
Gropius - Advanced Reuse Concepts in a New

Hardware Description Language �

Dirk Eisenbiegler, Christian Blumenr�ohr

Institute for Circuit Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid),

University of Karlsruhe, Germany e{mail: feisen,blumeng@ira.uka.de

Abstract

In this paper we present a new hardware description language named

Gropius. Gropius ranges from the gate level to the system level and sup-
ports abstraction and design reuse in a systematic manner. Gropius was

designed for a formal synthesis scenario, where synthesis is performed by

applying mathematical derivation steps, thus guaranteeing correctness of

the synthesis process. Since Gropius was de�ned in a mathematical man-

ner, its semantics is precise and unambiguous.

1 Introduction

In circuit design more and more abstract design levels are used in order to man-
age the complexity of nowadays systems. Synthesis means mapping an abstract
circuit description given by the designer to a concrete implementation in the real
world. In synthesis, hardware description languages play an important role. They
determine the set of circuit descriptions to be considered as input and output of
some synthesis step. A synthesis concept is always closely related to speci�c hard-
ware description languages. This is why designing a good hardware description
language is that important.

So what are the main objectives when designing a real good hardware de-
scription language? We believe, that there are three major points that have to
be considered:

expressiveness To get along with the complexity of large circuits, one has to go
beyond pure gate level net lists. More abstract levels of circuit descriptions
are required: rt-level, algorithmic level, system level. Among other features,

�This work has been partly �nanced by the Deutsche Forschungsgemeinschaft, Project
SCHM 623/6-1.

1

hardware description languages at these levels have to support abstract
data types as well as abstract timing descriptions. The features provided
by the hardware description language must correspond to a design concept
that allows the circuit designer to represent circuits in a compact manner.
Providing a good concept for design reuse is a major matter as to the quality
of a hardware description language.

unambiguous semantics It seems to be clear, that it is necessary to explain
what the syntactical elements of a hardware description language stand for.
Good hardware description languages are always related to a simple seman-
tics that can easily be described in a mathematical notation. A hardware
description language with a complicated semantics based on an awkward
timing model leads to design errors due to misunderstandings.

minimum size A hardware description language should be as small as possi-
ble. This means strictly eliminating redundant constructs. Both the size
of a hardware description language and the complexity of the semantics
determine the costs for teaching it to new circuit designers.

We believe that existing hardware description languages such as VHDL or Ver-
ilog are far worse than they could be. Most problems of nowadays hardware
description languages can be illustrated with VHDL. VHDL is one of the most
widespread hardware description languages. In some sense VHDL is very expres-
sive: the set of systems one can describe with VHDL goes beyond what may be
built in reality. Therefore, all synthesis tools have to reduce themselves to subsets
of VHDL. There is an informal semantics for VHDL [VHDL96], however it is not
unambiguous. Several attempts have been made to give VHDL a formal, precise
semantics, however, there is no common standard [KlBr95]. As a result, di�erent
tools interprete VHDL sources in di�erent ways. In general, tools with VHDL
interfaces are not compatible, designs cannot be reused and it is not possible to
process VHDL code from one tool to the next. Besides the semantics problem of
VHDL, there is also a lack as to the expressiveness of the language. The design
concepts of VHDL are pretty poor compared to modern programming languages
in software design. Several attempts have been made to extend VHDL by modern
design/reuse concepts [RaPN97, SwMC95].

2 Gropius | a survey

This article presents a new hardware description language named Gropius �.
Gropius has an exact, unambiguous mathematical semantics. It was designed for
a formal synthesis tool, where synthesis is performed within a theorem prover
system by applying mathematical rules (see [KBES96] for a survey on formal

�Walter Gropius (1883-1969), founder of the Bauhaus (form follows function).

2

synthesis). All constructs of Gropius have been de�ned within logic | in other
terms: Gropius is nothing but a subset of higher order logic. Gropius is pretty
expressive and supports di�erent techniques related to design reuse. We will �rst
briey introduce Gropius and then explain the techniques for design reuse.

