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Abstract. This paper introduces a formalism to specify abstract com-
putational structures (ACS) of mathematical domains of computation.
This is a basic step of a project aiming at designing an environment for
symbolic computing based upon knowledge representation and relying,
when needed, on Al methods.

We present a method for the specification of these ACS’s which is embed-
ded in the framework of algebraic specifications and of unified domains.
The first part of this paper deals with the theoretical solution of this
specification problem. The second part reports on the implementation in
the hybrid knowledge representation system MANTRA.
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1 Introduction

Mathematical domains of computations, such as finite groups, polynomial rings
or finite fields for instance, are inherently modular. Furthermore, there exist
inter-relationships among these domains. It is thus meaningful to design an envi-
ronment for symbolic computing within the framework of the theory of algebraic
specification [Gu 75], [Gu], [Go,Bu]. An algebraic specification basically intro-
duces constants and operators together with properties that have to be imposed
on their intended interpretation, or class of interpretations. This has several
pragmatic benefits, such as the re-use of subspecifications within a specification
taking into account the dependency relationship between particular specification
modules.

Because we are mainly concerned with executable specifications, it turns out
that the framework of unified domains' [Mo86] developed from the framework
of order-sorted domains, cf. section 2, is appropriate to handle mathematical
domains of computation. Furthermore, when defining the semantics of vertical
or incluston polymorphism in a Computer Algebra System one routinely deals
with operations that map sorts to sorts, for instance mapping two sorts to their
union or to their subset. This is well supported by unified domains since there is
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a unified treatment of the elements of an abstract computational structure and
their classifications into sorts. Thus the operations of a unified domain may take
sorts and/or elements as arguments, and give sorts or elements as results [Mo86].
This framework improves much our first approach to this problem [Ca-Tj91a].

This paper outlines how to specify abstract computational structures (ACS’s)
in the framework of unified domains. The specifications are represented internally
using the language that is embedded in the knowledge representation system
MANTRA. We have specifically designed MANTRA [Ca et al. 91b] as a suit-
able environment for symbolic mathematical computation. Many aspects must
be considered when planning such an environment. Among them is the capability
to handle inclusion polymorphism, which is fundamental for symbolic mathemat-
ical computations. Also, it is known that no universal algorithm does exist for
problems such as type inference for mathematical domains when properties are
considered or canonical forms for mathematical expressions. Possible solutions
consist in relying on methods from Al. Such problems were among the many
motivations to design our environment.

Basically, the procedure of performing a specification can be depicted as
follows: Having recognized the syntax correctness of an input (a specification)
according to the underlying specification language, a parse tree is given to a
program transformer that generates code, possessing the intended semantics, for
the language of MANTRA. The code will be executed by MANTRA by invoking
its inference engine.

The paper is organized as follows. As the framework of unified domains is
developed from the framework of order-sorted domains we introduce in section
2 some basic notions and notations of order-sorted domain [Ba-Wo][Hu,Op].
Section 3 introduces the notion and notations of unified domains which is a
specialization of order-sorted domains. Section 4 deals with an introduction to
MANTRA. We outline only those features of MANTRA that we need in the
sequel. The internal representation of the specification of ACS’s is described in
section 5. Finally, some concluding remarks are given in the last section.

2 Basic Notions and Notations

X = (8, 2) is an order-sorted signature consisting of S, a finite set of order-sorted
sorts, and {2, the set of operator symbols. {2 is the union of pairwise disjoint
subsets of {2, ;, the sets of operator symbols with argument sorts w € &, i.e.
w =581 XX s, forn>0and s; €8, and range sort s € S .

A domain D with the signature X' = (8, £2), also called Z-domain, is a pair
D = (U, F) such that U is an S-indexed family of sets and F is a £2-indexed
family of functions with: (i) U, are sets for all s € §, called the universe of sorts
s in the domain. (i1) Fy € U, if f € 25, and s € S, called constants of D of
sort s. (1) Fy € Us, x --- x U, — U,, functions for all operator symbols f, if
fEQ2 v . xs, s withn>1ss;,€Sandei=1,--- n.

