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Abstract

In resolution proof proceduresrefinementsbased on A-orderingsof literals havealong
tradition and arewell investigated. Intableau proof proceduressuch refinementswereonly
recently introduced by the authors of the present paper. In this paper we prove the follow-
ing results: we give acompletenessproof of A-ordered ground clause tableaux whichis a
lot easier to follow than the previous one. Thetechnique used in the proof is extended to
the non-clausal case as well as to the non-ground case and we introduce an ordered ver-
sion of Hintikka sets that shares the model existence property of standard Hintikks sets.
We show that A-ordered tableaux are a proof confluent refinement of tableaux and that A-
ordered tableaux together with the connection refinement yield an incomplete proof pro-
cedure. We introduce A-ordered first-order NNF tableaux, prove their completeness, and
we briefly discussimplementation issues.

1 Introduction

In resolution proof procedures refinements based on A-orderings' of literals have along tra-
dition and are well investigated. In tableau proof procedures such refinements were only re-
cently introduced by the authors of the present paper [7]. The motivation for considering
A-ordered tableaux is that in recent years tableau systems were increasingly used as proof
procedure for applicationsin program verification. The verification of programs frequently
requires proof plans or human interaction for difficult proof obligations and the anaysis of
failed proof attempts. Tableaux procedures support these tasks, because they do not need to
transform proof obligationsin clausal form and often distinguish cases in their branching be-
havior like human beings do. Specia purpose proversfor theories can be easily integrated in
the tree structure of tableaux. A-ordered tableaux represent a refinement that is compatible
with these goals. A-orderingsrestrict the search space and put onein astronger positionwith
respect to termination of non-theorems.

In this paper we prove the following results: in Section 2 we give a completeness proof
of A-ordered ground clause tableaux which is alot easier to follow than theonein [7]. The
technique used in the proof has several more advantages. first, it can be extended to the non-
clausal case as well as to the non-ground case—this is done in Section 3, where we intro-

! See Section 2 for a precise definition.
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duce ordered linksin general NNF formulas and in Section 4, where we introduce an ordered
version of Hintikka sets that shares the model existence property of standard Hintikks sets.
Second, from the proof it isimmediate that A-ordered tableaux are a proof confluent [8] re-
finement. Thisproperty isof great importance for finding counter examples to non-theorems.
Inthelight of this property it isnot surprising that A-ordered tableaux together with the con-
nection refinement [9] yield an incomplete proof procedure. Thus there is no hope of using
A-orderingswithin such proof procedures as the connection method or model elimination all
of which employ the connection refinement. Thisisalso provedin Section 2. In Section 5 we
define A-ordered first-order NNF tableaux, prove their completeness, and we briefly discuss
implementation i ssues.

This paper provides an answer to the basic theoretical questions that arise from order-
restricted tableaux. |mplementation issues, computational results, and secondary theoretical
issues such as the extension to equality and decidability resultswill be the topic of future pa-
pers.

2 Ordered Ground Clause Tableaux

Tableaux are defined as possibly infinitetrees |abelled with formulas. We use the terms node,
root, leaf, and immediate successor without further explanation. A branch is either a finite
path from theroot to aleaf or an infinite path starting at the root. We denote the set of nodes
on a path from the root to anode u by pred(u). These nodes are called predecessors of w. If
T isatree whose nodes are labeled with literalsand « isanode of 7', we write clause(u) for
the set of literalslabelling theimmediate successors of w.

Definition 1 A ground clause tableau 7" for a set of ground clauses M is atree for which
thefollowing holds:

1. Each nodeof 7" islabelled with aliteral.

2. Theroot of 1" is|abelled with the atom true.

3. For each node u that isnot aleaf clause(u) appearsin M.

4. For any distinct nodes u # v on any branch clause(u) # clause(v).

Let B beabranch of aground clausetableau. A literal /. ison B, if oneof itsnodesis|abelled
with L. A clause C'ison B, if C' = clause(u) for somenodeu € B.

Clause (4) inthe previousdefinitionisaso knownasregularity (cf. [9]) and itisastraight-
forward, but useful optimization which excludes unnecessarily long tableaux.

Definition 2 A tableau branch is closed if it contains a complementary pair of literals. A
tableau is closed if all of itsbranches are closed. The tableau is called open otherwise.

Definition 3 An A-ordering on a set of atoms B is a binary relation <4 such that for all
a,b,ce B

Irreflexivity a £4 a.