Gropius is a functional hardware description language. It provides means for
the user to de�ne arbitrary functions. User de�ned functions are the common
basis for hardware descriptions at di�erent levels of abstraction (see section 3).
Gropius is strongly-typed and, unlike Ella [MoCl93], includes an automatic type
inference mechanism. Gropius supports polymorphic and generic structures and
allows parameterizing circuits with subcomponents. These are very powerful
means for a systematic reuse of designs. Unlike HML [LLLA93], Ruby [ShRa95],
DDD [JoBo91] or Lustre [HCRP91], Gropius is not restricted to lower levels of
abstractions, but also supports circuit descriptions at the algorithmic and system
level.

Gropius is a very small language with a minimum number of constructs. There
are only 11 syntax rules (see �gure 1). Also the number of basic key words is
pretty small: there are 5 basic boolean operators, 25 abstract operators for non-
boolean expressions (polymorphism, enumeration types, arrays etc.), 9 interface
patterns and 7 di�erent k-processes (see �gure 2). The small size makes it easy
for the user to learn the language. In VHDL for example, there are more than
150 syntax rules (see [VHDL96]).

Gropius designed to support a speci�c design methodology. Design reuse is
one of its strengths. In this paper, we will give a brief introduction to Gropius
and describe some major concepts and their signi�cance as to design reuse.

3 Design reuse across abstraction levels

In Gropius, all functions are based on a �xed set of elementary boolean and ab-
stract operators (see �gure 3). User de�ned functions are subdivided in three
groups: boolean dfg-terms, dfg-terms and p-terms. Boolean dfg-terms are a sub-
set of dfg-terms and dfg-terms are a subset of p-terms. The set of p-terms covers
the entire set of computable functions. Dfg-Terms are non-recursive composi-
tions of elementary operators. Boolean dfg-terms are exclusively build on basic
boolean operators.

Unlike most standard hardware description languages such as VHDL and
Verilog, Gropius is strictly divided into sublanguages each corresponding to a
speci�c abstraction level: Gropius-0 | gate level, Gropius-1 | rt-level, Gropius-
2 | algorithmic level, Gropius-3 | system level. Due to the common core of
the sublanguages, Gropius is not just a set of hardware description languages.
The elementary constructs and the user de�ned functions are a common starting
point for all circuit descriptions.

Boolean dfg-terms and dfg-terms are an appropriate means for representing

3

vblock ::= variable j "("
�
vblock ","

	
vblock ")"

expr ::= variable j constant j "("
�
expr ","

	
expr ")" j

operator "(" expr ")"

dfg-term ::= "�" vblock "."
�
"let" vblock "=" expr "in"

	
expr

sequential circuit ::= "automaton" "(" dfg-term "," expr ")"

block ::= "PARTIALIZE" basic block j "WHILE" condition block j
block "THEN" block j "IFTE" condition block block j
"LOCVAR" constant block j
"LEFTVAR" block j "RIGHTVAR" block

program ::= "PROGRAM" constant block

algorithmic dfg-circuit description ::=

dfg-interface pattern "(" dfg-term "," number of cycles ")"

algorithmic p-circuit description ::=

p-interface pattern "(" program ")"

s-interface ::= "(" "reset"
�
"," channel

	
")"

s-process ::= algorithmic dfg-circuit description j
algorithmic p-circuit description j
k-process

s-structure ::= "9" channel
�
"," channel

	
"."

s-process s-interface
�
"^" s-process s-interface

	

Figure 1: Syntax of Gropius

4

boolean operators AND, OR, INV, T, F

abstract operators - polymorphism MUX, EQ

- enumeration types enum, next

- arrays mkarray, spread, pick, modify, cut,
append, shift, rev, comb, split,

shrink, unshrink, ripple

- one element type one

- optional values none, any, CASE option

- variant records INL, INR, CASE sum

dfg-interface

patterns

dfg interface cycle,

dfg interface start,

dfg interface reset,

dfg interface pipeline,

dfg interface system

p-interface

pattern

p interface cycle, p interface start,

p interface reset, p interface system

k-processes Synchronize, Delay, Double, Join,

Split, Collect, Distribute, Mark,

Counter

Figure 2: Basic Constructs of Gropius

combinatorial circuit descriptions at the gate level and at the rt-level, respec-
tively. The operator automaton is used for representing sequential circuits. Given
some dfg term f representing the combinatorial part of the sequential circuit and
some initial state q, automaton maps (f; q) to a sequential circuit automaton(f,q).
automaton is used both for gate level circuits and rt-level circuits (see [Eise97b]).

