = ys2(to)� ys1(to) (4.94)

�zs12(to) = zs2(to)� zs1(to) (4.95)

�xo12(to) = xo2(to)� xo1(to) (4.96)

�yo12(to) = yo2(to)� yo1(to) (4.97)

�zo12(to) = zo2(to)� zo1(to): (4.98)

The translation parameters tx between the two coordinate systems are now eliminated.

4.5.2 Very Long Baseline Interferometry - VLBI

Extragalactic sources (quasars) are used as radio sources for VLBI observations. The radio
signals originating from a quasar are assumed parallel by the time they reach ground (or
even space) based antennas. The arrival time of the signal from the radio source is recorded
and a crosscorrelation procedure is carried out which gives the di�erence in arrival time
of the signal at a pair of VLBI antennas. A VLBI baseline is processed from the signal.

Since VLBI is an interferometric method, it is independent of the potential function LW
appearing in the equation for four-dimensional geodesy, just like the GPS baselines. In
this case, the observation equations ( 4.91) can be adopted for the VLBI system. Further
modelling of the VLBI observations is found in e.g. [Dermanis, 1980],
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5. The Integrated Four-dimensional

Network Adjustment Models

5.1 Basic considerations

The usual geodetic observations of type angular and distances contain su�cient infor-
mation to describe the size and shape of the geodetic network provided there is no con-
�guration defect. On the other hand, coordinates are convenient means of describing a
network but unfortunately these geodetic observations do not carry information about
the position (coordinates) of a network. This results in a datum defect which becomes
a part of the problem of adjustment of redundant observations in which coordinates are
involved. If instead of placing the network on to a coordinate frame, the coordinate frame
itself is to be placed on the network, then the datum problem arises. The datum prob-
lem was pioneered by [Meissl, 1969] and further developed by introduction of Baarda's
S-transformation [Baarda, 1973], [van Mierlo, 1980]. The datum problem was so far
treated in its linearized form and an extensive mathematical treatment of the nonlinear
geodetic datum problem has been discussed in [Dermanis, 1998].

The adjustment problem involves mapping the observation space Yn of n-dimension onto
the model space (manifold) Mu of u-dimension by a mapping f with m parameters. The
usual case is n > u and due to unavoidable observation errors the mapping is done
outside the actual model space. The adjustment problem is returning from this apparent
model space to the actual model space. The datum problem results in the case m > u
(i.e the mapping function has more parameters than the rank of model space), when
the model is without full rank. The datum problem is solved by introducing a set of
minimal constraints r(x) = d; d = m � u. The �nal solution depends on the choice of
these minimal constraints. In order to remove this dependency, the minimal solution is
transformed by a Baarda S-transformation into an inner solution, or inner constraints are
used instead.

In four-dimensional networks a further defect occurs due to lack of a reference motion.
This problem has been discussed in [Dermanis, 1980] with connection to VLBI observa-
tions.
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5.2 The Four-dimensional Adjustment Models

The general linearised observation equation of four-dimensional geodesy ( 3.20) may be
written in simpler notation as

y = Axo +Axp +Bso +Bst + v (5.1)

where

- xo contains coordinate corrections at reference epoch and auxiliary parameters

- xp represents displacements

- so represents disturbing gravity potential signals

- st represents disturbing gravity potential signal variations.

The coordinate corrections xo are considered as deterministic quantities. The other pa-
rameters are signals which can treated in one of the following ways: (see e.g. [Dermanis, 1985]):

� as deterministic,

� as analytical expressions,

� as stochastic quantities and

� as of hybrid type.

The most general case of these approaches is the hybrid approach because it considers
that the signal consists of a trend part (which can be modeled by analytical functions) and
a stochastic part. The stochastic case simply assumes that the signal does not contain a
trend part while the analytical case assumes that the signal does not contain a stochastic
part. The deterministic approach is a particular case of the analytical approach where
the assumed underlying function is now represented by a discrete element. If s represents
the signal, f the trend function with a being a column vector of unknown coe�cients and
S the stochastic function, then the signal can be represented as

s = fa + S: (5.2)

Table ( 5.2) below shows the various ways of how each of the signals can be modeled.
Obviously the gravity signal variation will be neither suited to the deterministic nor to
the analytical modeling since the coe�cients required may be just too many. From Table
( 5.2), the most general equation of four-dimensional geodesy can be expanded as

y = Axo +A(fxax + Sx) +B(fsas + Ss) +B(fstas + Sst) + v (5.3)
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Displacements xp Disturbing potential so Potential variations st

Deterministic xp = axi so = asi st = asti
Analytical xp = fxaxi so = fsasi st = fstasti
Stochastic xp = Sx so = Ss st = Sst
Hybrid xp = fxaxi + Sx so = fsasi + Ss st = fsasti + Sst

Table 5.2: Signal modeling in four-dimensional geodesy

Only the two extreme cases - the purely deterministic and the purely stochastic cases will
be given a further consideration here.

5.2.1 The Deterministic Approach

The signals are in this case regarded as additional parameters and are not assumed de-
pendent on some common underlying function. Thus every observation introduces its own
unknowns - a situation which is not possible to solve due to presence of more unknowns
than there are observations. This approach is made practical by considering a group
of observations to have been made at the same instant or in short enough campaigns
for there not to have been changes either in position or gravity �eld. This leads to the
discrete epoch approach with three types of unknowns:

(1.) the coordinate corrections

(2.) the signal parameters

(3.) other additional unknowns of type e. g. refraction coe�cients, orientation unknowns
etc.

The epoch adjustment

When individual observation epochs are considered, the parameters present are the co-
ordinate corrections and disturbing gravity �eld unknowns. Thus from ( 5.3) all the
stochastic parts S and all the variations are not present. If both type of unknowns are
treated as deterministic then the formulation of this problem of adjustment follows the
Gauss-Markov model of the form

y = Ax+ v; such that Efyg = Ax; Efvg = 0;

Dfyg = Dfvg = C(y;y) (5.4)

where all the deterministic parts have been put together and

- y: n� 1 random vector of observations

- A: n� u design matrix, usually n > u

- x: u� 1 vector of unknown parameters
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- v: n� 1 random vector of residuals

- C(y;y) : n� n covariance matrix of the observations.

In the least squares principle, the residual vector v is minimised; thus vTWv ! min:
The estimation of the parameters x in ( 5.4) follows from

ATWAx = ATWy; W = C(y;y)�1; N = ATWA: (5.5)

In the event that the normal equation matrix N is not singular, i.e. of full rank, then a
Cayley inverse of N exists and the least squares estimate of x, x̂ is given by

x̂ = N�1ATWy: (5.6)

When the normal equation matrix N is singular, some constraints have to be introduced.
This involves elimination of the additional unknowns of type (3) from the system of normal
equations. Using subscript (X) to denote the part of the normal equations containing
unknowns of types (1) and (2) and U to denote additional unknowns of type (3) above,
then the normal equations are represented as

"
NXX NXU

NT
XU NUU

# "
�X
�U

#
=

"
nX
nU

#

and

NXX = NXX �NXUN
�1
UUN

T
XU (5.7)

nX = nX �NXUN
�1
UUnUX (5.8)

(since NUU is usually of full rank and therefore regular). The matrix NXX can be now
split into two parts: the coordinate (x subscript) part and the signal (s subscript) part
as follows:

"
Nxx Nxs

NT
xs Nss

# "
�x̂
�ŝ

#
=

"
nx
ns

#

from which

Nxx = Nxx �NxsN
+
ssN

T
xs (5.9)

nx = nx �NxsN
+
ssns (5.10)

where (+) denotes the pseudoinverse, is obtained. The part Nss is generally not of full
rank indicating some datum defect. This defect in rank concerns lack of information
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about the motion (displacement �eld) and can be removed by use of minimal constraints.
[Dermanis, 1980] has used the inertia matrix of the network to derive constraints necessary
to provide for the rank defect relating the displacements. The �nal solution when using
the pseudoinverse is given by

�x̂ = Nxx
+
nx = (Nxx �NxsN

+
ssN

T
xs)

+(nx �NxsN
+
ssns) (5.11)

�ŝ = N+
ss(ns �NT

xs�x̂): (5.12)

Due to lack of datum informationNxx has a datum defect - 3 translations, 3 rotations and
1 scale in the case of three-dimensional network where no distance, zenith, azimuth and
GPS observations are made (see also [Illner, 1985] for other cases), a datum defect exists
which again can be eliminated by use of minimal constraints or computing the network
as a free one. The constraint required is

�xT�x = minimum: (5.13)

For a three-dimensional network with all possible datum defects (7), the constraint is
related to a matrix G of the form [Illner, 1985]

GT
�x =

2
666666666664

1 0 0
0 1 0
0 0 1

: : : 0 zi � yi : : :
�zi 0 xi
yi � xi 0
xi yi zi

3
777777777775

with corresponding rows representing

- x - shift

- y - shift

- z - shift

- x - rotation

- y - rotation

- z - rotation

- scale.

The constraints that remove the defect as far as the gravity �eld parameters are concerned
are [Klein, 1997]
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for disturbing gravity potential

GT
T =

h
: : : 1 : : :

i

and for �rst derivatives of potential

GTX =

2
6666666666666666664

...
cos �P cos �P

cos �P sin �P

sin�P
...

cos �Q cos �Q

cos �Q sin �Q

sin�Q
...

3
7777777777777777775

The deterministic approach as presented here corresponds to the adjustment of a three-
dimensional integrated network e. g. [Klein, 1997] in the deterministic case. The adjust-
ment of the reference epoch is carried out exactly in the same way as in a three-dimensional
integrated network to obtain a solution x0(to). The datum problem is solved and the prob-
lem becomes four-dimensional when the epoch solutions are interrelated by a similarity
transformation as explained in section (3.2) (see also [Dermanis, 1995]).

The deterministic case is simple in application and makes no assumptions about the
hypothesis of functions that govern the signals. This method can however not predict
signals in points di�erent from the network sites.

The model testing

In order to obtain an overall view about the model of four-dimensional geodesy, the global
test (see e.g. [Koch, 1988] under hypothesis testing for the variance of unit weight) is
applied. The form of the general equation of four-dimensional geodesy, equation ( 5.21),
is referred to and �20 is the a priori variance of unit weight while �̂20 is the a posteriori
variance of unit weight. The null hypothesis H0 is set out as: H0 : �̂0

2 = �20 . The null
hypothesis is tested against the alternative hypothesis Ha such that Ha : �̂0

2 6= �20. The
computation of �̂20 is done over all stochastic parameters of the model [Dermanis, 1991a].
Thus letting

� = Gs + v � (0; �20M); M = C(v;v) (5.14)

equation ( 5.21) can be now written as

y = Ax+ �: (5.15)

The estimation of x̂ is already given in equation ( 5.28) so that �̂ can be estimated from

�̂ = y�Ax̂: (5.16)
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and �̂20 is estimated from (f is the degree of freedom)

�̂20 =
�̂
TM�1

�̂

f
; and

Te =
f�̂20
�20

� �2f (5.17)

where Te is the test statistic and has a �2 distribution. The null hypothesis is accepted

when the test statistic Te lies within �
2(1��

2
)

f and �
2(�

2
)

f , where � is the level of signi�cance.
The failure of Te is not an automatic rejection of the model and further tests may be carried
out (see e.g. [Dermanis, 1991a]).

5.2.2 The Functional Signal Approach

Since the discrete deterministic method of treating the signals appearing in ( 5.1) has the
disadvantage of having too many unknowns, a function assumed to model the signals and
which has fewer unknowns can be used instead. This is possible where there is prior infor-
mation about the signals. This approach has been considered in [Holdahl and Hardy, 1979],
[Vanicek, 1975], [Hein and Kistermann, 1981], [Heck, 1989] among others.

It cannot be expected to model the parameters of the gravity �eld this way because of
the irregular nature of this �eld which would result in too many unknowns. It may be
expected that on a local scale and in regions which are not tectonically active, the use of
analytical models may su�ce for the case of representing displacements. The parameters
of the chosen model are estimated in the adjustment together with the other unknowns.

