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Abstract

The mismatch between the operational semantics of the
lambda calculus and the actual behavior of implemen�
tations is a major obstacle for compiler writers� They
cannot explain the behavior of their evaluator in terms
of source level syntax� and they cannot easily com�
pare distinct implementations of di�erent lazy strate�
gies� In this paper we derive an equational characteri�
zation of call�by�need and prove it correct with respect
to the original lambda calculus� The theory is a strictly
smaller theory than the lambda calculus� Immediate
applications of the theory concern the correctness proofs
of a number of implementation strategies� e�g�� the call�
by�need continuation passing transformation and the re�
alization of sharing via assignments�

� Introduction

Lazy functional programming languages implement the
call�by�name lambda calculus� Their syntax provides
syntactic sugar for � terms� their evaluators map closed
terms to values� The semantics of lazy function calls
is the famous ��axiom� every call is equivalent to the
body of the function with the formal parameter replaced
by the actual argument� The ��axiom gives rise to an
equational theory� the ��calculus� which implementors
can use to reason about the outcome of programs 	
���

Taken literally� the ��axiom suggests that a proce�
dure must evaluate the argument of a speci
c call for
each occurrence of the corresponding formal parameter�
Realistic implementations of lazy functional languages
avoid such computational overhead by memoizing the

argument�s value when it is 
rst evaluated� More pre�
cisely� lazy languages only reduce an argument if the
value of the corresponding formal parameter is needed
for the evaluation of the procedure body� Moreover� af�
ter reducing the argument� the evaluator will remember
the resulting value for future references to that formal
parameter� This technique of evaluating procedure pa�
rameters is called call�by�need or lazy� evaluation�

A simple observation justi
es call�by�need� the re�
sult of reducing an expression� if any� is indistinguish�
able from the expression itself in all possible contexts�
Some implementations attempt to exploit this observa�
tion for sharing even more computations than just those
of arguments� Arvind et� al� 	�� provide an overview of
such implementations� particularly the so�called �fully
lazy� or �graph�based� techniques�

Unfortunately� the mismatch between the operational
semantics of the lambda calculus and the actual behav�
ior of the implementation is a major obstacle for com�
piler writers and users� Speci
cally� they cannot use the
calculus to reason about sharing in the evaluation of a
program�

Purushothaman and Seaman 	
�� 
�� and Launch�
bury 	��� recently recognized this problem and devel�
oped two slightly di�erent �natural� semantics of the
call�by�need parameter passing mechanism� Roughly
speaking� the semantics use store�passing to describe
call�by�need in terms of �the semantics of� assignment
statements� Due to the low�level nature of this ap�
proach� these semantics permit neither a simple ex�
planation of language implementations� nor source�level
reasoning about program behavior� Worse� given slightly
di�erent speci
cations based on �natural� or similar se�
mantic frameworks� it is di�cult� if not impossible� to
compare the intentions with respect to sharing in the
evaluators��

�In this paper we write �call�by�need� rather than �lazy� to
avoid a name clash with the work of Abramsky ���� which de�
scribes call�by�name reduction to values	

�Ironically� this problem immediately showed up in the dif�



A number of researchers 	�� ��� 
�� ��� 
�� have stud�
ied reductions that preserve sharing in calculi with ex�
plicit substitutions� especially in relation to optimal re�
duction strategies� Having di�erent aims� the resulting
calculi are considerably more complex than those pre�
sented here� Closest to our treatment is Yoshida�s weak
lambda calculus 	��� which introduces explicit environ�
ments similar to let constructs� Her calculus subsumes
several of our reduction rules as structural equivalences�
even though� due to a di�erent notion of observation�
reduction in this calculus is not equivalent to reduction
to a value�

In this paper� we pursue a di�erent approach to the
speci
cation of call�by�need�� Our formulation is en�
tirely syntactic� and formulates the sharing in a call�
by�need evaluator as an equational theory of the source
language� The theory is a strict sub�theory of the call�
by�name ��calculus� The key technical contribution of
the paper is a proof of equivalence between the call�by�
name and the call�by�need evaluator� In addition� we
prove that the calculus relates to the evaluator in pre�
cisely the same manner as Plotkin�s call�by�name and
call�by�value calculi relate to their respective evaluators�

The next two sections present the basic ideas of the
call�by�name and call�by�need calculi� The fourth sec�
tion presents basic syntactic results such as con�uence
and standardization results� The 
fth and sixth sec�
tions are devoted to the correctness proof� the sixth
section also describes an interesting alternative formu�
lation of call�by�need� The last three sections brie�y
discuss extensions of the language �with constants and
recursive declarations�� the relation of our work with
natural semantics�based approaches� and applications
of the calculus�

� The Call�by�Name calculus

In this section we brie�y review the call�by�name cal�
culus� we assume a basic familiarity of the reader with
this material 	���

