
leanEA

A Poor Man's

Evolving Algebra Compiler

Bernhard Beckert
Joachim Posegga

Interner Bericht 25/95

Universit�at Karlsruhe

Fakult�at f�ur Informatik

leanEA: A Poor Man's Evolving Algebra Compiler

Bernhard Beckert & Joachim Posegga

Universit�at Karlsruhe

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

76128 Karlsruhe, Germany

Email: fbeckert,poseggag@ira.uka.de

WWW: http://i12www.ira.uka.de/�posegga/leanea/

April 20, 1995

Abstract

The Prolog program

\term_expansion((define C as A with B), (C=>A:-B,!)).

term_expansion((transition E if C then D),

((transition E):-C,!,B,A,(transition _))) :-

serialize(D,B,A).

serialize((E,F),(C,D),(A,B)) :- serialize(E,C,B), serialize(F,D,A).

serialize(F:=G, ([G]=>*[E],F=..[C|D],D=>*B,A=..[C|B]), asserta(A=>E)).

[G|H]=>*[E|F] :- (G=\E; G=..[C|D],D=>*B,A=..[C|B],A=>E), !,H=>*F.

[]=>*[].

A=?B :- [A,B]=>*[D,C], D==C."

implements a virtual machine for evolving algebras. It o�ers an e�cient and very

exible framework for their simulation.

Computation models and speci�cation methods seem to be worlds apart. The evolving
algebra project started as an attempt to bridge the gap by improving on Turing's thesis.

(Gurevich, 1994)

1 Introduction

Evolving algebras (EAs) (Gurevich, 1991; Gurevich, 1994) are abstract machines used

mainly for formal speci�cation of algorithms. The main advantage of EAs over classical

formalisms for specifying operational semantics, like Turing machines for instance, is that

they have been designed to be usable by human beings: whilst the concrete appearance of

a Turing machine has a solely mathematical motivation, EAs try to provide a user friendly

and natural|though rigorous|speci�cation tool. The number of speci�cations using EAs

is rapidly growing;1 examples are speci�cations of the languages ANSI C (Gurevich & Hug-

gins, 1993) and ISO Prolog (B�orger & Rosenzweig, 1994), and of the virtual architecture

1There is a collection of papers on evolving algebras and their application on the World Wide Web at
http://www.engin.umich.edu/~huggins/EA.

1

2 leanEA: A Poor Man's Evolving Algebra Compiler

APE (B�orger et al., 1994b). EA speci�cations have also been used to validate language

implementations (e.g., Occam (B�orger et al., 1994a)) and distributed protocols (Gurevich

& Mani, 1994).

When working with EAs, it is very handy to have a simulator at hand for running the

speci�ed algebras. This observation is of course not new and implementations of abstract

machines for EAs already exist: Angelica Kappel describes a Prolog-based implementation

in (Kappel, 1993), and Jim Huggins reports an implementation in C. Both implementations

are quite sophisticated and o�er a convenient language for specifying EAs.

In this paper, we describe an approach to implementing an abstract machine for EAs

which is di�erent, in that it emphasizes on simplicity and elegance of the implementation,

rather than on sophistication. We present a simple, Prolog-based approach for executing

EAs. The underlying idea is to map EA speci�cations into Prolog programs. Rather

than programming a machine explicitly, we turn the Prolog system itself into a virtual

machine for EA speci�cations: this is achieved by changing the Prolog reader, such that

the transformation of EAs into Prolog code takes place whenever the Prolog system reads

input. As a result, evolving algebra speci�cations can be treated like ordinary Prolog

programs.

The main advantage of our approach, which we call leanEA, is its
exibility: the Prolog

program we discuss in the sequel can easily be understood and extended to the needs

of concrete speci�cation tasks (non-determinism, special handling of unde�ned functions,

etc.). Furthermore, its
exibility allows to easily embed it into, or interface it with other

systems.

The paper is organized as follows: in Section 2, we start with explaining how a deter-

ministic, untyped EA can be programmed in leanEA; this section is written pragmatically,

in the sense that we do not present a mathematical treatment, but explains what a user

has to do in order to use EAs with leanEA. The implementation of leanEA is explained in

parallel. In Section 3 we give some hints for programming in leanEA. Rigorous de�nitions

for vigorous readers can be found in Section 4, where the semantics of leanEA programs are

presented. Extensions of leanEA are described in Section 5; these include purely syntactical

extensions made just for the sake of programming convenience, as well as more semantical

extensions like including typed algebras, or implementing non-deterministic evolving alge-

bras. Section 6 introduces modularized EAs, where Prolog's concept of modules is used to

structure the speci�ed algebras. Finally, we draw conclusions from our research in Section 7.

An extended example of using leanEA is given in Appendix A.

Through the paper we assume the reader to be familiar with the basic ideas behind

evolving algebras, and with the basics of Prolog.

2 Programming Evolving Algebras in leanEA

2.1 The Basics of leanEA

An algebra can be understood as a formalism for describing static relations between things:

there is a universe consisting of the objects we are talking about, and a set of functions

mapping members of the universe to other members. Evolving algebras o�er a formalism

for describing changes as well: an evolving algebra \moves" from one state to another, while

functions are changed.

Bernhard Beckert & Joachim Posegga

Programming Evolving Algebras in leanEA 3

leanEA is a programming language that allows to program this behavior. From a decla-

rative point of view, a leanEA program is a speci�cation of an EA. Here, however, we will

not argue declaratively, but operationally by describing how statements of leanEA set up

an EA and how it moves from one state to another. A declarative description of leanEA

can be found in Section 4.

2.2 Overview

leanEA is an extension of standard Prolog, thus a leanEA program can be treated like any

other Prolog program, i.e., it can be loaded (or compiled) into the underlying Prolog system

(provided leanEA itself has been loaded before).

leanEA has two syntactical constructs for programming an EA: the �rst are function

de�nitions of the form

define Location as Value with Goal.

which specify the initial state of an EA.

The second construct are transition de�nitions which de�ne the EA's evolving, i.e., the

mapping from one state to the next:

transition Name if Condition then Updates.

The signature of EAs is in our approach the set of all ground Prolog terms. The (single)

universe, that is not sorted, consists of ground Prolog terms, too; it is not speci�ed explicitly.

Furthermore, the �nal state(s) of the EA are not given explicitly in leanEA. Instead, a

state S is de�ned to be �nal if no transition is applicable in S or if a transition �res that

uses unde�ned functions in its updates.

The computation of the speci�ed evolving algebra is started by calling the Prolog goal

transition _

which recursively searches for the applicable transitions and executes them until no more

transitions are applicable.

2.3 leanEA's Operators

For implementing the syntax for function and transition de�nitions outlined above, a couple

of Prolog operators have to be de�ned with appropriate preferences; they are shown in

Figure 1, Lines 1{6.

Note, that the preferences of operators (those pre-de�ned by leanEA as well as others

used in a leanEA program) can in
uence the semantics of Prolog goals included in leanEA

programs.

2.4 Representation of States in leanEA

Before explaining how function de�nitions set up the initial state of an EA, we take a look

at the leanEA internals for representing states: A state is given by the mapping of locations

to their values, i.e., elements of the universe. A location f(u1; : : : ; un), n � 0, consists of

a functor f and arguments u1; : : : ; un that are members of the universe.

Universit�at Karlsruhe

4 leanEA: A Poor Man's Evolving Algebra Compiler

1 :- op(1199,fy,(transition)), op(1180,xfx,(if)),

2 op(1192,fy,(define)), op(1185,xfy,(with)),

3 op(1190,xfy,(as)), op(1170,xfx,(then)),

4 op(900,xfx,(=>)), op(900,xfx,(=>*)),

5 op(900,xfx,(:=)), op(900,xfx,(=?)),

6 op(100,fx,(\)).

7 :- multifile (=>)/2.

8 :- dynamic (=>)/2.

9 term_expansion((define Location as Value with Goal),

10 ((Location => Value) :- Goal,!)).

11 term_expansion((transition Name if Condition then Updates),

12 (transition(Name) :-

13 (Condition,!,FrontCode,BackCode,transition(_)))) :-

14 serialize(Updates,FrontCode,BackCode).

15 serialize((A,B),(FrontA,FrontB),(BackB,BackA)) :-

16 serialize(A,FrontA,BackA),

17 serialize(B,FrontB,BackB).

18 serialize((LocTerm := Expr),

19 ([Expr] =>* [Val], LocTerm =.. [Func|Args],

20 Args =>* ArgVals, Loc =..[Func|ArgVals]),

21 asserta(Loc => Val)).

