RECENT ADVANCES IN JANUS: A SPEECH TRANSLATI ON SYSTEM

M. Woszczyna, N. Coccaro, A. Eisele, A Lavie, A MNuir, T. Polzin, I. Rogina, C.P. Rose, T. Sloboda, MTomita, J. Tsutsumi, N Abki-Wabel, A Wabel, W Ward

Carnegie Mell on Uni versi ty Uni versi ty of Karlsruhe

ABSTRACT

robustness, generality and speed of JANUS, CMUs to-speech translation system JANUS is a speakernt system which translates spoken utterances in also in German into one of German, English or system has been designed around the task stration (CR). It has initially been built h database of 12 read dialogs, encompassaround 500 words. Whave since been ong several dimensions to improve tage and to move toward sponta-

UCTI ON

ibe recent improvements of o speech translation system Imve been made mainly along the following ons: 1.) better context-dependent modeling importance in the speech recognition module,

2.) improved language models, smoothing, and word
equivalence classes improve coverage and robustness of
the sentences that the systemaccepts, 3.) an improved
N-best search reduces run-time from several minutes to
nowreal time, 4.) trigramand parser rescoring improves
selection of suitable hypotheses from the N-best list for

subsequent translation. On the machine translation side,
5.) a cleaner interlingua was designed and sy

and domain-specific analysis were separateusability of components and lation, 6.) a semantic anal

Th

pendent segment weights.

Error rates using context dependent phonemes are lower by a factor 2 to 3 for English (1.5 to 2 for German) than using context independent phonemes. Results are shown in table 1.

Englis	s h PP	Germa WA	n PP WA			
none word-pai	rs bigrams	ı	9 83.4 16.2	20.8 292.6	18.3	
		s moot.	hed bigran after	ms 18. rr <u>esorti</u>	1 91.5 ng	2 8

Table 1: Word Accura

The performance on ities is signi

When the standard GLR parser fails on all sentence candidates, this robust GLR parser is applied to the best sentence candidate.

3.2 The Interlingua

The output of the parser, known as "syntactic f-structure", is then fed into a mapper to produce an

Interlingua representation. For the mapper, we use a software tool known as Transformation Kit [10]. Amapping grammar with about 300 rules is written for the Conference Registration domain of English.

```
((PREV-UTTEFANCES ((SFECH-ACT*ACKNOWL) (WAZE*HELQ)))
(ENTY
((DEFIN'EE+) (NABER*SG)
(ANM-)
((THE *COMPTENE)
(COMEPT*OFFENE)
(SPECH-ACT*IENIFY-OFFENE))
```

Figure 2: Example: Interlingua Output

Figure 2 is an example of Interlingua representation produced from the sentence "Hello is this the conference office". In the example, "Hello" is represented as speechact *ACKNOWLEDGEMENT, and the rest as speechact *I DENTFY-OTHER.

3.3 The Commator

The generation of target language from an Interlingua representation involves two steps. First, with the same Transformation Kit used in the analysis phase, Integral guarepresentation is mapped into syntact of the target language. There the generation mapping rules for Japanese.

tence gen du side there is a "built-in" robustness against these phenomena in a connectionist system

The connectionist parsing process is able to combine

symbolic information (e.g. syntactic features of words)
with non-symbolic information (e.g. statistical likelihood of sentence types). Moreover, the system can easily
integrate different knowledge sources. For example
stead of just training on the symbolic ir
trained PARSEC on both the symbolic
the pitch contour. After trai
temwas able to use t

as able to use t mine the se were