
A Comparative Study of
ID3 and Backpropagation

for English Text-to-Speech Mapping

Thomas G. Dietterich
tgd@cs.orst.edu

Hermann Hild
s hild@irav1.ira.uka.de

Department of Computer Science
Oregon State University
Corvallis, OR 97331-3902

Ghulum Bakiri
haya@cs.orst.edu

Abstract

The performance of the error backpropaga-
tion (BP) and ID3 learning algorithms was
compared on the task of mapping English
text to phonemes and stresses. Under the dis-
tributed output code developed by Sejnowski
and Rosenberg, it is shown that BP consis-
tently out-performs ID3 on this task by sev-
eral percentage points. Three hypotheses ex-
plaining this di�erence were explored: (a)
ID3 is over�tting the training data, (b) BP
is able to share hidden units across several
output units and hence can learn the output
units better, and (c) BP captures statistical
information that ID3 does not. We conclude
that only hypothesis (c) is correct. By aug-
menting ID3 with a simple statistical learn-
ing procedure, the performance of BP can be
approached but not matched. More complex
statistical procedures can improve the per-
formance of both BP and ID3 substantially.
A study of the residual errors suggests that
there is still substantial room for improve-
ment in learning methods for text-to-speech
mapping.

1 Introduction

The task of mapping English text into speech is quite
di�cult (see Klatt, 1987). One particularly di�cult
step involves mapping words (i.e., strings of letters)
into strings of phonemes and stresses. In this paper,
we compare two machine learning algorithms applied
to the task of learning this text-to-speech mapping.
We employ the formulation developed by Sejnowski
and Rosenberg (1987) in their widely known work on
NETTALK.
Let L be the set of 29 symbols comprising the letters

a{z, and the comma, space, and period (in our data
sets, comma and period do not appear). Let P be
the set of 54 English phonemes and S be the set of
6 stresses employed by Sejnowki and Rosenberg. The
task is to learn the mapping f : L

� �! P
� � S

�
:

Speci�cally, f maps from a word of length k to a string

of phonemes of length k and a string of stresses of
length k. For example,

f("lollypop") = ("lal-ipap", ">1<>0>2<").

Notice that letters, phonemes, and stresses have all
been aligned so that silent letters are mapped to the
silent phoneme /{/.
As de�ned, f is a very complex discrete mapping

with a very large range. If we assume no word contains
more than 28 letters, this range would contain more
than 1070 elements. Existing learning algorithms focus
primarily on learning Boolean concepts|that is, func-
tions whose range is the set f0; 1g. Such algorithms
cannot be applied directly to learn f .
Fortunately, Sejnowski and Rosenberg developed a

technique for converting this complex learning prob-
lem into the task of learning a collection of Boolean
concepts. They begin by reformulating f to be a map-
ping g from a seven-letter window to a single phoneme
and a single stress. For example, the word \lollypop"
would be converted into 8 separate 7-letter windows:

g("___loll") = ("l", ">")

g("__lolly") = ("a", "1")

g("_lollyp") = ("l", "<")

g("lollypo") = ("-", ">")

g("ollypop") = ("i", "0")

g("llypop_") = ("p", ">")

g("lypop__") = ("a", "2")

g("ypop___") = ("p", "<")

The function g is applied to each of these 8 windows,
and then the results are concatenated to obtain the
phoneme and stress strings. This mapping function g

now has a range of 324 possible phoneme/stress pairs,
which is a substantial improvement.
Finally, Sejnowski and Rosenberg code each possible

phoneme/stress pair as a 26-bit string, 21 bits for the
phoneme and 5 bits for the stress. Each bit in the code
corresponds to some property of the phoneme or stress.
This converts g into 26 separate Boolean functions,
h1; : : : ; h26. Each function hi maps from a seven-letter
window to the set f0; 1g. To assign a phoneme and
stress to a window, all 26 functions are evaluated to
produce a 26-bit string. This string is then mapped
to the nearest of the 324 bit strings representing legal
phoneme/stress pairs. We used the Hamming distance