22 ([H|T] =>* [HVal|TVal]) :-

23 (H = \HVal

24 ; H =.. [Func|Args], Args =>* ArgVals,

25 H1 =.. [Func|ArgVals], H1 => HVal

26),!,

27 T =>* TVal.

28 [] =>* [].

29 (S =? T) :- ([S,T] =>* [Val1,Val2]), Val1 == Val2.

Figure 1: leanEA: the Program

Bernhard Beckert & Joachim Posegga

Programming Evolving Algebras in leanEA 5

Example 1. Assume, for instance, that there is a partial function denoted by f that maps

a pair of members of the universe to a single element, and that 2 and 3 are members of

the universe. The application of f to 2 and 3 is denoted by the Prolog term f(2,3). This

location can either have a value in the current state, or it can be unde�ned.

A state in leanEA is represented by the values of all de�ned locations. Technically,

this is achieved by de�ning a Prolog predicate =>/2,2 that behaves as follows: The goal

\Loc => Val" succeeds if Loc is bound to a ground Prolog term that is a location in the

algebra, and if a value is de�ned for this location; then Val is bound to that value. The

goal fails if no value is de�ned for Loc in the current state of the algebra.

To evaluate a function call like, for example, f(f(2,3),3), leanEA uses =>*/2 as an

evaluation predicate: the relation t =>* v holds for ground Prolog terms t and v if the value

of t|where t is interpreted as a function call|is v (in the current state of the algebra).

In general, the arguments of a function call are not necessarily elements of the universe

(contrary to the arguments of a location), but are expressions that are recursively evaluated.

It is possible to use members of the universe in function calls explicitly: these can be denoted

by preceding them with a backslash \\"; this disables the evaluation of whatever Prolog

term comes after the backslash. We will refer to this as quoting in the sequel.

For economical reasons, the predicate =>*/2 actually maps a list of function calls to a

list of values. Figure 1, Lines 21{27, shows the Prolog code for =>*, which is more or less

straightforward: if the term to be evaluated (bound to the �rst argument of the predicate)

is preceded with a backslash, the term itself is the result of the evaluation; otherwise, all

arguments are recursively evaluated and the value of the term is looked up with the predicate

=>/2. Easing the evaluation of the arguments of terms is the reason for implementing =>*

over lists. The base step of the recursion is the identity of the empty list (Line 27). =>*

fails if the value of the function call is unde�ned in the current state.

Example 2. Consider again the binary function f, and assume it behaves like addition in

the current state of the algebra. Then both the goals

[f(\1,\2)] =>* [X] and [f(f(\0,\1),\2)] =>* [X]

succeed with binding X to 3. The goal

[f(\f(0,1),\2)] =>* [X] ,

however, will fail since addition is unde�ned on the term f(0,1), which is not an integer

but a location. Analogously,

[f(f(0,1),\2)] =>* [X]

will fail, because 0 and 1 are unde�ned constants (0-ary functions).

After exploring the leanEA internals for evaluating expressions, we come back to pro-

gramming in leanEA. The rest of this section will explain the purpose of function and

transition de�nitions, and how they a�ect the internal predicates just explained.

2Note, that =>/2 is de�ned to be dynamic such that it can be changed by transitions (Fig. 1, Line 7).

Universit�at Karlsruhe

6 leanEA: A Poor Man's Evolving Algebra Compiler

2.5 Function De�nitions

The initial state of an EA is speci�ed by a sequence of function de�nitions. They de�ne the

initial values of locations by providing Prolog code to compute these values. A construct

of the form

define Location as Value with Goal.

gives a procedure for computing the value of a location that matches the Prolog term

Location: if Goal succeeds, then Value is taken as the value of this location. Function

de�nitions set up the predicate => (and thus =>*) in the initial state. One function de�nition

can specify values for more than one functor of the algebra. It is possible in principle,

although quite inconvenient, to de�ne all functors within a single function de�nition. The

value computed for a location may depend on the additional Prolog code in a leanEA-

program (code besides function and transition de�nitions), since Goal may call any Prolog

predicate. If several function de�nitions de�ne values for a single location, the (textually)

�rst de�nition is chosen.

2.5.1 Implementation of Function De�nitions

A function de�nition is translated into the Prolog clause

(Location => Value) :- Goal,!.

Since each de�nition is mapped into one such clause, Goal must not contain a cut \!";

otherwise, the cut might prevent Prolog from considering subsequent => clauses that match

a certain location.

The translation of a de�ne statement to a => clause is implemented by modifying the

Prolog reader as shown in Figure 1, Lines 8{9.3

2.5.2 Examples for Function De�nitions

Constants A de�nition of the form

define register1 as _ with false.

introduces the constant (0-ary function) register1 with an unde�ned value. Such a de�-

nition is actually redundant, since all Prolog terms belong to the signature of the speci�ed

EA and will be unde�ned unless an explicit value has been de�ned.

A de�nition of the form

define register1 as 1 with true.

assigns the value 1 to the constant register1.

The de�nition

define register1 as register1 with true.

de�nes that the value of the function call register1 is register1. Thus evaluating

\register1 and register1 will produce the same result.

3In most Prolog dialects (e.g., SICStus Prolog and Quintus Prolog) the Prolog reader is changed by

adding clauses for the term expansion/2 predicate. If a term t is read, and term expansion(t,S) succeeds
and binds the variable S to a term s, then the Prolog reader replaces t by s.

Bernhard Beckert & Joachim Posegga

Programming Evolving Algebras in leanEA 7

Prolog Data Types Prolog Data Types can be easily imported into the algebra. Lists,

for instance, are introduced by a de�nition of the form

define X as X with X=[]; X=[H|T].

This de�nes that all lists evaluate to themselves; thus a list in an expression denotes the

same list in the universe and it is not necessary to quote it with a backslash. Similarly,

define X as X with integer(X).

de�nes that Prolog integers evaluate to themselves in the algebra.

Evaluating Functions by Calling Prolog Predicates The following are example de-

�nitions that interface Prolog predicates with an evolving algebra:

define X+Y as Z with Z is X+Y.

define append(X,Y) as Result with append(X,Y,Result).

Input and Output Useful de�nitions for input and output are

define read as X with read(X).

define output(X) as X with write(X).

Whilst the purpose of read should be immediate, the returning of the argument of output

might not be clear: the idea is that the returned value can be used in expressions. That

is, an expression of the form f(\1,output(\2)) will evaluate to the value of the location

f(1,2) and, as a side e�ect, write 2 on the screen.

A similar, often more useful version of output is

define output(Format,X) as X with format(Format,[X]).

which allows to format output and include text.

2.5.3 Necessary Conditions for Function De�nitions

The design of leanEA constrains function de�nitions in several ways; the conditions func-

tion de�nitions have to meet are not checked by leanEA, but must be guaranteed by the

programmer. In particular, the programmer has to ensure that:

1. The computed values are ground Prolog terms, and the goals for computing them

either fail or succeed (i.e., terminate) for all possible instantiations that might appear.

Prolog exceptions that terminate execution have to be avoided as well. It is therefore

advisable, for instance, to formulate the de�nition of + as:

define X+Y as Z with integer(X), integer(Y), Z is X+Y.

2. The goals do not change the Prolog data base or have any other side e�ects (side

e�ects that do not in
uence other computations are harmless and often useful; an

example are the de�nitions for input and output in Section 2.5.2).

3. The goals do not (syntactically) contain a cut \!".

4. The goals do not call the leanEA internal predicates transition/1, =>*/2, and =>/2.

Violating these requirements does not necessarily mean that leanEA will not function

properly anymore; however, unless the programmer is very well aware of what he/she is

doing, we strongly recommend against breaking these rules.

Universit�at Karlsruhe

8 leanEA: A Poor Man's Evolving Algebra Compiler

2.6 Transition De�nitions

Transitions specify the evolving of an evolving algebra. A transition, if applicable, maps

one state of an EA to a new state by changing the value of certain locations. Transitions

have the following syntax:

transition Name if Condition then Updates.

where

Name is an arbitrary Prolog term (usually an atom).

Condition is a Prolog goal that determines when the transition is applicable. Conditions

usually contain calls to the predicate =?/2 (see Section 2.6.2 below), and often use

the logical Prolog operators \," (conjunction), \;" (disjunction), \->" (implication),

and \\+" (negation).

Updates is a comma-separated sequence of updates of the form

f1(r11; : : : ; r1n1) := v1,
...

fk(rk1; : : : ; rknk) := vk

An update fi(ri1; : : : ; rini) := vi (1 � i � k) changes the value of the location that consists

of (a) the functor fi and (b) the elements of the universe that are the values of the function

calls ri1; : : : ; rini; the new value of this location is determined by evaluating the function

call vi. All function calls in the updates are evaluated simultaneously (i.e., in the old state).

