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Abstract. In the adaptive analysis of dynamically loaded structures, both strain and
kinetic energy, have to be considered. The error in the strain energy can be estimated by the
well-known estimators as e.g. of Zienkiewicz/Zhu1,2, which is based on superconvergence
stress points. For the kinetic energy part such points are not available. Thus an L2 -
indicator with deteriorated velocities is suggested by Riccius/Schweizerhof 3. The actual
velocities are assumed to be the improved velocities on a coarser mesh. A hierarchical
mesh-adaptation procedure and a single time step algorithm for the semidiscrete finite
element analysis of linear elastodynamic problems are proposed. A critical point is the
transfer of variables with shell elements using mixed interpolation of displacements and
strains, as e.g. the assumed strain elements. Furthermore the choice of the error-measure
(relative or absolute error) for dynamically loaded systems is rather important. Finally the
ratio of the strain energy error vs. the kinetic energy error is discussed on some examples.
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1 INTRODUCTION

Reliable error estimates and mesh adaption procedures are the most important tools for
h-adaptive analysis. If considered separately, the well-known error estimators of the strain
energy error1,2, 4, 5 could be used. However with dynamic loading, it is still necessary to
measure the error in the kinetic energy, and it is not a straightforward issue. In addi-
tion within the semi-discretization scheme the error resulting from the time integration
scheme has to be considered within an adaptive scheme, which is not discussed here, but
is refered to Riccius6, Riccius/Schweizerhof7 . In h-adaptive schemes mesh adaptation can
be performed either by remeshing or by hierarchical refinement/coarsening. The hierar-
chical approach – preferred here – has the advantage that the mapping of the quantities
between the meshes – in particular coarsening – is performed more efficiently than a com-
plete remeshing. In order to avoid mesh modifications in every time step an estimate
on the optimal number of elements in the refined/coarsened mesh is proposed. Also the
interpolation of strains in shell elements introduces difficulties into the mapping scheme
after mesh modifications, which we overcome by a solution with prescribed displacements.
Some numerical examples show the effects of the proposed schemes.

2 BASIC EQUATIONS

The partial differential equation for elasto-dynamic problems considering internal damping
can be written as follows,

ρ ü + aρ u̇ = LT CL(u + bu̇) + f in Ω × (0, T ) (1)

with the boundary conditions

u(x, t) = ub(t) onΓu × (0, T ) (2)

GCL (u(x, t)|t=0 = f b(t) on Γf × (0, T ) (3)

and initial conditions

u(x, t)|t=0 = u0(x); u̇(x, t)|t=0 = u̇0(x) in Ω . (4)

The notation used is:

u = u(x, t) , u̇ = ∂u
∂t

, ü = ∂2u
∂t2

. . . unknown displacement/velocity/acceleration function

f . . . time dependent external loading function

C . . . material tensor, L . . . strain-displacement operator

G . . . projection operator dependent from the outward normal to the boundary

Ω . . . considered domain; ρ . . . mass density

t, T . . . time, final time; a, b . . . Rayleigh-damping parameters .
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After partial integration the well known weak form for the Finite Element discretization
is obtained

∫

Ω

v · ρü dΩ + a

∫

Ω

v · ρu̇ dΩ +

∫

Ω

(Lv)T CLu dΩ + b

∫

Ω

(Lv)T CLu̇ dΩ =
∫

Ω

v · f dΩ +

∫

Γf

v · f b dΓf (5)

with:

∀v ∈ V0 = {v : v ∈ W 1
2 (Ω); v = 0 on Γu}

∀u ∈ Vb = {u : u ∈ W 1
2 (Ω); u = ub on Γu} .