between two strings to measure distance. (Sejnowski
and Rosenberg used the angle between two strings to
measure distance, but they report that the Euclidean
distance metric gave similar results. In tests with the
Euclidean metric, we have obtained results identical to
those reported in this paper.)
With this reformulation, it is now possible to ap-

ply Boolean concept learning methods to learn the hi.
However, the individual hi must be learned extremely
well in order to obtain good performance at the level
of entire words. This is because errors aggregate. For
example, if each hi is learned so well that it is 99% cor-
rect and if the errors among the hi are independent,
then the 26-bit string will be correct only 77% of the
time. Because the average word has about 7 letters,
whole words will be correct only 16% of the time.
In the remainder of this paper, we describe a series

of experiments comparing the performance of the error
backpropagation algorithm (BP) to the decision-tree
learning algorithm ID3. We begin by comparing BP
and ID3 on the task described above. Having estab-
lished that BP signi�cantly outperforms ID3 on this
task, we formulate three hypotheses to explain this
di�erence. We test these hypotheses by performing ad-
ditional experiments. These experiments demonstrate
that ID3, combined with some simple statistical learn-
ing procedures, can nearly match the performance of
BP. Finally, we present data suggesting that there is
still substantial room for improvement of learning al-
gorithms for text-to-speech mapping.

2 A Simple Comparative Study

In this study, ID3 and BP were both applied to the
learning task described above. We begin by brie
y
reviewing these two learning algorithms and the data
set.

2.1 The Algorithms

ID3 is a simple decision-tree learning algorithm de-
veloped by Ross Quinlan (1983; 1986b). The version
we employed used the information gain criterion to
choose which feature to place at the root of each deci-
sion tree (and subtree). We did not employ windowing
(Quinlan, 1983), CHI-square forward pruning (Quin-
lan, 1986a), or any kind of reverse pruning (Quinlan,
1987). We did apply one simple kind of forward prun-
ing to handle inconsistencies in the training data: If
all training examples agreed on the value of the chosen
feature, then growth of the tree was terminated in a
leaf and the class having more training examples was
chosen as the label for that leaf (in case of a tie, the
leaf is assigned to class 0).
To apply ID3 to this task, the algorithm must be

executed 26 times|once for each mapping hi. Each
of these executions produces a separate decision tree.
The seven-letter window was represented as the con-
catenation of seven 29-bit strings. Each 29-bit string
represents a letter (one bit for each letter, period,
comma, and blank), and hence, only one bit is set to
1 in each 29-bit string. This produces a string of 203
bits for each window.

The error backpropagation algorithm (Rumelhart,
Hinton & Williams, 1986) is widely applied to train
arti�cial neural networks. We replicated the network
architecture and training procedure employed by Se-
jnowski and Rosenberg (1987). This network is a fully-
connected feed-forward network containing 203 input
units, 120 hidden units, and 26 output units (one for
each mapping hi). We employed the same input and
output encodings described above.
Unlike ID3, it is only necessary to apply BP once,

because all 26 output bits can be learned simultane-
ously. Indeed, the 26 outputs all share the collection of
120 hidden units, which may allow them to be learned
more accurately. However, while ID3 is a batch algo-
rithm that processes the entire training set at once,
BP is an incremental algorithm that makes repeated
passes over the data. Each complete pass is called an
\epoch." During an epoch, the training examples are
inspected one-at-a-time, and the weights of the net-
work are adjusted to reduce the squared error of the
outputs. We used a learning rate of .25 and a mo-
mentum term of .9. The weights of the network were
initialized to random values between �:3 and +:3. In
all cases, we trained for 30 epochs, since this was the
training regime followed by Sejnowski and Rosenberg.
We used the implementation provided with (McClel-
land and Rumelhart, 1988).
Because the outputs from BP are 
oating point

numbers between 0 and 1, we had to adapt the Ham-
ming distance measure when mapping to the nearest
legal phoneme/stress pair. We used the following dis-
tance measure: d(x;y) =

P
i jxi � yij: This reduces

to the Hamming distance when x and y are Boolean
vectors.