If one of the function calls is unde�ned, the assignment fails.

If the left-hand side of an update is quoted by a preceding backslash, the update will

have no e�ect besides that the right-hand side is evaluated; the meaning of the backslash

cannot be changed.

A transition is applicable (�res) in a state, if Condition succeeds. For calculating the

successor state, the (textually) �rst applicable transition is selected. Then the Updates of

the selected transition are executed. If no transition �res or if one of the updates of the �rst

�ring transition fails, the new state cannot be computed. In that case, the evolving algebra

terminates, i.e., the current state is �nal. Else the computation continues iteratively with

calculating further states of the algebra.

2.6.1 Implementation of Transition De�nitions

leanEA maps a transition

transition Name if Condition then Updates.

into a Prolog clause

transition(Name) :-

Condition, !,

UpdateCode,

transition().

Bernhard Beckert & Joachim Posegga

Hints for Programmers 9

Likewise to function de�nitions, this is achieved by modifying the Prolog reader as shown

in Figure 1, Lines 10{13.

Since the updates in transitions must be executed simultaneously, all function calls

have to be evaluated before the �rst assignment takes place. The auxiliary predicate

serialize/3 (Lines 14{20) serves this purpose: it splits all updates into evaluation code,

that uses the predicate =>*/2, and into code for storing the new values by asserting an

appropriate =>/2 clause.

2.6.2 The Equality Relation

Besides logical operators, leanEA allows in the condition of transitions the use of the

pre-de�ned predicate =?/2 (Fig. 1, Line 28) implementing the equality relation: the goal

\s =? t" succeeds if the function calls s and t evaluate (in the current state) to the same

element of the universe. It fails, if one of the calls is unde�ned or if they evaluate to di�erent

elements.

2.7 An Example Algebra

We conclude this section with considering an example of an evolving algebra:

Example 3. The leanEA program shown in Figure 2 speci�es an EA for computing n!.

The constant state is used for controlling the �ring of transitions: in the initial state,

only the transition start �res and reads an integer; it assigns the input value to reg1.

The transition step iteratively computes the faculty of reg1's value by decrementing reg1

and storing the intermediate results in reg2. If the value of reg1 is 1, the computation is

complete, and the only applicable transition result prints reg2. After this, the algebra

halts since no further transition �res and a �nal state is reached.

3 Hints for Programmers

This section lists a couple of programming hints that have shown to be useful when spe-

cifying EAs with leanEA.

Final States. leanEA does not have an explicit construct for specifying the �nal state of an

EA. By de�nition, the algebra reaches a �nal state if no more transition is applicable,

but is is often not very declarative to use this feature. As the algebra can also be

halted by trying to evaluate an unde�ned expression, a construct of the form

stop := stop.

in an update can increase the readability of speci�cations a lot. If stop is unde�ned,

the EA will halt if this assignment is to be carried out.

Tracing Transitions. It is highly unlikely that a programmer is able to write down a

speci�cation of an EA without errors directly. Programming in leanEA is just like

programming in Prolog and usually requires debugging the code one has written

down.

Universit�at Karlsruhe

10 leanEA: A Poor Man's Evolving Algebra Compiler

define state as initial with true.

define readint as X with read(X), integer(X).

define write(X) as X with write(X).

define X as X with integer(X).

define X-Y as R with integer(X),integer(Y),R is X-Y.

define X*Y as R with integer(X),integer(Y),R is X*Y.

transition step

if state =? \running, \+(reg1 =? 1)

then reg1 := reg1-1,

reg2 := (reg2*reg1).

transition start

if state =? \initial

then reg1 := readint,

reg2 := 1,

state := \running.

transition result

if state =? \running, reg1 =? 1

then reg2 := write(reg2),

state := \final.

Figure 2: An Evolving Algebra for Computing n!

Bernhard Beckert & Joachim Posegga

Semantics 11

For tracing transitions, it is often useful to include calls to write or trace at the end

of conditions: the code will be executed whenever the transition �res and it allows to

provide information about the state of the EA.

Another, often useful construct is a de�nition of the form

define break(Format,X) as X with format(Format,[X]),break.

Tracing the Evaluation of Terms. A de�nition of the form

define f(X) as with write(f(X)), fail.

is particularly useful for tracing the evaluation of functions: if the above function

de�nition precedes the \actual" de�nition of f(X), it will print the expression to be

evaluated whenever the evaluation takes place.

Examining States. All de�ned values of locations in the current state can be listed by

calling the Prolog predicate listing(=>). Note, that this does not show any default

values.

4 Semantics

This section formalizes the semantics of leanEA programs, in the sense that it explains in

detail which evolving algebra is speci�ed by a concrete leanEA-program.

Definition 4. Let P be a leanEA-program; then DP denotes the sequence of function

de�nitions in P (in the order in which they occur in P), TP denotes the sequence of transition

de�nitions in P (in the order in which they occur in P), and CP denotes the additional

Prolog-code in P , i.e., P without DP and TP .

The function de�nitions DP (that may call predicates from CP) specify the initial state

of an evolving algebra, whereas the transition de�nitions specify how the algebra evolves

from one state to another.

The signature of evolving algebras is in our approach the set GTerms of all ground

Prolog terms. The (single) universe, that is not sorted, is a subset of GTerms.

Definition 5. GTerms denotes the set of all ground Prolog terms; it is the signature of

the evolving algebra speci�ed by a leanEA program.

We represent the states S of an algebra (including the initial state S0) by an evaluation

function [[]]S , mapping locations to the universe. Section 4.1 explains how [[]]S0 , i.e., the

initial state, is derived from the function de�nitions D. In what way the states evolve

according to the transition de�nitions in T (which is modeled by altering [[]]) is the subject

of Section 4.3.

The �nal state(s) are not given explicitly in leanEA. Instead, a state S is de�ned to be

�nal if no transition is applicable in S or if a transition �res that uses unde�ned function

calls in its updates (Def. 11).4

4The user may, however, explicitly terminate the execution of a leanEA-program (see Section 3).

Universit�at Karlsruhe

12 leanEA: A Poor Man's Evolving Algebra Compiler

4.1 Semantics of Function De�nitions

A function de�nition \define F as R with G." gives a procedure for calculating the

value of a location f(t1; : : : ; tn) (n � 0). Procedurally, this works by instantiating F to

the location and executing G. If G succeeds, then R is taken as the value of the location.

If several de�nitions provide values for a single location, we use the �rst one. Note, that

the value of a location depends on the additional Prolog code CP in a leanEA-program P ,

since G may call predicates from CP .

Definition 6. Let D be a sequence of function de�nitions and C be additional Prolog code.

A function de�nition

D = define F as R with G.

in D is succeeding for t 2 GTerms with answer r = R� , if

1. there is a (most general) substitution � such that F� = t;

2. G� succeeds (possibly using predicates from C);

3. � is the answer substitution of G� (the �rst answer substitution if G� is not deter-

ministic).

If no matching substitutions � exists or if G� fails, D is failing for t.

The partial function

[[]]
D;C : GTerms �! GTerms

is de�ned by

[[t]]
D;C = r ;

where r is the answer (for t) of the �rst function de�nition D 2 D succeeding for t. If no

function de�nition D 2 D is succeeding for t, then [[t]]
D;C is unde�ned.

The following de�nition formalizes the conditions function de�nitions have to meet (see

Section 2.5.3):

Definition 7. A sequence D of function de�nitions and additional Prolog code C are well

de�ning if

1. no function de�nition Di 2 D is for some term t 2 GTerms neither succeeding nor

failing (i.e., not terminating), unless there is a de�nition Dj 2 D, j < i, in front of

Di that is succeeding for t;

2. if D 2 D is succeeding for t 2 GTerms with answer r, then r 2 GTerms;

3. D does not (syntactically) contain a cut \!";5

4. the goals in D and the code C

(a) do not change the Prolog data base or have any other side e�ects;

(b) do not call the leanEA internal predicates transition/1, =>*/2, and =>/2.

5Prolog-negation and the Prolog-implication \->" are allowed.

Bernhard Beckert & Joachim Posegga

Semantics 13

Proposition 8. If a sequence D of function de�nitions and additional Prolog code C are

well de�ning, then [[]]
D;C is a well de�ned partial function on GTerms (a term mapping).

