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Abstract

We present an overvi ew of our l aboratori es' research on
Mul timodal Human-Computer Interf aces. By expl oi ti ng

al l avai l abl e channel s of human communi cati on we aim
to i ncrease 
exi bi l i ty, robustness, and natural ness of hu-
man-computer i nteracti on. The i nformati on sources we pro-

cess i ncl ude Speech-, Character- , and Gesture Recogni ti on,
Face- and Eye Tracki ng, Li preadi ng, and Sound Source Lo-

cal i zati on. Connecti oni st and hybri d techni ques are used
throughout.

Introduction

Recent devel opments i n the computer and communi cati on
i ndustri es are rapi dl y i ncreasi ng the amount and vari ety of
nformati on avai l abl e to a wi de and di verse audi ence. The
ti -medi a nature of thi s data expl osi on, heral ded by the
ept of the \Informati on Superhi ghway", o�ers images,
text, etc. as the output presented to the i nforma-
sumer. Thi s i s i n stark contrast to the impover-
of i nput opti ons whi ch are sti l l l argel y l imi ted to
oard and mouse. Attempts at the use of al ternate
ave mostl y focused on si ngl e al ternati ves and
mi ted acceptance.
to improve thi s si tuati on, we have begun to
process a mul ti pl i ci ty of si gnal s that are
carry meani ng i n human communi cati on.
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recogni ti on7 and i s pref erred to a stati c, bi tmapped repre-
sentati on of gesture' s shape. The coordi nates are normal i zed
and resampl ed at regul ar i nterval s to el imi nate di �erences
i n si ze and drawi ng speed; f romthese resampl ed coordi nates

we extract l ocal geometri c i nformati on at each poi nt, such
as the di recti on of pen movement and the curvature of the

trajectory.
Each coordi nate i s represented i n the cl assi f yi ng TDNNby

ei ght such l ow{l evel f eatures. Thei r temporal sequence con-
ti tutes the i nput l ayer. Ten uni ts i n the �rst hi dden l ayer
xtract patterns f romthe i nput, ei ght uni ts i n the second
dden l ayer spot patterns typi cal of a gi ven gesture. Out-
uni ts (one per gesture) i ntegrate over time the evi dence

mthe correspondi ng uni t i n the second hi dden l ayer. The
uni t wi th the hi ghest acti vati on l evel determi nes the
ati on. The network i s trai ned on a set of manual l y
gestures usi ng a modi �ed backpropagati on al go-
trai ni ng data of 80 sampl es/gesture, we have
rer"-dependent recogni ti on rate of 98. 8%on
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network. The network consi ders shape of the obj ects i n pro-
duci ng the coordi nates of the vi rtual camera, i ndi cati ng the
regi on actual l y contai ni ng the face. Appropri ate commands

to the PTUand zooml ens are i ssued i f the face moves out of
a pre-de�ned area i n the center of the physi cal camera. Fi g-

ure 2 shows an exampl e of an image and the area cl assi �ed
s a face by the tracki ng system.

g u r e 2. Ca me r a i ma g e a n d e xt r a c t e d la r g e s t s ki n {c o l o r e d
o bje c t .

Two neural networks are used for centeri ng and si ze es-
timati on respecti vel y. They were trai ned by backpropaga-

ti on on 5000 arti �ci al l y scal ed and shi f ted exampl e images
generated wi th a database contai ni ng 72 images of 24 faces

of di �erent sex, age, hai r styl e, ski n col or, etc. Performance
was eval uated on test sequences of over 2000 images of 7 per-

sons (wi th di �erent ski n types) perf ormi ng arbi trary move-
ments i n f ront of di �erent backgrounds. Dependi ng on the

sequence, the face was l ocated i n 96%to 100%of al l images
i n the sequence. The average di �erence of the actual posi -

ti on of the face and the output of the systemwere l ess than
10%of the si ze of the head.