2.2 The Data Set

Sejnowski and Rosenberg provided us with a dictio-
nary of 20,003 words and their corresponding phoneme
and stress strings. This dictionary was randomly par-
titioned into a testing set of 1000 words, and a training
set of 19,003 words. This training set was further sub-
divided to extract smaller training sets of 1000, 800,
400, 200, 100, and 50 words. Each smaller training set
was extracted by randomly sampling from the next
larger set.

2.3 Results

Table 1 shows percent correct (over the 1000-word test
set) as a function of the size of the training set for
words, letters, phonemes, and stresses. Virtually ev-
ery di�erence in the table at the word, letter, phoneme,
and stress levels is statistically signi�cant (using the
test for the di�erence of two proportions). Hence, we
conclude that there is a substantial di�erence in per-
formance between ID3 and BP on this task.
To take a closer look at the performance di�erence,

we can study exactly how each of the 7,242 windows
in the test set are handled by each of the algorithms.
Table 2 categorizes each of these windows according to
whether it was correctly classi�ed by both algorithms,
by only one of the algorithms, or by neither one.



Table 1: Percent correct over 1000-word test set

Sample Level of Aggregation (% correct)

Size Method Word Letter Phoneme Stress Bit (mean)

50 ID3 0.8 41.5 60.5 60.1 93.1

BP 1.8
�

48.4
���

59.4 72.9
���

93.5

100 ID3 2.0 47.3 64.1 65.8 94.0

BP 3.7
�

55.2
��

66.1
��

75.5
��

94.4

200 ID3 4.4 56.6 70.5 72.2 95.1

BP 6.0 61.4
���

71.9
�

78.6
���

95.3

400 ID3 6.2 58.7 73.7 72.1 95.5

BP 10.5
���

65.7
���

76.0
���

79.9
���

95.9

800 ID3 9.6 63.8 77.8 75.6 96.2

BP 12.2
�

68.7
���

78.9 80.7
���

96.3

1000 ID3 9.6 65.6 78.7 77.2 96.4

BP 14.7
���

70.9
���

81.1
���

81.4
���

96.6

Di�erence in the cell signi�cant at p < :05
�

; :01
��

; :001
���

Table 2: Classi�cation of test set windows by ID3 and
Backpropagation, decoding to nearest legal phoneme
and stress.

ID3

Back Propagation

2490

4751

21035138

1583

520

907

4231

Incorrect

Correct

IncorrectCorrect

The table shows that the windows correctly learned
by BP do not form a superset of those learned by
ID3. Instead, the two algorithms share 4,231 cor-
rect windows, and then each algorithm correctly clas-
si�es several windows that the other algorithm gets
wrong. The net result is that BP classi�es 387 more
windows correctly than does ID3. This shows that
the two algorithms, while they share substantial over-
lap, have learned substantially di�erent text-to-speech
mappings.

The information in this table can be summarized as
a correlation coe�cient. Speci�cally, let XID3 (XBP )
be a random variable that is 1 i� ID3 (BP, respectively)
makes a correct prediction at the letter level. In this
case, the correlation between XID3 and XBP is .5508.
If all four cells of Table 2 were equal, the correlation
coe�cient would be zero.

A weakness of Table 1 is that it shows performance
values for one particular choice of training and test
sets. We have replicated this study four times (for
a total of 5 independent trials). Table 3 shows the
average performance of these 5 runs (each, of course,

on a di�erent randomly-drawn 1000-word test set). All
di�erences are signi�cant below the .0001 level using
a t-test for paired di�erences.

In the remainder of this paper, we will attempt to
understand the nature of the di�erences between BP
and ID3. Our main approach will be to experiment
with modi�cations to the two algorithms that enhance
or eliminate the di�erences between them. All of these
experiments are performed using only the training set
and test set from Table 1.