A well-de�ned term mapping [[]] is the basis for de�ning the evaluation function of an

evolving algebra, that is the extension of [[]] to function calls that are not a location:

Definition 9. Let [[]] be a well de�ned term mapping. The partial function

[[]]� : GTerms �! GTerms

is de�ned for t = f(r1; : : : ; rn) 2 GTerms (n � 0) as follows:

[[t]]� =

(
s if t = \s

[[f([[r1]]
�; : : : ; [[rn]]

�
)]] otherwise

4.2 The Universe

A well-de�ned term mapping [[]]
DP ;CP

enumerates the universe UP of the evolving algebra

speci�ed by P ; in addition, UP contains all quoted terms (without the quote) occurring

in P :

Definition 10. If P is a leanEA program, and [[]]
DP ;CP

is a well de�ned term mapping,

then the universe UP is the union of the co-domain of [[]]
DP ;CP

, i.e.,

[[GTerms]]
DP ;CP

= f[[t]]
DP ;CP

: t 2 GTerms, [[t]]
DP ;CP

#g ;

and the set

ft : t 2 GTerms, \t occurs in P g :

Note, that (obviously) the co-domain of [[]]� is a subset of the universe, i.e.,

[[GTerms]]�
DP ;CP

� UP :

The universe UP as de�ned above is not necessarily decidable. In practice, however,

one usually uses a decidable universe, i.e., a decidable subset of GTerms that is a superset

of UP (e.g. GTerms itself). This can be achieved by adding function de�nitions and thus

expanding the universe.6

4.3 Semantics of Transition De�nitions

After having set up the semantics of the function de�nitions, which constitute the initial

evaluation function and thus the initial state of an evolving algebra, we proceed with the

dynamic part.

The transition de�nitions TP of a leanEA-program P specify how a state S of the evolving

algebra represented by P maps to a new state S0.

6It is also possible to change De�nition 10; that, in its current form, de�nes the minimal version of the
universe.

Universit�at Karlsruhe

14 leanEA: A Poor Man's Evolving Algebra Compiler

Definition 11. Let S be a state of an evolving algebra corresponding to a well de�ned

term mapping [[]]S , and let T be a sequence of transition de�nitions.

A transition

transition Name if Condition then Updates

is said to �re, if the Prolog goal Condition succeeds in state S (possibly using the predi-

cate =?/2, Def. 13).

Let
f1(r11; : : : ; r1n1) := v1

...

fk(rk1; : : : ; rknk) := vk

(k � 1; ni � 0) be the sequence Updates of the �rst transition in T that �res. Then the

term mapping [[]]S0 and thus the state S0 are de�ned by

[[t]]S0 =

8><
>:

[[vi]]
�

S if there is a smallest i, 1 � i � k,

such that t = fi([[ri1]]
�

S ; : : : ; [[rini]]
�

S)

[[t]]S otherwise

If [[]]�S is unde�ned for one of the terms rij or vi, 1 � i � k, 1 � j � ni of the �rst transition

in T that �res, or if no transition �res, then the state S is �nal and [[]]S0 is unde�ned.

Proposition 12. If [[]]S0 is a well de�ned term mapping, then [[]]S0 (as de�ned in Def. 11)

is well de�ned.

4.4 The Equality Relation

Besides \," (and), \;" (or), \\+" (negation), and \->" (implication) leanEA allows in con-

ditions of transitions the pre-de�ned predicate =?/2, that implements the equality relation

for examining the current state:

Definition 13. In a state S of an evolving algebra (that corresponds to the well de�ned

term mapping [[]]S), for all t1; t2 2 GTerms, the relation t1 =? t2 holds i�

1. [[t1]]
�

S # and [[t2]]
�

S #,

2. [[t1]]
�

S = [[t2]]
�

S .

4.5 Runs of leanEA-programs

A run of a leanEA-program P is a sequence of states S0; S1; S2; : : : of the speci�ed evolving

algebra. Its initial state S0 is given by

[[]]S0 = [[]]
DP ;CP

(Def. 9). The following states are determined according to De�nition 11 and using

Sn+1 = (Sn)
0 (n � 0) :

This process continues iteratively until a �nal state is reached.

Bernhard Beckert & Joachim Posegga

Extensions 15

Proposition 14. leanEA implements the semantics as described in this section; i.e., pro-

vided [[]]
DP ;CP

is well de�ned,

1. in each state S of the run of a leanEA-program P the Prolog goal \[t] =>* [X]"

succeeds and binds the Prolog variable X to u i� [[t]]�S = u;

2. the execution of P terminates in a state S i� S is a �nal state;

3. the predicate =? implements the equality relation.

4.6 Some Remarks Regarding Semantics

4.6.1 Relations

There are no special pre-de�ned elements denoting true and false in the universe. The

value of the relation =? (and similar pre-de�ned relations, see Section 5.2) is represented

by succeeding (resp. failing) of the corresponding predicate.

4.6.2 Unde�ned Function Calls

Similarly, there is no pre-de�ned element undef in the universe, but evaluation fails if no

value is de�ned. This, however, can be changed by adding

define _ as undef with true.

as the last function de�nition.

4.6.3 Internal and External Functions

In leanEA there is no formal distinction between internal and external functions. Function

de�nitions can be seen as giving default values to functions; if the default values of a function

remain unchanged, then it can be regarded external (pre-de�ned). If no default value is

de�ned for a certain function, it is classically internal. If the default value of a location is

changed, this is what is called an external location in (Gurevich, 1994). The relation =?

(and similar predicates) are static.

Since there is no real distinction, it is possible to mix internal and external functions in

function calls.

4.6.4 Importing and Discarding Elements

leanEA does not have constructs for importing or discarding elements. The latter is not

needed anyway. If the former is useful for an application, the user can simulate \import

v" by \v := import", where import is de�ned by the function de�nition

define import as X with gensym(f,X).7

4.6.5 Local Nondeterminism

If the updates of a �ring transition are inconsistent, i.e., several updates de�ne a new

value for the same location, the �rst value is chosen (this is called local nondeterminism in

(Gurevich, 1994)).

7The Prolog predicate gensym generates a new atom every time it is called.

Universit�at Karlsruhe

16 leanEA: A Poor Man's Evolving Algebra Compiler

5 Extensions

5.1 The let Instruction

It is often useful to use local abbreviations in a transition. The possibility to do so can be

implemented by adding a clause

serialize((let Var = Term),([Term] =>* [Val], Var = \Val),true).

to leanEA.8 Then, in addition to updates, instructions of the form

let x = t

can be used in the update part of transitions, where x is a Prolog variable and t a Prolog

term. This allows to use x instead of t in subsequent updates (and let instructions) of the

same transition. A variable x must be de�ned only once in a transition using let. Note,

that x is bound to the quoted term \[[t]]�; thus, using an x inside another quoted term may

lead to undesired results (see the �rst part of Example 15).

Example 15. \let X = \a, reg := \f(X)" is equivalent to \reg := \f(\a)." (which

is di�erent from \reg := \f(a).").

let X = \b,

let Y = f(X,X),

reg1 := g(Y,Y),

reg2(X) := X.

is equivalent to

reg1 := g(f(\b,\b),f(\b,\b)),

reg2(\b) := \b.

Using let not only shortens updates syntactically, but also enhances e�ciency, because

function calls that occur multiply in an update do not have to be re-evaluated.

5.2 Additional Relations

The Prolog predicate =?, that implements the equality relation (Def. 13), is the only one

that can be used in the condition of a transition (besides the logical operators). It is

possible to implement similar relations using the leanEA internal predicate =>* to evaluate

the arguments of the relation:

A predicate p(t1; : : : ; tn), n � 0, is implemented by adding the code

p(t1; : : : ; tn) :-

[t1; : : : ; tn] =>* [x1; : : : ; xn],

Code.

to leanEA.9 Then the goal \p(t1; : : : ; tn)" can be used in conditions of transitions instead

of p0(t1; : : : ; tn) =? true", where p0 is de�ned by the function de�nition

8And de�ning the operator let by adding \:- op(910,fx,(let)).".
9
x1; : : : ; xn must be n distinct Prolog variables and must not be instantiated when =>* is called. Thus,

\(S =? T) :- ([S,T] =>* [V,V])" must not be used to implement =?, but \(S =? T) :- ([S,T] =>*

[V1,V2]), V1 == V2.".

Bernhard Beckert & Joachim Posegga

Modularized Evolving Algebras 17

define p0(x1; : : : ; xn) as true with Code.

(which is the standard way of implementing relations using function de�nitions). Note,

that p fails, if one of [[t1]]
�

S ; : : : ; [[tn]]
�

S is unde�ned in the current state S.