Within a semi-discretization scheme and the FE method, the exact solution u resp. the
test function v are approximated by:

uh(x, t) = N(x)d(t) , vh(x, t) = N(x)δd(t) . (6)

After the spatial discretization a coupled set of ordinary differential equations is obtained:

Md̈(t) + Cḋ(t) + Kd(t) = F (t) (7)

with

M =

∫

Ω

NT ρN dΩ . . . mass matrix (8)

K =

∫

Ω

(LN)T CLN dΩ . . . stiffness matrix (9)

C ≈ CR = aM + bK . . .damping matrix (Rayleigh damping) (10)

F =

∫

Ω

NT f dΩ +

∫

Γf

NT f b dΓf −

∫

Ω

(B)T CB(db + bḋb) dΩ (11)

. . . forcing vector

This set of ordinary differential equations with constant coefficients in the linear regime is
often solved by direct integration. Within adaptive schemes it is favorable to use one-step
integration schemes, e.g. the Newmark method8,9. The total energy-norm of the solution
‖u‖total,Ω at any time t can be defined as:

‖u‖total,Ω = (‖u‖2
strain,Ω + ‖u̇‖2

kin,Ω)
1
2 =

(
∫

Ω

(Lu)TCLu dΩ +

∫

Ω

ρu̇2 dΩ

)
1
2

. (12)

3



J. Neumann, J. Riccius and K. Schweizerhof

3 THE ADAPTIVE PROCEDURE

For static calculations only the strain energy norm of the solution is required to compute
error estimates and to apply mesh refinements. For dynamic loading the kinetic energy
norm is needed and for efficiency reasons mesh coarsening capabilities are mandatory.
In addition, it is particularly important, how the adaptive process is controlled to avoid
inefficient mesh modifications. Finally, the kinematic variables d(t), ḋ(t), d̈(t) of the old
mesh have to be projected onto the new mesh. For the error of the time discretization
it is refered to Riccius6, Riccius/Schweizerhof7. There, time step modifications based on
error estimates for the time integration scheme are discussed.

3.1 Spatial error estimation

Within the semi-discretization the spatial discretization can be separated from the time
integration and both errors can be computed separately. Then, following eq. (12), the
energy norm ‖e‖total,Ω of the error e = uh − u at time t is defined as follows:

‖e‖total,Ω = (‖e‖2
strain,Ω + ‖e‖2

kin,Ω)
1
2 =

(
∫

Ω

(Le)T CLe dΩ +

∫

Ω

ρė2 dΩ

)
1
2

. (13)

Since the accurate solution and thus the accurate error are generally unknown, an estimate
of the the kinetic energy norm of the error and the strain energy norm of the error have
to be computed.

3.2 Estimation of the strain-energy error

The well-known error estimator of Zienkiewicz/Zhu1,2, already used for adaptive analysis
of statically loaded structures3,10, can be used in an identical fashion to determine the
strain energy error. In a similar fashion the residual error estimator including the jump
of the residuals at the element boundaries following Babuška/Miller4 could be taken.

3.3 Kinetic energy-norm of the error

Schemes similar to the computation of the strain energy error cannot be applied, as
e. g. no ’better’ velocity is known in any element and no velocity jumps exist along the
element boundaries. Therefore, Wiberg/Li11 use a least square-fit approximation in order
to determine improved velocities u̇∗

h. These improved velocities are based on functions
containing higher-order polynomials than the spatial FE form. Hence, the error in the
velocities can be computed

ė = u̇h − u̇∗
h . (14)

The disadvantage of this procedure is the fact, that by setting up a least square-fit prob-
lem, a set of 6 equations has to be solved for each patch. Furthermore, one has to consider
9 integration points for the calculation of the kinetic energy norm of the error ‖e‖kin. To
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reduce this effort, the concept of deteriorated velocities is proposed. The idea is based
on the experience that with standard interpolations the mass approximation and as a
consequence the kinetic energy is much more accurate than the strain energy. The dete-
riorated velocities are determined by averaging the current element mid-point velocities
(denoted by • in Fig.1). The current nodal velocities (⊙) are now considered as improved
velocities. Here, a nodal error-indicator is defined as the difference of deteriorated and

g g

ggq q

qq

6

- x

u̇

u

u

u

ff

� deteriorated nodal
velocities

current nodal velocities
)

Figure 1: 1-D example for deteriorated velocities (–) from FE - velocities (- - -) by means
of deteriorated nodal-velocities ⊙ , computed by averaging (—) the element
midpoint velocities •

actual velocities:

ė∗i = ḋ∗
i − ḋi ; i = 1, . . . ,Ndf . (15)