Trangitivity a <4 bandb <4 cimplya <4 c.
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Substitutivity a <4 bimpliesac <4 bo for al substitutionse.

Thusin the ground case an A-ordering simply isan irreflexive, transitive ordering.
We assume inthefollowingthat < isan A-ordering onthe atoms of an arbitrary, but fixed
signature.

Definition 4 We define an A-ordered ground clausetableau? for aground clause set M as
aground clause tableau for A/ obeying the following extension rulerestriction: for each node
u that is not aleaf clause(u) containsa <-maximal literal whichis (i) either complementary
toa<-maximal literal occurringin another clausefrom M or (ii) iscomplementary to alitera
inpred(u).

Examplel Consider the A-ordering D < B < A < C and the ground clause set

s={-Bv[=C| v BV D,-~av[@][=D].

Themaximal <-literal in each clauseis highlighted. A partia ordered ground clause tab-
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Astheinitial tableau isempty, only one of two clauses that contain complementary, max-
imal literalsare allowed for thefirst step. In the present example, these are thefirst and third
clause containing C and —C', respectively. We choose to expand with {—=B Vv =} first. As B
does not occur maximally inany clause theleft branch can only be expanded using {—A Vv C'}.
Similarly, the same clause must be used to extend the right branch. Hence, the tableau up to
thispoint is determined up to the order in which the first two clauses are being used.

Clauses one and three are already on the now leftmost branch which can only be extended
with the clause containing A and then with the unit clause. This yields the tableau shown
above. Notethat it isnot possible to extend the leftmost open branch even though there are
clauses being not onit. Neither of them, however, may be used, because their maximal literals
do not occur complemented on the branch. Indeed, it is possible to extend the literal set on
the leftmost open branch to amodel of .S as indicated.

21n [7] we used adlightly different definition which is, however, easily seen to be equivalent to the present one.
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Definition 5 Let M beaground clause set and 7" an A-ordered ground clause tableau for M.
T iscalled saturated, if thereisno A-ordered ground clause tableau 7" for M suchthat 7' is
aproper subtree of 7",

Theorem 1 Let M be a(not necessarily finite) set of ground clauses and B an open branch
of an A-ordered saturated ground clause tableau 7" for M. Then M hasamodel.

Proof In the following we identify as usual consistent sets of ground literals from M with
(partial) interpretationsof A1.

In particular, since B isopen, theset 7 of literdson B isconsistent and, therefore, consti-
tutesa partial interpretation of M. Consider the set of clauses M’ that are not made trueby 7,
that is, no litera of A/’ occursin I. Let J bethe set of literals occuring <-maximally in any
clause of M’.

J givesriseto awell-defined partial interpretation, because no literal and its complement
can occur maximally in clauses of M’; otherwise these clauses would be on B and notin M’
by Definition 4, item (i) and Definition 5.

Finaly, theinterpretation / U J iswell-defined, for if L occurs maximally in a clause of
M’ (and hence, in J), then L cannot bein I by Definition 4, item (ii) and Definition 5.

By construction, theinterpretation 7 U J satisfies at least oneliteral in each clause of M,
therefore, it satisfies M.

The argument of Theorem 1 provides a simple, effective procedure to calculate a model
when M isfinite. For instance, the modedl used in Example 1 was constructed thisway.

Obviously, each A-ordered ground clausetabl eaux can be extended to asaturated A-order-
ed ground clause tableaux. Therefore, we can conclude that ordered ground clause tableaux
areproof confluent, that is, each ordered ground clausetableau for an unsatisfiableformulaisa
subtreeof asuitableclosed ordered ground clause tableau. Thisobservation hastwo important
implications:

1. Itisnot necessary to backtrack over aternative selections of clauses to be used for ex-
tension.

2. Intheground case counter examples (models) for satisfiable formulas can be extracted
directly from saturated branches via the construction given in the proof.

On the other hand, typical non-proof confluent tableau refinements are incompatible with
the ordering restriction.

Definition 6 A clausetableau issaidto obey the connection condition if every non-leaf node
u but theroot node must have aleaf nodev asitsdirect successor such that thelabels of « and
v are complementary literas.

Theorem 2 Ordered ground clause tableaux and ground clause tabl eaux obeying the connec-
tion condition areincompatible, in other words, thereisan unsatisfiable ground clause set M
and an A-ordering < such that there exists no <-ordered ground clause tableau for A/ which
at the same time obeys the connection condition.