Example 16. The predicate <> implements the is-not-equal relation: t1 <> t2 succeeds i�

[[t1]]
� #, [[t2]]

� #, and [[t1]]
� 6= [[t2]]

�. <> is implemented by adding the clause

(A <> B) :- ([A,B] =>* [Val1,Val2], Val1 \== Val2).

to leanEA.

5.3 Non-determinism

It is not possible to de�ne non-deterministic EAs in the basic version of leanEA. If more

than one transition �re in a state, the �rst is chosen.

This behavior can be changed | such that non-deterministic EAs can be executed |

in the following way:

� The cut from Line 12 has to be removed. Then, further �ring transitions are executed

if backtracking occurs.

� A \retract on backtrack" has to be added to the transitions to remove the e�ect of

their updates and restore the previous state if backtracking occurs. Line 20 has to be

changed to

(asserta(Loc => Val) ; (retract(Loc => Val),fail)).

Now, leanEA will enumerate all possible sequences of transitions. Backtracking is in-

itiated, if a �nal state is reached, i.e., if the further execution of a leanEA program fails.

The user has to make sure that there is no in�nite sequence of transitions (e.g., by

imposing a limit on the length of sequences).

Note, that usually the number of possible transition sequences grows exponentially in

their length, which leads to an enormous search space if one tries to �nd a sequence that

ends in a \successful" state by enumerating all possible sequences.

6 Modularized Evolving Algebras

One of the main advantages of EAs is that they allow a problem-oriented formalization.

This means, that the level of abstraction of an evolving algebra can be chosen as needed. In

the example algebra in Section 2.7 (p. 9) for instance, we simply used Prolog's arithmetics

over integers and did not bother to specify what multiplication or subtraction actually

means. In this section, we demonstrate how such levels of abstraction can be integrated

into leanEA; the basic idea behind it is to exploit the module-mechanism of the underlying

Prolog implementation.

Universit�at Karlsruhe

18 leanEA: A Poor Man's Evolving Algebra Compiler

algebra fak([N],[reg2])

using [mult]

start reg1 := N,

reg2 := 1

stop reg1 =? 1.

define readint as X with read(X), integer(X).

define write(X) as X with write(X).

define X as X with integer(X).

define X-Y as R with integer(X),integer(Y),R is X-Y.

define X*Y as R with mult([X,Y],[R]).

transition step

if \+(reg1 =? 1)

then reg1 := (reg1-1),

reg2 := (reg2*reg1).

Figure 3: A Modularized EA for Computing n!

6.1 The Algebra Declaration Statement

In the modularized version of leanEA, each speci�cation of an algebra will become a Prolog

module; therefore, each algebra must be speci�ed in a separate �le. For this, we add an

algebra declaration statement that looks as follows:

algebra Name(In,Out)

using [Include-List]

start Updates

stop Guard.

Name is an arbitrary Prolog atom that is used as the name of the predicate for running

the speci�ed algebra, and as the name of the module. It is required that Name.pl

is also the �le name of the speci�cation and that the algebra-statement is the �rst

statement in this �le.

In, Out are two lists containing the input and output parameters of the algebra. The

elements of Out will be evaluated if the algebra reaches a �nal state (see below).

Include-List is a list of names of sub-algebras used by this algebra.

Updates is a list of updates; it speci�es that part of the initial state of the algebra (see

Section 2.6, p. 8), that depends on the input In.

Guard is a condition that speci�es the �nal state of the evolving algebra. If Guard is

satis�ed in some state, the computation is stopped and the algebra is halted (see

Section 2.6, p. 8).

Bernhard Beckert & Joachim Posegga

Modularized Evolving Algebras 19

algebra mult([X,Y],[result])

using []

start reg1 := X,

reg2 := Y,

result := 0

stop reg1 =? 0.

define write(X) as X with write(X).

define X as X with integer(X).

define X+Y as R with integer(X),integer(Y),R is X+Y.

define X-Y as R with integer(X),integer(Y),R is X-Y.

transition step

if \+(reg1 =? 0)

then reg1 := (reg1-1),

result := (result+reg2).

Figure 4: A Modularized EA for Multiplication

Example 17. As an example consider the algebra statement in Figure 3: an algebra fak is

de�ned that computes n!. This is a modularized version of the algebra shown in Section 2.7

on page 9. The transitions start and result are now integrated into the algebra statement.

The last function de�nition in the algebra is of particular interest: it shows how the

sub-algebra mult, included by the algebra statement, is called. Where the earlier algebra

for computing n! on page 9 used Prolog's built-in multiplication, a sub-algebra for carrying

out multiplication is called. Its de�nition can be found in Figure 4.

6.2 Implementation of Modularized EAs

The basic di�erence between the basic version of leanEA and the modularized version is that

the algebra-statement at the beginning of a �le containing an EA speci�cation is mapped

into appropriate module and use module statements in Prolog. Since the algebra will

be loaded within the named module, we also need an evaluation function that is de�ned

internally in this module. This allows to use functions with the same name in di�erent

algebras without interference.

Figure 5 (p. 20) lists the modularized program. It de�nes four additional operators

(algebra, start, stop, and using) that are needed for the algebra statement. The �rst

term expansion clause (Lines 6{21) translates such a statement into a Prolog module

header, declares =>/2 to be dynamic in the module, and de�nes the evaluation predicate

=>* for this module.10 The e�ect of the term expansion-statement is probably best seen

at an example: the module declaration in Figure 3, for instance, is mapped into

10This implementation is probably speci�c for SICStus Prolog and needs to be changed to run on other

Prolog systems. The \Name:"-pre�x is required in SICStus, because a \:- module(:: :)"-declaration beco-
mes e�ective after the current term was processed.

Universit�at Karlsruhe

20 leanEA: A Poor Man's Evolving Algebra Compiler

1 :- op(1199,fy,(transition)), op(1180,xfx,(if)),

2 op(1192,fy,(define)), op(1185,xfy,(with)),

3 op(1190,xfy,(as)), op(1170,xfx,(then)),

4 op(900,xfx,(=>)), op(900,xfx,(=>*)),

5 op(900,xfx,(:=)), op(900,xfx,(=?)),

6 op(100,fx,(\)), op(1199,fx,(algebra)),

7 op(1190,xfy,(start)), op(1170,xfx,(stop)),

8 op(1180,xfy,(using)).

9 term_expansion((algebra Head using Include_list

10 start Updates stop Guard),

11 [(:- module(Name,[Name/2])),

12 Name:(:- use_module(Include_list)),

13 (:- dynamic(Name:(=>)/2)),

14 Name:(([H|T] =>* [HVal|TVal]) :-

15 (H = \HVal

16 ; H =.. [Func|Args], Args =>* ArgVals,

17 H1 =.. [Func|ArgVals], H1 => HVal),!,

18 T =>* TVal),

19 Name:([] =>* []),

20 Name:((A =? B) :- ([A,B] =>* [Val1,Val2]),

21 Val1 == Val2),

22 Name:(NewHead :- FrontCode,BackCode,!,

23 (transition _),Out =>* Value),

24 Name:(transition(result) :- (Guard,!))]):-

25 Head =..[Name,In,Out], NewHead =..[Name,In,Value],

26 serialize(Updates,FrontCode,BackCode).

27 term_expansion((define Location as Value with Goal),

28 ((Location => Value) :- Goal,!)).

29 term_expansion((transition Name if Condition then Updates),

30 (transition(Name) :-

31 (Condition,!,FrontCode,BackCode,transition(_)))) :-

32 serialize(Updates,FrontCode,BackCode).

33 serialize((A,B),(FrontA,FrontB),(BackB,BackA)) :-

34 serialize(A,FrontA,BackA),

35 serialize(B,FrontB,BackB).

36 serialize((LocTerm := Expr),

37 ([Expr] =>* [Val], LocTerm =.. [Func|Args],

38 Args =>* ArgVals, Loc =..[Func|ArgVals]),

39 asserta(Loc => Val)).

Figure 5: Modularized EAs: the Program

Bernhard Beckert & Joachim Posegga

Conclusion 21

:- module(fak,[fak/2]).

fak:(:-use module([mult])).

:- dynamic fak:(=>)/2.

plus the usual de�nition of =>*/2.

6.3 Running Modularized EAs

In contrast to the basic version of the EA interpreter, a modularized EA has a de�ned

interface to the outside world: The algebra-statement de�nes a Prolog predicate that can

be used to run the speci�ed EA. Thus, the user does not need to start the transitions

manually. Furthermore, the run of a modularized EA does not end with failure of the

starting predicate, but with success. This is the case since a modularized EA has a de�ned

�nal state. If the predicate succeeds, the �nal state has been reached.

For the example algebra above (Figure 3), the run proceeds as follows:

| ?- [ea].