Using the error indicator vector ė∗ = (ė∗1, ė
∗
2, . . . , ė

∗
Ndf

)T , containing the velocity error
at each node, the kinetic energy norm of the error at time t can now be defined and
computed

ė∗
h = Nė∗

‖e∗‖kin,Ω =

∫

Ω

ρ(ė∗
h)

2 dΩ . (16)

The disadvantage of this error measure is that the strain energy error is not computed on
the same coarse mesh; thus simply summing up the error norms is not correct. Therefore
the quality of the error estimator is compared to analytically computed correct solutions.
The comparison on some numerical examples with rather high velocity gradients results
in a correction factor ck = 0.365, which has been applied to a class of examples with some
success. Then the velocity error becomes

ėi ≈ ck(ḋ
∗
i − ḋi) ; i = 1, . . . ,Ndf . (17)

For more detailed discussions we refer to Riccius6. In addition some examples are pre-
sented in section 5 varying ck to gain further information on a proper value.
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3.4 Mesh generation

In general, two possibilities for mesh adaptation exist, algorithms based on remeshing
and hierarchical strategies. The advantage of the first one is the fact, that an optimal
mesh density with a minimum number of elements is mostly achieved. The disadvantage
is the high effort necessary, in particular the time-consuming node search algorithms for
the transfer of the kinematic quantities. Thus the second approach is chosen here in the
form of the fission/fusion strategy of Belytschko/Wong/Plaskasz12 for hierarchical meshes.
Elements with a large error are refined. Element patches with small errors are fused into
the parent element. This strategy ensures fully hierarchical meshes, which contain the
initial coarsest mesh.

3.5 Refinement-/Coarsening control

At the beginning of an adaptive analysis upper and lower bounds for the error have to be
given. The violation of one of the limits causes a mesh modification, i.e. if

‖e‖total,Ω < ǫlower or ‖e‖total,Ω > ǫupper . (18)

Which elements have to be modified, is now an open question. Once a mesh modification
has to be performed, it is reasonable from an efficiency point of view to refine/coarsen
in such a fashion, that the mesh can be taken for quite a few time steps without further
modification. In order to achieve this a so-called prescribed error tolerance ǫpresc is in-
troduced. This is the new error after remeshing, ǫpresc = ‖e‖total,Ω′ . In practical analyses
this error tolerance should be chosen such that it is neither too close to the upper nor too
close the lower bound.

3.5.1 Selection of elements for refinement and coarsening

In the following, an algorithm based on hierarchical mesh modification is presented. As
the criterion for the mesh modification, the average error ‖e‖total,average,Ω

′ of the new mesh
is introduced. The conditions for refinement/coarsening can now be presented as follows:

1.) All elements Ei with energy norm of the error ‖e‖total,Ei
, fulfilling the inequality

1

2
‖e‖total,average,Ω

′ < ‖e‖total,Ei
≤ 2‖e‖total,average,Ω

′ (19)

remain unmodified.

2.) All elements Ei with energy norm of the error ‖e‖total,Ei
, which exceed an upper

bound

‖e‖total,Ei
> 2‖e‖total,average,Ω′ , (20)

will be refined.
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3.) Each patch of four elements Ei(1), . . . , Ei(4), which was created in a former modifi-
cation level by refinement of one element, will be combined to the former element
if the energy norm of the errors ‖e‖total,Ei(1)

, . . . , ‖e‖total,Ei(4)
, fulfills the inequality

(

4
∑

j=1

‖e‖2
total,Ei(j)

)
1
2

< ‖e‖total,average,Ω′ . (21)

The question is now, how to compute ‖e‖total,average,Ω′ ?

First, it is assumed, that the new mesh is optimal. It implies, that the element error is
identical over the domain of interest, i.e.