5.2.3 The Stochastic Signal Approach

The signals appearing in equation ( 5.1)are now regarded as random variables with zero
means such that

Ef�x(t)g = 0

EfT (xo(to))g = 0

Ef�T (xo(to)g = 0 (5.18)

and known covariances

C(�x(t)P ; �x(t)Q) = Ef�x(t)P :�x(t)TQg
C(T (xo(to))P ; T (x

o(to))Q) = EfT (xo(to))P :T (xo(to))TQg
C(�T (xo(to); t)P ; �T (x

o(to); t)Q) = Ef�T (xo(to); t)P :�T (xo(to); t)TQg: (5.19)

Thus equation ( 5.1) now consists of
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� deterministic parameters in form of coordinate corrections �x(to),

� stochastic signals, s 2 f�x(t); T (xo(to)); �T (xo(to); t)g,
� a vector of observational errors.

Considering equation ( 5.3) the purely stochastic approach is of the form

y = Axo + Sx + Ss + Sst + v: (5.20)

By separating the deterministic and the stochastic parts and grouping each type, equation
( 5.20) can be simpli�ed to the form

y = Axo +Gs + v (5.21)

(and still regarding all the parameters as time dependent) where

- y is a n� 1 vector of observations

- xo is a m� 1 vector of unknown deterministic parameters

- A is a m� n design matrix

- G is a n�m matrix resulting from the operator acting on s

- s is a m-dimensional signal vector

- v is a n-dimensional vector of residuals.

Using the method of least squares collocation (see e.g. [Moritz, 1972]), new signals sp
at non- network points can be predicted. These predicted signals also depend on the
respective linear functions that the network point signals s depend. Thus

sp�x = A�x(t)

spT = BT (xo(to))

sp�T = B�T (xo(to); t): (5.22)

Again using the new notation, the mean and the covariance functions of sP are given by

EfsPg = 0

C(sP ; sQ) = EfsP :sTQg (5.23)

respectively. The cross-covariance C(sP ; sQ) between the predicted signal and the network
point signal is

C(sP ; sQ) = EfsP :sTQg: (5.24)
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The stochastic model C(y;y) of equation ( 5.21) is related to both the observational
errors and the signals at the concerned points. Thus

C(y;y) = C(v;v) +C(s; s) (5.25)

and the solution follows from the hybrid minimum condition

vTC(v;v)�1v+ sTPC(sP ; sP )
�1sP ! minimum: (5.26)

The solution of equation ( 5.21) for general linear predictors is given by [Dermanis, 1991b]
as

M = GC(s; s)GT +C(v;v); N = ATM�1A;

�s = Efsg; �v = Efvg (5.27)

x̂ = N�1ATM�1(y� ��v � �G�s) (5.28)

ŝP = ��s +C(sP ; sQ)G
TM�1(y�Ax̂� ��v � ��s) (5.29)

with

� = 1; or (5.30)

� =
(G�s + �v)

TM�1Hy

(G�s + �v)
THTM�1H(G�s + �v)

(5.31)

H = I�AN�1ATM�1: (5.32)

The Best inhomogeneously Linear weakly Unbiased Prediction - inhomBLUP is here fol-
lowed by setting the value of � to one (� = 1). When the mean of the signals �s and that
of the observation random errors �v is zero, then the estimation and prediction given in
equations ( 5.28) and ( 5.29) respectively are the same as the least squares collocation
solutions of [Moritz, 1972] i.e. estimation of x̂,

x̂ = (ATC(y;y)�1A)�1ATC(y;y)�1y (5.33)

and prediction of the signals ŝp

ŝP = C(sP ; sQ)G
TC(y;y)�1(y�Ax̂): (5.34)

The displacement �x(t) is a vector function and each component �X; �Y; �Z in some coor-
dinate system is considered separately ( [Blaha, 1977], [Dermanis and Rossikopoulos, 1988]).
The derivation of suitable covariance functions is discussed in section(5.3).
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Pi
�xi �xi Ti �Ti

�xj (�xi;�xj) (�xi; ��xj) (�xi; Tj) (�xi; �Tj)
Pj �xj (�xi;�xj) (�xi; �xj) (�xi; Tj) (�xi; �Tj)

Tj (Ti;�xj) (Ti; �xj) (Ti; Tj) (Ti; �Tj)
�Tj (�Ti;�xj) (�Ti; �xj) (�Ti; Tj) (�Ti; �Tj)

Table 5.3: Signal pairing

5.3 The Covariance Functions

When the stochastic case is considered, covariance functions that express the propagation
of the signals both in space and time have to be established. The set of the parameters is
p = f�x; �x; T; �Tg. Except for the coordinate corrections �x which are usually treated
as deterministic, the other parameters appearing in p will be considered as stochastic.

5.3.1 Covariance Functions of Four-dimensional Geodesy

As it is usual in geodetic practice, the correlations between the signals and the observa-
tional random errors will be ignored as being small. Table ( 5.3) below shows all possible
pairing where covariances can be established when only potential functionals are present.

From Table ( 5.3) and considering symmetry the following covariances are established

C(�Ti; �Tj); C(Ti; Tj); C(Ti; �Tj); C(��xi; �xj); C(��xi; Tj);

C(��xi; �Tj); C(�xi;�xj); C(�xi; �xj); C(�xi; Tj); C(�xi; �Tj): (5.35)

The coordinate corrections �xi will be always treated as deterministic quantities and
therefore the covariances relating to them will be neglected. The remaining parameters
of the set p are treated as signals. The cross-covariances between the signals can be
neglected under the assumption that the processes causing the signals are uncorrelated.
Under these assumptions, only the auto-covariances remain. The signals whose covariance
functions �nally need to be established are

C(Ti; Tj); C(�Ti; �Tj); C(�xi; �xj) (5.36)

The form of the covariance function that will be adopted will require the choice of a local
coordinate system which is here denoted by (x; y; z). The direction of z is the same as
that of the local plumbline but pointing upwards instead, while x points in the direction
of north and y is on the same horizontal plane with x but pointing in the direction of
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east. The necessary covariance functions are then identi�ed as follows:

C(Ti; Tj); C(�Ti; �Tj);

C(�xi; �xj); C(�xi; �yj); C(�xi; �zj);

C(�yi; �xj); C(�yi; �yj); C(�yi; �zj);

C(�zi; �xj); C(�zi; �yj); C(�zi; �zj):

(5.37)

In this ordered pair of parameters, cross-correlations are inevitable. Their covariance
functions thus need to be established.

5.3.2 The Covariance Functions

Below are considered some covariance functions in common use:

Hirvonen's covariance function.

This is of the form

C(�g;�g) =
C0

1 + ( r
D
)2

(5.38)

with variance C0, characteristic distance D and r is the horizontal distance between any
pair of points.

The Gaussian covariance function.

This is expressed as

C(�g;�g) = C0e
�

r
D (5.39)

where C0, D again denote the variance and characteristic distance respectively. Both
the Hirvonen and the Gaussian functions have been choosen as candidates for the grav-
ity anomalies [Heiskanen and Moritz, 1967]. However, they are only suitable as one-
dimensional functions. Figure ( 5.1) shows a plot of the two functions
(C0 = 337 mgal2; D = 40 km).

The global covariance function.

On the sphere, the covariance functions concerning the gravity �eld parameters are usually
expanded into a series of Legendre polynomials as [Moritz, 1972]:

C( ) =
1X
n=0

cnPn(cos ) (5.40)

where cn are coe�cients in a Legendre series expansion and  is the spherical distance
between points Pi and Pj. The coe�cients cn are di�erent for each gravity �eld quantity.
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Figure 5.1: The Hirvonen and the Gaussian covariance functions

The covariance for the harmonic disturbing potential function in space the case of spherical
approximation is given by

K(Pi; Pj) =
1X
n=0

kn(
R

rP rQ
)n+1Pn(cos ) (5.41)

and for the gravity anomaly is

K(Pi; Pj) =
1X
n=0

cn(
R

rPrQ
)n+2Pn(cos ): (5.42)

Regional covariance functions.

Most covariance functions in use are limited to planar approximation, for example the
Gaussian function of the form

C(Pi; Pj) =
1

2
Ad2e�

1

2
( r
2

d2
); (5.43)

with A and d as free parameters (also equivalent to the form given in ( 5.39). In order to
extend the application of the Gaussian function in space applications, its Hankel transform
(see e.g [Heck, 1984])

G(t) =
A

4�
d4e�

1

2
t2d2 (5.44)

is incorporated so that the spatial covariance function becomes

C(Pi; Pj) =
1

2
Ad4

Z
1

0
J0(tr)e

�
1

2
t2d2e�t(zi+zj)tdt (5.45)
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where Jo is the Bessel function of order zero. A generalization of this function is given by
[Reilly, 1979] as

�T (q; n) =
1

2
Ad4

Z
1

t=0
tqe�t(zi+zj)e

�t2d2

2 Jn(t:r)dt; (5.46)

where q and n take integer values while A and d are free parameters and Jn are Bessel
functions of order n. It is this form of the function that will be analysed further in order to
deduce suitable forms of covariance functions for the signals present in four-dimensional
geodesy.

The covariance function of the disturbing potential C(Ti; Tj) is obtained from ( 5.46) when
q = 1 and n = 0 (see [Reilly, 1979] ) so that

C(Ti; Tj) = �T (1; 0) =
1

2
AT :d

4
T

Z
1

t=0
te�t(zi+zj)e

�t2d2
T

2 J0(t:r)dt (5.47)

where AT and dT are again free parameters and J0 is the Bessel function of order zero.
Similarly the covariance function of the temporal change of potential (C(�Ti; �Tj)) is given
by

C(�Ti; �Tj) = ��T (1; 0) =
1

2
A�T :d

4
�T

Z
1

t=0
te�t(zi+zj)e

�t2d2
�T

2 J0(t:r)dt (5.48)

with A�T and d�T being treated as free parameters. The covariance function of the deriva-
tives of the disturbing potential (Tx; Ty; Tz) are simply derived from the fundamental co-
variance function ( 5.47) by di�erentiating it accordingly. Thus, the covariance function
of the vertical derivative of the disturbing potential C(Tzi; Tzj) is

C(Tzi; Tzj) = �(3; 0) =
@

@zi

@

@zj
C(Ti; Tj)

=
1

2
AT :d

4
T

Z
1

t=0
t3e�t(zi+zj)e

�t2d2
T

2 J0(t:r)dt: (5.49)

A special case occurs when zi = zj = 0, i. e. on the reference plane when now the covari-
ances de�ned by the functions �T (1; 0) and ��T (1; 0) take the following forms:

C(Ti; Tj) = �T (1; 0) =
1

2
ATd

2
T e

�
1

2
( r
dT

)2
(5.50)

C(�Ti; �Tj) = ��T (1; 0) =
1

2
A�Td

2
�T e

�
1

2
( r
d�T

)2
(5.51)

with the respective variances CoT , Co�T and correlation length �T and ��T as

CoT =
1

2
ATd

2
T ; �T = 1:177dT (5.52)
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Co�T =
1

2
A�Td

2
�T ; ��T = 1:177d�T : (5.53)

The corresponding covariance functions on the reference plane of the �rst derivatives of
the disturbing potential and its temporal variation in the vertical direction are respectively

C(Tzi; Tzj) = �T (3; 0) = AT (1� 1

2
(
r

dT
)2)e

�
1

2
( r
dT

)2
(5.54)

C(�Tzi; �Tzj) = ��T (3; 0) = A�T (1� 1

2
(
r

d�T
)2)e

�
1

2
( r
d�T

)2
: (5.55)

Their respective variances CoTZ , Co�TZ and correlation lengths �TZ , ��TZ are given by

CoTZ = AT ; �TZ = 0:794dT

Co�TZ = A�T ; ��TZ = 0:794d�T : (5.56)

Reilly used the values of AT = 5� 10�8N2=kg2 and dT = 10km for New Zealand.

Assuming symmetry and using the same notation as before, the covariance functions of
the �rst derivatives of the signals are [Reilly, 1979]

C(Txi; Txj) =
1

2
�Tx(3; 0)� 1

2
�Tx(3; 2) cos 2�

C(Tyi; Tyj) =
1

2
�Ty(3; 0) +

1

2
�Ty(3; 2) cos 2�

C(Tzi; Tzj) = �Tz(3; 0)

C(Txi; Tyj) = �1

2
�Tx(3; 2) sin 2�

C(Txi; Tzj) = ��Tx(3; 1) cos�

C(Tyi; Tzj) = ��Ty(3; 1) sin� (5.57)

where � is the azimuth of the observation line. These covariance functions of the �rst
order derivatives of gravity potential depend on the azimuth of the observation line (�)
and are therefore non-isotropic.

Displacement covariance functions.