3 Three Hypotheses

What causes the di�erences between ID3 and BP? We
have three hypotheses:

Hypothesis 1: Over�tting. ID3 has over�t the
training data, because it seeks complete consistency.
This causes it to make more errors on the test set.

Hypothesis 2: Sharing. The ability of BP to share
hidden units among all of the hi may allow it to reduce
the aggregation problem at the bit level.

Hypothesis 3: Statistics. The numerical parame-
ters in the BP network allow it to capture statistical
information that is not captured by ID3.

These hypotheses are neither exclusive nor exhaus-
tive.

The following two subsections present the experi-
ments that we performed to test these hypotheses.

3.1 Tests of Hypothesis 1 (Over�tting)

The tendency of ID3 to over�t the training data is
well established in cases where the data contain noise.
Three basic strategies have been developed for address-
ing this problem: (a) criteria for early termination
of the tree-growing process, (b) techniques for prun-
ing trees to remove over�tting branches, and (c) tech-
niques for converting the decision tree to a collection
of rules. We implemented and tested one method for
each of these strategies. Table 4 summarizes the re-
sults.



Table 3: Average percent correct (1000-word test set) over �ve trials.

Sample Level of Aggregation (% correct)

Size Method Word Letter Phoneme Stress Bit (mean)

1000 ID3 10.2 65.2 79.1 76.5 96.4

BP 14.3
�

70.7
�

81.2
�

81.0
�

96.6
�

Di�erence in the cell signi�cant at p < :0001
�

Table 4: Results of applying three over�tting-prevention techniques.

Level of Aggregation (% correct)

Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (as above) TEST: 9.6 65.6 78.7 77.2 96.4

(b) ID3 (�
2
cuto�) TEST: 9.1 64.8 78.4 77.1 96.4

(c) ID3 (pruning) TEST: 9.3 62.4 76.9 75.1 96.1

(d) ID3 (rules) TEST: 8.2 65.1 78.5 77.2 96.4

The �rst row repeats the basic ID3 results given
above, for comparison purposes. The second row
shows the e�ect of applying a �

2 test (at the .90
con�dence level) to decide whether further growth
of the decision tree is statistically justi�ed (Quinlan,
1986a). As other authors have reported (Mooney et
al., 1989), this hurts performance in the Nettalk do-
main. The third row shows the e�ect of applying
Quinlan's technique of reduce-error pruning (Quinlan,
1987). Mingers (1989) provides evidence that this is
one of the best pruning techniques. For this row, a de-
cision tree was built using the 800-word training set,
and then pruned using the additional words from the
1000-word training set that do not appear in the 800-
word training set. Other trials using words from a
1600-word training set produced similar results. Fi-
nally, the fourth row shows the e�ect of applying Quin-
lan's method for converting a decision tree to a collec-
tion of rules. Quinlan's method has three steps, of
which we performed only the �rst two. First, each
path from the root to a leaf is converted into a con-
junctive rule. Second, each rule is evaluated to remove
unnecessary conditions. Third, the rules are combined,
and unnecessary rules are eliminated. The third step
was too expensive to perform on this rule set, which
contains 6,988 rules.

None of these techniques improved the performance
of ID3 on this task. This suggests that Hypothesis
1 is incorrect: ID3 is not over�tting the data in this
domain. This makes sense, since the only source of
\noise" in this domain is the limited size of the 7-letter
window and the existence of a small number of words
like \read" that have more than one correct pronunci-
ation. Seven-letter windows are su�cient to correctly
classify 98.5% of the words in the 20,003-word dictio-
nary.