Figure � details the call�by�name calculus� The set
of lambda terms� called �� is generated over an in
nite
set of variables� The expression M 	x �� N � denotes the
capture�free substitution of N for each free occurrence
of x in M � The reduction theory associated with the
calculus is the result of taking the compatible� re�exive

ferences between the formulations of Purushotoman
Seaman and
Launchbury	

�In fact� this approach uni�es the similar� simultaneous and
independent work of two separate groups	 While many of our re�
sults are indeed quite similar� there are interesting and signi�cant
di�erences in overall perspectives� in speci�c de�nitions of calculi
and in proof techniques	 We do not describe these di�erences
here� and instead refer the interested reader to the full technical
reports of Ariola and Felleisen �
� and of Maraist� Odersky and
Wadler ���� for details	

and transitive closure of � interpreted as an asymmetric
relation�

� � f��x�M �N�M 	x �� N � jM�M � �g�

The compatible closure of � is written as ������
name

� the
re�exive and transitive closure of ������

name
� as ������

name
��

�name is the symmetric closure of ������
name

�� or the con�
gruence relation generated by ������

name
� We will omit the

tag name when we may do so unambiguously�
In an implementation of the calculus� closed expres�

sions play the role of programs� An execution of a pro�
gram aims at returning an observable value in realistic
languages� Observable values are basic constants like
numbers and booleans� If a program�s result is a proce�
dure or a lazy tree� most implementations only indicate
whether or not the program has terminated and possi�
bly what kind of higher�order result it returned� Since
the pure theory only contains ��abstractions� an evalu�
ator only determines whether a program terminates�

Given this preliminary idea of how implementations
work� we can use the calculus to de
ne a partial evalua�
tion function evalname from programs� or closed terms�
to the singleton consisting of the tag closure�

evalname�M � � closure i� � �M � �x�N �

That is� the evaluation of a program returns the tag
closure if� and only if� the theory can prove the pro�
gram is equal to a value� It is a seminal result due to
Plotkin that the evaluation function of a typical imple�
mentation is also determined by the standard reduc�
tion relation 	
��� Put di�erently� a correct implemen�
tation of the evaluator can simply reduce the standard
or leftmost�outermost redex of a program until the pro�
gram becomes a value�

Evaluation contexts are a convenient way of for�
mulating the evaluation relation 	���� A program M
standard reduces to N � written as M �������

name
N � i�

M � En	��x�P �Q� and N � En	P 	x �� Q��� As usual�
M �������

name
� N means M standard reduces to N via the

transitive�re�exive closure of �������
name

� M �������
name

��� N
means M standard reduces to N in zero or one step�
M �������

name
�n N means M standard reduces to N in n

steps� As before� we will omit the tag name when no
confusion arises� The following characterization of the
call�by�name evaluator is a consequence of the con�u�
ence property and the standardization theorem of ��

Proposition ��� For a program M �

evalname�M � � closure i� M ���� �x�N �

This result is due to Plotkin 	
���



Syntactic Domains
Variables x� y� z
Values V�W ��� �x�M
Terms L�M�N ��� x j V j M N
Evaluation contexts En ��� 	 � j EnM

Axioms

��� ��x�M �N � M 	x �� N �

Figure �� The call�by�name lambda calculus�

Syntactic Domains
Variables x� y� z
Values V�W ��� �x�M
Answers A ��� V j let x � M in A
Terms L�M�N ��� x j V jM N j let x � M in N

Axioms
�let�I� ��x�M �N � let x � N inM
�let�V� let x � V in C	x� � let x � V in C	V �
�let�C� �let x � L inM �N � let x � L inM N
�let�A� let y � �let x � L inM � in N � let x � L in let y � M inN

Figure 
� The calculus �
let

�

� From Call�by�Name to Call�by�Need

We augment the term syntax of the classical ��calculus
with a let�construct� The underlying idea is to repre�
sent a reference to an actual parameter in an instanti�
ated function graph by a let�bound identi
er�� Hence�
sharing in a function graph will correspond to nam�
ing in a term� Figure 
 details the calculus �let over
these augmented terms� As in the call�by�name calcu�
lus� we extract the related reduction theory� and will fre�
quently make reference to its compatible closure �����

need
�

the re�exive� transitive closure �����
need
� thereof� and 
�

nally the congruence �need which it generates� omit�
ting tags when the meaning is clear� We will also refer
to reduction theories of individual axioms in the same
manner� e�g��M �����

let�I
N � and use �for example� the ab�

breviation M �����������
let�fV�C�Ag

N to mean that M reduces

to N by let�V and by either let�V� let�A or let�C�
As Wadsworth pointed out� one way to avoid dupli�

cating reductions is by replacing the abstracted vari�
ables in function bodies with references to arguments�
rather than with the arguments themselves 	���� The
let�I axiom models the creation of such a let binding by

�The idea of keeping pairs of procedures and their arguments
in the syntax of the language is due to work on explicit substi�
tutions ���� on graph rewriting ��� ��� and on adding state to the
��calculus ���� ��� ��� ���	 Only the latter two though exploited
the idea of modeling the sharing relation of the program heap
inside of the source language	

representing the reference with a let�bound name� e�g��

��x�xx��II� � let x � II
in xx �

where I � �z�z�
The intention of this sharing of graphs is to prevent

the duplication of work by reducing the same expression
more than once� However� once a shared expression
is a value � in this core calculus� values are simply
abstractions � there is no harm in the duplication� In
fact� the duplication then becomes necessary� reduction
requires an actual abstraction� not just a pointer to one�
This dereferencing is expressed by the let�V rule� which
substitutes the value bound to a name for an occurrence
of that name�

Unfortunately� such a modeling of the sharing of val�
ues in the source level syntax means that looking only
for simple values is no longer adequate� A value may it�
self contain shared terms� so the simple abstraction may
be �buried� within one or more let bindings� Consider
the expression

��f�fI�fI�� ���z��w�zw� II� �

which let�I equates with

let f � let z � II
in �w�zw

in fI�fI� �

Further reduction of this term clearly requires that an
abstraction be substituted for the 
rstf infI�fI�� Were



we to obtain this abstraction by na��vely applying some
relaxed form of let�V to the term as a whole� say

let x � �let y � M in V � in C	x�

� let x � �let y � M in V �
in C	let y � M in V � �

we would lose sharing�

let f � �let z � II in �w�zw�
in fI�fI�

� let f � �let z � II in �w�zw�
in �let z � II in �w�zw� I�fI� �

���

The redex II and the work involved in reducing it have
been duplicated�

The solution is to re�associate the bindings� Rather
than accepting Eq� �� re�association will allow the cur�
rent let�V axiom to apply without loss of sharing�

let f � �let z � II in �w�zw�
in fI�fI�

� let z � II
in let f � �w�zw

in fI�fI�

�
�

� let z � II
in let f � �w�zw

in ��w�zw�I�fI�

The rearrangement of Eq� 
 is captured by the let�A
axiom� In the example� even though f does occur twice�
II will be contracted only once��

Equation � points out a second situation where let�V
is inadequate in the presence of values under bindings�
In the expression�

�let z � II in �w�zw� I �

we would like to associate the abstraction �w�zw with
the argument I� but the two are not directly adjacent as
required by let�I� Again� we must rearrange the term�
expecting an equality

�let z � II in �w�zw� I

� let z � II in ��w�zw� I �

�But note that we avoid duplication only of argument evalua�
tions	 In the program

��f�fI�fI����w��II�w� �

the redex II in the argument will be reduced twice	 Put di�er�
ently� our calculus captures neither full laziness as described by
Wadsworth ����� nor the sharing required by optimal ��calculus
interpreters ���� ��� ��� ��� ���	 However� as observed by Arvind�
Kathail and Pingali ���� full laziness can always be obtained by
extracting the maximal free expressions of a function at compile�
time ����	

�Although we rejected the liberalized let�V rule which pro�
duced this particular expression� it is perfectly reasonable to ex�
pect similar terms to appear	 In fact� any left�nesting of two
applications �LM�N could produce such a term�

this manipulation is generalized by the let�C axiom�
The let�A and let�C rules may be viewed as allow�

ing the scope of a bound identi
er to be expanded over
broader expressions� To avoid copying unreduced ex�
pressions� such an expansion is required when the argu�
ment of a function contains a binding �the let�A rule�
and when a expression which is itself a binding is ap�
plied to some argument �the let�C rule��

It is precisely these two rules let�A and let�C which
allow us to do without a separate store� Rather than
creating references to new� unique global addresses� we
simply extend the scope of identi
ers as needed�

Example ��� ��x�x x� ��y�y��

��x�x x� ��y�y�

�����
let�I

let x � �y�y
in x x

������
let�V

let x � �y�y
in ��z�z� x

�����
let�I

let x � �y�y
in let z � x

in z

������
let�V

let x � �y�y
in let z � �w�w

in z

������
let�V

let x � �y�y
in let z � �w�w

in �v�v

In the call�by�name calculus� the terms we identi
ed
as observable results� or answers� were simply abstrac�
tions� However� in this formulation of call�by�need the
notion of answer must re�ect the possibility that such
an abstraction can be under bindings� The appropriate
de
nition given in Figure 
 means that answers are a
syntactic representation of closures�

� Basic Syntactic Properties

Following Plotkin�s technique� we de
ne the call�by�
need evaluator as a partial relation evalneed from pro�
grams� or closed terms� to the singleton consisting of
the tag closure based on equality in our call�by�need
calculus�

evalneed �M � � closure i� �let �M � A �

Furthermore� from the following result� a program eval�
uates to closure if and only if it reduces to an answer in
the call�by�need calculus�

Theorem ��� �let is con�uent�

M

M � M ��

�N

����let�
��R�letR

�����R�let R

�������let�



Proof� The system consisting of just let�I is triv�
ially con�uent� then by marked and weighted redexes as
in Barendregt 	�� the remaining reductions let�V� let�C
and let�A are both weakly Church�Rosser and strongly
normalizing� and thus Church�Rosser as well� Since
both subsystems commute� the theorem follows from
the Lemma of Hindley and Rosen 	�� Proposition �������
�

This result does not imply that all reduction sequences
lead to an answer in �let� We therefore introduce the
notion of standard reduction� which always reaches an
answer if there is one� Figure � details our notion of
standard reduction� An expression is only reduced when
it appears in the hole of an evaluation context� The 
rst
two productions for evaluation contexts are those of the
call�by�name calculus� Since arguments to procedures
are evaluated only when needed� the standard reduc�
tion system postpones the evaluation of the argument
and instead proceeds with the evaluation of the proce�
dure body� Once the formal parameter of the procedure
appears in the hole of an evaluation context� and only
then� the value of the argument is needed to complete
the evaluation� In this case� the standard reduction sys�
tem evaluates the argument before substituting it into
the body of the procedure�

Given a program M � �let� M standard reduces to
N � written asM ������

need
N � i�M � E	K� and N � E	L��

where K and L are a standard redex and its contractum�
respectively� M ������

need
� N means M and N are related

via the transitive�re�exive closure of ������
need

� As usual�
we will omit the tags from the arrows when the meaning
is clear from the context� Verifying that the standard
relation� ���� is indeed a function from programs to
programs relies on the usual Unique Evaluation Context
Lemma 	���� This lemma states that there is a unique
partitioning of a non�answer into an evaluation context
and a redex� which implies that there is precisely one
way to make progress in the evaluation�

Lemma ��� Given a program M � �let� either M is
an answer� or there exists a unique evaluation context
E and a standard redex N such that M � E	N ��

Proof� By structural induction on M � �

Theorem ��� Given a program M � �let�

evalneed �M � � closure i� �A�M ���� A �

Proof� The proof relies on two subsidiary results� that
all answers are in ������

need
��normal form� and that a se�

quence of non�standard reductions followed by a se�
quence of standard reductions can be transformed into
an equivalent sequence of 
rst standard reductions� then
non�standard reductions� The proof is somewhat rem�
iniscent of Barendregt�s standardization proof for the

call�by�name calculus� but without the convenience of
a 
niteness of developments theorem for all redex types
	�� Lemma ��� ���� �

� Completeness of the Call�by�Need calcu�

lus

Replacing the call�by�name interpreter with the call�by�
need interpreter requires an equivalence proof for the
two evaluators�

evalneed � evalname �

In this section� we will show the completeness direction�
that is� each result obtained with the call�by�name inter�
preter is also produced by the call�by�need interpreter�
Formally� we have for any program M �

evalname�M � � closure �� evalneed�M � � closure �

We introduce an ordering between terms of � and
�let� Intuitively� M 	 N if M can be obtained by un�
winding N � that is� N contains more sharing than M
	��� In other words� the ordering relation 	 expresses
whether the terms have homomorphic graphs� For ex�
ample� the tree of M � ��x�x���x�x� can be homomor�
phically embedded into the graph of N � let y � �x�x
in yy�

@

xλ

x

@

xλ

x

xλ

x

which shows that M 	 N � Notation� given a term
M � �let� let Dag�M � be the corresponding dag� and
given a term N � �� let T ree�N � be the corresponding
tree�

De�nition 	�� For M � � and N � �let� M 	 N
i� there exists an homomorphism � � T ree�M � �
Dag�N ��

If M 	 N � then each call�by�name evaluation of M
can be simulated in the call�by�need calculus by evalu�
atingN � The term obtained in the call�by�need calculus
is not necessarily greater �in terms of the above order�
ing� than the one obtained following the call�by�name
evaluation� This is because a one�step call�by�need re�
duction may correspond to multiple call�by�name re�
ductions� For example� the evaluation

M � ��x�xx����y�y���z�z��

�������
name

�M� � ��z�z����y�y���z�z��



Syntactic Domains�

Values� V ��� �x�M
Answers� A ��� V j let x � M in A
Evaluation Contexts� E ��� 	 � j EM j let x � M in E j let x � E in E	x�

Standard Reduction rules�

�lets�I� ��x�M �N � let x � N in M
�lets�V� let x � V in E	x� � let x � V in E	V �
�lets�C� �let x � M in A�N � let x � M in AN
�lets�A� let x � �let y � M in A� in E	x� � let y � M in let x � A in E	x�

Figure �� Standard call�by�need reduction�

corresponds to the following call�by�need evaluation�

M � ��x�xx����y�y���z�z��

������
need

let x � ��y�y���z�z� in xx

������
need

let x � �let y � �z�z in y� in xx � N �

Obviously M� 
	 N � However� there exists an M� such
that M� ������name

M� and M� 	 N �

M� ������name
M� � ��z�z���z�z� 	 N �

Since M 	M � the last point shows how to reconstruct
a call�by�name evaluation in the call�by�need calculus�
Hence� the completeness direction follows�

If M 	 N and M is a ��redex� N is not necessarily
a lets�I redex� Suppose

M � ��x�x���x�x�

N � let z � �let w � �x�x in w� in zz

thenM 	 N � yet N does not contain a lets�I redex� The
example points out that our graph model of �let terms
must be able to express the let�structure of a term in
addition to its sharing structure if we want to use it for
a correctness proof�

We solve this problem by enriching dags with boxes
and labeled edges 	��� Dag��M � is the decorated dag as�
sociated with an expressionM � A box can be thought of
as a re
ned version of a node� the label associated with
an edge is just a sequence of let�bound variable names�
The label can be thought of as a direction to be followed
in order to get to a particular node� Each let induces
one box� and each edge to the shared term is deco�
rated with the variable name� We pictorially represent
a term let x � N in M by a box divided in two parts�
the upper part corresponds to M �the unshaded area of
a box� and the lower part contains N �the shaded area
of a box�� Let us illustrate the extended dag notation
and terminology with a number of examples�

Example 	��

�i� The term let z � �x�x in z is drawn as

λx

x

z

The name z associated with the root pointer is
drawn outside the shaded area�

�ii� We can also have nested boxes� e�g�� the term

let z � let y � let w � �x�x
in w

in y
in z

is drawn as

xλ

x

w

y

z

where the path to the ��node must follow the label
zyw and hit three walls�
In contrast� in the term

let z � �x�x
in let y � z

in let w � y
in w �

drawn as



xλ

x

w

y
z

the path to the ��node must follow the label wyz�
and it penetrates three walls but leaves two encas�
ings�

In our running example� Dag��N � is �

@
z z

xλ

x

w

In this decorated dag� the path from the application
�root� node to the ��node has label zw� and it pene�
trates the wall of one box� To expose the redex means
that the function pointer �of the root node� must point
to the ��node directly� In terms of our graphical lan�
guage� we must eliminate the names z� w� the internal
box� and pull the ��node out of the shaded area� exactly
the task of the lets�A� lets�V� and lets�C rules� Their
dag�based representation in Table � reveals that lets�V
pulls a value out of the shaded area� eliminating a name
on an edge� lets�C moves a wall� and lets�A moves a wall
that is in the shaded area� The sequence lets�V� lets�A�
lets�V su�ces to expose the redex in our example�

let z � �let w � �x�x in w� in zz

��������
lets�V

let z � �let w � �x�x in �x�x� in zz

��������
lets�A

let w � �x�x in �let z � �x�x in zz�

��������
lets�V

let w � �x�x in �let z � �x�x in ��x�x�z� �

Figure  �without unreachable dags� illustrates these
steps�

From Table � it is clear that lets�C and lets�A do
not change the dag associated with a term� while lets�V
causes a duplication�

Lemma 	��

�i	 Given M � �let� if M����������
lets�fC�Ag

� N then

Dag�M � � Dag�N ��
�ii	 Given M � �let� if M�������

lets�V
� N then N 	M �

The language and notation for decorated dags is use�
ful in proving the following three key lemmas� All could
be formulated in plain term�based language� but at the
cost of introducing more technical details�

Lemma 	�� Given M � �� N � �let� if M 	 N and
M � En	��x�P �R� then there exists P �� R�� and E	 ��
such that N �������������

lets�fV�C�Ag
� E	��x�P ��R���

Proof� Let z be the root in T ree�M � of the ��redex
being evaluated� Let z� and z�

�
be the corresponding

nodes in Dag�N � and Dag��N �� respectively� We know
that the left branch of z� points to a ��node� while in
Dag��N � the path from z�

�
to the ��node may contain

some obstacles� Thus� we show that by using lets�A�
lets�V� and lets�C we can remove all the obstacles from
that path� We reason by induction on the number n of
names associated with the path in Dag��N � from z�

�
to

the ��node�

n � �� This means that the path from z�
�
to the ��node

is free of names� but it still may penetrate inter�
vening walls� With m walls� we need m lets�C
steps to move the walls and expose the redex�

n � �� By the induction hypothesis� we can remove n��
names� Now we need to show how to eliminate the
last one� There are two cases�

�� The name associated with the ��node is w�

w

λz

M

: :

Since w occurs in head position� an applica�
tion of lets�V exposes the ��node�


� The branch labeled w points to m boxes that
surround the ��node� e�g�

w

λz

M

: :

Since w occurs in head position� m applica�
tions of lets�A followed by a single application
of lets�V expose the ��node�



lets�V �

...x x

E[x]

... x

E[x]

V

V

V

lets�C �

M

...

L

:

@

N

: :

M

...

L

:

@

N
: :

x x

λz λz

x x

lets�A �

E[x]

x x...

y

M

y...

L

:
λz

:

E[x]

x x...

y

M

y...

L

:
λz

:

Table �� Standard call�by�need reduction rules in dag�based form�
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@
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x

@

z

xλ

x

λx

x

Figure  � Exposing the redex in let z � �let w � �x�x in w� in zz�



Let N �� N �������������
lets�fV�C�Ag

� N �� under the assumption

that N � � C	��x�P ��R�� for C	 � not an evaluation con�
text �that is� the redex ��x�P ��R� is not needed� and
hence z not the root of the leftmost�outermost redex in
M � we have a contradiction�

�

Lemma 	�	 Given M � �� N � �let� if M 	 N and
M � �x�P then there exists an answer A such that
N �����������

lets�fV�Ag
� A�

Proof� The proof is similar to but simpler than the
previous one� In fact� we need not move the walls sur�
rounding the lambda�node� that is� no use of lets�C is
required� �

Lemma 	�
 Given a program M � � and N � �let� if
M 	 N and M �������

name
�n M�� then �M �

� � �� N� � �let

such that

M�������name
�M �

�� N ������
need
��n N� and M �

� 	 N��

Pictorially�

N

M M� �M �
�

�N�

�

	

���n

�
�
�
�
�
�
�
�
�
�
	

� � � � � � ����

� � � � � � � � � � � � � � � � � � � ��
������
need

�n

�

Proof� By induction on the length n of the reduction
M �������

name
�n M��

n � �� Let M � En	��x�P �R�� and let z be the root in
T ree�M � of the ��redex in the hole of En	 �� From
Lemma �� � there exists P �� R� and E	 ��

N ������
need
� N � and N � � E	��x�P ��R�� �

Let z� be the root in Dag�N �� of the lets�I�redex�
From Lemma ��� and the fact that M does not
contain any sharing we have M 	 N �� Thus�

M �������
name

M� � En	P 	x �� R��

and

N � ������
lets�I

N� � E	let x � R� in P �� �

If there exists a node z� in T ree�M �� where z� 
� z�
such that ��z�� � z�� where � is the homomor�
phism associated with the ordering M 	 N �� then
M� 
	 N�� Let F be the set of all such nodes�
Let M �

��M�������name
�M �

�� by reducing all redexes in

F and their residuals� We have� M �
� 	 N��

n � �� Let M �������
name

�n�� M � and M � �������
name

M�� By

the induction hypothesis� �N� � �let�M
�� � ��

N ������
need
���n��	 N��M

�������
name

�M �� and M �� 	 N� �

From the Strip Lemma 	�� �M��

M �� �������
name

��� M� and M�������name
�M� �

If M� �M �� then we have�

N ������
need
���n��	 N� and M �������

name
�M ��

where M �� 	 N�� Otherwise� by the induction
hypothesis �N �

� � �let�M
�
� � ��

N� ������
need

��� N �
��M�������name

�M �
� and M �

� 	 N �
� �

�

Lemma 	�� Given a program M � ��

M �������
name

�n �x�N �� M ������
need
� A �

Proof� Since M 	 M � from Lemma ���� �M� �

�let� N� � � such that�

M ������
need
��n M� and �x�N������

name
��x�N�

where �x�N� 	 M�� The result then follows from
Lemma ���� �

With these lemmas we can prove the main result of this
section� namely� that call�by�need can simulate a call�
by�name evaluation�

Theorem 	�� If M � � and evalname�M � � closure �
then evalneed �M � � closure�

Proof� The assumption implies M �������
name

� �x�N �
Hence� the result follows from Lemma ���� �

� A Let�Less Formulation of Call�by�Need

In the �let calculus� we have treated the expression
let x � M in N as a term distinct from ��x�N �M � An
alternate treatment is also quite reasonable� that the
former is merely syntactic sugar for the latter� In other
words� it is possible to completely eliminate let�s from
the call�by�need calculus and still have a system with
the same desired properties� By expanding let�bindings
into applications� we can derive the �� calculus shown
in Figure � from �let� There is of course no analogue of
the let�I rule in ��� since we must no longer convert away
from plain applications� We call the evaluator for this
language eval�

need
to distinguish it from the evaluator

for �let�
While �� is perhaps somewhat less intuitive than

�let� its simpler syntax can make some of the basic



Syntactic Domains

Variables x� y� z
Values V�W ��� �x�M
Answers A ��� V j ��x�A�M
Terms L�M�N ��� x j V j M N
Evaluation contexts E ��� 	 � j EM j ��x�M �E j ��x�E	x��E

Reduction Axioms
���V� ��x�C	x��V � ��x�C	V �� V
���C� ��x�L�MN � ��x�LN �M
���A� ��x�L����y�M �N � � ��y���x�L�M �N

Figure �� Let�less call�by�need�

�syntactic� results easier to derive� It also allows bet�
ter comparison with the call�by�name calculus� since no
additional syntactic constructs are introduced�

Clearly� �let and �� are closely related� More pre�
cisely� the following theorem states that reduction in
�let can be simulated in ��� and that the converse is
also true� provided we identify terms that are equal up
to let�I introduction�

Proposition 
�� For all M � ��� M � � �let�

M

M � N �

N�
��

�

�

let�I

�

�
�
�
�
�
�
�
�
��

let�I

�
� � � � � � � � ��

�let

�

M

M � N �

N� � � � � � � � ��
��

�

�

let�I

�

�
�
�
�
�
�
�
�
��

let�I

��
�let

� �

Proposition ��� can be used to derive the essential syn�
tactic properties of �� from those of �let� in particular
the con�uence result for �� follows from Theorem  ��
by the proposition�

�� has close relations to both the call�by�value cal�
culus �V and the call�by�name calculus �� Its notion of
equality ��� � i�e�� the least equivalence relation gen�
erated by the reduction relation � 
ts between those
of the other two calculi� making �� an extension of �V
and � an extension of ���

Theorem 
�� ��V � ��� � �� �
Proof� ��� �V can be expressed by a sequence of ��
reductions as was shown at the beginning of this section�
Therefore� ��V ���� � �
� Each �� reduction rule is an
equality in �� For instance� in the case of ��V one has�

��x�C	x��V �� 	V�x��C	x��

� 	V�x��C	V ��

�� ��x�C	V �� V

The other rules have equally simple translations� and so
we have ��� ����
�

Each of the inclusions of Theorem ��
 is proper� e�g��

��x�x� ���y�y� !� � ��y���x�x� !� !

where ! stands for a non�terminating computation� is
an instance of rule ��A� but it is not an equality in the
call�by�value calculus �! stands for a non�terminating
computation�� On the other hand� the following in�
stance of � is not an equality in ���

��x�x� ! � ! �

However� one can show that the observational equiv�
alence theories of �� and � are identical �and are in�
compatible with the observational equivalence theory
of �V ��

Theorem 
�� For all programs M � ��

evalname�M � � eval�
need

�M � �

Proof� Follows from Theorem ��� and ��
�
�

Theorem ��
 implies that any model of call�by�name
��calculus is also a model of ��� since it validates all
equalities in ��� Theorem ��� implies that any ade�
quate �respectively� fully�abstract� model of � is also
adequate �fully�abstract� for ��� since the observational
equivalence theories of both calculi are the same
�

Corollary 
�� For all terms M�N � ��

M ��name N i� M ��need N �

	 Extensions

Most lazy functional languages extend the pure calculus
in several ways� In this section we consider two such
extensions� for constructors and for recursion�

�For instance� Abramsky and Ong�s model of the lazy lambda
calculus ��� is adequate for ��	



	
� Constructors and Primitive Operators

Figure � extends �let with data constructors kn of ar�
bitrary arity n and primitive operators p �of which se�
lectors are a special case�� There is one new form of
value� kn V� ��� Vn where the components V� through
Vn must be values � otherwise sharing would be lost
when copying the compound value 	� �� For instance�
inl �� " �� is not a legal value� since copying it would
also copy the unevaluated term �� " ��� Instead� one
writes

let x � � " � in inl x �

There are two new reduction rules� Rule 	�V is the
usual rewrite rule for primitive operator application� It
is de
ned in terms of a partial function � also called
	 � from operators and values to terms� This function
can be arbitrary� as long as it does not �look inside�
lambda abstractions� That is� we postulate that for
all operators p and contexts C there is a context D
such that for all terms M � 	�p� C	�x�M �� � D	�x�M � or
	�p� C	�x�M �� is unde
ned� Note that rule 	�V makes
all primitive operators unary and strict� Operators of
more than one argument can still be simulated by curry�
ing� Rule 	�A allows let�bindings of operator arguments
to be pulled out of applications of primitive operators�

Alternatively� one could phrase these constructs in
terms of constructors and case statements in reduction
rules�

	
� Recursion

A de
ciency of our treatment of call�by�need is its treat�
ment of recursive or cyclic values� Traditionally one re�
lies on the Y combinator for recursion� In the absence of
data constructors� this solution is 
ne� However� once
data constructors are included� the sharing in the source
language no longer re�ects the sharing in the evaluator�
For example� the term

M � Y��y�cons��� y��

evaluates to a term containing two distinct cons cells
even though an actual implementation would allocate
only one cell� representing M as a cyclic structure�

To cope with recursion� we extend the call�by�need
calculus with a letrec construct� where no ordering
among the bindings is assumed� This extended calculus
is given in Figure �� Unlike the calculus �let of Sec�
tion �� we now have a restricted notion of substitution�
In other words� substitutions only occur when a variable
appears in the hole of an evaluation context� Otherwise�
an unrestricted notion of substitution in the presence of
cycles would cause interesting non�con�uence phenom�
ena 	���

Id
h#iM 
 h$iV

h#� x ��M� %ix 
 h$� x �� V� %iV

Abs
h#i�x�N 
 h#i�x�N

App
h#iL 
 h$i�x�N

h$� x� ��M i 	x��x�N 
 h%iV
h#iLM 
 h%iV

Figure �� Operational semantics�

This extended call�by�need calculus corresponds to
Ariola and Klop�s call�by�name calculus with cycles 	���
in the same way that our call�by�need calculus corre�
sponds to the call�by�name calculus� The correctness
proof of the calculus with recursion can be obtained by
showing its soundness and completeness with respect to
a calculus of in
nitary graphs�

� Relation to Natural Semantics

This section presents an operational semantics for call�
by�need in the natural semantics style of Plotkin and
Kahn� similar to one given by Launchbury 	���� We
state a proposition that relates the natural semantics
to standard reduction�

A heap abstracts the state of the store at a point
in the computation� It consists of a sequence of pairs
binding variables to terms�

x� ��M�� � � � � xn ��Mn �

The order of the sequence of bindings is signi
cant�
all free variables of a term must be bound to the left
of it�� Furthermore� all variables bound by the heap
must be distinct� Thus the heap above is well�formed
if fv�Mi� � fx�� � � � � xi��g for each i in the range
� 	 i 	 n� and all the xi are distinct� Let #�$�% range
over heaps� If # is the heap x� �� M�� � � � � xn �� Mn�
de
ne vars�#� � fx�� � � � � xng� A con
guration pairs a
heap with a term� where the free variables of the term
are bound by the heap� Thus h#iM is well�formed if #
is well�formed and fv�M � � vars�#�� The operation of
evaluation takes con
gurations into con
gurations� The
term of the 
nal con
guration is always a value� Thus
evaluation judgments take the form h#iM 
 h$iV �

The rules de
ning evaluation are given in Figure ��
There are three rules� for identi
ers� abstractions and
applications�

�So this model of the heap is incompatible with the extension
for recursion given in Section �	�� see the end of this discussion	



Syntactic Domains

Operators p
Constructors kn �of arity n�
Values V�W ��� x j �x�M j kn V� ��� Vn �n � ��
Terms L�M�N ��� V jM N j let x �M in N j p

Additional Axioms

�	�V� p V � 	�p� V � �	�f� V � de
ned�
�	�A� p �let x � M in N � � let x � M in p N

Figure �� Data constructors and primitive operations�

Syntactic Domains

Values V ��� x j �x�M
Terms M�N ��� x j V j M N j hM j x� � N�� � � � � xn � Nni
Evaluation contexts E ��� 	 � j E M j hE j Di j hE	x� j D	x� xn�� xn � E�Di