The covariance functions relating the displacements are derived by adopting the Gaussian
model as follows:

C(�zi; �zj) =
1

2
Azz:d

2
zze

�r2

2d2zz (5.58)

C(�xi; �xj) =
1

2
Axx:d

2
xxe

�r2

2d2xx (5.59)
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C(�yi; �yj) =
1

2
Ayy:d

2
yye

�r2

2d2yy (5.60)

C(�xi; �yj) =
1

2
Axy:d

2
xye

�r2

2d2xy (5.61)

C(�xi; �zj) =
1

2
Axz:d

2
xze

�r2

2d2xz (5.62)

C(�yi; �zj) =
1

2
Ayz:d

2
yze

�r2

2d2yz (5.63)

with respective variances and correlation lengths given by

CoIJ =
1

2
AIJd

2
IJ ; �IJ = 1:177dIJ

(5.64)

where I; J can take symbols x; y; z.

Empirical covariance functions.

The coe�cients of the covariance function are computed empirically by use of existing
prior information, for example free air gravity anomalies, map of existing information on
displacements. The region under investigation is divided into zones or classes with respect
to distances of the discrete data points, for example at 10km intervals. Mean values for
every class are obtained and plotted against the mean distances of their respectice classes.
From this graphical plot, an empirical covariance function is established. A covariance
function is completely characterised by its variance C0, the correlation length � and the
curvature parameter � [Moritz, 1976]. The variance is the value of the covariance func-
tion evaluated at zero distance while the correlation length is the distance corresponding
to a covariance which is half the variance. The curvature parameter gives the curva-
ture of the covariance function at zero separation distance between the points. Refer-
ence to evaluation of empirical covariance functions can be made to [Kanngieser, 1982],
[Kanngieser, 1983], [Stangl, 1979].

Propagation of covariance functions.

It is possible to have di�erent quantities of the same �eld related to that �eld by di�erent
linear operators e. g. the gravity anomaly �g, the geoidal height N and the elements of the
deection of the vertical � (north-south component), � (east-west component). In order
to �nd the covariance between any two such signals the law of propagation of covariances
[Moritz, 1972] is used. Let si and sj be two signals at points Pi and Pj respectively. Let
also La and Lb be the respective operators that produce si and sj from a common function
f that de�nes the �eld such that

si = Lafi

sj = Lbfj: (5.65)
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The covariance between si and sj is given by the law of covariance propagation as

cov(si; sj) = LaLbK(Pi; Pj) (5.66)

with K(Pi; Pj) being the covariance function of the stochastic process f . This law is used
in deriving covariances between the various signals that are present in four-dimensional
geodesy.

5.3.3 Covariance Function for Absolute Potential on the De-

formable Surface

Let the potential at point P1 be denoted by W1 and that at point Pj by W2. The
corresponding disturbing potentials are denoted by T1 and T2. The change in T due to
time lapse is �T1 and �T2 respectively, for both points. Ui denotes the time independent
normal potential at point i; (i = 1(2)). The potential W1 at a point P1 lying on this
deformable surface is expressed as

W1 = U1 + T1 + �T1 � �r1 (5.67)

and similarly for the point P2,

W2 = U2 + T2 + �T2 � �r2 (5.68)

on the same surface. Since Ui is known (�xed) and not stochastic it is dropped to obtain
the covariance function between the signals at points P1 and P2 as

C(W1;W2) = C(T1 + �T1 � �r1; T2 + �T2 � �r2)

= C(T1; T2) + C(�T1; �T2) + 2C(�r1; �r2)

= �T (1; 0) + ��T (1; 0) + 2C(�z1; �z2) (5.69)

where �r � �z. On the reference plane z1 = z2 = 0, the covariance function ( 5.69)
becomes

C(W1;W2) = �T (1; 0) + ��T (1; 0) + 2C(�z1; �z2): (5.70)

The covariance functions involved in equation ( 5.70) are expressed in equations ( 5.50),
( 5.51) and ( 5.58).
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5.3.4 Covariance Function of the Potential Di�erence

The change in potential di�erence on the deformable surface between points P1 and P2
can be expressed as

�W12 = W1 �W2 (5.71)

and similarly between points P 0

1 and P
0

2

�W1020 =W10 �W20 (5.72)

The covariance function of these signals is derived thus,

C(�W12; �W1020) = C(W1;W10) + C(W2;W20)

� C(W1;W20)� C(W2;W10) (5.73)

where

C(W1;W10) = C(T1; T10) + C(�T1; �T10) + 2C(�z1; �z10)

C(W2;W20) = C(T2; T20) + C(�T2; �T20) + 2C(�z2; �z20)

C(W1;W20) = C(T1; T20) + C(�T1; �T20) + 2C(�z1; �z20)

C(W2;W10) = C(T2; T10) + C(�T2; �T10) + 2C(�z2; �z10) (5.74)

All the covariance functions of equation ( 5.74) can be then written in the form

C(W;W ) = �T (1; 0) + ��T (1; 0) + 2C(�z; �z) (5.75)

with covariance functions on the reference plane that can be inferred from equations
( 5.50), ( 5.51) and ( 5.58).

5.3.5 Covariance Function for Gravity Intensity

Referring to equation (5.67), and ignoring the �xed normal potential U , the corresponding
change in gravity at P1 can be expressed as

grad(W1) = grad(T1 + �T1 � �r1)

� � @T

@Z1
� @�T

@Z1
� 2

r
�Z1: (5.76)
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The covariance function between the gravity intensity signals at P1 and P2 is then derived
as follows:

C(�1;�2) = C(� @T

@Z1
� @�T

@Z1
� 2

r
�Z1;� @T

@Z2
� @�T

@Z2
� 2

r
�Z2) (5.77)

and simpli�cation gives

C(�1;�2) = C(
@T

@Z1
;
@T

@Z2
) + C(

@�T

@Z 1
;
@�T

@Z2
) + (

2

r
)2C(�Z1; �Z2); (5.78)

where cross-covariances have been omitted as being negligible. Further simpli�cation of
equation ( 5.78) gives

C(�1;�2) = �T (3; 0) + ��T (3; 0) + (
2

R
)2C(�Z1; �Z2): (5.79)

On the reference plane the covariance function for gravity intensity becomes

C(�1;�2) = �T (3; 0) + ��T (3; 0) + (
2

R
)2C(�Z1; �Z2) (5.80)

with covariance expressions found in equations ( 5.54), ( 5.55) and ( 5.58).

5.3.6 Covariance Functions of Other Gravity Field Dependent

Observations

These observations are astronomical latitude, longitude and azimuth, horizontal direc-
tions, (or alternatively) angles and zenith distances. The covariance functions of the �rst
derivatives of potential are derived from the covariance function of the potential by the
law of covariance propagation [Moritz, 1972]. These covariances are expressed in equation
( 5.57). The cross-covariances have been ignored.

Astronomical latitude:

It is referred to observation equation ( 4.17) of astronomical latitude. The gravity related
signals Tx, Ty and Tz can be expressed using covariance functions by the law of propagation
of covariances as:

C(T�1 ; T�2) = C(d1�Txi + e1�Tyi + f1�Tzi; d2�Txj + e2�Tyj + f2�Tzj)

= d1�d2�C(Txi; Txj) + e1�e2�C(Tyi; Tyj) + f1�f2�C(Tzi; Tzj)

(5.81)
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where cross-covariances have been neglected as before. The d; e; f coe�cients are given in
equations ( 4.18) and the covariance functions are expressed in equations ( 5.57). Similarly
the covariance function of the gravity variation associated with the astronomical latitude
is given by

C(�T�1; �T�2) = C(d1��Txi + e1��Tyi + f1��Tzi; d2��Txj + e2��Tyj + f2��Tzj)

= d1�d2�C(�Txi; �Txj) + e1�e2�C(�Tyi; �Tyj)

+ f1�f2�C(�Tzi; �Tzj): (5.82)

The covariance function of astronomical latitude becomes

C(�1;�2) = d1�d2�(C(Txi; Txj) + C(�Txi; �Txj))

+ e1�e2�(C(Tyi; Tyj) + C(�Tyi; �Tyj))

+ f1�f2�(C(Tzi; Tzj) + C(�Tzi; �Tzj))

+ a1�a2�C(�xi; �xj) + a1�b2�C(�xi; �yj)

+ a1�c2�C(�xi; �zj) + b1�b2�C(�yi; �yj)

+ b1�c2�C(�yi; �zj) + c1�c2�C(�zi; �zj) (5.83)

with expressions for coe�cients a, b and c being found in equation ( 4.18).

Astronomical longitude:

Equation ( 4.29) for astronomical longitude is considered. The covariance function of
longitude becomes

C(�1;�2) = d1�d2�(C(Txi; Txj) + C(�Txi; �Txj))

+ e1�e2�(C(Tyi; Tyj) + C(�Tyi; �Tyj))

+ f1�f2�(C(Tzi; Tzj) + C(�Tzi; �Tzj))

+ a1�a2�C(�xi; �xj) + a1�b2�C(�xi; �yj)

+ a1�c2�C(�xi; �zj) + b1�b2�C(�yi; �yj)

+ b1�c2�C(�yi; �zj) + c1�c2�C(�zi; �zj) (5.84)

with the coe�cients given by equation ( 4.30).

Astronomical azimuth:

From equation ( 4.68), the covariance function of astronomical azimuth is

C(A1; A2) = d1Ad2A(C(Txi; Txj) + C(�Txi; �Txj))

+ e1Ae2A(C(Tyi; Tyj) + C(�Tyi; �Tyj))

+ f1Af2A(C(Tzi; Tzj) + C(�Tzi; �Tzj))

+ a1Aa2AC(�xi; �xj) + a1Ab2AC(�xi; �yj)

+ a1Ac2AC(�xi; �zj) + b1Ab2AC(�yi; �yj)

+ b1Ac2AC(�yi; �zj) + c1Ac2AC(�zi; �zj) (5.85)
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with the coe�cients a; b; c; d; e; f given by equation ( 4.72).

These covariance functions are also used for horizontal direction observations.

Zenith distance observations:

From equation ( 4.56), the covariance function of zenith distance observations is

C(Z1; Z2) = d1Zd2Z(C(Txi; Txj) + C(�Txi; �Txj))

+ e1Ze2Z(C(Tyi; Tyj) + C(�Tyi; �Tyj))

+ f1Zf2Z(C(Tzi; Tzj) + C(�Tzi; �Tzj))

+ a1Za2ZC(�xi; �xj) + a1Zb2ZC(�xi; �yj)

+ a1Zc2ZC(�xi; �zj) + b1Zb2ZC(�yi; �yj)

+ b1Zc2ZC(�yi; �zj) + c1Zc2ZC(�zi; �zj) (5.86)

with the coe�cients a; b; c; d; e; f given by equation ( 4.60).

Spatial distance observations:

The covariance function used for spatial distance observations is

C(S1; S2) = a1sa2sC(�xi; �xj) + a1sb2sC(�xi; �yj)

+ a1sc2sC(�xi; �zj) + b1sb2sC(�yi; �yj)

+ b1sc2sC(�yi; �zj) + c1sc2sC(�zi; �zj) (5.87)

with expression for coe�cients being given in equations ( 4.49).

GPS baselines:

The covariance function for GPS baselines takes the form:

C(xgps12; xgps1020) = C(�x1; �x10) + C(�x2; �x20)

� C(�x1; �x20)� C(�x2; �x10)

C(ygps12; ygps1020) = C(�y1; �y10) + C(�y2; �y20)

� C(�y1; �y20)� C(�y2; �y10)

C(zgps12; zgps1020) = C(�z1; �z10) + C(�z2; �z20)

� C(�z1; �z20)� C(�z2; �z10): (5.88)

These covariances are expressed in equations ( 5.58) through equation ( 5.63).