Let X = (S, £2) be a signature and X for each s € § a set of variables of
sort s. We assume that the variables of distinct sorts are distinct and that no



variable is a member of £2. The union X = Uges X is called the set of variables
with respect to 2.

The sets T; o(X) of terms of sort s are inductively defined as follows: (i)
XU, C T, a(X) (basic terms), (i) f(t1,---,tn) € Tsn(X) (composite
terms) for all operator symbols f € £2,, «...xs, s and all terms ¢; € T, o(X) i =
1,---,n, (iii) there are no further terms of sort s in T, o(X). The set T, o of
terms without variables of sort s, also called ground terms of sort s, is defined
for the empty set X = (§ of variables as follows: (iv) T o = Ts o(0). The set of
terms T’z (X) and the set of terms without variables T are defined as follows: (v)
Ts(X) = Uses Ts,2(X) with 51,52 €S, 51 C 59, t € Ty, o(X) =t € Ty, 2(X)
and Ty = J,cs Ts,0 with 51,52 €S, 81 E 52, t € T, o = t € Ty, 2. This also
implies that each sort (type) inherits all terms possessed by its subsorts (types).

Let T be the set of terms of signature X = (§,§2) and P a X-domain.
The interpretation ¢ : Tx — D is recursively defined as follows: (i) ¢(f) =
Feforall f € 2,5 €8, (1) e(f(tr, -,tn)) = Frlelt), -, ¢(ts)) for all
Jlte, - ty) €Tx.

Given a set of variables X for X' = (8, £2), a X-domain D and an assignment
¢ X — D with ¢(z) € U for € X; and s € S, the extension £ : Ts(X) =D
of the assignment ¢ : X — D is recursively defined as follows:

(1) €(x) = (=) for all variables x € X.
E(f)=Fpforall fe 2, sES.
(i) E(f(tr, - tn)) = Fr(&(t1), -+, &(ty)) for all f(t1,---,t,) € Tn(X)

Given a signature X = (&, £2) and variables X with respect to X. A triple
p=(X,L,R) with L, R € T, o(X) for some s € § is called a property of sort s
with respect to X. The property p = (X, L, R) is said to be valid in a Z-domain
D if for all assignment ¢ : X — D we have (L) = £(R). Ground properties are
properties p = (X, L, R) with X = (). In this case L and R are ground terms.

An abstract computational structure AC'S = (X, P) consists of a signature
X ={(8, 2) and P, a set of properties with respect to X. Based on other known
ACS’s we can construct a new ACS by integrating all operators and properties
possessed by the known ACS’s and by adding additional operators and properties
into the new one. This implies that each ACS inherits all operators and properties
possessed by the ACS on which it is based.

3 Unified Domains

Initially, we define signatures and properties for unified domains by specializing
the notation for abstract computational structures and domains as described in
section 2.

A unified signature X% is a homogeneous first-order signature. In contrast
to order-sorted signatures there is only one sort, &, instead of a set of order-
sorted sorts?. Let X¥ be a pair (8%, 2*), where 2% D 2% = {1 |,&}. L, | and

2 As we shall see below, we still can simulate an order-sorted signature using a unified
domain, since the carrier of a unified domain is a distributive lattice.



& represent the bottom of a lattice, the joint and meet operations on lattices,
respectively. As we deal with homogeneous first-order signatures we can write
2% ={02% | n> 0}, where £2¢ is the set of operator symbols of arity n.

Let X be a set of variables, digjoint from £2%. A X¥-unified property is
a universal Horn Clause involving equalities with variables from X, operator
symbols form 2% and the binary predicate symbols Identical-to, Subsumes
and Element-of.