3.2 A Test of Hypothesis 2 (Sharing)

To test the sharing hypothesis, we attempted to train
26 independent networks, each having only one out-
put unit, to learn the hi mappings. If Hypothesis 2

is correct, then, because there is no sharing among
these separate networks, we should see a drop in per-
formance compared to the single network with shared
hidden units. Furthermore, the decrease in perfor-
mance should decrease the di�erences between BP and
ID3.
Surprisingly, we were unable to train successfully

the separate networks to the target error level on any
training set other than the 50-word set. For the 100-
word training set, for example, the individual networks
often converged to local minima (even though the 120-
hidden-unit network had avoided these minima). This
shows that even if shared hidden units do not aid clas-
si�cation performance, they certainly aid the learning
process!
As a consequence of this training problem, we are

able to report results for only the 50-word training
set. Table 5 shows the performance of these 26 net-
works on the training and test sets. Performance on
the training set is virtually identical to the 120-hidden-
unit network, which shows that our training regime
was successful. Performance on the test set, however,
shows a loss of performance when there is no sharing
of the hidden units among the output units. Hence, it
suggests that Hypothesis 2 is at least partially correct.
However, examination of the correlation between ID3
and BP indicates that this is wrong. The correlation
between XID3 and XBP1 (i.e., BP on the single net-
work) is .5167, whereas the correlation between XID3

and XBP26 is .4942. Hence, the removal of shared
hidden units has actually made ID3 and BP less simi-
lar, rather than more similar as Hypothesis 2 suggests.
The conclusion is that sharing in backpropagation is
important to improving its performance, but it does
not explain why ID3 and BP are performing di�er-
ently.

3.3 Tests of Hypothesis 3: Statistics

We performed three experiments to test the third hy-
pothesis.
In the �rst experiment, we took the outputs of the



Table 5: Performance of 26 separate networks compared with a single network having 120 shared hidden units.
Trained on 50-word training set, tested on 1000-word test set.

Level of Aggregation (% correct)

Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 TEST: 0.8 41.5 60.5 60.1 92.6

(b) BP 26 separate nets TRAIN: 82.0 97.6 98.4 99.2 99.9

TEST: 1.6 45.0 56.6 71.1 92.9

(c) BP 120 hidden units TRAIN: 82.0 97.4 98.2 99.2 99.9

TEST: 1.8 48.4 59.4 72.9 93.5

Di�erence (b)-(c) TRAIN: 0.0 +0.2 +0.2 0.0 0.0

TEST: -0.2 -3.4��� -2.8�� -1.8� -0.6

Di�erence (a)-(c) TEST: -1.0 -6.9 +1.1 -12.8 -0.9

back-propagation network and thresholded them (val-
ues > :5 were mapped to 1, values� :5 were mapped to
0) before mapping to the nearest legal phoneme/stress
pair. Table 6 presents the results for the 1000-word
training set.
The results show that thresholding signi�cantly

drops the performance of back-propagation. Indeed,
at the phoneme level, the decrease is enough to push
BP below ID3. However, at the other levels of ag-
gregation, BP still out-performs ID3. Nevertheless,
the results support the hypothesis that the continuous
outputs of the neural network aid the performance of
BP. A comparison of correlation coe�cients con�rms
this. The correlation between XID3 and XBPthresh is
.5598 (as compared with .5508 for XBP ).
While this experiment demonstrates the importance

of continuous outputs, it does not tell us what kind
of information is being captured by these continuous
outputs nor does it reveal anything about the role of
continuous weights inside the network. For this, we
must turn to the other two experiments.
In the second experiment, we modi�ed the method

used to map a computed 26-bit string into one
of the 324 strings representing legal phoneme/stress
pairs. Instead of considering all possible legal
phoneme/stress pairs, we restricted attention to those
phoneme/stress pairs that had been observed in the
training data. Speci�cally, we constructed a list of ev-
ery phoneme/stress pair that appears in the training
set (along with its frequency of occurrence). During
testing, the 26-bit vector produced either by ID3 or
BP is mapped to the closest phoneme/stress pair ap-
pearing in this list. Ties are broken in favor of the
most frequent phoneme/stress pair. We call this the
\observed" decoding method, because it is sensitive to
the phoneme/stress pairs (and frequencies) observed
in the training set.
Table 7 presents the results for the 1000-word train-