5.4 The Time Covariance Function

Both the gravity �eld related covariance functions and the spatial covariance functions
for quantities referring to the same epoch have been presented in the previous section.
However the continuation of the signals in time require a covariance function of time.
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Letting �t = tj�ti, where ti and tj denote di�erent time epochs, then the time covariance
function will be

C(�T1(tj); �T2(ti)) = C(�T1; �T2) � (e�
1

2

�t2

�2 )

=
1

2
A�T :d

4
�T (e

�
1

2

�t2

�2 )
Z
1

t=0
te�t(z1+z2)e

�t2d2
�T

2 J0(t:r)dt (5.89)

in the case of variations of the disturbing potential. The exponential (e�
1

2

�t2

�2 ) denotes
the time dependence on the signal and � is the time correlation length. For points on the
reference plane equation ( 5.89) can be simpli�ed as

C(�T1(tj); �T2(ti)) =
1

2
A�T :d

2
�T (e

�
1

2

�t2

�2 )e�
1

2
( r
d
)2 : (5.90)

The variance C0�T of this function, evaluated at �t = 0 and r = 0 is

C0�T =
1

2
A�T :d

2
�T

which is the same as the variance of the disturbing potential at the initial epoch given by
equation ( 5.53) but the time correlation length is given by

��T = d�T (1:3863� �t2

�2
)
1

2 : (5.91)

The disturbing potential functional T (to) does not require a time covariance function
because the time variation of this potential has a covariance function ( 5.89) instead. The
displacements, however require time covariance functions which are derived by introducing
a time element in their respective spatial covariance functions. Thus

C(�z1(ti); �z2(tj)) = C(�z1; �z2) � (e�
1

2

�t2

�2 ) =
1

2
Azz:d

2
zze

�r2

2d2zz � (e� 1

2

�t2

�2 ) (5.92)

C(�x1(ti); �x2(tj)) = C(�x1; �x2) � (e�
1

2

�t2

�2 ) =
1

2
Axx:d

2
xxe

�r2

2d2xx � (e� 1

2

�t2

�2 ) (5.93)

C(�y1(ti); �y2(tj)) = C(�y1; �y2) � (e�
1

2

�t2

�2 ) =
1

2
Ayy:d

2
yye

�r2

2d2yy � (e� 1

2

�t2

�2 ) (5.94)

C(�x1(ti); �y2(tj)) = C(�x1; �y2) � (e�
1

2

�t2

�2 ) =
1

2
Axy:d

2
xye

�r2

2d2xy � (e� 1

2

�t2

�2 ) (5.95)
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C(�x1(ti); �z2(tj)) = C(�x1; �z2) � (e�
1

2

�t2

�2 ) =
1

2
Axz:d

2
xze

�r2

2d2xz � (e� 1

2

�t2

�2 ) (5.96)

C(�y1(ti); �z2(tj)) = C(�y1; �z2) � (e�
1

2

�t2

�2 ) =
1

2
Ayz:d

2
yze

�r2

2d2yz � (e� 1

2

�t2

�2 ): (5.97)

The time covariance functions

It is now possible to express covariance functions for the various geodetic observables that
express the signals in time. Some of the classical and space observations are considered
below.

Potential di�erence The time covariance function of the signals involved in potential
is derived by taking into account equation ( 5.73)

C(�W12(ti); �W1020(tj)) = C(W1(ti);W10(tj)) + C(W2(ti);W20(tj))

� C(W1(ti);W20(tj))� C(W2(ti);W10(tj)) (5.98)

where

C(W1(ti);W10(tj)) = C(T1(to); T10(to)) + C(�T1(ti); �T10(tj))

+ 2C(�z1(ti); �z10(tj))

C(W2(ti);W20(tj)) = C(T2(to); T20(to)) + C(�T2(ti); �T20(tj))

+ 2C(�z2(ti); �z20(tj))

C(W1(ti);W20(tj)) = C(T1(to); T20(to)) + C(�T1(ti); �T20(tj))

+ 2C(�z1(ti); �z20(tj))

C(W2(ti);W10(tj)) = C(T2(to); T10(to)) + C(�T2(ti); �T10(tj))

+ 2C(�z2(ti); �z10(tj)): (5.99)

Gravity intensity observations The time covariance function for gravity intensity is
obtained by considering equation ( 5.78)

C(�1(ti);�2(ti)) = C(
@T

@Z1
(ti);

@T

@Z2
(tj)) + C(

@�T

@Z 1
(ti);

@�T

@Z2
(tj))

+ (
2

r
)2C(�Z1(ti); �Z2(tj)); (5.100)

Astronomical latitude:

This covariance function is deduced by considering equation ( 5.83)

C(�1(ti);�2(tj)) = d1�d2�(C(Tx1(to); Tx2(to)) + C(�Tx1(ti); �Tx2(tj)))
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+ e1�e2�(C(Ty1(to); Ty2(to)) + C(�Ty1(ti); �Ty2(tj)))

+ f1�f2�(C(Tz1(to); Tz2(to)) + C(�Tz1(ti); �Tz2(tj)))

+ a1�a2�C(�x1(ti); �x2(tj)) + a1�b2�C(�x1(ti); �y2(tj))

+ a1�c2�C(�x1(ti); �z2(tj)) + b1�b2�C(�y1(ti); �y2(tj))

+ b1�c2�C(�y1(ti); �z2(tj)) + c1�c2�C(�z1(ti); �z2(tj)): (5.101)

The covariances in the above equation are expressed in equations ( 5.90) and ( 5.92)
through ( 5.97).

Astronomical longitude:

Considering equation ( 5.84) the time covariance function for astronomical longitude be-
comes

C(�1(ti);�2(tj)) = d1�d2�(C(Tx1(to); Tx2(to)) + C(�Tx1(ti); �Tx2(tj)))

+ e1�e2�(C(Ty1(to); Ty2(to)) + C(�Ty1(ti); �Ty2(tj)))

+ f1�f2�(C(Tz1(to); Tz2(to)) + C(�Tz1(ti); �Tz2(tj)))

+ a1�a2�C(�x1(ti); �x2(tj)) + a1�b2�C(�x1(ti); �y2(tj))

+ a1�c2�C(�x1(ti); �z2(tj)) + b1�b2�C(�y1(ti); �y2(tj))

+ b1�c2�C(�y1(ti); �z2(tj)) + c1�c2�C(�z1(ti); �z2(tj)): (5.102)

The covariances in the above equation are expressed in equations ( 5.90) and ( 5.92)
through ( 5.97).

Zenith distance observations:

The time covariance function involved in zenith distance obseravtions is derived by con-
sidering equation ( 5.86)

C(Z1(ti); Z2(tj)) = d1Zd2Z(C(Tx1(to); Tx2(to) + C(�Tx1(ti); �Tx2(tj)))

+ e1Ze2Z(C(Ty1(to); Ty2(to)) + C(�Ty1(ti); �Ty2(tj)))

+ f1Zf2Z(C(Tz1(to); Tz2(to)) + C(�Tz1(ti); �Tz2(tj)))

+ a1Za2ZC(�x1(ti); �x2(tj)) + a1Zb2ZC(�x1(ti); �y2(tj))

+ a1Zc2ZC(�x1(ti); �z2(tj)) + b1Zb2ZC(�y1(ti); �y2(tj))

+ b1Zc2ZC(�y1(ti); �z2(tj)) + c1Zc2ZC(�z1(ti); �z2(tj)) (5.103)

Spatial distance observations:

The time covariance function for spatial distance observations is derived by considering
equations ( 5.87), ( 5.92) through ( 5.97)

C(S1(ti); S2(tj)) = a1sa2sC(�x1(ti); �x2(tj)) + a1sb2sC(�x1(ti); �y2(tj))

+ a1sc2sC(�x1(ti); �z2(tj)) + b1sb2sC(�y1(ti); �y2(tj))

+ b1sc2sC(�y1(ti); �z2(tj)) + c1sc2sC(�z1(ti); �z2(tj)): (5.104)
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GPS baselines:

The time covariance function for GPS baselines is derived from equation ( 5.88) and
considering equations ( 5.92) through ( 5.97) as

C(xgps12(ti); xgps1020(tj)) = C(�x1(ti); �x10(tj)) + C(�x2(ti); �x20(tj))

� C(�x1(ti); �x20(tj))� C(�x2(ti); �x10(tj))

C(ygps12(ti); ygps1020(tj)) = C(�y1(ti); �y10(tj)) + C(�y2(ti); �y20(tj))

� C(�y1(ti); �y20(tj))� C(�y2(ti); �y10(tj))

C(zgps12(ti); zgps1020(tj)) = C(�z1(ti); �z10(tj)) + C(�z2(ti); �z20(tj))

� C(�z1(ti); �z20(tj))� C(�z2(ti); �z10(tj)): (5.105)
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6. The Test Examples

6.1 The Karlsruhe Network

6.1.1 General Information about the Network

The Karlsruhe test network is situated in Germany and lies between the latitudes 48�480N
and 49�300N and longitudes 7�500E and 9�000E in the upper Rhine Graben area. It was
established since 1967 and covers an area of about 50 � 60km2. It consists of eleven
network points. These have however, been reduced owing to optimisation studies. This
study limits itself to seven points of this network. These are Letzenberg (3), Michaelsberg
(2), Turmberg (1), St�a�elsberg (6), Madenburg (5), Kalmit (4) and Herxheim (7).

The network was setup originally for the purpose of carrying out investigations on elec-
tronic distance meters (EDM). Today it serves as a network for geodynamic investiga-
tions. Measurements made in this network include distances, directions, zenith angles,
astronomical- latitudes and longitudes, gravity measurements and lately GPS measure-
ments. More information about the network is found in [Kuntz, 1971], [Klein, 1997],
[Heck et al., 1995].
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Figure. 6.1: The Karlsruhe test network.

By no means can the Karlsruhe test network be considered a regional network owing to
its small size (see Fig. 6.1 above). However due to the availability of some data for this
network, it was chosen as test example for demonstration purposes.

6.1.2 The Computation of the Test Network

Only classical type of observations of type spatial distances, zenith distances, horizontal
directions, astronomical latitude and longitude and gravity intensity see Table ( 6.1) were
considered. All the observations present were considered to have been made at the same
instant (epoch).

This choice led to a single epoch type of adjustment that corresponds to the three-
dimensional integrated case. Only the spatial covariance functions (see section 5.3.2)
were required. The time covariance functions are required where the observations are
made at di�erent observation periods. In order to use the covariance functions, the free
parameters are �rst determined separately from suitable data, for example free air gravity
anomalies. In this example, after some preliminary investigations about the covariance
functions, it turned out that the values of these free parameters did not vary greatly for
the regions considered. Thus values given in [Reilly, 1979] were adopted. The value of
the variance used was C0�T = 5 � 10�8(N=Kg)2 and the distance dT = 10km. Variation
of dT even upto d = 100km had very little inuence on the results.
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Table 6.1: Types of observations

No. Observation type No. of observations

1 Spatial distances 21
2 Horizontal directions 42
3 Zenith distances 42
4 Astro. latitude 7
5 Astro. longitude 7
6 Gravity intensity 7

Table 6.2: Approximate geocentric coordinates of the test network

STATION X Y Z
No. (m) (m) (m)

1 4147006.036 618709.483 4790583.678
2 4138576.887 623279.522 4797217.653
3 4123745.629 629406.577 4809061.013
4 4124664.462 585763.490 4814320.064
5 4137880.317 582130.796 4803209.231
6 4145159.421 578798.129 4797418.098
7 4135921.247 597614.197 4802590.615

The observations were then processed according to the model of four-dimensional geodesy
given in equation ( 3.20) but with the time dependent signals missing. Thus the example
did not include displacements and time disturbing potential variations. The resulting
normal equation matrix showed a rank defect of four. This was due to three translations
and a rotation about the z axis since no azimuth observations were present. The datum
was then de�ned over all points of the network using the approximate coordinates thus
resulting in a free network adjustment.

Tables ( 6.2) through ( 6.4) show some results about this network when computed using
the proposed covariance functions.

Table 6.3: Adjusted coordinates

STATION X Y Z
No. (m) (m) (m)
1 4147006.107 618709.549 4790583.749
2 4138576.909 623279.555 4797217.806
3 4123745.683 629406.542 4809061.242
4 4124664.456 585763.413 4814319.956
5 4137880.100 582130.753 4803208.857
6 4145159.563 578798.180 4797418.120
7 4135921.277 597614.199 4802590.621
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Table 6.4: Standard errors of adjusted coordinates

STATION STD. ERR STD. ERR STD. ERR
No. �X(m) �Y (m) �Z(m)
1 0.00864 0.00567 0.01339
2 0.00713 0.00293 0.01302
3 0.00930 0.00359 0.01845
4 0.01062 0.00594 0.01374
5 0.01085 0.00242 0.01743
6 0.00690 0.00299 0.01313
7 0.00690 0.00160 0.00872

6.2 The Kenyan Gravity Network

The gravity measurements that were available were observed along a section running in
a northwest- southeast direction. For the computation of empirical covariance functions
a section of this gravity network was used (see Figure ( 6.3)).