{consulting ea.pl...}

{ea.pl consulted, 50 msec 3424 bytes}

yes

| ?- [fak].

{consulting fak.pl...}

{consulting mult.pl...}

{consulted mult.pl in module mult, 20 msec 10112 bytes}

{consulted fak.pl in module fak, 50 msec 19888 bytes}

yes

| ?- fak(4,Result).

Result = [24] ?

yes

| ?-

After loading11 the EA interpreter, the EA of Figure 3 is loaded from the �le fak.pl. Thus

loads in turn the algebra for multiplication in mult.pl. The algreba is then started and

the result of 4! is returned.

7 Conclusion

We presented leanEA, an approach to implementing an abstract machine for evolving al-

gebras. The underlying idea is to modifying the Prolog reader, such that loading a speci-

�cation of an evolving algebra means compiling it into Prolog clauses. Thus, the Prolog

system itself is turned into an abstract machine for running EAs. The contribution of our

work is twofold:

11For more complex computations it is of course advisable to compile, rather than to load the Prolog
code.

Universit�at Karlsruhe

22 leanEA: A Poor Man's Evolving Algebra Compiler

Firstly, leanEA o�ers an e�cient and very
exible framework for simulating EAs. leanEA

is open, in the sense that it is easily interfaced with other applications, embedded into other

systems, or adapted to concrete needs. We believe that this is a very important feature

that is often underestimated: if a speci�cation system is supposed to be used in practice,

then it must be embedded in an appropriate system for program development. leanEA,

as presented in this paper, is surely more a starting point than a solution for this, but it

demonstrates clearly one way for proceeding.

Second, leanEA demonstrates that little e�ort is needed to implement a simulator for

EAs. This supports the claim that EAs are a practically relevant tool, and it shows a clear

advantage of EAs over other speci�cation formalisms: these are often hard to understand,

and di�cult to deal with when implementing them. EAs, on the other hand, are easily

understood and easily used. Thus, leanEA shows that one of the major goals of EAs, namely

to \bridge the gap between computation models and speci�cation methods" (following

Gurevich (1994)), was achieved.

A An Extended Example: First Order Semantic Tableaux

A.1 An Evolving Algebra Description of Semantic Tableaux

The following is a leanEA speci�cation of semantic tableaux for �rst order logic. It is a

deterministic version of the algebra described in (B�orger & Schmitt, 1995). We assume the

reader to be familiar with free variable semantic tableau (Fitting, 1990).

We use Prolog syntax for �rst-order formulae: atoms are Prolog terms, \-" is negation,

\;" disjunction, and \," conjunction. Universal quanti�cation is expressed as all(X,F),

where X is a Prolog variable and F is the scope; similarly, existential quanti�cation is

expressed as ex(X,F).

Example 18. (p(0),all(N,(-p(N);p(s(N))))) stands for p(0)^ (8n(:p(n)_ p(s(n))))).

Since formulae have to be represented by ground terms, the variables are instantiated

with '$VAR'(1), '$VAR'(2), etc. using numbervars12.

A branch is represented as a (Prolog) list of the formulae it contains; a tableau is

represented as a list of the branches it consists of.

The external functions nxt_fml, nxt_branch, update_branch, and update_tableau

are only described declaratively in (B�orger & Schmitt, 1995); they determine in which

order formulae and branches are used for expansion of a tableau. A simple version of

these functions has been implemented (see below), that nevertheless is quite e�cient. It

implements the same tableau procedure that is used in the tableau based theorem prover

leanTAP (Beckert & Posegga, 1994).

A.2 Preliminaries

First, library modules are included that are used in the function de�nitions.13 The usage

of the included predicates is described below.

12numbervars(?Term,+N,?M) uni�es each of the variables in term Term with a special term '$VAR'(i),
where i ranges from N to M� 1. N must be instantiated to an integer. write, format, and listing print the

special terms as variable names A, B, : : : , Z, A1, B1, etc.
13These are modules from the SICStus Prolog library. They might be named di�erently and/or behave

di�erently in other Prolog systems.

Bernhard Beckert & Joachim Posegga

An Extended Example: First Order Semantic Tableaux 23

1 :- use_module(library(charsio),[format_to_chars/3,

2 open_chars_stream/3]).

3 :- use_module(library(lists),[append/3]).

4 :- use_module(unify,[unify/2]).

The formula Fml to be proven to be inconsistent is given as a Prolog fact formula(Fml)

(which is additional Prolog code): Fml has to be a closed formula, and the same variable

must not be bound by more than one quanti�er. In Fml the Prolog variables are not yet

replaced by ground terms.

5 formula((all(X,(-p(X);p(f(X)))),p(a),-p(f(f(a))))).

A.3 Function De�nitions

A.3.1 Initial Values of Internal Constants

The constant tmode (called mode in (B�orger & Schmitt, 1995)) de�nes the mode of the

tableau prover which is either close (the next transition will check for closure of the

current tableau), expand (the next transition tries to expand the tableau), failure (the

tableau is not closed and cannot be expanded), or success (the tableau is closed, i.e., a

proof has been found). The initial value of tmode is close:

6 define tmode as close.

The current branch cbranch initially contains only the formula to be proven to be

inconsistent. The variables in this formula are instantiated with '$VAR'(1), '$VAR'(2),

etc. using numbervars, such that [Formula] becomes a ground term.

7 define cbranch as [Formula] with formula(Formula),

8 numbervars(Formula,1,_).

The current tableau ctab is initially a list containing the initial current branch (descri-

bed above) as its single element.

9 define ctab as [[Formula]] with formula(Formula),

10 numbervars(Formula,1,_).

The current formula cfml is initially set to [[nxtfml(cbranch)]]�, where the external

function nxtfml (see Sec. A.3.2) chooses the next formula from a branch to be expanded.

Since the function nxtfml cannot be called immediately,14 the predicate nxtfml_impl, that

implements nxtfml, is used instead.

11 define cfml as Cfml with formula(Formula),

12 numbervars(Formula,1,_),

13 nxtfml_impl([Formula],Cfml).

varcount is the number of variables already used in the proof (plus one). Its initial

value is the number of (di�erent) variables in the initial current formula (plus one).

14 define varcount as Count with formula(Formula),

15 numbervars(Formula,1,Count).

14It is not possible in leanEA to use a function of the speci�ed algebra in the Prolog code of function
de�nitions.

Universit�at Karlsruhe

24 leanEA: A Poor Man's Evolving Algebra Compiler

The constant fcount contains the number of Skolem function symbols already already

used (plus one). Its initial value is 1:

16 define fcount as 1.

A.3.2 De�nitions of External Functions

The function rename(Fml,Count) replaces the atom '$VAR'(0) | which is a place holder

for the special variable that is called v in (B�orger & Schmitt, 1995) | in Fml by '$VAR'(n),

where n is the integer Count is bound to. '$VAR'(n) is the place holder for the nth variable.

rename is implemented using the predicate replace (see Section A.4).

17 define rename(Fml,Count) as Newfml with

18 replace(Fml,'$VAR'(0),'$VAR'(Count),Newfml).

The function inst is similar to rename; but instead of inserting a new variable for the

atom '$VAR'(0), it is replaced by a Skolem term. The Skolem term is composed of the

functor f, the number that is bound to Fcount (which makes the Skolem terms di�erent

for di�erent values of Fcount), and (the place holders of) the �rst Varcount variables (the

predicate freevars is described in Section A.4).

19 define inst(Fml,Fcount,Varcount) as Newfml with

20 freevars(Varcount,Free),

21 Skolem =.. [f,Fcount|Free],

22 replace(Fml,'$VAR'(0),Skolem,Newfml).

The value of the function exhausted is 1 if the tableau T bound to Tab is exhausted, else

it is 0. A tableau is exhausted, if no next branch can be chosen, i.e., if [[nxtbranch(T)]] =

bottom.

23 define exhausted(Tab) as 1 with nxtbranch_impl(Tab,bottom).

24 define exhausted(_) as 0.

succ is the successor function on integers:

25 define succ(X) as X1 with integer(X), X1 is X+1.

update_branch removes the old formula Old_fml from the branch Old_branch; if

Old_fml is a
-formula, it is then appended at the end of the branch. New formulae

are added to the beginning of the branch. There are two versions of this function: for one

new formula (25{30) and one for two new formulae (32{39). Note, that Old_fml is never a

literal.

In combination with the implementation of nxtfml that always chooses the �rst non-

literal formula, update_branch implements branches as queues, which leads to a complete

tableau proof procedure.