‖e‖total,Ω′ =





N
′

E
∑

i=1

‖e‖2
total,E

′

i





1
2

= (N
′

E‖e‖
2
total,average,Ω′ )

1
2 . (22)

Using the prescribed error value ǫpresc for the new mesh, the desired averaged error of the
new mesh can be written as

‖e‖total,average,Ω′ =
ǫpresc
√

N
′

E

. (23)

Given the number of elements of the new mesh, the determination of the average energy
norm would be straightforward. However, the number of elements of the new mesh is
usually unknown. As a first idea, one can assume N

′

E = NE, i.e. refinement and coarsening
are performed with similar intensity. However, this works only with meshes, which are
already more or less optimal. A more general scheme including an estimate of the number
of elements in the new mesh is described in the following. For uniform meshes the following
relation between the mesh parameter h and the number of elements NE can be assumed:

h2 ∼
1

NE

. (24)

Considering the convergence characteristics of FE with linear shape functions in the ab-
sence of singularities, it is known that

‖e‖total,Ω ∼ h . (25)

Applying the relationships (24) and (25) to the old and to the new mesh yields

N
′

E‖e‖
2
total,Ω′ = NE‖e‖

2
total,Ω , (26)

and as the prescribed error value ǫpresc should be identical to ‖e‖total,Ω′ , we get

N
′

E = NE

(

‖e‖total,Ω

ǫpresc

)2

. (27)
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The direct application of equation (27) would usually result in a rather large number of
elements N

′

E, because equation (27) is independent of the quality of the mesh. However,
in reality two different meshes for the same problem with the same number of elements
show different errors. The introduction of a new, optimal virtual mesh with the number
of elements NE,opt and the energy norm of error ‖e‖total,Ω,opt is a possible remedy. Then
equation (27) can be formulated with values from this virtual mesh,

N
′

E = NE,opt

(

‖e‖total,Ω,opt

ǫpresc

)2

, ‖e‖total,average,opt =
1

4
‖e‖total,Ei

. (28)

Next, an arbitrary value for the average error of this virtual mesh ‖e‖total,average,opt can
be chosen. Further, it is known, that the energy norm of error is reduced by half in an
uniform refinement step and the error of one element is reduced to a quarter of the former
error. This is only valid for linear finite elements and is the reason for the factor 4 between
lower and upper limit in eq. (19) and for the factor 1

4
in eq. (28). In order to get the

average error of the virtual optimal mesh, it may be necessary to refine an element more
than once,

‖e‖total,average,opt =

(

1

4

)n

‖e‖total,Ei
(29)

then n =

log
‖e‖total,Ei

‖e‖total,average,opt

log 4
(30)

The integer value n is an indicator of the number of refinement resp. coarsening (if n is
negative) steps starting from the actual mesh to achieve the average error of the virtual
mesh. Within a loop running over all elements Ei; i = 1, . . . ,NE the ’estimated’ number
of elements NE,opt and the energy norm of the error ‖e‖total,Ω,opt of the optimal mesh is
obtained:

‖e‖2
total,Ω,opt = ‖e‖2

total,Ω −
NE
∑

i=1

(

1 −

(

1

4

)ni
)

‖e‖2
total,Ei

(31)

NE,opt = NE +

NE
∑

i=1

sgn(ni) ·
(

4|ni| − 1
)

. (32)

An arbitrary choice of ‖e‖total,average,opt is allowed due to the fact that the product
‖e‖2

total,Ω,opt · NE,opt is constant, see eq. (26). The choice of a high value of ‖e‖total,average,opt

would result in a large error ‖e‖total,Ω,opt and fewer elements NE,opt. Based on equation

(28) the value N
′

E can than be determined and the modification of the real mesh can be
started.
Remark: At a first sight, this algorithm appears to be rather inefficient. However, with the
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determination of N
′

E and ‖e‖total,Ω,opt the number of mesh modifications is considerably
reduced compared to the choice of the average error of the actual mesh as a criterion
which would cause a mesh modification in each time step.

3.6 Transfer/mapping of the variables between meshes

Due to the use of bilinear form functions for the elements, bilinear interpolation seems to
be the obvious choice in a refinement step. However, bilinear interpolation of all nodal
values d, ḋ and d̈ would yield a rather non-smooth solution. The additional application
of a smoothing algorithm (Least-square fit) improves the quality of the solution, but a
loss of energy is obtained. Then a further correction of d and ḋ is needed to achieve a
reasonable result. For a detailed description of a useful algorithm reference is made to
Riccius6.