Proof Consider the ground clause set

M = {Av-B, AvBv-C, CVD, CV-D, =AVv-CVE, -EVF, —~F}.
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Assumetha A < B < C < D < E < F. If we start with either C'vD or Cv—D,
then, because of the connection condition, the left branch must be extended with AV Bv—C'
(—AV-CVE isnot admissible, because in it —C' is hot maximal), but then it isimpossible
to extend the branch containing A. If we start with = £V F or —=F, then we arrive a an open
branch containing — /' asaleaf. Thiscan only be extended with —=Av-C'V E, because of the
connection condition and we are stuck in the branch that contains —A. It iseasy to construct
a closed ordered tableau for M without the connection condition.

3 Ordered Linksin NNF Formulas

When we extend A-ordered clause tableaux to arbitrary (ground) formulas in NNF the cru-
cia question is: which sets of literal occurrences are to be ordered? In a formula such as
AV(BAC), forinstance, therearetwoimplicitdigunctiveclauses: {A, B} and {4, C'}. Such
implicitclausesare usually called paths(moreprecisely: digunctivepaths) throughaformula.
Inthe case of aCNF formulathe set of itsclausesisidentical to the set of itsdigjunctive paths.
Appropriatetoolsfor aformal trestment of the notionsrequired here were developed by An-
drews [1], Bibel [5] and Murray & Rosenthal [10]. Here we use a notation which is close
to that of the latter paper (but this can be mainly considered as a matter of taste—the other
formalisms could be used just as well).

Definition 7 An NNF formulais defined recursively as follows:

1. A (possibly non-ground) literal isan NNF formula

2. If ¢1,..., ¢, (n> 2)aeNNFformulas, then ¢; A - - - A ¢,, isan NNF formulaaswell.
Each pair ¢;, ¢; (i # j) issaid to be conjoint and the formulais called conjunctive.

3. fdy, ..., ¢, (n > 2)aeNNFformulas, then ¢, V- - -V ¢,, isan NNF formulaaswell.
Each pair ¢;, ¢; (i # j) issaid to be digoint and the formulais called disunctive.

4. If ¢ isan NNF formulaand = does not occur boundin ¢, then (V)¢ isan NNF formula
aswell.

Let ¢ beaclosed NNF formulawhere different quantifiers bind different variables. Then
we call the NNF formulathat results when al quantifiersin ¢ are deleted the matrix of ¢.

Let ¢/ be a closed NNF formula and ¢ its matrix. A ground instance of ¢ isaground
NNF formula ¢+ in which the substitution = replaces each variable of ¢ by aground term.

Two subformulas 4, B inan NNF formula¢ are c-connected (d-connected) iff thereare
subformulas F, GG in ¢ such that A isasubformulaof F, B isasubformulaof G,and F', G
are conjoint (digoint) in ¢.

A c-path (d-path) through ¢ isamaximal set of pairwise c-connected (d-connected) lit-
eralsin ¢.

Sets of formulas are considered conjoint, which extends the definition of c-paths (d-paths)
to sets of NNF formulas.

The following lemmais an immediate consequence of the definition of A-orderings.

Lemmal Let C beaclause or ad-path, . aliteral of C and . a substitution. If Ly is <-
maximal in C'yi, then L is<-maxima inC'.
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Note that the statement of the previouslemma does not hold in the other direction. Con-
sider, for example, theclause C' = {p(x)Vp(y)}. Sinceitsliterasare unifiable, they cannot
be ordered by any A-ordering, hence both literalsare maximal in C'. On the other hand using
the substitutiono = {« + a,y « b} and an A-ordering which is a lexicographic ordering
on ground terms we see that p(x)o isnot maximal inC'o.

In the completeness proof for A-ordered ground clause tableau we used that a clause is
satisfied by an interpretation if one of the clause's literas is satisfied by the interpretation.
Thisresult can be generalized to NNF formulas.

Proposition 1 (see, eg., [10]) A ground NNFformula¢ issatisfied by an interpretation 7 iff
at least onelitera in every d-path of ¢ issatisfied by 1.

The basis of each refutation procedure is the detection of complementary pairs of literal
occurrences. A pair of literal occurrences that might become complementary after a suitable
instantiation is usually called alink. We employ this concept to adequately deal with NNF
formulas.

Definition 8 Let ® be a set of formulasin NNF and let 7, 7' be substitutions renaming all
bound variables of ® into new variables. A link in ® isapair (F, ) of c-connected literal
occurrences in @ such that { F'r, G’} isunifiable.