ing set and compares them to the previous tech-
nique (\legal") that decoded to the nearest legal
phoneme/stress pair. The key point to notice is that
this decoding method leaves the performance of BP
virtually unchanged while it substantially improves the
performance of ID3. Indeed, it eliminates a substantial
part of the di�erence between ID3 and BP. Mooney et
al. (1989), in their comparative study of ID3 and BP

on this same task, employed a version of this decod-
ing technique (without the tie-breaking by frequency),
and obtained very similar results when training on a
set of the 808 words in the dictionary that occur most
frequently in English text.
An examination of the correlation coe�cients

shows that \observed" decoding increases the simi-
larity between ID3 and BP. The correlation between
XID3observed and XBPobserved is .5705 (as compared
with .5508 for \legal" decoding). Furthermore, \ob-
served" decoding is almost always monotonically bet-
ter (i.e., windows incorrectly classi�ed by \legal" de-
coding become correctly classi�ed by \observed" de-
coding, but not vice versa).
From these results, we can conclude that BP was

already capturing most of the information about the
frequency of occurrence of phoneme/stress pairs, but
that ID3 was not capturing nearly as much. Hence,
this experiment strongly supports Hypothesis 3.
The �nal experiment concerning Hypothesis 3 fo-

cused on extracting additional statistical information
from the training set. We were motivated by Klatt's
(1987) view that ultimately letter-to-phoneme rules
will need to identify and exploit morphemes (i.e.,
commonly-occurring letter sequences appearing within
words). Therefore, we analyzed the training data to
�nd all letter sequences of length 1, 2, 3, 4, and 5, and
retained the 200 most-frequently-occurring sequences
of each length. For each retained letter sequence, we
formed a list of all phoneme/stress strings to which
that sequence is mapped in the training set (and their
frequencies). For example, here are the �ve pronunci-
ations of the letter sequence \ATION" in the train-
ing set (Format is (hphonemestringi hstressstringi
hfrequencyi)).

(("eS-xn" "1>0<<" 22)

("@S-xn" "1<0<<" 1)

("eS-xn" "2>0<<" 1)

("@S-xn" "2<0>>" 1)

("@S-xn" "1<0>>" 1))

During decoding, each word is scanned (from left to
right) to see if it contains one of the \top 200" letter
sequences of length k (varying k from 5 down to 1).
If a word contains such a sequence, it is mapped and
decoded as follows. First, each of the k windows in the



Table 6: Performance of backpropagation with thresholded output values. Trained on 1000-word training set.
Tested on 1000-word test set.

Level of Aggregation (% correct)

Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1

(b) BP (legal) TEST: 14.7 70.9 81.1 81.4 96.6

(c) BP (thresholded) TEST: 12.1 67.9 78.6 80.3 96.6

Di�erence (c)-(b) TEST: -2.6
���

-3.0
���

-2.5
���

-1.1
�

0.0

Table 7: E�ect of \observed" decoding on learning performance.

Level of Aggregation (% correct)

Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1

(b) BP (legal) TEST: 14.7��� 70.9��� 81.1��� 81.4��� 96.6

(c) ID3 (observed) TEST: 13.0 70.1 81.5 79.2 96.4

(d) BP (observed) TEST: 14.9��� 71.6� 81.8 81.4��� 96.7

ID3 Improvement: (c)-(a) TEST: 3.4
���

4.5
���

2.8
���

2.0
��

0.3

BP Improvement: (d)-(b) TEST: 0.2 0.9 0.7 0.0 0.1

sequence is evaluated and the results concatenated to
obtain a bit string of length k �26. Then, this bit string
is mapped to the nearest of the bit strings observed
for this sequence in the training set (ties are broken
in favor of the more-frequently occurring bit string).
After decoding a block, control skips to the end of the
matched k-letter sequence and resumes scanning for
another \top 200" letter sequence of length k. After
this scan is complete, the parts of the word that have
not yet been matched are re-scanned to look for blocks
of length k� 1. We call this technique \block" decod-
ing.
Table 8 shows the performance results on the 1000-

word test set. Block decoding signi�cantly improves
both ID3 and BP, but again, ID3 is improved much
more (especially below the word level). Further-
more, the correlation coe�cient between XID3block