Using bilinear form functions for plates and shells with Reissner kinematics leads to fur-
ther problems, as to prevent shear locking, the out of plane terms are independently
interpolated; the so-called ANS elements, see Bathe/Dvorkin13.

With bilinear interpolation of these quantities among meshes an energy increase is ob-
tained, which is not admissible. The problem is briefly described in the following by the
example of a Timoshenko beam loaded by prescribed edge rotations.

�-

uu u

x

w

ϕ

M BA

ϕBϕA

9
-

?

Figure 2: Timoshenko beam with prescribed edge rotations ϕA and ϕB

ϕA = −0.5

ϕB = 0.5

wA = wA = 0.0

The well known Timoshenko-kinematics are ϕ − w,x + γ = 0 . ϕ is the cross section
rotation, w the transversal displacement and γ is the shear strain. The total strain energy
norm for the beam is

‖u‖strain,Ω =

(

E I

∫ B

A

ϕ2
,xdx + G A

∫ B

A

(w,x − ϕ)2dx

)

1
2

. (33)

If linear shape functions are chosen for the interpolation of w and ϕ and the shear strains
are assumed to be constant within the element with the value taken at the center M of
the beam (similar to the ANS assumption), then no shear strains are activated under the

9
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loading shown above,

γ = w,x − ϕM = 0 − 0 . (34)

In the original mesh (Fig.2), the strain energy norm of the beam contains only bending
terms without activating any shear strain energy. After refinement the situation is com-

M

ϕA -

w ww

CℓA M

ϕB�

ww w

Cr B

Figure 3: Situation after refinement

pletely different. If the nodal values ϕ and w are linearly interpolated, then each of the
elements is only loaded by an edge rotation on one side. Using now also the constant
shear strain interpolation, we obtain

with ϕcℓ
=

1

2
ϕA resp. ϕcr

=
1

2
ϕB , and wx = 0 for both elements

the shear strains

γℓ = w,x − ϕcℓ
= 0 − (

1

2
· −0.5) =

1

4
6= 0 ; γr =

1

4
.

As the bending energy is unmodified, the strain energy norm increases due to this ’arti-
ficially’ activated shear strain. In order to remove this somehow artificial effect a global
static solution of the new mesh is performed taking as loading the deformations – nodal
displacements and rotations – of the nodes from the old mesh as prescribed values. Then
the strain energy remains identical after refinement.

4 CHOICE OF THE ERROR MEASURE

For hyperbolic problems the question arises, what to choose as an error measure, as
neither loading nor the behavior is identical at various times. Thus, dependent on the
error measure, the meshes are overly fine or too coarse compared to the desired values.
In static analyses the relative error is used, which can be written as the quotient of the
total energy norm of error and ’exact’ total energy norm of solution,

‖e‖%
total,Ω =

‖e‖total,Ω
√

‖u‖2
total,Ω + ‖e‖2

total,Ω

.

10
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The scaling by the total energy norm, which fairly rapidly converges in static adaptive
analyses, does not remain constant for elastodynamic problems, as the energy decays
e.g. in the presence of damping and increases, when external loading is applied. With an
absolute error-measure, as e.g. the total energy norm of the error, the problem is in finding
suitable error bounds. Because these bounds represent energy values, the energy-norm of
the solution must be known in advance. However, the qualitative behavior of the energy
norm of the error is nearly identical to the energy norm of the solution. On the basis of
the example ’saddle roof’, see Fig.4, error control is performed with the relative and the
absolute error.

0

Fi(t)

