A Call-By-Need Lambda Calculus

Zena M. Ariola

Computer & Information Science Department

University of Oregon
Eugene, Oregon

John Maraist and Martin Odersky
Institut fiir Programmstrukturen
Universitiat Karlsruhe
Karlsruhe, Germany

Abstract

The mismatch between the operational semantics of the
lambda calculus and the actual behavior of implemen-
tations 1s a major obstacle for compiler writers. They
cannot explain the behavior of their evaluator in terms
of source level syntax, and they cannot easily com-
pare distinct implementations of different lazy strate-
gies. In this paper we derive an equational characteri-
zation of call-by-need and prove it correct with respect
to the original lambda calculus. The theory is a strictly
smaller theory than the lambda calculus. Immediate
applications of the theory concern the correctness proofs
of a number of implementation strategies, e.g., the call-
by-need continuation passing transformation and the re-
alization of sharing via assignments.

1 Introduction

Lazy functional programming languages implement the
call-by-name lambda calculus. Their syntax provides
syntactic sugar for A terms; their evaluators map closed
terms to values. The semantics of lazy function calls
1s the famous f-axiom: every call is equivalent to the
body of the function with the formal parameter replaced
by the actual argument. The S-axiom gives rise to an
equational theory, the A-calculus, which implementors
can use to reason about the outcome of programs [26].

Taken literally, the S-axiom suggests that a proce-
dure must evaluate the argument of a specific call for
each occurrence of the corresponding formal parameter.
Realistic implementations of lazy functional languages
avoid such computational overhead by memoizing the

Matthias Felleisen
Department of Computer Science
Rice University
Houston, Texas

Philip Wadler
Department of Computing Science
University of Glasgow
Glasgow, Scotland

argument’s value when it is first evaluated. More pre-
cisely, lazy languages only reduce an argument if the
value of the corresponding formal parameter is needed
for the evaluation of the procedure body. Moreover, af-
ter reducing the argument, the evaluator will remember
the resulting value for future references to that formal
parameter. This technique of evaluating procedure pa-
rameters is called call-by-need or lazy' evaluation.

A simple observation justifies call-by-need: the re-
sult of reducing an expression, if any, is indistinguish-
able from the expression itself in all possible contexts.
Some implementations attempt to exploit this observa-
tion for sharing even more computations than just those
of arguments. Arvind et. al. [7] provide an overview of
such 1implementations, particularly the so-called “fully
lazy” or “graph-based” techniques.

Unfortunately, the mismatch between the operational
semantics of the lambda calculus and the actual behav-
ior of the implementation 1s a major obstacle for com-
piler writers and users. Specifically, they cannot use the
calculus to reason about sharing in the evaluation of a
program.

Purushothaman and Seaman [27, 29] and Launch-
bury [18] recently recognized this problem and devel-
oped two slightly different “natural” semantics of the
call-by-need parameter passing mechanism. Roughly
speaking, the semantics use store-passing to describe
call-by-need in terms of (the semantics of) assignment
statements. Due to the low-level nature of this ap-
proach, these semantics permit neither a simple ex-
planation of language implementations, nor source-level
reasoning about program behavior. Worse, given slightly
different specifications based on “natural” or similar se-
mantic frameworks, it is difficult, if not impossible, to
compare the intentions with respect to sharing in the
evaluators?.

1In this paper we write “call-by-need” rather than “lazy” to
avoid a name clash with the work of Abramsky [2], which de-
scribes call-by-name reduction to values.

?Ironically, this problem immediately showed up in the dif-

A number of researchers [1, 13, 20, 31, 28] have stud-
ied reductions that preserve sharing in calculi with ex-
plicit substitutions, especially in relation to optimal re-
duction strategies. Having different aims, the resulting
calculi are considerably more complex than those pre-
sented here. Closest to our treatment is Yoshida’s weak
lambda calculus [31] which introduces explicit environ-
ments similar to let constructs. Her calculus subsumes
several of our reduction rules as structural equivalences,
even though, due to a different notion of observation,
reduction in this calculus i1s not equivalent to reduction
to a value.