26 define update_branch(Old_branch,Old_fml,New_fml) as New_branch with

27 remove(Old_branch,Old_fml,Tmp_branch),

28 (fmltype_impl(Old_fml,gamma) ->

29 append([New_fml|Tmp_branch],[Old_fml],New_branch)

30 ; New_branch = [New_fml|Tmp_branch]

31).

Bernhard Beckert & Joachim Posegga

An Extended Example: First Order Semantic Tableaux 25

32 define update_branch(Old_branch,Old_fml,New_fml_1,New_fml_2) as

33 New_branch with

34 remove(Old_branch,Old_fml,Tmp_branch),

35 (fmltype_impl(Old_fml,gamma) ->

36 append([New_fml_1,New_fml_2|Tmp_branch],

37 [Old_fml],New_branch)

38 ; New_branch = [New_fml_1,New_fml_2|Tmp_branch]

39).

The function update_tabl removes the old branch from the tableau and appends the

new branch(es) to the end of the tableau. There are two version of this function, for one

new branch and for two new branches.

40 define update_tabl(Old_tabl,Old_branch,New_branch) as New_tabl with

41 remove(Old_tabl,Old_branch,Tmp_tabl),

42 append(Tmp_tabl,[New_branch],New_tabl).

43 define update_tabl(Old_tabl,Old_branch,

44 New_branch_1,New_branch_2) as

45 New_tabl with

46 remove(Old_tabl,Old_branch,Tmp_tabl),

47 append(Tmp_tabl,[New_branch_1,New_branch_2],New_tabl).

In (B�orger & Schmitt, 1995) the value of the function clsubst is a list of the closing

substitutions of a tableau. But, since we only need to know whether there is a closing

substitution or not, the value of clsubst is in our version just empty or nonempty. The

predicate is_closed, that checks whether a tableau is closed, is described in Section A.4.

48 define clsubst(T) as nonempty with is_closed(T).

49 define clsubst(_) as empty.

The function nxtfml chooses the �rst formula on the branch that is not a literal; if

no such formula exists, its value is bottom. The predicate nxtfml_impl is described in

Section A.4.

50 define nxtfml(B) as Next with nxtfml_impl(B,Next).

nxtbranch chooses the �rst branch of a tableau that is expandable, i.e., the �rst

branch B such that [[nxtfml(B)]] is not bottom. The predicate nxtbranch_impl is de-

scribed in Section A.4.

51 define nxtbranch(T) as Next with nxtbranch_impl(T,Next).

The function fmltype determines the type of a formula, which is one of alpha, beta,

gamma, delta, and lit (for literals). The predicate fmltype_impl is described in Sec-

tion A.4.

52 define fmltype(Fml) as Type with fmltype_impl(Fml,Type).

The function fst_comp(Fml) (53{63) computes the �rst formula that is the result of

applying the appropriate tableau rule to Fml; if the rule application results in two new

formulae, snd_comp(Fml) returns the second formula. In (B�orger & Schmitt, 1995) the
-

Universit�at Karlsruhe

26 leanEA: A Poor Man's Evolving Algebra Compiler

and �-rules are de�ned in such a way that the atom '$VAR'(0), which is the place holder

for the special variable v, is substituted for the bound variable. The substitution is done

using the predicate replace (see below). v is replaced by the appropriate term (a new

variable or a Skolem term) in the transitions gamma and delta, respectively.

53 define fst_comp(Fml) as First with

54 (Fml = (F,_) -> First = F

55 ; Fml = -((F;_)) -> First = -F

56 ; Fml = -(-(F)) -> First = F

57 ; Fml = -((F,_)) -> First = -F

58 ; Fml = (F;_) -> First = F

59 ; Fml = all(X,F) -> replace(F,X,'$VAR'(0),First)

60 ; Fml = -(ex(X,F)) -> replace(-(F),X,'$VAR'(0),First)

61 ; Fml = -(all(X,F)) -> replace(-(F),X,'$VAR'(0),First)

62 ; Fml = ex(X,F) -> replace(F,X,'$VAR'(0),First)

63).

64 define snd_comp(Fml) as Second with

65 (Fml = (_,F) -> Second = F

66 ; Fml = -((_;F)) -> Second = -F

67 ; Fml = -(-(F)) -> Second = F

68 ; Fml = -((_,F)) -> Second = -F

69 ; Fml = (_;F) -> Second = F

70).

A.4 Additional Code Used in the Function De�nitions

The predicate nxtfml_impl implements the function nxtfml; it chooses the �rst formula

on a tableau branch that is not a literal. If no such formula exists, the value of nxtfml is

bottom; the value of nxtfml(bottom) is bottom as well.

71 nxtfml_impl(bottom,bottom).

72 nxtfml_impl([],bottom).

73 nxtfml_impl([First|_],Fml) :-

74 \+(fmltype_impl(First,lit)),!,Fml=First.

75 nxtfml_impl([_|Rest],Next) :- nxtfml_impl(Rest,Next).

The predicate nxtbranch_impl implements the function nxtbranch; it chooses the �rst

branch of a tableau that is expandable, i.e., the �rst branch that contains a formula that

is not a literal. If no such branch exists, the value of nxtbranch is bottom.

76 nxtbranch_impl([],bottom).

77 nxtbranch_impl([First|_],Branch) :-

78 \+(nxtfml_impl(First,bottom)),!,Branch=First.

79 nxtbranch_impl([_|Rest],Next) :- nxtbranch_impl(Rest,Next).

The predicate fmltype_impl implements the function fmltype (in the obvious way).

80 fmltype_impl(Fml,Type) :-

81 (Fml = (_,_) -> Type = alpha

Bernhard Beckert & Joachim Posegga

An Extended Example: First Order Semantic Tableaux 27

82 ; Fml = -((_;_)) -> Type = alpha

83 ; Fml = -(-(_)) -> Type = alpha

84 ; Fml = -((_,_)) -> Type = beta

85 ; Fml = (_;_) -> Type = beta

86 ; Fml = all(_,_) -> Type = gamma

87 ; Fml = -(ex(_,_)) -> Type = gamma

88 ; Fml = -(all(_,_)) -> Type = delta

89 ; Fml = ex(_,_) -> Type = delta

90 ; Type = lit

91).

replace(+Term,+Old,+New,New_term) replaces all occurrences of Old in Term by New.

The result is bound to New_term. replace_list(+List,+Old,+New,New_list) does the

same for a list List of terms.

92 replace(Term,Old,New,New) :-

93 Term == Old,

94 !.

95 replace(Term,Old,New,NTerm) :-

96 Term =.. [F|Args],

97 replace_list(Args,Old,New,NArgs),

98 NTerm =.. [F|NArgs].

99 replace_list([],_,_,[]).

100 replace_list([H|T],Old,New,[NH|NT]) :-

101 replace(H,Old,New,NH),

102 replace_list(T,Old,New,NT).

The predicate freevars(+N,-List), generates a list of the place holders for the �rst

n variables, where n is the integer N is bound to.

103 freevars(1,[]) :- !.

104 freevars(N,['$VAR'(N1)|Free]) :-

105 integer(N),

106 N1 is N-1,

107 freevars(N1,Free).

remove(+Old_list,+Elem,-New_list) removes all occurrences of the term Elem from

the list Old_list; the result is bound to New_list.

108 remove([],_,[]).

109 remove([H|T],Elem,New) :-

110 remove(T,Elem,NT),

111 (H == Elem ->

112 New = NT

113 ; New = [H|NT]

114),

115 !.

The predicate is_closed(+T) (Lines 116{119) checks whether the tableau bound to T

is closed. First, the predicate denumbervars is called (described below), that replaces

Universit�at Karlsruhe

28 leanEA: A Poor Man's Evolving Algebra Compiler

the variable place holders by Prolog variables; then the predicate is_closed_2 (120{123)

is called, which closes the branches of a tableau (containing Prolog variables as object

variables) one after the other using close_branch.

close_branch (124{127) negates the �rst formula on the branch (and further formulae

if backtracking occurs) and tries to unify this negation with another formula on the branch.

is_closed and the predicates it calls heavily depend on backtracking for �nding a single

substitution that closes all branches of the tableau simultaneously.

116 is_closed(T) :-

117 denumbervars(T,T1),

118 is_closed_2(T1),

119 !.

120 is_closed_2([]).

121 is_closed_2([First|Rest]) :-

122 close_branch(First),

123 is_closed_2(Rest).

124 close_branch([H|T]) :-

125 (H = -Neg; -H = Neg) ->

126 member_unify(Neg,T).

127 close_branch([_|T]) :- close_branch(T).

member_unify is the same as member, except that is uses sound uni�cation (with occur

check).