The covariance function An empirical covariance function for gravity anomalies was
computed from free air gravity anomalies (see Figure ( 6.2)). The values of the parameters
are:

C0�g = 1205:0mgal**2

��g = 55:0km

(6.1)
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Figure 6.2: The empirical covariance function computed from free air gravity anomalies

The distribution of the points considered is shown in Figure ( 6.3). The model covariance
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Figure 6.3: The distribution of the free air gravity anomaly points

functions of the potential and the vertical derivative resulting from the above empiri-
cal model are shown in Figures ( 6.4) and ( 6.5) respectively. The vertical component
of gravity vector has a higher e�ect on the vertical displacements than the horizontal
components.
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Figure 6.5: The model covariance function for the vertical derivative of potential -Tz
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7. Summary and Conclusions

Four-dimensional geodesy deals with processing of integrated geodetic observations in
order to analyse the network geometry and its variation with time, when these observations
depend on the gravity �eld of the earth and its temporal variation. This consideration
introduces the time dimension into the three-dimensional integrated model.

The usual way to establish a geodetic network is to choose a few discrete points and make
observations from them. These measurements are inuenced by the gravity �eld which is
of continuous nature and also time variant. The earth's surface is also deformable with
all its points being in a state of motion (see Figure ( 1.1)). The change in position of the
points or the displacements are also dependent on time.

With this background in mind this study set out to establish a model whereby not only
the continuous e�ect of the gravity �eld on the measurements is taken into account but
also the time varying aspect of this �eld and the time variation of position (displacements)
on the observations.

A general derivation of the observation equation considering the above mentioned aspects
was made. The resulting equation of four-dimensional geodesy consists of essentially four
di�erent type of parameters - the coordinate corrections, the displacements, the disturbing
potential function (or its derivatives) and their time variations. The coordinate corrections
were considered as being of deterministic type while the other three were considered as
stochastic signals. The signals were then considered as continuous both in time and space.
Speci�c observation equations for some common geodetic observations were then derived.

Stochastic modelling was considered inducing covariance functions for both gravity po-
tential �eld functionals and the displacements. The covariance model according to
[Reilly, 1979] was adopted due to its spatial character and from it covariance functions for
the disturbing potential and its common derivatives were derived. Further, displacement
covariance functions were also derived. Based on some pro�le of the Kenyan gravity free
air anomalies, covariance functions relating the potential �eld parameters were empirically
computed. A test example based on the Karlsruhe test network was computed based on
the stochastic signal model and the solution was obtained according to the least squares
collocation.

In order to realise the high precisions available today from geodetic instruments and pro-
cedures, it can be concluded that it is necessary to model not only the gravity dependence
on the observations but also the time dependent variations in both positioning and the
gravity �eld in an integrated way. A four-dimensional integrated model for geodesy was
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developed in both time and space.

Further and in view of the increasing applications of the GPS in precise geodetic work,
a GPS antenna calibration was carried out. By studying the spectrum of the normal
equation matrix containing the information about the antenna o�sets a method of testing
for the signi�cance of the non-estimable vertical component of the antenna o�sets was
presented.

As presented here the problem of modelling in four-dimensional geodesy is one of handling
the continuous signals (see equation ( 3.20)) both in time and space. In the stochastic
modelling the data used in the evaluation of covariance functions need to be well dis-
tributed both in space and time for these covariance functions to be more reliable. The
signi�cance of the cross-covariances between the gravity �eld related signals and the dis-
placements may need to be investigated further so as to improve this modelling. In the
event that the four-dimensional modelling is to be used for networks of vast extent, then
the plane approximation of the covariance functions will require to be extended on to the
sphere. For local area networks, for example in engineering surveys, simpler analytical
expressions may be preferred against the stochastic approach because in small areas the
displacements usually exhibit regular behaviour which can be modelled using only few
parameters. In such cases the gravity �eld parameters may only have a negligible e�ect
in relation to the achievable quality of the observations.

89



Bibliography

[Adam, 1990] Adam, J. (1990). Estimability of Geodetic Parameters from space VLBI
Observables. The Ohio State University, Department of Geodetic Science, Columbus.
Report No. 406.

[Aduol, 1989] Aduol, F. (1989). Integrierte geod�atische Netzanalyse mit stochastischer
Vorinformation �uber Schwerefeld und Referenzellipsoid. Deutsche Geod�atische Kom-
mission, Reihe C, Heft Nr. 351. M�unchen.

[Asteriadis and Schwan, 1998] Asteriadis, G. and Schwan, H. (1998). GPS and Terrestrial
Measurements for Detecting Crustal Movements in Seismic Area. Survey Review, 34,
No. 269 (July 1998):447{454.

[Baarda, 1973] Baarda, W. (1973). S-Transformation and Criterion Matrices. Nether-
lands Geodetic Commission, Publications on Geodesy, vol. 5, no. 1, Delft.

[Becker, 1984] Becker, M. (1984). Analyse von hochpr�azisen Schweremessungen. Deutsche
Geod�atische Kommission, Reihe C, Heft Nr. 294. M�unchen.

[Bevis et al., 1997] Bevis, M., Bock, Y., Fang, P., Reilinger, R., Herring, T., Stowell, J.,
and Jr., R. S. (1997). Blending Old and New Approaches to Regional GPS Geodesy.
EOS, 78:277{285.

[Blaha, 1977] Blaha, G. (1977). Least Squares Prediction and Filtering in any Dimensions
using the Principles of Array Algebra, Ed. I. Mueller. Bull. Geod., 51:265{286.

[Breuer and Wohlleben, 1995] Breuer, B. and Wohlleben, R. (1995). Kalibrierung von
GPS-Antennen f�ur hochgenaue geod�atische Anwendungen. SPN, 2:49{59.

[Bruns, 1878] Bruns, H. (1878). Die Figur der Erde. Publ. K�onigl. Preuss. Geod. Inst.,
Berlin.

[Bullen, 1975] Bullen, K. E. (1975). The Earth's Density. Chapman and Hall, London.

[Collier et al., 1988] Collier, P. A., Eissfeller, B., Hein, G., and Landau, H. (1988). On a
Four-dimensional Integrated Geodesy. Bull. Geod., 62:71{91.

[Dermanis, 1980] Dermanis, A. (1980). VLBI: Principles and Geodynamic Prospectives.
Quaterniones Geodaesiae, 3:213{230.

[Dermanis, 1985] Dermanis, A. (1985). Optimization Problems in Geodetic Networks with
Signals. In Optimization and Design of Geodetic Networks., pages 220{256, Springer-
Verlag.

90



[Dermanis, 1991a] Dermanis, A. (1991a). Statistical Inference in Integrated Geodesy.
XXth Congress of the IUGG, IAG., Vienna, August 11-24, 1991.

[Dermanis, 1991b] Dermanis, A. (1991b). A Uni�ed Approach to Linear Estimation and
Prediction. XXth Congress of the IUGG, IAG., Vienna, August 11-24, 1991.

[Dermanis, 1995] Dermanis, A. (1995). The Nonlinear and Space-time Geodetic Datum
Problem. Mathematische Methoden der Geod�asie. Mathematische Forschungsinstitut
Oberwolfach 01.10.1995.

[Dermanis, 1998] Dermanis, A. (1998). Generalized inverses of nonlinear mappings and
the nonlinear geodetic datum problem. Journal of Geodesy, 72:71{100.

[Dermanis and Rossikopoulos, 1988] Dermanis, A. and Rossikopoulos, D. (1988). Mod-
elling Alternatives in Four-dimensional Geodesy. In International Symposium, Instru-
mentation, Theory and Analysis for Integrated Geodesy, May 16 - 20., pages 115{145,
Sopron, Hungary.

[Dong et al., 1998] Dong, D., Herring, T. A., and King, R. W. (1998). Estimating Re-
gional Deformation from a Combination of Space and Terrestrial Geodetic Data. Jour-
nal of Geodesy., 72:200{214.

[Draheim, 1971] Draheim, H. (1971). Die Geod�asie ist die Wissenschaft von der Ausmes-
sung und Abbildung der Erdober�ache - eine Umfrage zur heutigen Situation in der
Geod�asie. Allgemeine Vermessungs-Nachrichten, 78:237{251.

[Drewes, 1995] Drewes, H. (1995). Station�are und Kinematische Referenzsys-
teme. Deutsches Geod�atisches Forschungsinstitut - DGK Arbeitskreis - Rezente
Krustenbewengung- Leipzig, 16. /17.2.1995.

[Eeg and Krarup, 1975] Eeg, J. and Krarup, T. (1975). Integrated geodesy. In Mathe-
matical Geodesy, Methoden und Verfahren der mathematischen Physik, Band 12, B I,
Wissenschafts- Verlag, Zurich.

[Geiger, 1988] Geiger, A. (1988). Einuss und Bestimmung der Variabilit�at des Phasen-
zentrums von GPS-Antennen. Institut f�ur Geod�asie und Photogrammetrie an der ETH
Z�urich Mitteilungen Nr. 43.

[Gendt et al., 1995] Gendt, G., Dick, G., and Reigber, C. (1995). Das IGS- Analysezen-
trum am GFZ Potsdam: Verarbeitungssystem und Ergebnisse. Zeitschrift f�ur Vermes-
sungswesen., 9:438{448.

[Gendt et al., 1998] Gendt, G., Dick, G., and Soehne, W. (1998). GFZ Analysis Center
of IGS. IGS Annual Report 1997., Analysezentrum am GFZ Potsdam.

[Grafarend, 1978a] Grafarend, E. W. (1978a). Dreidimensionale geod�atische Abbildungs-
gleichungen und die N�aherungs�gur der Erde. Zeitschrift f�ur Vermessungswesen.,
3:132{140.

[Grafarend, 1978b] Grafarend, E. W. (1978b). Operational Geodesy. In Approximation
Methods in Geodesy. Eds. Moritz and S�unkel., pages 235{284, Herbert Wichmann Ver-
lag Karlsruhe.

91



[Grafarend, 1979] Grafarend, E. W. (1979). Space-time Geodesy. Boll. Di Geodesia e
Scienze A�ni. ANNO XXXVIII N. 2, 2:305{343.

[Grafarend, 1981] Grafarend, E. W. (1981). Die Beobachtungsgleichungen der drei-
dimensionalen Geod�asie im Geometrie- und Schwereraum. Zeitschrift f�ur Vermes-
sungswesen., 8:411{429.

[Grafarend, 1982] Grafarend, E. W. (1982). Space-time Geodesy Eds. H. Moritz and
H. Sunkel. In Geodesy and Global Geodynamics., pages 577{612, Mitteilungen der
Geod�atischen Institute der Technischen Universit�at Graz, Folge 41.

[Grafarend and Richter, 1978] Grafarend, E. W. and Richter, B. (1978). Threedimen-
sional Geodesy II - the Datum Problem. Zeitschrift f�ur Vermessungswesen, 103:44{59.

[Heck, 1984] Heck, B. (1984). Zur Bestimmung vertikaler rezenter Erdkrustenbewegungen
und zeitlicher �Anderungen des Schwerefeldes aus wiederholten Schweremessungen und
Nivellements. Deutsche Geod�atische Kommission, Reihe C, Heft Nr. 302. M�unchen.

[Heck, 1987] Heck, B. (1987). Rechenverfahren und Auswertemodelle der Landesvermes-
sung - klassische und moderne Methoden. Herbert Wichmann Verlag Karlsruhe.

[Heck, 1989] Heck, B. (1989). Geod�atische Methoden zur Bestimmung rezenter Krusten-
bewengungen im lokalen und regionalen Bereich. In Rezente Krustenbewegungen, Eds.
Kersting, N. und Welsch W.; Schriftenreihe Universit�at der Bundeswehr M�unchen.
Heft 39, June 8 - 9., pages 143{170, Neubiberg, Germany.

[Heck, 1991] Heck, B. (1991). Referenzsysteme. In GPS und Integration von GPS in
bestehende geod�atische Netze, Geod�atisches Institut, Universit�at Karlsruhe. p. 90-124.

[Heck et al., 1995] Heck, B., Illner, M., and J�ager, R. (1995). Deformationsanalyse zum
Testnetz Karlsruhe auf der Basis der terrestrichen Nullmessung und aktueller GPS-
Kampagnen. In Festschrift f�ur Heinz Draheim, Eugen Kuntz, Herman M�alzer., pages
75{91, Geod�atisches Institut der Universit�at Karlsruhe (TH), Germany.