D	x� xn� ��� x � E	x��� x� � E	x��� � � � � xn�� � E	xn�

Axioms
��need� ��x�M �N � hM j x � N i
�lift� �hV j Di�N � hV N j Di
�deref� hE	x� j x � V�Di � hE	V � j x � V�Di
�derefi� hE	x� j D	x� xn�� xn � V�Di � hE	x� j D	x� V �� xn � V�Di
�assoc� hhV j D�i j D�i � hV j D�� D�i
�associ� hE	x� j D	x� xn�� xn � hV j Di� D�i � hE	x� j D	x� xn�� xn � V�D�D�i

Figure �� Recursion�

� Abstractions are trivial� As abstractions are al�
ready values� the heap is left unchanged and the
abstraction is returned�

� Applications are straightforward� Evaluate the
function to yield a lambda abstraction� extend the
heap so that the the bound variable of the ab�
straction is bound to the argument� then evaluate
the body of the abstraction� In this rule� x� is a
new name not appearing in $ or N � The renam�
ing guarantees that each identi
er in the heap is
unique�

� Variables are more subtle� The basic idea is
straightforward� 
nd the term bound to the vari�
able in the heap� evaluate the term� then update
the heap to bind the variable to the resulting value�
But some care is required to ensure that the heap
remains well�formed� The original heap is parti�
tioned into #� x �� M� %� Since the heap is well�
formed� only # is required to evaluate M � Evalu�
ation yields a new heap $ and value V � The new
heap $ will di�er from the old heap # in two ways�
binding may be updated �by Var� and bindings

may be added �by App�� The free variables of V
are bound by $� so to ensure the heap stays well�
formed� the 
nal heap has the form $� x �� V� %�

As one would expect� evaluation uses only well�
formed con
gurations� and evaluation only extends the
heap�

Lemma ��� Given an evaluation tree with root con
g�
uration h#iM 
 h$iV � if h#iM is well�formed then
every con
guration in the tree is well�formed� and fur�
thermore vars�#� � vars�$��

Thanks to the care taken to preserve the ordering
of heaps� it is possible to draw a close correspondence
between evaluation and standard reductions� If # is the
heap x� �� M�� � � � � xn �� Mn� write let# inN for the
term letx� � M� in � � � letxn � Mn inN � Every answer
A can be written let$ inV for some heap $ and value
V � Then a simple induction on 
�derivations yields the
following result�

Proposition ��� h#iM 
 h$iV i�

�� � let# inM ������
need
� let$ inV �



The semantics given here is similar to that presented
by Launchbury 	���� An advantage of our semantics
over Launchbury�s is that the form of terms is stan�
dard� and care is taken to preserve ordering in the heap�
Launchbury uses a non�standard syntax� in order to
achieve a closer correspondence between terms and eval�
uations� in an application the argument to a term must
be a variable� and all bound variables must be uniquely
named� Here� general application is supported directly
and all renaming occurs as part of the application rule�
It is interesting to note that Launchbury presents an
alternative formulation quite similar to ours� buried in
one of his proofs�

One advantage of Launchbury�s semantics over ours
is that his copes more neatly with recursion� by the
use of multiple� recursive let bindings� In particular�
our heap structure is incompatible with the extension
for recursion of Section ��
� This extension would al�
ter both the ordering property and the connection to
standard reduction�

� Applications

Call�by�need calculi have a number of potential applica�
tions� Their primary purpose is as a reasoning tool for
the implementation of lazy languages� We sketch three
ideas�

Call�by�need and assignment

Call�by�need can be implemented using assignments�
Crank 	�� ��� brie�y discusses a rewriting semantics of
call�by�need based on Felleisen and Hieb�s ��calculus
with assignments 	�
�� We believe that a call�by�need
calculus is the correct basis for proving this implementa�
tion technique correct with a simple simulation theorem
for the respective standard reductions�

Call�by�need and cps conversion

Okasaki et� al� 	
 � recently suggested a continuation�
passing transformation for call�by�need languages� In
principle� this transformation should satisfy the same
theorems as the continuation�passing transformation for
call�by�name and call�by�value calculi 	
��� Plotkin�s
proof techniques should immediately apply� Since this
transformation appears to be used in several implemen�
tations of lazy languages� it is important to explore its
properties with standard tools�

Garbage collection

Modeling the sharing relationship of an evaluator�s
memory in the source syntax suggests that the calcu�

lus can also model garbage collection� Indeed� garbage
collection can be easily expressed in our call�by�need
calculus by adapting the garbage collection rule for ref�
erence cells of Felleisen and Hieb 	��� �
��

let x � M in N � N if x 
� FV �N �

We expect that the work on garbage collection in func�
tional languages by Morrisett et� al� 	
�� will apply to
call�by�need languages� Such a rigorous treatment of
garbage collection would strengthen the calculus and
its utility for reasoning about the implementations of
lazy languages�

�
 Conclusion

The calculus we have presented here has several nice
properties which make it suitable as a reasoning tool
for lazy functional programs� With operations on the
lambda�terms themselves �or perhaps a mildly sugared
version� rather than on a separate store of bindings�
and with a small set of straightforward rules� we feel
that our approach is clearer and simpler than previous
approaches� The unsugared calculus 
ts naturally be�
tween the call�by�name and call�by�value versions of ��
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