A unifier of { F'r, Gr'} iscaled link-unifier of (F, ). Let ® be aset of formulasand ¢
aformula We say ¢ containsalink into @, if thereisalink (7, G) in ® U {¢} such that F
occursin ¢ and GG inaformulaof ®.

Definition 9 Let ¢ beaformulaor aset of formulasin NNF and let < bean A-ordering onthe
atom set of ¢. Wesay that aliteral /" occurs <-maximallyin ¢ iff thereisad-path p through
¢ inwhich F' occurs <-maximaly. An <-ordered link in ¢ isalink (7, G) in ¢ such that
both F' and GG occur maximally in ¢.

Notethat if ¢ isof theform ¢’AL, where L isaliterd, it is sufficient for the existence of
anordered link in ¢ that L occurs maximally in ad-path of .

The basic idea of the ordered NNF tableau procedure will be to employ exactly the same
restriction on universal quantifier rules as on the other formula expansion rules:

Expand (V)¢ () iff thereisaformulap on the same branch such that (V)¢ (z)Ap con-
tains an ordered link, in other words, it contains a link into the current branch. Moreover,
any instance of (Vx)¢(«) used for an extension must contain an ordered link into the current
branch.

A subtle point which, however, occurs independently of using orderingsor not is the case
p = (V&)¢(x). Bound variablesmust be considered as pairwise different in the definition of
an (ordered) link. Thisisexemplified withtheformula((Vz)p(z)Vp(f(z))) A—p(z)). Given
theordering p(z) < p(f(x)), thereisexactly one ordered link (up to renaming) between this
formulaand acopy of itself, namely (p(f(z)), —p(z)). Theatomsof thelink are not unifiable,
but as » occurs free in —p(x) and it occurs bound in ((Vx)p(z)Vvp(f(x))), the bound occur-
rence can be renamed appropriately, for instance, it can be renamed into (p(f(z1)), ~p(x)).
Note that in the case when only the formula (p(z)Vvp(f(z))) A —p(z) occurs on a tableau
branch, there is no ordered link to itself. These considerations are reflected in the previous
definition of an ordered link in NNF formulas.
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Example2 Let < bethe downward lexicographic ordering on ground atoms. B > C' > D.
Consider the formula®

D

28] voA
¢ = A

¢ v =D
A

The d-pathsof ¢ are {{—-B, D}, {—-B,-C},{C,-D},{B}}.

Some of the c-paths of ¢ are {{—B, C, B}, {D,—~C,C, B}} etc.

The following are the links of ¢: (-B, B), (=C,C), (D,—D). Only thefirst isan <-
ordered link; it is shown explicitly in the graphical formularepresentation above.

4 Ordered Hintikka Sets

If we were only interested in first-order tableaux for CNF formulas it would be sufficient to
lift ordered ground clause tableaux to first-order (which can be done straightforwardly) and
use Theorem 1. For the NNF case, just asin classical logic, alittle more work is required,
because one needs to establish anon-clausal version of Herbrand’s Theorem which preserves
the structure of a tableau branch. In the present section we define the notion of an ordered
Hintikka set for which the usual model existence theorem can be established. Its proof isa
combination of the classica argument with the idea used in the proof of Theorem 1.

Definition 10 Let H, M be sets of closed NNF formulas. H iscalled ordered Hintikka set
for M, if the following conditionshold:

1. M CH.
2. If g1 A--- Ao, € H containsan ordered link into H, then {¢+, - -, ¢,} C H.

3. If¢v---V ¢, € Hcontainsan ordered link into A, then at least one of ¢4, - - -, ¢,
isinH.

4. If for (Va)¢(x) € H and agroundterm¢ theformula¢(t) containsan ordered link into
H,theno(t) € H.

5. No subset . C H that consists only of literals containsalink.

Note that al literals contained in a Hintikkaset are ground literals.

Theorem 3 (Hintikka’'sLemma, ordered version) Every ordered Hintikkaset hasamodel.

31n order to ease readability asin [10] we use a two-dimensional notation for NNF formulasin which conjuncts
are drawn vertically and diguncts are drawn horizontally.
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Proof We provide an interpretation and show by induction on the depth d of nesting of log-
ical operators that thisinterpretation satisfies all formulasof 4. Literals have adepth of 1 by
definition. First we define a suitable interpretation for them.