[Hein, 1986] Hein, G. (1986). Integrated Geodesy. In Lecture Notes in Earth Sciences.
Mathematical Techniques in Physical Geodesy. Lectures delivered at the International
Summer School in the Mountains on Mathematical and Numerical Techniques in Phys-
ical Geodesy, Admont, Austria August 25 to September 5, 1986. Eds. H. S�unkel., pages
505{548, Springer-Verlag Berlin, Heidelberg, New York, London.

[Hein and Kistermann, 1981] Hein, G. and Kistermann, R. (1981). Mathematical Foun-
dations of Non-tectonic E�ects in Geodetic Recent Crustal Movement Models. Tectono-
physics, 71:315{334.

[Hein and Landau, 1989] Hein, G. and Landau, H. (1989). A Contribution to 3D-
Operational Geodesy. Part 3: OPERA - A Multipurpose Program for Operational Ad-
justment of Observations of Terrestrial Type. Deutsche Geod�atische Kommission, Reihe
B, Heft Nr. 264. M�unchen.

[Hein et al., 1987] Hein, G., Landau, H., Kakkuri, J., and Vermeer, M. (1987). Inte-
grated 3D-Adjustment of the SW Finland Test Net with the FAF Munich OPERA 2.3
Software. Reports of the Finnish Geodetic Institute, No. 87.3.

92



[Heiskanen and Moritz, 1967] Heiskanen, W. A. and Moritz, H. (1967). Physical Geodesy.
W. H. Freeman and Company, San Franscisco and London.

[Helmert, 1880] Helmert, F. R. (1880). Die mathematischen und physikalischen Theorien
der h�oheren Geod�asie - Einleitung und 1. Teil;. B G Teubner, Leipzig.

[Hofmann-Wellenhof et al., 1992] Hofmann-Wellenhof, B., Lichtenegger, H., and Collins,
J. (1992). Global Positioning System - Theory and Practice. Springer-Verlag - Wien -
New York.

[Holdahl and Hardy, 1979] Holdahl, S. and Hardy, R. (1979). Solvability and Multi-
quadric Analysis as applied to Investigations of Crustal Movements. Tectonophysics,
52:139{155.

[Hotine, 1957] Hotine, M. (1957). Metrical Properties of the Earth's Gravitational Field.
AIG Toronto.

[Illner, 1985] Illner, I. (1985). Datumsfestlegung in freien Netzen. Deutsche Geod�atische
Kommission, Reihe C, Heft Nr. 309. M�unchen.

[Jinsheng et al., 1992] Jinsheng, N., Dajie, L., and Dingbo, C. (1992). Theory of inte-
grated geodesy and its practical applications. Acta Geodetica et Cartographica Sinica,
pages 7{21.

[Kaniuth et al., 1996] Kaniuth, K., Drewes, H., Stuber, K., Tremel, H., and Moirano, J.
(1996). Report on the Processing of the SIRGAS 95 GPS Network - interner Bericht.
Deutsches Geod�atisches Forschungsinstitut.

[Kanngieser, 1982] Kanngieser, E. (1982). Untersuchung zur Bestimmung tektonisch be-
dingter zeitlicher Schwere- und H�ohen�anderungen in Nordisland. Wiss. Arb. Fachr.
Vermessungswesen der Universit�at Hannover, Nr. 114.

[Kanngieser, 1983] Kanngieser, E. (1983). Modellierung vertikaler Krustenbewegungen
durch Kollokation. Zeitschrift f�ur Vermessungswesen, 108:373{381.

[Klein, 1997] Klein, U. (1997). Analyse und Vergleich unterschiedlicher Modelle der drei-
dimensionalen Geod�asie. Deutsche Geod�atische Kommission, Reihe C, Heft Nr. 479.
M�unchen.

[Kleusberg and Teunissen., 1996] Kleusberg, A. and Teunissen., P. (1996). GPS for
Geodesy. Springer Verlag.

[Koch, 1978] Koch, K. (1978). Hypothesentests bei singul�aren Ausgleichungsproblem.
Zeitschrift f�ur Vermessungswesen., 103:1{9.

[Koch, 1988] Koch, K. (1988). Parameter Estimation and Hypothesis Testing in Linear
Models. Springer-Verlag.

[Krarup, 1971] Krarup, T. (1971). Introducing Integrated Geodesy. Lectures read at the
Technical University of Berlin.

[Kulkarni, 1992] Kulkarni, M. N. (1992). A Feasibility Study of Space VLBI For Geodesy
and Geodynamics. The Ohio State University, Department of Geodetic Science, Colum-
bus. Report No. 420.

93



[Kuntz, 1971] Kuntz, E. (1971). Elektronische Entfernungsmessungen auf Teststrecken
und im Testnetz Karlsruhe. Deutsche Geod�atische Kommission, Reihe B, Heft Nr. 182.
M�unchen.

[Lambeck, 1988] Lambeck, K. (1988). Geophysical Geodesy. The Slow Deformation of the
Earth. Oxford Science Publications.

[Lambeck, 1989a] Lambeck, K. (1989a). The Fourth Dimension in Geodesy: Observing
the Deformation of the Earth Eds. F.K. Brunner and C. Rizos. In Lecture Notes in Earth
Sciences: Developments in Four-Dimensional Geodesy, pages 1{14, Springer-Verlag.

[Lambeck, 1989b] Lambeck, K. (1989b). Glacial Rebound and Sea Level Change: An
Example of Deformation of the Earth by Surface Loading. Eds. F.K. Brunner and C.
Rizos. In Lecture Notes in Earth Sciences: Developments in Four-Dimensional Geodesy,
pages 112{137, Springer-Verlag.

[Langley, 1995] Langley, R. (1995). GPS Receivers and the Observables. Eds. A. Kleus-
berg and P.J.G. Teunissen. In GPS for Geodesy, pages 141{173, Springer- Verlag.

[Le Pichon et al., 1973] Le Pichon, X., Francheteau, J., and Bonnin, J. (1973). Plate
Tectonics: Developments in Geotectonics 6. Elsevier Scienti�c Publishing Company,
Amsterdam - London - New York.

[Leick, 1990] Leick, A. (1990). GPS Satellite Surveying. John Wiley & Sons., New York/
Chichester/ Brisbane/ Toronto/ Singapore.

[Marussi, 1949] Marussi, A. (1949). Fondements de geometrie di�erentielle absolue du
champ potentiel terrestre. Bull. Geod., No. 14, pp. 411 - 439.

[Marussi, 1950] Marussi, A. (1950). Principles of Intrinsic Geodesy Applied to the Field
of Somigliana. In Marussi A.; Intrinsic Geodesy (translated by W. I. Reilly). Springer
Verlag Berlin, 1985. pp. 101 - 108.

[Marussi, 1951] Marussi, A. (1951). Foundations of Intrinsic Geodesy. In Marussi A.;
Intrinsic Geodesy (translated by W. I. Reilly). Springer- Verlag, Berlin,Heidelberg,
New York, Tokyo 1985. pp. 13 - 58.

[Meissl, 1969] Meissl, P. (1969). Zusammenfassung und Ausbau der inneren Fehlertheorie
eines Punkthaufens. Deutsche Geod�atische Kommission, Reihe A, M�unchen, 61:8{21.

[Menard, 1975] Menard, H. W. (1975). Epeirogeny and Plate Tectonics. The Ohio State
University, Department of Geodetic Science, Columbus. Report No. 231, pp 61-52.

[Morelli et al., 1974] Morelli, C., Gantar, C., Honkasalo, T., McConnell, R., Tanner, J.,
Szabo, B., Uotila, U., and Whalen, C. (1974). The International Gravity Standard-
ization Net 1971 (IGSN 71). International Association of Geodesy, Special Publication
No. 4, Paris.

[Moritz, 1972] Moritz, H. (1972). Advanced Least- Squares Methods. The Ohio State
University, Department of Geodetic Science, Columbus. Report No. 175.

[Moritz, 1973] Moritz, H. (1973). Least-Squares Collocation. Deutsche Geod�atische Kom-
mission, Reihe A, Heft Nr. 75. M�unchen.

94



[Moritz, 1976] Moritz, H. (1976). Covariance Functions in Least-squares Collocation. The
Ohio State University, Department of Geodetic Science, Columbus. Report No. 240.

[Moritz, 1978] Moritz, H. (1978). The Operational Approach to Physical Geodesy. The
Ohio State University, Department of Geodetic Science, Columbus. Report No. 277.

[Moritz, 1979] Moritz, H. (1979). Concepts in Geodetic Reference Frames. The Ohio
State University, Department of Geodetic Science, Columbus. Report No. 294.

[Mueller, 1982] Mueller, I. (1982). Reference coordinate systems for earth dynamics: a
review. Eds. H. Moritz and H. S�unkel. In Geodesy and Global Geodynamics., pages 71{
92, Mitteilungen der Geod�atisches Institute der Technischen Universit�at Graz, Folge
41.

[Mueller, 1988] Mueller, I. (1988). Concepts in Geodetic Reference Frames. The Ohio
State University, Department of Geodetic Science, Columbus. Report No. 394.

[Reilly, 1979] Reilly, W. I. (1979). Mapping the Local Geometry of the Earth's Gravity
Field. Geophysics Division, Department of Scienti�c and Industrial Research New
Zealand. Report No. 143.

[Rothacher et al., 1993] Rothacher, M., Beutler, G., Werner, G., Brockman, E., and
Mervert, L. (1993). Bernese GPS Software Version 3.5. Astronomical Institute, Uni-
versity of Bern.

[Rothacher et al., 1995] Rothacher, M., Schaer, S., Mervart, L., and Beutler, G. (1995).
Determination of Antenna Phase Center Variations Using GPS Data. In Paper pre-
sented at the IGS Workshop. May. 15th - 17th, 1995., Potsdam, Germany.

[Scha�rin, 1985] Scha�rin, B. (1985). Das Geod�atische Datum mit Stochastischer Vorin-
formation. Deutsche Geod�atische Kommission, Reihe C, Heft Nr. 313. M�unchen.

[Scha�rin, 1986] Scha�rin, B. (1986). New estimation/ prediction techniques for the de-
termination of crustal deformations in the presence of prior geophysical information.
Tectonophysics, 29:361{367.

[Schmitt et al., 1994] Schmitt, G., J�ager, R., Oppen, S., Leinen, S., and Nkuite, G.
(1994). NETZ2D Version 3.1. Programm zur Ausgleichung und Analyse (Plannung)
zweidimensionaler terrestrischer Netze relativer und absoluter GPS-Netze und zur GPS-
Integration. Geod�atisches Institut, Universit�at Karlsruhe, Germany.

[Schupler et al., 1995] Schupler, B. R., Clark, T. A., and Allshouse, R. L. (1995). Char-
acterization of GPS User Antennas: Reanalysis and new results. In Paper presented at
IUGG General Assembly, July 1995, Boulder, USA.

[SIRGAS, 1997] SIRGAS (1997). Final Report - Working Groups I and II. IBGE, Brazil
1997.

[Smith et al., 1989] Smith, D., Kolenkiewicz, R., Dunn, P., Torrance, M., Klosko, S.,
Robbins, J., Williamson, R., Pavlis, E., Douglas, N., and Fricke, S. (1989). The De-
termination of Present day Tectonic Motions from Laser Ranging to LAGEOS. Eds.
F.K. Brunner and C. Rizos. In Lecture Notes in Earth Sciences: Developments in
Four-Dimensional Geodesy, pages 221{240, Springer-Verlag.

95



[Stangl, 1979] Stangl, G. (1979). Lokale Kovarianzfunktionen von Freiluftanomalien in
der Bundesrepublik Deutschland. Allgemeine Vermessungs-Nachrichten., 86:81{88.

[Torge, 1980] Torge, W. (1980). Geodesy - An Introduction. Walter de Gruyter Berlin -
New York.

[Tsuji et al., 1995] Tsuji, H., Hatanaka, Y., Sagiya, T., and Hashimoto, M. (1995). Co-
seismic crustal deformation from the 1994 Hokkaido-Toho-Oki earthquake monitored
by a nationwide continous GPS array in Japan. Geophysical Research Letters, 22:1669.

[Uotila, 1978] Uotila, U. A. (1978). World Gravity Standards. In Applications of Geodesy
to Geodynamics; Ed. I.I Mueller. The Ohio State University, Department of Geodetic
Science, Report No. 280., pages 237{238, 1958 Neil Avenue Columbus, Ohio 43210.