and XBPblock is .6747, which is a substantial increase
compared to .5508 for legal decoding. Hence, block
decoding also makes the performance of ID3 and BP
much more similar.
Curiously, these summary numbers hide substantial

shifts in performance caused by block decoding. To
demonstrate this, consider that there is only a .7153
correlation between XID3legal and XID3block. This re-

ects the fact that while \block" decoding gains 736
windows previously misclassi�ed by \legal" decoding,
it also loses 181 windows that were previously correctly
classi�ed by \legal" decoding. Similarly, there is only a
.7746 correlation between XBPlegal and XBPblock (re-

ecting a gain of 433 and a loss of 226 windows).

The conclusion we draw is that block decoding fur-
ther reduces the di�erences between ID3 and BP, and
hence that this experiment also supports Hypothesis
3. The experiment suggests that the block decoding
technique is a useful adjunct to any learning algorithm
applied in this domain. It also suggests that the per-
formance of block decoding could be improved if some

way could be found to avoid losing windows that were
correctly classi�ed without block decoding. One tech-
nique we are exploring is to combine the constraints of
blocks that overlap.

4 Discussion

The results shown in previous sections demonstrate
that ID3 and BP, while they attain similar levels of
performance, still do not cover the same set of testing
examples. In particular, an analysis of the 7,242 7-
letter windows in the test set reveals that there are 917
windows that are incorrectly classi�ed by one of the
algorithms and correctly classi�ed by the other. This
suggests that an inductive learning algorithm should
be able to label correctly all of these 917 windows.
This would yield a performance of 79.9% at the letter
level, which would be quite good.
Other directions for improving these algorithms in-

clude (a) design of better error-correcting codes, (b)
block decoding using overlapping blocks, (c) direct
analysis of the training set to identify morphemes.
Klatt (1987) points out three properties of the do-

main that present special challenges to inductive learn-
ing methods:

(1) the considerable extent of letter con-
text that can in
uence stress patterns in a
long word (and hence a�ect vowel quality in
words like \photograph/photography"), (2)
the confusion caused by some letter pairs,
like CH, which function as a single letter in
a deep sense, and thus misalign any relevant
letters occurring further from the vowel, and
(3) the di�culty of dealing with compound
words (such as \houseboat" with its silent
\e"), i.e., compounds act as if a space were
hidden between two of the letters inside the
word.



Table 8: E�ect of \block" decoding on learning performance.

Level of Aggregation (% correct)

Method Data set Word Letter Phoneme Stress Bit (mean)

(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1

(b) BP (legal) TEST: 14.7
���

70.9
���

81.1
���

81.4
���

96.6

(c) ID3 (block) TEST: 17.5 73.2 83.8 80.4 96.7

(d) BP (block) TEST: 19.9
���

73.8 83.9 81.5
�

96.7

ID3 Improvement: (c)-(a) TEST: 7.9��� 7.6��� 5.1��� 3.2��� 0.6�

BP Improvement: (d)-(b) TEST: 5.2
���

2.9
���

2.8
���

0.1 0.1

Long-distance interactions pose a di�cult problem
for BP, since capturing them presumably requires a
very wide window. This in turn requires a very large
network with many weights, and these will be much
more di�cult and time-consuming to train. ID3 scales
very well as the number of irrelevant features grows,
so it should be able to handle much wider windows
without problems.
General solutions to the other two problems men-

tioned by Klatt appear to be quite challenging. In-
deed, machine learning techniques have some distance
to go before they match the performance of the best
human-engineered rule sets. Klatt cites Bernstein and
Pisoni (1980) as measuring the performance of their
rule system to be 97% at the phoneme level. By com-
parison, ID3 trained on 19,003 words and tested using
\block" decoding is 91.5% correct at the phoneme level
(i.e., an error rate nearly three times as bad).

