
and Mathematics, Fort Lauderdale, 1994.

Reasoning on Knowledge in Symbolic Computing

Jacques Calmet, Karsten Homann

Universit�at Karlsruhe, Institut f�ur Algorithmen und Kognitive Systeme

Postfach 6980, 76128 Karlsruhe, Germany

Indra A. Tjandra

Concordia University, Department of Computer Science

Montreal PQ H3G 1M8, Canada

Extended Abstract

A novel framework, Formal, for specifying mathematical domains of computation and their

inherently related type inference mechanisms as well as for transforming those speci�cations

into knowledge bases is introduced. This framework [Tja] aims at designing an environment

for reasoning about knowledge in symbolic computing. It involves an algebraic speci�cation

language, a method to transform speci�cations into knowledge bases and a hybrid knowledge

representation system as well, cf. �gure 1.

The speci�cation language Formal-� [CT93] provides modular and well-structured spec-

i�cations. It is well-suited to specify \mathematical objects" and, particularly, to specify the

parametric and the inclusion polymorphisms in a uni�ed way. The underlying formalism is

based upon the so-called homogeneous \ uni�ed algebras" allowing the treatment of sorts

as values. Since algebraic speci�cations are the most appropriate formalism for embodying

abstract algebras, e.g. group, ring, �eld or module, and concrete algebras, e.g. polynomial

rings, vector spaces or matrices, this speci�cation language can be regarded in the context of

knowledge acquisition.

There are many motivations and approaches to the executability of algebraic speci�ca-

tions. Our approach is among the compilational ones. It consists in compiling a term to a

representation in some model, e.g. the execution model is the semantics of the language of

a hybrid knowledge representation. Such a language is of particular interest as an execution

model since its data domain is the algebra of terms.

In view of achieving the executability of speci�cations we have also developed the transfor-

mation method Formal-� providing a capability for compiling a non-executable speci�cation

into an executable one, i.e. into a knowledge base that can be processed by the inference

machine of the hybrid knowledge representation systemMantra [CTB91]. In Mantra four

di�erent knowledge representation formalisms are integrated: First-order logic, terminological

languages, semantic networks and production systems.

The role of Formal-� consists in processing queries given by the user, e.g. to simplify a

term or to de�ne the type of an expression.

In this extended abstract we give an overview of Formal-�, Mantra and Formal-�.

For the sake of clarity and of simplicity technical details are omitted.

?

?

6

?

�-

-�

� - -

U

s

e

r

I

n

t

e

r

f.

Spec1/Input1 Specn/Inputn

Formal-�MANTRA

Formal-�

KBase1 KBasen

Formal

Formal-�

Figure 1: Overview of Formal

Formal-�

The need of specifying mathematical domains of computation in symbolic computing arises

from the fact that correct nontrivial computations are performed in well-de�ned proper do-

mains.

The main goal of designing Formal-� consists in providing a tool for the speci�cations

of mathematical domains, taking into account the properties of function symbols, as well

as for the speci�cations of type inference mechanisms involving parametric and inclusion

polymorphism1.

The following examples give a brief overview of the speci�cations of semi group, monoid

and group. The properties of function symbols are represented in the body of Clauses. A

speci�cation is represented by a module.

(Module SemiGroup

(De�ne (Constants SemiGroup)

(Operations (o (SemiGroup SemiGroup) -> SemiGroup))

(Clauses (Imply (: (a b c) SemiGroup)

(= (o (o a b) c) (o a (o b c)))))))

1We use the notions of parametric and inclusion polymorphism according to those introduced in [CW85].

2

(Module Monoid

(Union (SemiGroup)

(De�ne (Constants (=< Monoid SemiGroup)

(: Neutral Monoid))

(Clauses (Imply (: a Monoid) (and (= (o Neutral a) a)

(= (o a Neutral) a)))))))

(Module Group

(Union (Monoid)

(De�ne (Constants (=< Group Monoid))

(Operations (inv Group -> Group))

(Clauses (Imply (: (a b) S) (and (= (op (inv a) a) Neutral)

(= (op a (inv a)) Neutral)))))))

The Module SemiGroup is speci�ed as a basic module possessing the constant Semi

Group. It also possesses the function symbol o that is represented in the Operation part

together with its functionality. The property of the function symbol is expressed by means

of Horn Clauses with equality. The module construct Union is used to embed modules into

a particular module.

First of all, we want to depict the major prerequisites for achieving our goal. Accordingly,

we have to provide a suitable formalism that can be adopted in order to design Formal-�.

Basically, the initial step of constructing a mathematical domain of computation comprises

the determination of its abstract speci�cation consisting of the declarations of the sorts,

operations and properties under consideration. Such speci�cations of abstract mathematical

domains can rely on the de�nition of abstract structures as, usually, found in any text-book on

abstract algebra. Regarding these abstract structures, e.g. the abstract structure of Module

that is based on additive Abelian group and possesses Ring as its formal parameter, it turns

out that the speci�cation language to be designed should be able to handle structured (or

modularly-built) and parameterized speci�cations.