TheliterasL of H defineapartia interpretation / via/ = L. By clause (5) of the defini-
tion of an ordered Hintikkaset, H does not contain complementary literals, hence / iswell-
defined.

Consider the set of formulas

Unlinked = {¢nVv---Vy,eB|¢;¢B, fordli=1,...,n}U
{tiN- ANy, eB|;¢B, forsomei=1,...,n}U
{o(®)| (Vr)p(x)eH, ¢(t)¢H, t ground}

and theset J of literal swhich occur maximally in the set of ground instances of Unlinked.

First weshow that J isawell-defined partia interpretation of theformulason H. Assume
that to some atom P different truth values were assigned in the definition of /. Then there
must be ground instances of formulas ), p € Unlinked in which P and — P occur maximally
(v and p may beidentical). By Lemma 1, literal sthat occur maximally in ground instances of
aformulaare groundinstances of literal sthat occur maximally intheoriginal formula. Hence,
¢ and p contain apair of literals (F, ) which has (P, = P) as an instance. Therefore, F' and
G are unifiable modul o renaming of bound variables. Thus+ (and p) containsan ordered link
into H and, therefore, by one of clauses (2)—4) of the definition of an ordered Hintikka set,
cannot bein “Unlinked” which is a contradiction.

It remains to show that / U J is still awell-defined partial interpretation of the formulas
of H. Assume that to the same ground atom P were assigned different truth valuesin 7 and
J,wl.o.g. let PEl and =P&J. Then, by definition of ./, =P occurs maximally in a ground
instance of aformula ¥ € Unlinked. By definition of /, H containsthe literal P. Triviadly,
P occurs maximally in P. As before, we see that ¢ contains an ordered link into H (via P),
which contradicts € Unlinked.

Thus I U J isawell-defined partia interpretation of H. Moreover, it isa mode of all
ground instances of “Unlinked” by definition of J and by Proposition 1. By Herbrand's The-
orem / U J isaswell amode of “Unlinked”.

In the clausal case I U J clearly congtitutes already a model of 4. In the NNF case we
show by induction on the depth d of aformula(that is, the number of recursion steps needed
in Definition 7 for its construction) in H that 7 U J models H.

d=1:
By definition, I satisfiesthe literalsof H.
d>1:

o If ¢ = 1A~ A, € Unlinked, then ¢ is satisfied by J. If ¢ ¢ Unlinked, then
we apply the induction hypothesisto ¢4, . . ., ¥, to see that al of them are satisfied by
1UJ. Then, by theusua completenesslemma (see, for example, [6]) of the conjunction
connective, ¢ issatisfied by 7 U J.

¢ Digunctiveformulas are treated anal ogoudly.
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¢ All groundinstances ¢ (t) of (Vx)¢(x) € H arecontained either in H or in“Unlinked”.
Therefore, al ¢(t) are satisfied by 7 U J either by the induction hypothesis or by def-
inition of .J. Thisguaranteesthat 7 U J models (V)¢ (), thistime by the usual com-
pleteness lemma for universally quantified formulas.

5 Ordered First-Order NNF Tableaux
5.1 Ordered first-order NNF tableau procedure

Now we are in apositionto define an ordered first-order NNF tableau procedure. Asusua we
have rulesfor conjunction, digjunction and universally quantified formulas (astheinput isin
skolemized NNF we do not need rules for negated and existentially quantified formul as).

Definition 11 Let ¢ be aclosed NNF formula. An ordered NNF tableau for ¢ isafinitary
labelled tree constructed as follows:

Init Thetree with asingle node labelled with ¢ is an ordered NNF tableau for ¢.

Con AssumeT isaready an ordered NNFtableaufor ¢, B isabranchof T', =1 A - - - Ay,
ison B, ¢ hasan ordered link into B and it had not yet aruleappliedtoiton B. Then B
is extended by n new nodes each of which islabelled with one of the v;. The resulting
tableau again is an ordered NNF tableau. «» ismarked ashaving had arule applied to it
on B.

Dis Assume 7' isaready an ordered NNF tableau for ¢, B isabranch of T', =1V - - - Vi),
ison B, ¢ hasan ordered link into B and it had not yet aruleapplied toit on B. Then
create n new branchesbelow B each of which containsasinglenew nodeand islabelled
with one of the ¢, . Theresulting tableau again isan ordered NNF tableau. ¢ ismarked
as having had arule applied to it on B.