In this paper, we pursue a different approach to the
specification of call-by-need®. OQur formulation is en-
tirely syntactic, and formulates the sharing in a call-
by-need evaluator as an equational theory of the source
language. The theory is a strict sub-theory of the call-
by-name A-calculus. The key technical contribution of
the paper 1s a proof of equivalence between the call-by-
name and the call-by-need evaluator. In addition, we
prove that the calculus relates to the evaluator in pre-
cisely the same manner as Plotkin’s call-by-name and
call-by-value calculi relate to their respective evaluators.

The next two sections present the basic ideas of the
call-by-name and call-by-need calculi. The fourth sec-
tion presents basic syntactic results such as confluence
and standardization results. The fifth and sixth sec-
tions are devoted to the correctness proof; the sixth
section also describes an interesting alternative formu-
lation of call-by-need. The last three sections briefly
discuss extensions of the language (with constants and
recursive declarations), the relation of our work with
natural semantics-based approaches, and applications
of the calculus.

2 The Call-by-Name calculus

In this section we briefly review the call-by-name cal-
culus; we assume a basic familiarity of the reader with
this material [8].

Figure 1 details the call-by-name calculus. The set
of lambda terms, called A, 1s generated over an infinite
set of variables. The expression M [z := N] denotes the
capture-free substitution of N for each free occurrence
of x in M. The reduction theory associated with the
calculus is the result of taking the compatible, reflexive

ferences between the formulations of Purushotoman/Seaman and
Launchbury.

3In fact, this approach unifies the similar, simultaneous and
independent work of two separate groups. While many of our re-
sults are indeed quite similar, there are interesting and significant
differences in overall perspectives, in specific definitions of calculi
and in proof techniques. We do not describe these differences
here, and instead refer the interested reader to the full technical
reports of Ariola and Felleisen [4] and of Maraist, Odersky and
Wadler [19] for details.

and transitive closure of § interpreted as an asymmetric
relation:

B={QxM)N,M[z:=N]| M, M e A}.

The compatible closure of B is written as ————; the
reflexive and transitive closure of ———— as ————;
—name 18 the symmetric closure of o, OF the con-
gruence relation generated by ———. We will omit the
tag pame When we may do so unambiguously.

In an implementation of the calculus, closed expres-
sions play the role of programs. An execution of a pro-
gram aims at returning an observable value in realistic
languages. Observable values are basic constants like
numbers and booleans. If a program’s result 1s a proce-
dure or a lazy tree, most implementations only indicate
whether or not the program has terminated and possi-
bly what kind of higher-order result it returned. Since
the pure theory only contains A-abstractions, an evalu-
ator only determines whether a program terminates.

Given this preliminary idea of how implementations
work, we can use the calculus to define a partial evalua-
tion function eval,qme from programs, or closed terms,
to the singleton consisting of the tag closure:

evalpgme (M) = closure iff A+ M = Az N .

That is, the evaluation of a program returns the tag
closure if, and only if, the theory can prove the pro-
gram is equal to a value. It is a seminal result due to
Plotkin that the evaluation function of a typical imple-
mentation is also determined by the standard reduc-
tion relation [26]. Put differently, a correct implemen-
tation of the evaluator can simply reduce the standard
or leftmost-outermost redex of a program until the pro-
gram becomes a value.

Evaluation contexts are a convenient way of for-
mulating the evaluation relation [11]. A program M
standard reduces to N, written as M +——0u o N, iff
M = Ep[(Ax.P)Q] and N = E,[Plz := @]]. As usual,
M +——— N means M standard reduces to N via the
transitive-reflexive closure of ——-7w—; M +—0-o 0/ N
means M standard reduces to N in zero or one step;
M =" N means M standard reduces to N in n
steps. As before, we will omit the tag ,4me when no
confusion arises. The following characterization of the
call-by-name evaluator is a consequence of the conflu-
ence property and the standardization theorem of A.

Proposition 2.1 For a program M,
evalpame(M) = closure iff M — Az N .

This result is due to Plotkin [26].

Syntactic Domains
Variables
Values
Terms
Evaluation contexts

Axioms

(8)

x’y’z

V,W = .M

LM,N o= 2|V | MN

E, =[] E.M
(A M)N = M[x:= N]

Figure 1: The call-by-name lambda calculus.