Dfg-terms are not only used as a means for representing combinatorial parts
of circuits, but are also used for describing i/o relations at the algorithmic level.
At the algorithmic level the circuit designer may use arbitrary computable func-
tions as starting point. In Gropius, however, p-terms and dfg-terms are strictly
divided. For speci�c synthesis tasks, it is worthwhile knowing, that the function
to be considered is a pure data ow graph and | other than with p-terms |
nontermination is not a matter that has to be considered.

At the algorithmic level (Gropius-2), a �xed set of interface patterns is used to
describe how the circuit implements some function g. They di�er in the way the
circuit communicates with the environment. There are two classes of interface
patterns: ones related to dfg-terms and others related to p-terms.

At the algorithmic level, only single processes are considered. Gropius also
supports multi-process systems at the system level (Gropius-3). In Gropius-3,
systems are represented by structures of processes. In Gropius-3 there are two
kinds of processes: algorithmic circuit descriptions and k-processes. Processes in
Gropius-3 use a �xed communication scheme: higher order petri nets [Jens92],
i.e. petri nets with marks having values. Therefore only two of the above

5

RT-level circuits

gate-level circuits

Gropius-2

Gropius-1

Gropius-0

abstract
operators

boolean
operators

functions
user defined

elementary
constructs

k-processes

dfg-terms

Gropius-3

circuit descriptions
algorithmic dfg-

s-structures

circuit descriptions
algorithmic p-

p-terms

automaton

boolean
dfg-terms

dfg-interface patterns p-interface patterns

Figure 3: The language Gropius

mentioned interface patterns are allowed in Gropius-3: dfg interface system and
p interface system. The k-processes are used for communication purposes: delay-
ing marks, duplicating marks, synchronizing marks etc.. K-processes can be used
for combining several processes. But it also makes sence to combine k-processes
with a single interface patterns in order to modify their interface behavior. This
is how the user can de�ne new interface patterns.

In Gropius, synthesis means translating circuit descriptions from Gropius-3,
Gropius-2 and Gropius-1 down to Gropius-0. In Gropius, all circuit descriptions
are synthesizable, i.e. can be mapped to an equivalent Gropius-0 representation.
Annotation: for generic circuit description a concrete instantiation has to be
made and for abstract data an encoding is required.

4 Everything can be abbreviated

Gropius is pretty easy to use. The user may build an arbitrary new expression
and give the expression a new name. So the user can for example de�ne new
functions:

nor(a; b) := not(or(a; b))

Such a de�nition means an extension to Gropius. From now on nor may be used
as an additional function. The semantics is obvious: nor(a; b) is nothing but an
abbreviation for not(or(a; b)).

6

Besides functions, the user can, for example, also de�ne new control struc-
tures. Gropius provides only a minimum number of control structures. Although
there is only a WHILE-loop and the REPEAT loop is not provided, the REPEAT
loop can easily be de�ned by the user:

NOP := PARTIALIZE(�x: x)
LOOP A c B := A THEN (WHILE c (B THEN A))
REPEAT A c := LOOP A c NOP

It has to be noted, that all free variables on the right hand side of a de�nition
must be parameters of the newly de�ned construct. All operators on the right
hand side must already have been de�ned. The equation must be non-recursive,
i.e. the function being de�ned must not appear on the right hand side.