Univ Assume T isaready an ordered NNF tableau for ¢, B isabranch of T', (V)¢ (z) ison
B, tisagroundterm, ¢(¢) does not occur on B and it has an ordered link into B. Then
B is extended by a new node which islabelled with ¢(¢). The resulting tableau again
is an ordered NNF tableau.

Remark

1. Unlike in CNF tableaux, al formulas ever to be expanded are present on the initial
tableau as subformulas of theinitia formula.

2. Ingeneral, ordered link informationis needed for all subformulas of theinitial formula
(asthere are only linearly many subformulasin each formulathisis not prohibitive).

3. A formulamight have an ordered link to itself. For instance, thefirst rule application
in an ordered tableau with an unsatisfiable initial formulaistriggered thisway.

4. The generalization from skolemized NNF input to arbitrary skolemized formulas (with-
out +», ) isstraightforward: it suffices to use uniform notation and to pay attention to
polarity of subformulasin the definitions of c-paths, d-paths, and links. We restricted
ourselvesto the NNF case to avoid technicalitieswhich only obscure the real problems
at issue. The details can safely be left to the reader.
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Example3 We show an ordered NNF tableau for a set of first-order formulas in Figure 1.
Each formula (but thefirst five formulas, which constitutetheinitial tableau) beginswith two
numbersi:j, wherei isthe number of itspremise and j the number of the formula. To keep the
tabl eau representation small an application of aUniv rule followed by an application of aDis
ruleis denoted as a single step. We used the following A-ordering:

P(ty,...,tn) <a P/(t},.. ., t))iff P< P orP=PFPandt; <4 tforall <i<n.
P, P" are arbitrary function or predicate symbolswith s < » < ¢ < p and function symbols
are ordered aphabetically. All other terms are incomparable.

Maximal literal occurrences in non-literalsare framed.

There are two ordered links: (p(c), —p(x)) between the formulas 5 and 2, (p(¢), =p(x))
between 5 and 3. Other formulas can only be expanded if the complement of their maximal
literalsis on the branch.

Thisleavesonly formulasnumber 2, 3, and 5 as candidatesfor thefirst step. Itisacommon
strategy to consider ground formulasfirst, thus we take number 5. On the left branch we are
left with formula 2 or 3 as a choice, because formulas number 6 does not produce any new
ordered links. If we expand formula 3, then theleft of the new branches isclosed and formula
9whichisnew on theright branch again causes no new ordered linksto appear, because r does
not occur maximally anywhere. If we employ afair selection strategy for universal formulas
we are, therefore, left with formula 2 as the only possibility for expansion. From this point
onwards no restriction is achieved by orderings, because now ¢ appears on both remaining
open branches which has ordered linksto formulas 1 and 4, hence al formulas are digiblefor
expansion.

Theorem 4 Let ¢ beaclosed NNF formula. If ¢ isunsatisfiable, then there isafinite closed
ordered NNF tableau for ¢.

Proof Let 7' be the (usualy infinite) tableau constructed by the following strategy: If the
rulesCon or Disare applicable, apply thesefirst. There are only finitely many of them at each
time. If several Univ rulesbut no Con or Disrules applicable, take the smallest instance with
respect to a given enumeration of ground formulas. Obviously, each open branch of 7" isan
ordered Hintikkaset. Since ordered Hintikka sets are satisfiable and the root formulaof 7" is
unsatisfiable, such abranch cannot exist, hence all branches of 7" are closed. Konig'slemma
guarantees that thereis a closed finite subtableau of 7'

Asin the ground clause case, proof confluence follows by the fact, that each ordered tab-
leau can be extended to a“ saturated” ordered tabl eaux whose branches constitute ordered Hin-
tikkasets.

It iscrucia for completeness that during the extension of a tableau literals in the newly
generated formulas can become maximal. The more restrictive version of the tableau exten-
sion rulewhere maximality of literalsisevaluated relativeto theinitial formulaiseasily seen
to be incomplete asit can produce subformulas without maximal literals.

Consider the unsatisfiable formula (—AV-CYA((AAB)VC). If C' is maximal, then the
subformula AA B does not contain amaximal literal anymore and cannot be expanded, hence
thereisno closed tableau.