Moreover, it is very convenient to make use of properties imposed on an abstract structure,

e.g. in order to draw a conclusion2 , whether two ground terms have the same value or two

terms are equal in the initial algebra of the speci�cation, or in order to �nd the value of a

given term, etc. Such requirements illustrate why the executability of speci�cations could

be very helpful.A feasible way to realize this task consists in transforming the speci�cations

into a particular executable form, e.g. transformation of ASF-speci�cations into Prolog

clauses [BHK89]. Hence, we have to take into consideration that the formalism of Formal

should be tailored in such a way, or it should be operational enough, so that it allows a

straightforward transformation.

An other important aspect to design the speci�cation language concerns the inclusion

polymorphism and also the type inference engine, as speci�cations of abstract mathemati-

cal domains and their interrelationships represent hierarchies involving multiple inheritance.

Thus, the speci�cation of a semantics of inclusion polymorphism involves operations that

map sorts to sorts, e.g. sort constructors. Hence, we need a speci�cation formalism allowing

sorts to be treated as values. The main idea consists in representing the carrier of a structure

including sorts not only elements of data, e.g. homogeneous algebras.

2Assuming that the set of properties is complete.

3

The prerequisites cited above motivated us to adopt the framework for algebraic speci�ca-

tion involving the so-called \uni�ed algebras" [Mos89]. Formal-� is intended to be used as

a tool for specifying mathematical domains of computation which are embodied as parame-

terized modules. The semantics of Formal-� is determined by a meaning function mapping

models into models. This kind of function is also used in Extended-ML. In contrast to the

subsort concept, treated in Obj, we deal with subsorts using the partial ordering de�ned in

uni�ed algebras allowing the speci�cation of type hierarchies with multiple inheritance and

type constructions. This is required in symbolic computing. In order to describe a method

to tranform a speci�cation to a knowledge base of Mantra we shall give a brief overview of

Mantra in the next section.

Mantra

Mantra (Modular Assertional, Semantic Network and Terminological Representation Ap-

proach) is a Shell for knowledge systems [Bit90]. The main characteristics ofMantra are: (i)

The introduction of a multilevel architecture for hybrid systems together with a methodology

to de�ne a uni�ed semantics for knowledge representation methods and their interaction, (ii)

The integration of two features which are usually not found in hybrid systems: Inheritance

with exception and heuristic programming, (iii) The extension of the Frame terminological

language to accept n-valued relations instead of binary roles only, (iv) The semantic de�nition

of non-monotonic inheritance with exceptions using the four-valued logic approach, (v) All

algorithms for inference procedures are decidable, (vi) High interaction among the di�erent

knowledge representations covered by the system, (vii) Unifying four-valued semantics.

First order logic o�ers a very powerful inference procedure allowing to generate all of the

entailed (i.e. implicitly represented) knowledge by a given amount of explicitly represented

knowledge. The problem of verifying if a given element of knowledge is entailed by a certain

amount of explicit knowledge is, however, not decidable in �rst order logic. To avoid this

problem we adopt a weak inference procedure and a query procedure which always terminates.

They were introduced by Patel-Schneider [PS90]. These procedures are semantically de�ned

through a four-valued logic approach.

Our frame method is a terminological language as in Brachman [Br et al.] But it ex-

tends its capabilities by accepting n-valued relations. The main inference procedure is the

subsumption procedure. A concept or relation subsumes another one if the former includes

the latter.

Semantic networks are methods based on the abstraction of nodes and edges. The method

adopted in our approach allows to de�ne hierarchies with exception. The inheritance proce-

dure is the main inference procedure available in this method. It allows to verify if a class

is a subclass of another one given an explicit hierarchy consisting of either default or excep-

tion links. The so-called skeptical inheritance approach has been selected within, again, the

four-valued semantic approach.

These three epistemological methods are not very powerful when standing alone because of

the adoption of the four-valued semantics which weakens the deductive power of the system.

But, this choice was mandatory in order to have only decidable inference algorithms and

a semantically sound system. The deductive power is, however, very much increased by

the association of the three methods. This association is performed through the de�nition of

hybrid inference procedures allowing to generate new knowledge from those acquired through

4

Epistemological Level

Logical Level

Heuristic Level
�-Systems/SLD

Inference

KBase Management

Logic Frames SNet

Figure 2: Architecture of Mantra

the three methods separately. This interaction is de�ned not by the inference procedures

themselves but by the semantic speci�cation of the results that these procedures should

provide.

The architecture of Mantra is de�ned along three levels: the epistemological level, the

logical level and the heuristic level as shown in �gure 2.

The epistemological level includes the three methods described above and it is extendible.