0 5 time

Figure 4: Saddle roof, Load function

The data for this example are: linear elastic material, E = 3.0e+07, ν = 0.29, ρ = 7700;
shell thickness tshell = 0.17 ; Rayleigh-damping, a = 0.03, b = 0.003. The geometry of the
shell is given as: zshell = 0.5 ∗ (x2/20 − y2/20). The time function for the external forces
with the amplitudes F1 = 200, F2 = 100, F3 = 50, all acting in z-direction, is displayed
in Fig.4. For the FE analysis a shell element based on linear interpolation with shear
interpolation, see Gebhardt14, Hauptmann15 is used. The mesh in Fig.4 was uniformly
refined two times at the start of the analysis. The standard Newmark scheme with a time
step size ∆t = 0.1 is used. In Fig.5a) the curve for the energy norm of the solution is
shown, whereas Fig.5b) contains curves for the relative and absolute error. As mentioned
above, the relative error oscillates and the absolute error decreases in a similar fashion as
the energy norm of the solution. Although Rayleigh-damping is involved, the relative error
does not decrease. The main reason for this is the decrease of the energy of the system,
such that the quotient (error/energy) does not decrease. In order to allow error control
with the relative error-measure, the maximum energy norm of the solution ‖u‖total,pre is
computed. In the adaptive process the relative error is then based on this maximum. To
show the results the ’saddle roof’ with the loads as above is taken as example. The external
forces are scaled by a factor of 10.0. All other data are identical. The following error
bounds are considered for the adaptive analysis; absolute error : ǫlow = 0.0005, ǫpresc =
0.25, ǫupper = 0.3; relative error: ǫlow = 0.005%, ǫpresc = 2.5%, ǫupper = 3.2%. For the

11
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0

0.3

0.6

0.8

‖u‖total

1 5 time

a)

0

0.1

‖e‖total

0.2

‖e‖%
total

1 5 time

relative
absolute

b)

Figure 5: Saddle roof,
a) energy norm of the solution;b) energy norm of the error, absolute and relative

relative error control the energy norm of the solution, ‖u‖max,pre = 7.55, on a coarse
mesh is determined in a pre-simulation. In Fig.6a) the curve for the energy-norm of the
solution with both error-measures is displayed. The identity is obvious. It is visible from

0

2

4

6

8

10

0 2 4 6 8 10

‖u‖total

time

a)

0

0.1

0.2

0.3

0 2 4 6 8 10

‖e‖total

time

absolute
relative

b)

Figure 6: Saddle roof, Comparison – error control by absolute resp. relative error
a) energy-norm of the solution b) absolute energy-norm of the error

Fig.6b), that the absolute error shows the similarities and the differences between the two
error-measures. The difference is due to the fact that the energy-norm of the solution
in the pre-simulation process was smaller. So the relative error increases fairly rapidly
beyond the upper bound and causes mesh-refinements. Thus, the energy-norm of the
error is smaller than for the absolute error. To increase the efficiency the energy-norm
of the solution should be more exactly determined. This is usually not a problem as in
realistic simulations the solution is performed not only once. Then the improved total
energy-norms of the solution are available.
In Fig.7 the number of equations during the adaptive process is depicted. The maximum
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0
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100000
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Figure 7: Number of equations with absolute and relative error control versus time

number is reached close to the time when the maximum energy is obtained. After this,
the mesh is not coarsened due to the very small lower bound and the number of equations
remains constant.

5 REMARKS TO THE KINETIC ENERGY NORM OF THE ERROR

As the kinetic energy norm of the error of the current mesh is computed on the basis
of a somehow coarser mesh and then adjusted by a factor, the summation of the kinetic
energy error and strain energy error seems to be rather arbitrary. Therefore, the effect
of the kinetic energy norm of the error is discussed on two examples, representing two
different types of problems.
First, a wave propagation problem6,16 is considered. The material data are taken from
Riccius6. As before, the standard Newmark scheme is used with a constant time step ∆t =
0.1. Damping is neglected. With these parameters the energy norm of the solution reaches
the value, ‖u‖total = 1.0, in the time range t ∈ [1 : 10]. Thus relative and absolute error
are identical, if this value is taken in the computation of the relative error. For comparison
this example is analyzed with 4 different weighting factors ck = 0.0, 0.365, 4.0, 100.0,
see eq. (17), for the kinetic energy error. From Fig.9 and Fig.10 the influence of ck is
obvious; in addition the number of equations increases with increasing ck. With ck =
0.365 the energy norm of the adaptive numerical solution is identical to the analytical
solution ‖u‖total = 1.0. The minor oscillations in the curves in Fig.9a) are due to mesh
modifications. From this example we conclude that a correct estimate of the kinetic error
is needed when the loading introduces a high gradient in the velocity.