Eye Tracking

The goal of gaze tracki ng i s to determi ne where a person
i s l ooki ng f romthe appearance of hi s eye. Two potenti al
es of a gaze tracker are as an al ternati ve to the mouse
an i nput modal i ty and as an anal ysi s tool f or human-
er i nteracti on studi es. The di recti on of eye �xati on
o be used to determi ne the user' s f ocus of attenti on i n
modal i nterf ace; f or i nstance, knowi ng whether the
oki ng at the screen or somewhere el se whi l e tal ki ng
rtant i n deci di ng whether automated speech
l d be acti vated.
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F i g u r e 3. Ba s i c r e c o g n i t i o n n e t wo r k a r c h i t e c t u r e (i n t e g r a t i o n
a t t h e ph o n e me /vi s e me l e v e l ).

We have tested the recogni zer on data sets of 200 l et-
ter sequences f romsi ngl e speakers. On the average, LDA-

preprocessed vi sual i nput produces best resul ts, reduci ng the
audi o-al one error rate by 33. 7 %.

SpeechandGesture Recognition

We have devel oped a speech- and gesture-based text edi -
tor as another step towards modal i ty i ntegrati on. The word

spotter (see above) was trai ned to spot 11 keywords rep-
resenti ng edi ti ng commands such as move, del ete, . . . and

textual uni ts such as character, word, . . . The e�ect i s to
l et the user speak natural l y wi thout havi ng to worry about

grammar and vocabul ary, as l ong as the utterance contai ns
the rel evant keywords. For exampl e, an utterance such as

\Pl ease del ete thi s word for me" i s equi val ent to \Del ete
word".
We based the i nterpretati on of mul timodal i nputs on

f rames consi sti ng of sl ots representi ng parts of an i nterpre-
tati on. The speech and gesture recogni zers produce parti al

hypotheses i n the formof parti al l y �l l ed f rames. The out-
put of the i nterpreter i s obtai nedbyuni fyi ng the i nformati on
contai ned i n the parti al f rames. For exampl e, a user draws

a ci rcl e and says \Pl ease del ete thi s word". The gesture-
processi ng subsystemrecogni zes the ci rcl e and �l l s i n the
command scope (what to operate on) speci �ed by the ci rcl e

i n the gesture f rame. The word spotter produces \del ete
word", f romwhi ch the parser �l l s i n the acti on and textual

uni t sl ot i n the speech f rame. The f rame merger then out-
puts a uni �ed f rame i ndi cati ng that the operati on del ete i s
to be carri ed out on the word speci �ed by the scope of the

ci rcl e.
One important advantage of thi s f rame-based approach i s

ts 
exi bi l i ty, whi ch wi l l f aci l i tate the i ntegrati on of more
than two modal i ti es. Al l we have to do i s de�ne a general

rame for i nterpretati on and speci f y the ways i n whi ch sl ots
n be �l l ed by each i nput modal i ty. In a general impl emen-
n, i t i s possi bl e that the sl ots may be �l l ed i n di �erent
and performi ng a search to �nd the best merge woul d

or.

king andBeamforming

cri bed earl i er pi cks i ts target as the
s vi ci ni ty. It, theref ore, encounters prob-
ti ng to track a movi ng tal ker i n real i s-

ti c communi cati on si tuati ons i ncl udi ng competi ng speakers.
Consi deri ng vi sual aspects to l ocate the speaker' s posi ti on
overcomes these l imi tati ons. Speci �cal l y, the face-tracker
suppl i es the coordi nates of a movi ng speaker to the mi cro-

phone array whi ch then forms a beamto that l ocati on. Our
experiments have con�rmed thi s synergy, demonstrati ng im-

proved si gnal -to-noi se rati o even for speakers movi ng i n an
envi ronment wi th another l oud sound source.
Anatural further appl i cati on of f ace-tracki ng and beam-

formi ng i s to enhance the l i p-readi ng/speech recogni ti on sys-
tem. The face-tracker al l ows for a non-i nvasi ve acqui si ti on
of the vi sual data, whi l e the beamformer improves the qual -

i ty of the recei ved audi o i nput. Work on such a compl ete
systemi s al ready i n progress.

Conclusion

We have descri bed the many-faceted appl i cati ons of neural
networks to recogni ti on of vari ous human communi cati on

modal i ti es. We are conti nui ng to improve the i ndi vi dual
systems whi l e pursui ng the goal of thei r i ntegrati on i n a
si ngl e, 
exi bl e, and robust human-computer i nterf ace.
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