[van Mierlo, 1980] van Mierlo, J. (1980). Free network adjustment and S-transformations.
Deutsche Geod�atische Kommission, Reihe B, M�unchen, 252:41{54.

[Vanicek, 1975] Vanicek, P. (1975). Vertical Crustal Movements in Nova Scotia as Deter-
mined from Scattered Geodetic Releveling. Tectonophysics, 29:183{189.

[Vanicek et al., 1987] Vanicek, P., Cross, P., Hannale, J., Hradilek, L., Kelm, R.,
M�akinen, J., Merry, C., Sj�oberg, L., Steeves, R., and Zilkoski, D. (1987). Four-
dimensional Geodetic Positioning. Report of the IAG. Manuscripta Geodaetica, 12:147{
222.

[Vanicek and Krakiwsky, 1978] Vanicek, P. and Krakiwsky, E. (1978). Geodesy Reborn!
Surveying and Mapping XXXVIII, 37:23{26.

[Vanicek and Krakiwsky, 1982] Vanicek, P. and Krakiwsky, E. (1982). Geodesy: The
concepts. North-Holland Publishing Company Amsterdam - New York Oxford.

[Vogel, 1995] Vogel, M. (1995). Analyse der GPS-Alpentraverse - Ein Beitrag zur
geod�atischen Erfassung rezenter Erdkrustenbewegungen in den Ostalpen. Deutsche
Geod�atische Kommission, Reihe C, Heft Nr. 436. M�unchen.

[Vogel and J�ager, 1994] Vogel, M. and J�ager, R. (1994). Optimum design, parameter
estimation, and testing procedures for the calibration of GPS antennas. In Paper
submitted to the Proceedings of the Fourth International Symposium on Recent Crustal
Movements in Africa. Nov. 28th - Dec 2nd, 1994 Nairobi, Kenya., Nairobi, Kenya.

[Wolf, 1963a] Wolf, H. (1963a). Die Grundgleichungen der dreidimensionalen Geod�asie
in elementarer Darstellung. Zeitschrift f�ur Vermessungswesen, 88:225{233.

[Wolf, 1963b] Wolf, H. (1963b). Dreidimensionale Geod�asie, Herkunft, Methodik und
Zielsetzung. Zeitschrift f�ur Vermessungswesen, 88:109{116.

[Zippelt, 1988] Zippelt, K. (1988). Modellbildung, Berechnungsstrategie und Beurteilung
von Vertikalbewegungen unter Verwendung von Pr�asionsnivellements. Deutsche
Geod�atische Kommission, Reihe C, Heft Nr. 343. M�unchen.

96



Appendix A

GPS Antenna Calibration

A.1 The Mathematical Approach

The total deviation of the phace center consists of a constant part representing the mean
deviation of the phase centre and another part which depends on the direction �, and
elevation z, of the incoming signal (see e.g. [Geiger, 1988], [Rothacher et al., 1995]). It
is this constant part that is here further studied.

A.1.1 The Coordinate Systems.

Four types of coordinate systems are of interest (see e.g. [Vogel and J�ager, 1994]). First
is the antenna coordinate system ACS, with the origin Oa situated at the antenna physical
phase centre. In this coordinate system the vector of phase center o�set is represented by
the column vector ea such that

ea =

2
64 eax
eay
eaz

3
75

The direction of eaz axis is chosen to be that of the local zenith, eax axis points in the
direction of a de�nite mark on the antenna and eay axis completes the right-handed
system.

The second coordinate system is the WGS-84 coordinate system which the GPS orbits are
referred to (see e. g. [Hofmann-Wellenhof et al., 1992]). The column vector g describing
the o�sets in this system is,

g =

2
64 gx
gy
gz

3
75
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Thirdly, the GPS topocentric coordinate (GTS) system is obtained by transforming the
WGS-84 system into an equivalent topocentric system. The o�set vector is expressed by
the column vector e?

e? =

2
64 e?x
e?y
e?z

3
75

The e? system is derived from the g system by the following relationship;

2
64 e?x
e?y
e?z

3
75 =

2
64 � sin� cos� � sin� sin� cos�

� sin� cos� 0
cos � cos� cos� sin� sin�

3
75 �

2
64 gx
gy
gz

3
75 (A.1)

where � and � are the geographic coordinates of the station of origin.

Finally, the ground control of the test network is based on a local coordinate system, LTS,
possibly with one of the network points, Po as the origin of this system. The o�set vector
in this system is represented by the column vector t

t =

2
64 tx
ty
tz

:

3
75

To be able to compute the o�sets, various coordinate transformations are necessary. The
LTS must be rotated by the angular amount �, that t and ea deviate from one another
given by:

cos � =
< ea; t >

jeaj � jtj : (A.2)

The rotation matrix R between these two systems is represented by

R =

2
64 cos � sin � 0
� sin � cos � 0

0 0 1

3
75 :

Only coordinate di�erences shall be considered thus eliminating the need of knowing
the translation parameters. The scale factor is also neglected owing to the small size
of the network (longest length < 20m). The transformation of the GTS into the LTS is
necessary. Since the angular deviations between all the three axes of these two systems are
not known, they have to be estimated during the process of adjustment. If the angles of
rotation about the coordinate axes are �; �; � respectively, then the total rotation between
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the WGS-84 and the conventional topocentric system LTS (for small angles) is obtained
from

Rz(�)Ry(��)Rx(��) =

2
64 1 � ���
�� 1 ��
�� ��� 1

3
75 :

A.1.2 The Method of Adjustment

The �nal linearised observation equation will be of the form

y = Ax+ v with Efyg = Ax; D(y) = �2Qyy (A.3)

where

- y is n�1 vector of GPS coordinate di�erences and Qyy is the corresponding cofactor
matrix.

- A is n�m design matrix

- x is m� 1 vector of parameters

- v is n� 1 vector of residuals

- Cyy is the variance-covariance matrix of the GPS observations.

The solution of equation ( A.3) is obtained through Nx = ATPy where N = ATPA

is the normal equation matrix. Generally the ground control of the test network is ob-
served at much higher accuracy than the GPS observations so that the ground control is
considered errorless. The parameters of adjustment include the three o�set components
of each antenna and the rotation angles between the antenna system and the local GPS
topocentric system. The spectral analysis of the normal equation matrix N, shows one
of the eigenvalues as zero. To facilitate the inversion of N, and therefore a solution of x,
two approaches have so far been considered. These are the classical approach and the use
of the pseudoinverse as discussed below.

A.1.3 The Classical Approach

In this approach one antenna is chosen as reference and its o�sets assigned �xed values
e.g. (0,0,0). The solution is then given by x = N�1ATPy whereN�1 is the Cayley inverse
of N. The choice of the reference antenna may be one whose phase centre variations are
known. The resulting o�sets are thus depended on the the choice of the chosen antenna.
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A.1.4 The Pseudoinverse Approach

The arbitrary choice of the reference antenna is avoided by computing the pseudoinverse
of N ( [Vogel and J�ager, 1994]). For N not of full rank, a defect d = m� r exists. A null
space of N, denoted by G of dimension m� d and with properties NG = 0 and AG = 0
can be computed. G consists of eigenvectors that correspond with those eigenvalues that
are equal to zero. In the case that the pseudoinverse is used, the datum is de�ned over
all the parameters that are in the adjustment. In this case, the antenna o�sets and the
rotational parameters so that G is of the form

G =
h
�ex1 �ey1 �ez1 : : : �exn �eyn �ezn �� �� �

iT

where �exi; �eyi; �ezi are the eigenvectors corresponding to the eigenvalues on the side
of o�sets and ��; ��; � are those eigenvectors on the side of the rotational elements. The
pseudoinverse solution is given by x = N+ATPy where N+ is the pseudoinverse of N.

Since the spectral analysis of N indicates only one zero eigenvalue (see Figure ( A.1))
which vanishes as soon as one of eaz value is �xed, then the rotational elements clearly
need not be included in the datum de�nition. Two other approaches have been therefore
proposed.
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Figure A.1: The eigenvalues of N plotted against the parameters.

A.1.5 The Partial Norm Minimization Approach

The singular normal equation matrix N is regularised by introducing the matrix G of the
null space just as in the case of pseudoinverse but this time G is de�ned in a di�erent
way. In this approach, the datum defect in N is overcome by de�ning the datum with
respect to the o�sets but not the rotational elements. The null space G is now a vector
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of m rows of the form

G =
h
�ex1 �ey1 �ez1 : : : �exn �eyn �ezn 0 0 0

iT

where n is the total number of the antennae to be calibrated.

A.1.6 The Special Partial Norm Minimization

In the second aproach, since it is known that the datum defect arises from the inability
to determine the height component of the o�set in an absolute way, the datum can be
instead de�ned over all the height components of the antenna o�sets only. Thus G is of
the form

G =
h
0 0 �ez1 : : : 0 0 �ezn 0 0 0

iT
:

One therefore not only avoids the arbitrary choice of datum but also overcomes the only
datum defect available. For both partial norm minimum solutions the �nal solution is
given by

x = N++ATPy (A.4)

where N++ is a special generalized inverse of N, corresponding to partial norm minimiza-
tion.

A.2 Parameter Testing

Only estimates from models of full rank may be statistically tested. In this case the
estimates obtained through the classical approach are fully estimable and can be there-
fore statistically tested. In all the other approaches described above the parameters of
type vertical o�sets (z-components) are non-estimable (estimates obtained from singular
systems) and cannot be directly subjected to statistical testing.

However non-estimable parameters can be transformed into another set of parameters
that can be subjected to statistical tests ( [Koch, 1978]). The estimated parameters (an-
tenna o�set) are converted into estimable parameters or equivalently testable hypothesis
by refering them to a particular antenna in which case the test shows whether or not
signi�cant di�erences exist between the o�sets of the reference antenna and any other
antenna i. The test statistic for the vertical antenna o�set eez is given by

T =
�ez

�̂0
p
q�ez

=
�ez

�̂0
p
qii + qrr � 2qir

: (A.5)
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where �ez = eezi � eezr, �̂
2
0 is the a posteriori variance of unit weight and qezi is the

element of the cofactor matrix corresponding to the eez value of the ith antenna and eezr
refers to chosen reference antenna.

The quantity T has a Student-t distribution with r degrees of freedom symbolically written
as T � t(r). The null hypothesis, Ho : �êez = 0, is tested against the alternative
hypothesis Ha : �êez 6= 0. The null hypothesis is accepted when the test statistic T is
less than or equal to the tabulated value of t for r degrees of freedom at the chosen level
of signi�cance �, usually 5% or 1%. This is written as tr;1�� for a two-sided test.

A.3 The Test Network and Results

A.3.1 The Ground Truth

The test network is situated on the roof of the building housing the Geodetic Institute
at the University of Karlsruhe. The network was �rst established by means of terrestrial
methods in July 1996. A Kern E2 Theodolite of precision 1cc in angular measurements
was used while the Mekometer ME 5000 of precision 0:0002m + 0:01ppm?S (S is the
distance measured) was used in distance measurents. The heights of the network stations
were measured by means of spirit levelling. Both the angular and distance measurements
were processed using the program NETZ2D ( [Schmitt et al., 1994] for computation of the
planimetric coordinates. The network was computed on the basis of a free network. The
network mean error was 0.12mm. Table ( A.3.2) shows the terrestrial network coordinates
together with their standard deviations at some arbitrary coordinate system while Figure
(A.2) shows the layout of the network.

A.3.2 The GPS Network

A GPS campaign was carried out on 5th July 1996 corresponding to the 865 GPS day
and involving 9 GPS antennae from two di�erent manufacturers. Seven of them were of
type LEICA SR299 and the other two were TRIMBLE 4000SSI with ground plane. The
campaign covered four sessions of about ninety minutes each. The whole campaign lasted
between 0600 hours and 1700 GPS time.

In session one all the antennae pointed approximately in the northern direction while in
session two all the antennae pointed in the southern direction except the two reference
antennae, one LEICA and one TRIMBLE antenna, which remained switched on and
pointed to the northern direction throughout the campaign period.
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Figure. A.2: The layout of the GPS antenna calibration terrestrial network (scale:
1cm �= 1m).

In the third session all except the reference antennae were exchanged on their ground
positions. Table ( A.2) shows the antenna types and their assigned numbers while Tables
( A.3) and ( A.4) show the type of antennae, their ground positions and their directions
during the entire campaign. Antenna heights were measured by means of spirit levelling.