The second example is a clamped cantilever plate, see Fig.11, a vibration problem. At the
right end a line load is applied. The material data are: E = 2.1e+08, ν = 0.29, ρ = 7700;
Rayleigh damping with a = 0.01 , b = 0.001. The error bounds for the absolute error
are: ǫlower = 0.0005, ǫpresc = 0.025, ǫupper = 0.03. For the standard Newmark scheme a
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Figure 8: Rectangular domain, material data, loading
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Figure 9: Rectangular domain with varying weighting factors ck

a) energy norm of the solution b) strain energy norm of the solution

constant time step size ∆t = 0.05 is chosen. The weighting factor ck is varied between
0.0 and 100.0 as for the wave propagation problem. However, no difference in the energy
norm of the solution is found, see Fig.12. A closer look reveals, see Fig.13, that at the
start of the adaptive analysis the strain energy norm of the error grows faster than the
kinetic energy norm of the error. As a consequence the mesh is refined only due to high
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Figure 10: Rectangular domain with varying weighting factors ck

a) Number of equations Neq b) kinetic energy norm of the error
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Figure 11: Clamped plate and load function

strain energy norm error in the time range t ∈ [0 : 1]. The kinetic energy norm of the error
remains rather small. It is obvious that the kinetic energy is much better approximated
than the strain energy with these meshes. The velocity gradient is rather small and thus
the velocity distribution is well approximated by the discretization.

15



J. Neumann, J. Riccius and K. Schweizerhof

0

0.4

0.8

1.2

1.6

‖u‖total

1 5 time

ck = 0.0 r

r

r

r

r

r

r

r

r
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

ck = 0.365
ck = 4.0
ck = 100.0 ×

×
×

×

×

×

×

×
×
××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

a)

0

0.4

0.8

1.2

1.6

‖u‖kin

1 5 time

ck = 0.0 r

r

r

r

r

r

r

r
rr

r

r

r

r

rr

r

r

r

r

r

r
r
rrr
r
r

r

r

r

r

r

r

r

r

r

r

r

r

r
r
rrrr
r
r

r

r

r

r

r

r
r

r

r

r

r

r
r
rrrrr

r
r

r

r

r

r

rr

r

r

r

r
r
r
rr
rrr
r
r
r

r

r

r

r

r

r

r

r

r
r
r
rr

ck = 0.365
ck = 4.0
ck = 100.0 ×

×
×

×

×

×

×
×
××
×

×

×

×

××

×

×

×

×
×
×
××
×××
×
×
×

×

×

×

×
×

×

×

×

×
×
×
××
×××
×
×
×
×

×

×

×

×
×

×

×
×
×
×
××
××××
×
×
×
×
×

×

××

×
×
×
×
×
×
××××××
×
×
×
×
×
×
×
×
×
×
×
×
××
×

b)

Figure 12: Clamped plate with different weighting factors ck

a) energy norm of the solution b) kinetic energy norm of the solution
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Figure 13: Clamped plate with different weighting factors ck

a) strain energy norm of the error b) kinetic energy norm of the error

These two examples show, that the influence of the kinetic energy norm error is strongly
problem-dependent. Moreover it is well known that the mass discretization is much more
exact than the stiffness approximation. The expressions for the mass matrix do not
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contain any derivative. An important aspect are also the initial conditions. For example,
when initial velocities are applied the kinetic energy norm of error will grows heavily in the
first time step and is the dominant error. But, often after the second resp. the following
time steps, also the strain energy norm of error grows due to the larger deformations.

6 CONCLUSION

The main tools for adaptive dynamic analysis of elastic structures are presented. A
simple post-processing error estimator for the kinetic part of the spatial discretization
error was introduced. For the estimation of the time discretization error it is refered
to Riccius/Schweizerhof7 and to Zienkiewicz/Xie17. Analyzing an example the problems
with a relative error measure for error control were demonstrated and a relative error with
reference to a pre-calculation is introduced. An efficient error modification scheme based
on the average error of an arbitrary virtual mesh was proposed. Also, the correct transfer
of the kinematic variables for mixed shell elements is described. Finally, the influence of
the estimation of the kinetic energy norm of the error on the total energy norm of the
error and the adaptive analysis was shown on two examples.
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