5 Conclusions

The relative performance of ID3 and Backpropaga-
tion on the text-to-speech task depends on the decod-
ing technique employed to convert the 26 bits of the
Sejnowski/Rosenberg code into phoneme/stress pairs.
Decoding to the nearest legal phoneme/stress pair (the
most obvious approach) reveals a substantial di�erence
in the performance of the two algorithms.
Experiments investigated three hypotheses concern-

ing the cause of this performance di�erence.
The �rst hypothesis|that ID3 was over�tting the

training data|was shown to be incorrect. Three tech-
niques that avoid over�tting were applied, and none of
them improved ID3's performance.
The second hypothesis|that the ability of back

propagation to share hidden units was a factor|was
shown to be only partially correct. Sharing of hid-
den units does improve the classi�cation performance
of backpropagation and|perhaps more importantly|
the learning performance of the gradient descent
search. However, an analysis of the kinds of errors
made by ID3 and backpropagation (with or without
shared hidden units) demonstrated that these were dif-
ferent kinds of errors. Hence, eliminating shared hid-
den units does not produce an algorithm that behaves
like ID3.
The third hypothesis|that backpropagation was

capturing statistical information by some mecha-
nism (perhaps the continuous output activations)|

was demonstrated to be the primary di�erence be-
tween ID3 and BP. By adding the \block" decod-
ing technique to ID3, the level of performance of the
two algorithms in classifying test cases becomes sta-
tistically indistinguishable (at the letter and phoneme
levels). Consequently, in tasks similar to the text-
to-speech learning task, ID3 with block decoding is
clearly the algorithm of choice|particularly for initial
exploratory studies, where its speed is a tremendous
advantage.

6 Acknowledgements

The authors thank Terry Sejnowski for providing
the Nettalk phonemic dictionary, without which this
work would have been impossible. Correspondence
with Jude Shavlik, Ray Mooney, and Geo�rey Towell
helped clarify the possible kinds of decoding strategies.
This research was supported by NSF grant numbers
CCR-87-16748 and IRI-86-57316 (Presidential Young
Investigator Award) with matching support from SUN
Microsystems.

7 References

Bernstein, J., and Pisoni, D. B., (1980). Unlimited
text-to-speech system: description and evaluation
of a microprocessor-based device. Proceedings of
the Int. conf. Acoust. Speech Signal Process,

ICASSP-80, 576{579.

Klatt, D. (1987). Review of text-to-speech conversion
for English. J. Acoust. Soc. Am., 82, (3), 737{
793.

McClelland, J. L., and Rumelhart, D. E. (1988).
Explorations in Parallel Distributed Processing,

Cambridge, MA: MIT Press.

Mingers, J. (1989). An empirical comparison of prun-
ing methods for decision tree induction. Machine

Learning, 4 (2), 227{243.

Mooney, R., Shavlik, J., Towell, G., and Gove, A.
(1989). An experimental comparison of symbolic
and connectionist learning algorithms. IJCAI-89:
Eleventh International Joint Conference on Arti-

�cial Intelligence. 775{80.

Quinlan, J. R. (1983). Learning e�cient classi�ca-
tion procedures and their application to chess
endgames, in Michalski, R. S., Carbonell, J., and



Mitchell, T. M., (eds.), Machine learning: An ar-
ti�cial intelligence approach, Vol. I, Palo Alto:
Tioga Press. 463{482.

Quinlan, J. R. (1986a). The e�ect of noise on concept
learning. In Michalski, R. S., Carbonell, J., and
Mitchell, T. M., (eds.), Machine learning, Vol. II,
Palo Alto: Tioga Press. 149{166.

Quinlan, J. R. (1986b). Induction of Decision Trees,
Machine Learning,1 (1), 81{106.

Quinlan, J. R., (1987). Simplifying decision trees. In-
ternational Journal of Man-Machine Studies, 27,
221{234.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E., and McClel-
land, J. L., (eds.) Parallel Distributed Processing,
Vol 1. 318{362.

Sejnowski, T. J., and Rosenberg, C. R. (1987). Paral-
lel networks that learn to pronouce English text.
Complex Systems, 1, 145{168.