5 Polymorphism

Gropius supports polymorphism. There are two basic polymorphic functions: a
multiplexer MUX with one control bit and a variable signal type, and an equiv-
alence gate EQ whose two input values are of some variable type. Based on
these two elementary polymorphic functions, the user may derive more complex
polymorphic functions such as:

MUX4(r; s; a; b; c; d) := MUX(r;MUX(s; a; b);MUX(s; c; d))

Polymorphic functions can be used in di�erent instantiations. The functionMUX,
for example, has type bool � � � � ! �, where � is a type variable. � can be
instantiated in an arbitrary manner. This need not be done explicitely, but is
derived from the context in which MUX is used. In the expression MUX(a;T; b),
for example, � becomes bool, whereas in MUX(a; (T; b); (c;OR(d; e)) the type
variable � is instantiated with bool� bool.

6 Parameterization with Circuits

In Gropius, it is also allowed to have circuits as parameters of circuits. The
following, user de�ned function quad maps some gate f to a structure consisting
of four f gates.

quad f (a; b) := (f(f(a)); f(f(b)))

In this example f is polymorphic. Its type is � ! �. The construct quad is a
very general pattern representing a simple structure of four equal combinatorial
circuits in a very general manner: f may be any function of type �! � with �

being an arbitrary type.

7

7 Regularity

Gropius supports regularity in a systematic manner. There is one basic regular
structure named ripple. ripple is a generic, polymorphic structure of a sequence of
circuits (see �gure 4). Regular circuit structures lead to regular signal bundling.
In Gropius, arrays are used for representing regular signal patterns. Besides
ripple, Gropius provides a set of functions on arrays (see table 2). Figure 4 gives
an impression on how powerful complex structures can be described in Gropius.

The de�nitions are build bottom up from the Gropius basics. Some of the
corresponding structures are sketched in the upper part of �gure 4. As can
be seen, the user can start de�ning some general, polymorphic patterns such
as ripplec and rect and later on instantiate them to derive more concrete circuits
such as ANDN. One just has to instantiate the parameter n to achieve a concrete,
implementable circuit. (ANDN 7) for example is an and-gate with 7 inputs.

8 Strict separation between functional and tem-

poral aspects

At the algorithmic level (Gropius-2) as well as on the system level (Gropius-3),
functional i/o description and temporal embedding are strictly separated. This
means that you can easily switch from one temporal abstraction to another by just
replacing the interface pattern. Other approaches use hardware representations
where functional aspects and timing aspects are interwoven (VHDL etc.). This
reduces the exibility of the design process. Changing the interface behaviour
means skipping the original design and starting from scratch.

Other than in many other concepts, there is a common basis for the algo-
rithmic and for the rt- and gate level: dfg-terms. The expression (ANDN 7) can
be considered as a combinatorial circuit at the rt-level. But it can as well be
considered as an algorithmic description: dfg interface cycle(ANDN 7; 5) uniquely
describes a sequential circuit implementing the n implementation with a delay
(input to output) of 5 clock cycles. To derive the rt-implementation from this
expression, high-level synthesis has to be applied.

Besides the nonrecursive dfg-terms, Gropius also supports p-terms, i.e. gen-
eral computable functions (programs), as starting point for high level synthesis.
Since dfg-terms are a basic part of p-terms, the function (ANDN 7) could as well
be used as a part of some p-term | for example in a boolean condition of a while
loop.

8

9 Conclusion

We have presented a new functional hardware description language, and we
showed some of its major concepts. Due to lack of space, most concepts could
only be introduced very briey. Gropius is a formal, mathematical hardware
description language with an exact semantics. It allows describing circuits at
an abstract, compact, mathematical manner. Its expressiveness goes beyond the
standard of nowadays hardware description languages.

References

[Eise97b] D. Eisenbiegler. Automata | A theory dedicated towards formal circuit synthe-
sis. Technical Report 14/97, Universit�at Karlsruhe, 1997. http: //goethe. ira.
uka.de/fsynth/publications/postscript/Eise97b.ps.gz.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataow
programming language Lustre. Proceedings of the IEEE, 79(9):1305{1320, Septem-
ber 1991.