A X"-unified domain D is a homogeneous Y*-domain —cf section 2— such
that:

(i) |D]is a distributive lattice with _|_p as join, _&_p as meet and Lp as bottom.
Let Subsumesp be the partial order of the lattice.
(i1) There is a distinguished subset of incomparable values, Ep C| D |.
(iii) For each f € 2%, the function fp is monotone with respect to Subsumesp.

The intended interpretation of the binary predicate symbols, in a unified
domain D is as follows:

— x Identical-to y :< x is identical to y
— x Subsumes y :< x Subsumesp y
— x Element-ofy :& x € &p and x Subsumesp y

4 MANTRA

The MANTRA system [Ca et al. 91b] is a hybrid system with the following
characteristics: All features are semantically motivated and all the inference al-
gorithms involved are decidable. The decidability requirement has been met
with the adoption of a four-valued semantics based on the works of Patel-
Schneider [PS85], Frisch [Fr] and Thomason et al. [Th et al.]. This semantics
is used throughout the system and ensures that it is semantically consistent.

The language of MANTRA can be thought of as an abstract data type al-
lowing the creation and manipulation of knowledge bases. The knowledge bases
consist of a set of knowledge base partitions, each associated to an independent
formalism. The division of the language into several formalisms has two advan-
tages: The computability problems associated to each formalism can be solved
independently and the integration of new formalisms to the system is facilitated.

Each formalism 1s characterized by a set of definitions and a set of questions.
The definitions allow the storage of knowledge into the knowledge bases and
the questions allow the interrogation of these knowledge bases. Definitions are
used to store knowledge only into the partition associated to the formalism, but
questions can be directed to this partition or to a combination of two or more
partitions of the knowledge base. The language is based on a new architecture,
figure 1, consisting of three levels: The epistemological level, the logical level and
the heuristic level.
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Fig. 1. The architecture of MANTRA

The first level consists of three modules: an assertional module, based on a
decidable first-order logic language [PS85], a frame module, based on the termi-
nological box of Krypton [Br et al.], and a semantic network module, providing
inheritance with exceptions [Et]. These modules offer original features with re-
spect to previously existing systems. The primitives of the modules of this first
level define the epistemological primitives of the language. These primitives are
not complete expressions of the language but are used as parameters for the Ask
and Tell primitives of the logical level.

The primitives of the assertional module correspond to the usual operators
of the first-order logic languages, but the meaning of these operators is based on
a four-valued semantics.

This module is intended to be used to represent a terminology by means
of concepts, the categories of objects, and relations, the properties of objects.
These categories are described by restricting the values of the properties of the
objects forming them. The notion of relations is an extension of the notion of
roles, usually used in terminological languages. Roles are binary relations and
relations are arbitrary n-place relations.

The terminological language embedded into the system has some additional
characteristics usually not possessed by other terminological languages or hy-
brid systems: (i) It possesses a rich set of primitives, including disjunction and
negation of both concepts and relations, (ii) It provides special symbols for the
universal concept and for the bottom concept as well as for the universal relation
and for the bottom relation and (iii) Tt includes tests for subsumption and for
equality between concepts and between relations.

This module manipulates the notions of classes and hierarchies. The hier-
archies can be explicitly created by defining links among classes. Two types of
links are provided: Default links and Exception links. The hierarchies are used as



inheritance paths between classes. The main inference procedure of this module
calculates the Subclasses relation taking into account the explicit exception.

The second level introduces the notion of knowledge base. The language can
be thought of as an abstract data type whose access functions are the primitives
of this level. These primitives use the primitives of the first level as parameters.
Two types of primitives are provided, Tell and Ask. These primitives are used,
respectively, to store facts and to interrogate knowledge bases. The Ask prim-
itives are defined in such a way that new facts can be inferred from evidence
provided by the knowledge acquired only by one or by a combination of several
of the first level modules.