The roleand definition of ordered Hintikkasets (and the branches corresponding to them)
closely pardlelsthat of clause sets saturated with respect to application of certain resolution
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LV (—s(x)V]|—q(x) )
|

2¥x(| -p(x) Ve(z) V r(z))

14:17.—q(c)

14:18.—r(c)

Figurel: A closed A-ordered tableau for the formulas numbered 1.-5. (Pdletier No. 24).

rulesin the framework of Bachmair & Ganzinger [2]. Some differences arise, however, be-
cause A-orderings need not be total, whereas in [ 2] total and well-founded orderingsare con-
sidered.

5.2 Ordered Free Variable Tableaux

So far we presented essentially Smullyan’s version of tableaux [11], where instantiations of
universal formulas are guessed. Tableaux implementationswork either with an enumeration
of ground instances or with free variables and unification. In both cases, the ordering relations
among literals of the formulato refute have to be analyzed before starting the proof. A first
step determinesthe maximal literal occurrences in each subformula. Sincethemaximal litera
occurrences of aformulaare also maximal literal occurrences of subformulas of theformula,
maximal occurrences can be detected recursively. In asecond step thelink table is computed.
All formulas occurring during a proof are instantiations of subformulas of the formulato re-
fute. According to lemma 1, the maximal literal occurrences of the instantiations correspond
to maximal literal occurrences of the original formula. Thus, no new links have to be gen-
erated during the proof. Some links might, however, become obsolete in the instantiations,
either because the linked literals cannot be unified any longer or one of these litera occur-
rences ceased to be maximal. In a ground instance enumeration procedure these two points
can easily be checked before each expansion step.

More interesting are, however, free variable first-order tableaux [6]. We discuss a ver-
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sion which uses fair formula selection and backtracking over applied substitutions(as imple-
mented, without A-orderings, for example, in[3, 4]), because it comprises fairness and back-
tracking aspects as well. Free variables constitute an implementational problem, because the
ordering restriction on arule application can not be checked at thetimetheruleisused. Later
substitutionsmay affect the maximal occurrence or complementarity of the linked litera oc-
currences. Asafirst approach, one could check before each substitution, whether the tableau
is still ordered after the substitution. It is not quite clear yet how this can be implemented
efficiently. An approximation might be achieved by using syntactic term constraints like the
congtraints used for efficient implementation of regularity [9].

A different approach focuses more on thelinks used to expand aformula. Itiseasier toen-
forcetheordering restriction with respect to the used linksthan to check at each stage, whether
atableau is still ordered or not. In other words, whenever alink is used, one has to guarantee
that future substitutions do not violate the ordering restrictions of the used link. Thisis easy
to do as far as complementarity is concerned. If one applies the link unifier to the tableau,
whenever aformulais expanded, complementarity cannot be destroyed later. This approach
has three immediate consequences:

¢ Instead of using new variablesto instantiate universaly quantified formulas, terms ob-
tained from the link unifier are used. They might contain new free variables obtained
from renamed bound variables.

o Instead of fair formula selection, links must be selected in afair way.

o Backtracking occurs for al substitutions, in particular for those performed during ex-
pansion steps.

This still leaves open the problem that through certain substitutionsliterals may cease to
be maximal; the latter can be guaranteed only by constraints:

Consider the A-ordering used in Example 3. InthisA-ordering theliteralsp(x, f(x)) and
p(a,y) areincomparable.

Assume p(x, f(x)) and p(a, y) occur on the same d-path and p(z, f(«) wasused inalink.
Each following substitution must preserve the maximality of p(«x, f(z). Therefore, one must
generatea constraint of theform (zo £4 a or f(xo) £a yo) which hasto be checked when-
ever asubstituion o isappliedto x or y.

Obviously, constraint generation depends on the A-ordering. Many problems do not re-
quirealot of constraints. Aslong as with respect to the chosen A-ordering every d-path has
exactly one maximal literal, maximal literal occurrences stay maximal after arbitrary substi-
tutions. A suitable A-ordering can achieve this effect for many problems. This can actualy
be used as a guidelinefor choosing A-orderings.

In the light of the previous discussion, it seems practicable to avoid constraints as far as
possible. Itis easy to implement a procedure without constraints, which applies substitutions
only for branch closure and the Univ rule. Figure 1 shows, that even thisweak version of or-
dered tableaux might beinteresting: obvioudly, no free variables can be introduced, whenever
formula5isexpanded first. For this particular examplethe proposed procedureneither hasthe
disadvantages of backtracking nor those of a ground instance enumeration tabl eaux.

The implementation and evaluation of various versions of free variable ordered tableaux
will be the topic of aforthcoming paper.
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