Each of the corresponding module is thus constructed around some epistemological notions:

predicates, functions and constants in the logic module, concepts and relations in the frames

module, classes and hierarchies in the semantic net module. Syntactically, each one of these

modules consists of a set of primitives which are used to manipulate the epistemological

notions. The four-valued semantics enables to model ignorance and inconsistency and thus

provides a semantics for an incomplete inference mechanism.

The second level introduces the concept of knowledge base. Two primitives are used

to store facts and to interrogate knowledge bases respectively. There are eight possible

interactions among modules: logic-frame, logic-semantic networks (SN), frame-SN, SN-logic,

SN-frame, logic-frame-SN, frame-logic-SN and SN-logic-frame. All these interactions have

been semantically de�ned and algorithms have been proposed and proven sound and complete

with respect to the semantic de�nition.

The third level is the heuristic level. It consists of primitives allowing the de�nition of

production systems and Horn clauses taking into account all formalisms provided by the

logical level.

In the following section will shall give an overview on transforming a speci�cation to a

knowledge base of Mantra.

Formal-�

A transformation is de�ned over the basic modules in the sense that modules possessing

module constructs, e.g. union, must initially be converted to semantically equivalent basic

modules by using the underlying semantic functions.

5

A speci�cation is transformed into a knowledge base according to its syntax tree in a

bottom up manner. Each transformation step makes use of a particular transformation rule

represented in the following form:

I

R

0

* C1

� � �

Cn

The above form is also equivalent to the following one:

fC1; � � � ; Cng

` R[I; O]

The intended meaning of such a rule is the following. I and O are called input and output

scheme respectively. I is part of a speci�cation in Formal-� and O is the corresponding

representation of I in the language ofMantra. A program scheme is a term fromW (PL[X),

the term algebra over PL [X , i.e. a term over PL (programming language) containing free

variables from a countable set X of typed scheme parameters. C1 � � �Cn are applicability

conditions which are Horn clauses over an enrichment of PL [X , i.e. they may contain

additional syntactic and semantic predicates over program schemes.

A transformation rule is correct if it constitutes a valid inference, i.e. if the program

schemes I and O are in the semantic relation indicated by R whenever the applicability

conditions are valid.

The transformation of a speci�cation can be outlined as follows:

� The signature coinciding with the main construction of a speci�cation consisting of

the module identi�er, formal parameters and the function symbols are represented by

means of frames provided at the epistemological level of Mantra.

� The carrier, that is a distributive lattice (in a uni�ed algebra), is also modelled by

frames.

� The Horn clauses imposed on the speci�cation is represented by Horn clauses in

Mantra at the heuristic level. As Mantra does not allow equations we extend the

approach to integrating functional programming into logic programming proposed by

van Emden and Yukawa [VY87] in such a way, that equations can also be treated in

Mantra.

The correctness of the transformation of a speci�cation, i.e. the speci�cation and its

corresponding representation in Mantra are semantically equivalent, is veri�ed by giving as

proof for each transformation rule that there is a morphism from I to O according to the

semantic predicate R.

6

References

[BHK89] J.A. Bergstra, J. Heering, and P. Klint. Algebraic Speci�cation. Addison-Wesley

Publising Company, 1989.

[Bit90] G. Bittencourt. An Architecture for Hybrid Knowledge Representation. PhD thesis,

Universit�at Karlsruhe, Institut f�ur Algorithme und Kognitive Systeme, 1990.

[CT93] J Calmet and I.A. Tjandra. A uni�ed-algebra-based speci�cation language for

symbolic computing. In A. Miola, editor, Design and Implementation of Symbolic

Computation Systems. To appear in LNCS Springer-Verlag, 1993.

[CTB91] J. Calmet, I.A. Tjandra, and G. Bittencourt. Mantra: A shell for hybrid knowledge

representation. In IEEE-Conference on Tools for AI, pp 164 {171. IEEE, IEEE

Computer Society Press, 1991.

[CW85] L. Cardelli and P. Wagner. On understanding types, data abstraction and poly-

morphism. Computing Survey, 17(4), pp 471 { 522, 1985.

[Mos89] P.D. Mosses. Uni�ed algebras and institutions. In Logics in Computer Science, pp

304 { 312. IEEE Press, 1989.

[PS90] P.F. Patel-Schneider. A decidable �rst-order logic for knowledge representation.

Journal of Automated Reasoning, 6, pp 361 { 388, 1990.

[Tja] I.A. Tjandra. Algebraic Speci�cation of Mathematical Domains of Computation

and Polymorphic Types in Computer Algebra. PhD thesis, Universit�at Karlsruhe,

Institut f�ur Algorithme und Kognitive Systeme, 1993.

[VY87] M.H. VanEmden and K. Yukawa. Logic programming with equations. The Journal

of Logic Programming, 4, pp 265 { 288, 1987.

7