Finally, the third level consists of primitives allowing the definition of pro-
duction systems according to several configurations [Le-De]. These production
systems are used to automatically manipulate knowledge bases according to
heuristic rules. The rules used in these production systems are formed by queries
to the knowledge bases defined in the logical level. Conflict resolution strategies
and control strategies can be explicitly chosen by special primitives. The idea
underlying the heuristic level is to allow the introduction of ad hoc rules in the
inference process. These rules can directly introduce domain knowledge in the
knowledge bases or they can specify strategies for the utilization of the logical
level Ask and Tell primitives. This level enables thus to design expert systems.

This brief overview of MANTRA covers only those features which are used
in the sequel.

5 Representation of ACS’s using MANTRA

As properties are embodied by Horn Clauses, the class of 2"-unified domains
that satisfy P has an initial domain [Go et. al.]. The proof of this theorem can
be found in [Mo89).

If we impose 1nitial constraints on X“-unified domains then we are capable
of specifying ACS’s using an X™-unified domain.

We describe the syntax of the language for algebraic specifications of abstract
computational structures and its intended interpretation by means of some ex-
amples; cf. figure 2.

The specification of an ACS has two parts:

(a) A header, containing its name and
(b) A body, containing its signature that is divided into the following parts:

(i) Based-on: This declaration is to indicate those abstract computational
structures that are inherited by the ACS being specified.

(ii) Parameter: This declaration is used to specify an ACS possessing par-
ticular ACS’s as parameters, e.g. ACS Module has parameter ACS Rg
and based on additive abelian group.

(iii) Sort: To declare its new sorts. Subsort relationships are declared using
the notations as introduced above, e.g. using | and &.



ACS Semi-Group {
Based-on set;
Sort SG;
Operators _f _:: Elt — > Elt;
Initial-Properties
'V x,y,z : x Element-of Elt, y Element-of Elt, z Element-of Elt
=> (xfy)fz=xf(yfz2)}
ACS Monoid {
Based-on Semi-Group;
Sort Mo, ne Element-of Elt;
Initial-Properties
'V x: x Element-of Elt
=>nefx =x}
ACS Group {
Based-on Monoid;
Sort Gr;
Operators _inv _:: Elt — > Elt;
Initial-Properties
'V x: x Element-of Elt
=> inv(x) f x = ne}
ACS Abelian-Group {
Based-on Group;
Sort AG;
Initial-Properties
'V x, y: x Element-of Elt, y Element-of Elt
=>xfy=yfx}
ACS Rg {
Based-on Semi-Group(rename: (f,x), (ne,1)),
Abelian-Group(rename: (f,+), (ne,0), (inv, —));
Sort R;
Initial-Properties
'V x, y, z: x Element-of Elt, y Element-of Elt, z Element-of Elt
=>xx(y+z) = (x x y) + (x X 2)
'V x, y, z: x Element-of Elt, y Element-of Elt, z Element-of Elt
=> (y+z)xx = (y x x) + (z X x)}

Fig. 2. Examples of some basic ACS

(iv) Operator-Symbols: In this part all new operator symbols are declared.
: and — > are special symbols used to define the functionality of an
operator.

(v) Initial-Properties: To declare properties of the operators. !V repre-
sents the universal quantifier.

The use of Based-on declaration permits the re-use of parts of certain spec-
ifications in another specification, which is very convenient to design abstract
computational structures for mathematical domains according to their inher-



ently modular structure. The intended interpretation of this declaration is the
inheritance of sorts — e.g. implicitly, in ACS Monoid the sort becomes Mo | SG
where Mo and SG denote the sorts of Monoid and Semi Group, respectively, and
so on— , operator symbols and initial properties possessed by the ACS embed-
ded in this specification. Inherited symbols are not changed unless we rename
explicitly old symbols using rename, e.g. in the ACS Rg below.

We use the mixfix notation for operator symbols according to the positions
of place holders.

Recalling that classifications of elements into sorts are represented directly
as values in the corresponding carriers, we define constants or nullary functions
using Element-of.