[Jens92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1, Basic Concepts. Springer, 1992.

[JoBo91] S.D. Johnson and B. Bose. DDD: A system for mechanized digital design derivation.
In International Workshop on Formal Methods in VLSI Design, Miami, Florida,
January 1991. ACM/SIGDA. Available as Indiana University Computer Science
Department Technical Report No. 323 (rev. 1997).

[KBES96] R. Kumar , C. Blumenr�ohr, D. Eisenbiegler, and D. Schmid . Formal synthe-
sis in circuit design-A classi�cation and survey. In M. Srivas and A. Camilleri,
editors, Formal Methods in Computer-Aided Design. First International Confer-

ence,FMCAD'96, number 1166 in Lecture Notes in Computer Science, pages 294{
309, Palo Alto, CA, USA, November 1996. Springer-Verlag.

[KlBr95] C.D. Kloos and P.T. Breuer, editors. Formal Semantics for VHDL, volume 307
of The Kluwer international series in engineering and computer science. Kluwer,
Madrid, Spain, March 1995.

[LLLA93] J.O. Leary, M. Linderman, M. Leeser and M. Aagaard. HML: A hardware descrip-
tion language based on standard ML. In D. Agnew, L. Claesen, and R. Camposano,
editors, IFIP Conference on Hardware Description Languages and their Applica-

tions, volume A-32, pages 327{334, Ottawa, Ontario, Canada, April 1993. IFIP
WG10.2 International Conference, North-Holland.

[MoCl93] J.D. Morison and A.S. Clarke. ELLA 2000: A language for electronic system design.
McGraw-Hill, 1993.

[RaPN97] M. Radetzki, W. Putzke-Rming, and W. Nebel. Objective VHDL: The Object-
Oriented Approach to Modeling and Design. In EMMSEC'97 proceedings. 1997.

[ShRa95] R. Sharp and O. Rasmussen. The T-Ruby design system. In IFIP Conference on

Hardware Description Languages and their Applications, pages 587{596, 1995.

[SwMC95] S. Swamy, A. Molin, and B. Covnot. OO-VHDL: OO-VHDL Object-Oriented Ex-
tensions to VHDL. In transactions on computer science, pages 18{26. IEEE, 1995.

[VHDL96] IEEE. IEEE Standard VHDL Language Reference Manual Std 1076.3, 1996.

9

...

...

ANDN

&

&

&

f 0

f 1

...

... f(n-2)

ripplec n f

...f(n-1)...

...

...

f 0

f 1

ripple n f

f(n-1)...

...

...

f 0

f 1

rippleb n f

f 0 f 1 . .. f(n-1)

ser n f

.. .
.. .

.. .
.. .

...

...

...

f 0 0

f 0 1

f 0 (n-1)

f 1 0

f 1 1

f 1 (n-1)

f (m-1) 0

f (m-1) 1

f (m-1) (n-1)

rect m n f

EQPmn := EQ(enum (m+ n+ 1)m; enum (m+ n+ 1) n)

�rst n x := pick n(enum n 0; x)

maxenum n := enum n (n� 1)

last n x := pick n(maxenum n; x)

last' n (x; y) := MUX(EQP n 0; y; last n x)

constantly f i := f

ser n f x := last' n (

SND(ripple n (�i: �(a; b): (one; f i a)) (x; spread n one));

x)

rippleb n f (a; b) := let (c; d) = ripple n f (a; b) in (c; last' n (d; a))

ripplec n f (a; b) := last' n (SND(ripple n (�i: �x: (one; f i x))) (a; b); a)

rippled n f (a; b) := MUX(EQP n 0; d;

MUX(EQP n 1; �rst n x;

ripplec (n� 1) f(�rst n x; shift 1 (n� 1) x)))

rectmn f (a; b) := serm (�i: �(x; y): swap(rippleb n (f i) (x; y)) (a; b))

ANDN n x := rippled n (constantly AND) (T; x)

Figure 4: Examples of derived structures

10