A.3.3 Computation of the Antenna O�sets

The GPS phase observations were processed using the Bernese GPS Software
(see [Rothacher et al., 1993]). The �nal solution was the relative position of the network
coordinates with respect to reference station 5. The resulting variance- covariance matrix
of the di�erential GPS solution was also calculated.

The program PHACE [Vogel, 1995] was modi�ed so that o�sets could be computed using
various ways.

A.3.4 Adjustment of O�sets and only one Set of Rotation Trans-

formation Parameters as Unknowns

The �rst computation involved the determination of the antenna o�sets using data ob-
tained from the �rst two sessions of the GPS campaign. Between the �rst two sessions
the antennae were rotated in direction (see Table ( A.3) above). The normal equation
matrix N showed a rank defect of one. A plot of the eigenvalues versus the parameters is
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Table A.1: The Terrestrial network coordinates

STATION NAME X (m) Y ( m) HEIGHT (m)

1 (17) 16.8679 13.1561 0.4060
0.0004 0.0056

2 (18) 15.1691 10.3244 0.4090
0.0004 0.0004

3 (3) 17.1339 7.7241 0.3862
0.0004 0.0004

4 (4) 11.7989 11.4871 0.3840
0.0004 0.0004

5 (HPF2) 13.6264 15.1288 1.4929
0.0004 0.0004

6 (NPF2) 9.9982 9.9999 1.5291
0.0004 0.0004

7 (NPF1) 16.3124 5.5423 1.5316
0.0004 0.0004

8 (HPF1) 19.9282 10.6602 1.4899
0.0004 0.0004

9 (DOPP) 13.0595 8.6707 0.4170
0.0004 0.0004

Table A.2: Types of antenna used and numbering adopted

ANTENNA NO. TYPE SERIAL NO. INSTITUTION

1 LEICA SR299 100 308 UNI. STUTTGART
2 LEICA SR299 100 318 UNI. STUTTGART
3 LEICA SR299 100 066 LANDESVERM. KARLSRUHE
4 LEICA SR299 100 039 LANDESVERM. KARLSRUHE
5 TRIM. 4000SSI 220 039 556 UNI. KARLSRUHE
6 LEICA SR299 100 327 UNI. KARLSRUHE
7 TRIM. 4000SSI 220 039 555 UNI. KARLSRUHE
8 LEICA SR299 100 323 UNI. KARLSRUHE
9 LEICA SR299 100 303 UNI. STUTTGART

Note: All LEICA antennae were of internal type.
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Table A.3: Antenna positions and directions in sessions 1 and 2

ANTENNA NO. STATION SESSION 1 (gon) SESSION 2 (gon)

1 1 0 200
2 2 0 200
3 3 0 200
4 4 0 200
5 5 0 0
6 6 0 0
7 7 0 200
8 8 0 200
9 9 0 200

Table A.4: Antenna positions and directions in sessions 3 and 4

ANTENNA NO. STATION SESSION 3 (gon) SESSION 4 (gon)

1 3 0 200
2 1 0 200
3 4 0 200
4 7 0 200
5 5 0 0
6 6 0 0
7 8 0 200
8 9 0 200
9 2 0 200
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Table A.5: The null space of N for each of the three components of the o�set when only
one set of rotation parameters is used

ANTENNA NO. eax eay eaz
1 0.0000 0.0000 -0.3333
2 0.0000 0.0000 -0.3333
3 0.0000 0.0000 -0.3333
4 0.0000 0.0000 -0.3333
5 0.0000 0.0000 -0.3333
6 0.0000 0.0000 -0.3333
7 0.0000 0.0000 -0.3333
8 0.0000 0.0000 -0.3333
9 0.0000 0.0000 -0.3333

ROTATIONS 0.0000 0.0000 0.0000

Table A.6: Results obtained by �xing one station eaz = 0 - classical approach

ANT.OFFSET eax Tx eay Ty eaz Tz
1 0.0004 0.129 -0.0031 -1.489 0.0190 1.911
2 0.0011 0.359 -0.0024 -1.110 0.0185 1.347
3 -0.0026 -0.888 -0.0013 0.637 0.0138 0.680
4 0.0041 1.427 -0.0005 -0.252 0.0196 1.756
5 -0.0023 -0.973 -0.0036 -1.323 0 -
6 -0.0008 -0.225 0.0000 0.006 0.0201 1.432
7 -0.0003 -0.101 -0.0007 -0.330 0.0035 0.146
8 0.0016 0.521 -0.0016 -0.731 0.0109 0.656
9 -0.0012 -0.414 -0.0012 -0.576 0.0187 1.099

Critical value at level of signi�cance � = 99%: t25;0:995 = 2:06. The �xed antenna is
antenna 5.

shown in Figure ( A.1). Only one eigenvalue is seen to be zero and the di�erence between
the rest of the eigenvalues does not depict an ill condition of N. The elements of the null
space G of the normal equation matrix are shown in Table ( A.5).

Four di�erent ways to overcome the rank defect were applied as described in sections
(A.1.3) to (A.1.6). Tables ( A.6) and ( A.7) show the results obtained using the classical
approach. With respect to coordinates obtained using the partial norm minimization, the
special partial norm minimization and the pseudoinverse were the same. These results
however showed no signi�cant variations from those of the previous approach.

All the four sessions were �nally computed together and the results are shown in Tables
( A.8) and ( A.9).
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Table A.7: The rotational angles in radians

�� / std. error �� / std. error � / std. error
0.000 622 0.000 192 -0.000 468
0.000 347 0.000 660 -0.000 011

Table A.8: Results of all four sessions

OFF. eax Tx eay Ty eaz Tz
1 0.0015 1.092 -0.0029 -2.829 0.0186 0.453
2 0.0015 1.082 -0.0021 -2.079 0.0183 0.448
3 -0.0011 -0.782 -0.0011 -1.079 0.0146 0.312
4 0.0035 2.621 -0.0007 -0.712 0.0172 0.427
5 -0.0024 -3.382 -0.0041 -4.080 0 -
6 -0.0009 -0.745 -0.0004 -0.566 0.0151 0.370
7 -0.0003 -0.231 -0.0006 -0.657 0.0001 0.004
8 0.0024 1.664 -0.0019 -1.803 0.0139 0.339
9 0.0003 0.185 -0.0014 -1.327 0.0142 0.377

Critical value at level of signi�cance � = 99%: t78;0:995 = 2:00. The �xed antenna is
antenna 5.

Table A.9: The rotational angles in radians

�� / std. error �� / std. error � / std. error
0.001 216 0.000 276 -0.000 489
0.000 035 0.000 036 0.000 003
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Table A.10: Results according to classical approach (sessions 1 & 2)

OFF. eax Tx eay Ty eaz Tz

1 0.0002 0.064 -0.0029 -1.388 0.0166 2.678
2 0.0011 0.362 -0.0024 -1.114 0.0166 2.674
3 -0.0025 -0.888 -0.0015 -0.737 0.0109 1.805
4 0.0043 1.526 -0.0005 -0.238 0.0195 3.252
5 -0.0016 -1.424 -0.0005 -0.615 0 -
6 0.0017 0.939 0.0008 0.633 0.0216 7.920
7 -0.0002 -0.064 -0.0007 -0.357 0.0004 0.072
8 0.0014 0.459 -0.0014 -0.649 0.0068 1.080
9 -0.0011 -0.376 -0.0012 -0.643 0.0176 2.841

Critical value at level of signi�cance � = 99%: t28;0:995 = 2:05. The �xed antenna is
antenna 5.

A.3.5 Adjustment when Rotational Transformation Elements

are excluded

The same experiments were carried out without including the transformation parameters
i. e. the rotational angles. Table ( A.10) shows the results obtained using the classical
approach. The results obtained using the the other approaches i. e. partial, special partial
and pseudoinverse solutions were the same and in addition showed no signi�cant variation
to those of the classical approach. The results obtained when all the four sessions were
computed together showed no signi�cant variations from the results obtained when all
the four sessions where computed together but taking into account the presence of the
rotation angles (see Table ( A.8)).

A.3.6 Adjustment of O�sets and Transformation Parameters for

each Session

Again the above experiments were repeated but this time taking into account one set
of transformation parameters for each session. The results are shown in Tables ( A.11)
through ( A.21).
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Table A.11: Results according to the classical approach

OFF. eax Tx eay Ty eaz Tz

1 0.0021 1.125 -0.0043 -3.153 0.0193 3.172
2 0.0029 1.511 -0.0036 -2.443 0.0182 2.163
3 -0.0003 -0.181 -0.0023 -1.494 0.0134 1.076
4 0.0055 3.053 -0.0018 -1.299 0.0184 2.689
5 -0.0023 -1.582 -0.0040 -2.378 0 -
6 -0.0008 -0.362 -0.0005 -0.396 0.0184 2.141
7 0.0006 0.320 -0.0006 -0.385 0.0039 0.266
8 0.0025 1.243 -0.0015 -1.072 0.0119 1.180
9 0.0005 0.266 -0.0024 -1.598 0.0173 1.669

Critical value at level of signi�cance � = 99%: t22;0:995 = 2:06. The �xed antenna is
antenna 5.

Table A.12: The rotational angles in radians for session 1

�� / std. error �� / std. error � / std. error
-0.000 233 -0.001 131 -0.000 448
0.000 212 0.000 386 0.000 009

Table A.13: The rotational angles in radians for session 2

�� / std. error �� / std. error � / std. error
0.001 970 -0.001 201 -0.000 468
0.000 223 0.000 382 0.000 008

Table A.14: Results from partial, special partial and pseudoinverse solution - ez5 =
�0:0134

OFF. eax Tx eay Ty eaz Tz
1 0.0021 1.152 -0.0043 -3.227 0.0193 3.247
2 0.0029 1.546 -0.0036 -2.500 0.0182 2.214
3 -0.0003 -0.185 -0.0023 -1.530 0.0134 1.101
4 0.0055 3.125 -0.0018 -1.329 0.0184 2.752
5 -0.0023 -1.620 -0.0040 -2.434 0 -
6 -0.0008 -0.371 -0.0005 -0.406 0.0184 2.191
7 0.0006 0.328 -0.0006 -0.395 0.0039 0.272
8 0.0025 1.272 -0.0015 -1.097 0.0119 1.208
9 0.0005 0.272 -0.0024 -1.636 0.0173 1.709

Critical value at level of signi�cance � = 99%: t22;0:995 = 2:06. The �xed antenna is
antenna 5.
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Table A.15: The rotational angles in radians for session 1

�� / std. error �� / std. error � / std. error
-0.000 234 -0.001 131 -0.000 449
0.000 221 0.000 403 0.000 009

Table A.16: The rotational angles in radians for session 2

�� / std. error �� / std. error � / std. error
0.001 971 -0.001 201 -0.000 468
0.000 232 0.000 399 0.000 009

Table A.17: Results of all four sessions

OFF. eax Tx eay Ty eaz Tz
1 0.0022 2.403 -0.0036 -4.798 0.0182 0.614
2 0.0020 2.166 -0.0024 -3.424 0.0187 0.627
3 0.0001 0.064 -0.0013 -1.739 0.0126 0.424
4 0.0043 4.853 -0.0016 -2.202 0.0169 0.568
5 -0.0024 -5.191 -0.0044 -6.503 0 -
6 -0.0010 -1.216 -0.0006 -1.372 0.0148 0.497
7 0.0002 0.216 -0.0006 -0.814 0.0008 0.028
8 0.0029 2.953 -0.0018 -2.367 0.0137 0.460
9 0.0009 0.925 -0.0018 -2.425 0.0153 0.515

Critical value at level of signi�cance � = 99%: t79;0:995 = 2:00. The �xed antenna is
antenna 5.

Table A.18: The rotational angles in radians for session 1

�� / std. error �� / std. error � / std. error
0.000 282 -0.001 417 -0.000 512
0.000 041 0.000 032 0.000 003

Table A.19: The rotational angles in radians for session 2

�� / std. error �� / std. error � / std. error
0.002 279 0.000 864 -0.000 458
0.000 044 0.000 030 0.000 003

Table A.20: The rotational angles in radians for session 3

�� / std. error �� / std. error � / std. error
0.001 664 0.000 215 -0.000 437
0.000 043 0.000 034 0.000 003
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Table A.21: The rotational angles in radians for session 3

�� / std. error �� / std. error � / std. error
0.001 029 -0.000 790 -0.000 583
0.000 039 0.000 030 0.000 004
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