We represent initial properties as rules, rather than merely writing them as
comments, since we use them to simplify terms. Generally, a set of properties is
not complete in the sense that terms can not canonically be simplified using these
properties. Therefore we classify properties into two classes: Initial properties
and learned properties. The method to complete a set of properties [Ca-Tj90]
is beyond the scope of this paper. In this paper, we merely take into account
initial properties.

The main principle of representing an ACS can be described as follows:

(i) The signature of an ACS, as shown in figure 2, is represented as frames. The
relationships among ACS’s are represented as semantic networks wherein
each node corresponds to a particular frame, e.g. Semi-Group-Operators and
Monoid-Operators. The link specifies which objects are inherited by which
ones within a particular hierarchy, e.g. in the hierarchy Based-on there
i1s a link from Semi-Group-Operators to Monoid-Operators meaning that,
according to the examples, Semi-Group-Operators is inherited by Monoid-
Operators.

(i1) The initial properties of an ACS are represented as rules and they are stored
in a rule base. To identify the rule base we introduce a relation rule-base,
possessed by an ACS frame, whose value is the identifier of the corresponding
rule base.

Thus, an ACS is represented by a frame having a unique identifier, id. This
frame possesses a relation rule-base and subsumes the frame sort, 1.e. the frame
identifier coincides with the sort identifier, and the frame id-Operators.

The frame sort subsumes another frames if the relation Element-of occurs
in the sort declaration, e.g. in ACS Monoid: ne Element-of Mo. The frame
id-Operators subsumes frames, representing each operator symbol, possessing
the relation domain and the relation codomain specifying the domains of an
operator and its codomain, respectively, cf. figure 3.

Having recognized the declaration Based-on within an ACS the program
transformer build or modify the hierarchy (semantic network) based-on according
to the specification. This is illustrated by figure 4.

The Interrogation of a knowledge base need a hybrid inference taking into
account frames and semantic network simultaneously, e.g. using the primitive
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Basically, mathematical domains of computations are models of ACS’s. Ac-
cording to our approach they can be regarded as unified domains, since initial
constraints are imposed on unified domains. We shall outline this part briefly.

The specification of a domain is quite similar to that of an ACS. The semantic
specification of operations plays a crucial role and we adopt action semantics to
specify the semantic functions.

Generally, the specification of a unified domain has two parts: (a) a header,
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Fig. 4. The hierarchy based-on

containing its name and (b) a body as defined for ACS’s but without initial
properties and with two additional declaration: (i) Model, identifying the cor-
responding ACS and (ii) Semantic-Equations. The given specification will be
transformed into the language of MANTRA where semantic equations will be
represented accordingly by rules in such a way that they can be performed by
the inference engine.

6 Conclusion

We have outlined the framework of Unified Domains and its application to specify
abstract computational structures of mathematical domains of computation.

Unified domains make intensive use of nondeterministic operations, which
correspond to union of classifications. We can use unified domains not solely
to specify but, furthermore, it underlies the inclusion partial ordering which is
preserved by all the other operations. This is the major advantage of using unified
domains since it amounts to an easy implementation of vertical or inclusion
polymorphism. We deal with this kind of polymorphism since we design an
environment for symbolic computing.

In order to represent such domains we make use of the hybrid knowledge rep-
resentation system MANTRA. The characteristic features of MANTRA consist
in its decidable algorithms and its unified semantics. This ensures the security
of its performance in the sense that each algorithm terminates. The hybrid in-
ference mechanisms of MANTRA are used to process knowledge bases.

To design an executable or operational semantic function for mathematical
domains of computation we make use of Action Semantics. In Action Seman-
tics the semantic functions are defined inductively by semantic equations, called
actions. These actions may be regarded as algebraic equations, but their well-
foundedness is essential and they have a more operational nature than, for in-
stance, the higher-order functions used as denotations in denotational semantics
[St]. The details of this approach is out of the scope of this paper. We have
merely depicted the major principle briefly.

Finally, it can be summarized that Unified Domains have made a significant
contribution to specifying ACS’s and a hybrid knowledge representation can be
used to represent such domains.
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