128 member_unify(X,[H|T]) :-

129 (unify(X,H)

130 ; member_unify(X,T)

131).

The predicate denumbervars replaces the place holders of the form '$VAR'(n) by

(new) Prolog variables. It is the most system dependent predicate in the de�nition of

this evolving algebra. It works by writing the tableau to a \character stream" using

format_to_chars/315, which replaces the place holders by Prolog variables16, and then

re-reading the tableau from the \character stream"17. append(Chars,[46],CharsPoint)

adds a period \." to the term such that it becomes a Prolog fact.

132 denumbervars(T,T1) :-

133 format_to_chars("~p",[T],Chars),

134 append(Chars,[46],CharsPoint),

135 open_chars_stream(CharsPoint,read,Stream),

136 read(Stream,T1),

137 close(Stream).

15format to chars(+Format,+Arguments,-Chars) prints Arguments into a list of character codes using
format/3 (which in this case just prints the term). Chars is uni�ed with the list.

16See Footnote 12 on Page 22.
17open chars stream(+Chars,read,-Stream) opens Stream as an input stream to an existing list of cha-

racter codes. The stream may be read with the Stream IO predicates and must be closed using close/1.

Bernhard Beckert & Joachim Posegga

An Extended Example: First Order Semantic Tableaux 29

A.5 Transition De�nitions

The main di�erence to the original version of the EA as described in (B�orger & Schmitt,

1995) is that instead of using an additional transition

transition enter_closure

if tmode =? \expand,

then tmode := \close.

the closure mode is entered explicitly at the end of each of the expanding transitions alpha,

beta, gamma and delta. Using the transition enter_closure would make the EA non-

deterministic, because it �res whenever one of the expanding transitions �res.

If the EA is in closure mode, there are three transitions that might apply:

1. If the current tableau is closed, transition success (138{141) �res and tmode is set

to success. Then, the EA is in a �nal state, because no further transition �res.

2. If the tableau is not closed but expandable, transition closure (142{146) �res, tmode

is set to expand, and the tableau will be expanded in the next step.

3. If the current tableau is neither closed nor expandable, transition failure (147{151)

�res. It sets tmode to fail, and the EA reaches a �nal state.

138 transition success

139 if tmode =? \close,

140 clsubst(ctab) <> \empty

141 then tmode := \success.

142 transition closure

143 if tmode =? \close,

144 clsubst(ctab) =? \empty,

145 exhausted(ctab) =? \0

146 then tmode := \expand.

147 transition failure

148 if tmode =? \close,

149 clsubst(ctab) =? \empty,

150 exhausted(ctab) <> \0

151 then tmode := \fail.

There are four transitions for expanding the current tableau, one for each possible type

of the current formula (which is never a literal). The de�nitions of these transitions make

use of the let construct (Sec. 5.1).

The transition alpha �rst stores the two formulae that are the result of the rule applica-

tion to the current formula in F1 and F2, respectively. These two formulae are added to the

current branch (and the old current formula is removed); the new branch, that is stored in B

is added to the current tableau (and the old branch is removed). The resulting tableau T

becomes the next current tableau, and the next current branch and current formula are

chosen from T.

152 transition alpha

Universit�at Karlsruhe

30 leanEA: A Poor Man's Evolving Algebra Compiler

153 if tmode =? \expand,

154 fmltype(cfml) =? \alpha

155 then let F1 = fst_comp(cfml),

156 let F2 = snd_comp(cfml),

157 let B = update_branch(cbranch,cfml,F1,F2),

158 let T = update_tabl(ctab,cbranch,B),

159 ctab := T,

160 cbranch := nxtbranch(T),

161 cfml := nxtfml(nxtbranch(T)),

162 tmode := \close.

The transition beta, too, stores the two formulae that are the result of the rule appli-

cation to the current formula in F1 and F2, respectively. But contrary to the transition

alpha, it generates two new branches B1 and B2 by adding the new formulae separately to

the current branch. Both new branches are added to the current tableau (the old branch is

removed). The resulting tableau T becomes the next current tableau, and the next current

branch and current formula are chosen from T.

163 transition beta

164 if tmode =? \expand,

165 fmltype(cfml) =? \beta

166 then let F1 = fst_comp(cfml),

167 let F2 = snd_comp(cfml),

168 let B1 = update_branch(cbranch,cfml,F1),

169 let B2 = update_branch(cbranch,cfml,F2),

170 let T = update_tabl(ctab,cbranch,B1,B2),

171 ctab := T,

172 cbranch := nxtbranch(T),

173 cfml := nxtfml(nxtbranch(T)),

174 tmode := \close.

The transition gamma �rst stores the result of applying fst_cmp to the current formula

in F, which is the scope of the quanti�cation with the bound variable replaced by the special

variable v (resp. its place holder '$VAR'(0)). v is then replaced by a new free variable using

rename. The resulting formula F1 is added to the current branch and the new branch is

added to the current tableau (replacing the old branch). The next current branch and

current formula are chosen, and varcount is increased by one.

175 transition gamma

176 if tmode =? \expand,

177 fmltype(cfml) =? \gamma

178 then let F = fst_comp(cfml),

179 let F1 = rename(F,varcount),

180 let B = update_branch(cbranch,cfml,F1),

181 let T = update_tabl(ctab,cbranch,B),

182 ctab := T,

183 cbranch := nxtbranch(T),

184 cfml := nxtfml(nxtbranch(T)),

185 varcount := succ(varcount),

Bernhard Beckert & Joachim Posegga

An Extended Example: First Order Semantic Tableaux 31

186 tmode := \close.

The transition delta is very similar to the transition gamma. The only di�erences are

that the variable v is replaced by a Skolem term (instead of a free variable) using inst, and

that fcount is increased instead of varcount.

187 transition delta

188 if tmode =? \expand,

189 fmltype(cfml) =? \delta

190 then let F = fst_comp(cfml),

191 let F1 = inst(F,fcount,varcount),

192 let B = update_branch(cbranch,cfml,F1),

193 let T = update_tabl(ctab,cbranch,B),

194 ctab := T,

195 cbranch := nxtbranch(T),

196 cfml := nxtfml(nxtbranch(T)),

197 fcount := succ(fcount),

198 tmode := \close.

References

Beckert, Bernhard, & Posegga, Joachim. 1994. leanTAP : Lean Tableau-based De-

duction. Journal of Automated Reasoning. To appear.

B�orger, Egon, & Rosenzweig, Dean. 1994. A Mathematical De�nition of Full Prolog.

Science of Computer Programming.

B�orger, Egon, & Schmitt, Peter H. 1995. A Description of the Tableau Method Using

Evolving Algebras.

B�orger, Egon, Durdanovic, Igor, & Rosenzweig, Dean. 1994a. Occam: Speci�-

cation and Compiler Correctness. Pages 489{508 of: Montanari, U., & Olderog,

E.-R. (eds), Proceedings, IFIP Working Conference on Programming Concepts, Me-

thods and Calculi (PROCOMET 94). North-Holland.

B�orger, Egon, Del Castillo, Giuseppe, Glavan, P., & Rosenzweig, Dean. 1994b.

Towards a Mathematical Speci�cation of the APE100 Architecture: The APESE Mo-

del. Pages 396{401 of: Pehrson, B., & Simon, I. (eds), Proceedings, IFIP 13th

World Computer Congress, vol. 1. Amsterdam: Elsevier.

Fitting, Melvin C. 1990. First-Order Logic and Automated Theorem Proving. Springer-

Verlag.

Gurevich, Yuri. 1991. Evolving Algebras. A Tutorial Introduction. Bulletin of the

EATCS, 43, 264{284.

Gurevich, Yuri. 1994. Evolving Algebras 1993: Lipari Guide. In: B�orger, E. (ed),

Speci�cation and Validation Methods. Oxford University Press.

Universit�at Karlsruhe

32 leanEA: A Poor Man's Evolving Algebra Compiler

Gurevich, Yuri, & Huggins, Jim. 1993. The Semantics of the C Programming Language.

Pages 273{309 of: Proceedings, Computer Science Logic (CSL). LNCS 702. Springer.

Gurevich, Yuri, & Mani, Raghu. 1994. Group Membership Protocol: Speci�cation

and Veri�cation. In: B�orger, E. (ed), Speci�cation and Validation Methods. Oxford

University Press.

Kappel, Angelica M. 1993. Executable Speci�cations based on Dynamic Algebras. Pages

229{240 of: Proceedings, 4th International Conference on Logic Programming and

Automated Reasoning (LPAR), St. Petersburg, Russia. LNCS 698. Springer.

Bernhard Beckert & Joachim Posegga