Syntactic Domains

Variables x,Y, 2
Values VW
Answers A
Terms L, M, N
Axioms
(let-T) Az M)N
(let-V) let . = Vin C[x]
(let-C) (letz =Lin M)N

(let-A)

lety =(letz=LinM)in N

Az M
Vilete=Min A
z|V|MN|lete=MinN

letx = NinM

let 2 = Vin C[V]

letx =LinM N

letx = Linlety=MinN

Figure 2: The calculus A-

3 From Call-by-Name to Call-by-Need

We augment the term syntax of the classical A-calculus
with a let-construct. The underlying idea is to repre-
sent a reference to an actual parameter in an instanti-
ated function graph by a let-bound identifier*. Hence,
sharing in a function graph will correspond to nam-
ing in a term. Figure 2 details the calculus Ay over
these augmented terms. As in the call-by-name calcu-
lus, we extract the related reduction theory, and will fre-
quently make reference to its compatible closure ——,
the reflexive, transitive closure —— thereof, and fi-
nally the congruence =,..s which it generates, omit-
ting tags when the meaning is clear. We will also refer
to reduction theories of individual axioms in the same
manner, €.g., M .— N, and use (for example) the ab-

Tt (V.CAT N to mean that M reduces

to N by let-V and by either let-V, let-A or let-C.

As Wadsworth pointed out, one way to avoid dupli-
cating reductions is by replacing the abstracted vari-
ables in function bodies with references to arguments,
rather than with the arguments themselves [30]. The
let-1 axiom models the creation of such a let binding by

breviation M

4The idea of keeping pairs of procedures and their arguments
in the syntax of the language is due to work on explicit substi-
tutions [1], on graph rewriting [3, 5], and on adding state to the
A-calculus [10, 12, 21, 22]. Only the latter two though exploited
the idea of modeling the sharing relation of the program heap
inside of the source language.

representing the reference with a let-bound name, e.g.,

(Azxx)(IT) = letx =11

inxr

where [= Az.z.

The intention of this sharing of graphs is to prevent
the duplication of work by reducing the same expression
more than once. However, once a shared expression
is a value — in this core calculus, values are simply
abstractions — there is no harm in the duplication. In
fact, the duplication then becomes necessary; reduction
requires an actual abstraction, not just a pointer to one.
This dereferencing is expressed by the let-V rule, which
substitutes the value bound to a name for an occurrence
of that name.

Unfortunately, such a modeling of the sharing of val-
ues in the source level syntax means that looking only
for simple values is no longer adequate. A value may it-
self contain shared terms, so the simple abstraction may
be “buried” within one or more let bindings. Consider
the expression

ALFICED) (Az Aw.zw) IT)
which let-I equates with

let f =letz =11
in Aw.zw

in FI(fI) .

Further reduction of this term clearly requires that an
abstraction be substituted for the first f in fI(fI). Were

we to obtain this abstraction by naively applying some
relaxed form of let-V to the term as a whole, say

let z = (let y =M in V) in C[x]
= lete=(lety=MinV)
in Cllet y=M in V] ,

we would lose sharing:

let f = (let z=1IIin Aw.zw)
in FI(fT)
= let f = (let z =II in Adw.zw) (1)
in(let z=1IIin Aw.zw) I(fI) .

The redex 17 and the work involved in reducing it have
been duplicated.

The solution is to re-associate the bindings. Rather
than accepting Eq. 1, re-association will allow the cur-
rent let-V axiom to apply without loss of sharing:

let f = (let z=1IIin dw.zw)
in fI(fI)
= letz=11 (2)
inlet f = Aw.zw
in JI(/1)
= letz=11
inlet f = Aw.zw

in (Aw.zw)I(fI)

The rearrangement of Eq. 2 is captured by the let-A
axiom. In the example, even though f does occur twice,
IT will be contracted only once®.

Equation 1 points out a second situation where let-V
is inadequate in the presence of values under bindings.

In the expression®
(let z =1ITin dw.zw) T |

we would like to associate the abstraction Aw.zw with
the argument I, but the two are not directly adjacent as
required by let-I. Again, we must rearrange the term,
expecting an equality

(let z =1ITin Aw.zw) I
= letz=1ITin (Aw.zw) T ;

5But note that we avoid duplication only of argument evalua-
tions. In the program

AL SIS D) Aw.(IT)w)

the redex I7 in the argument will be reduced twice. Put differ-
ently, our calculus captures neither full laziness as described by
Wadsworth [30], nor the sharing required by optimal A-calculus
interpreters [13, 15, 16, 17, 20]. However, as observed by Arvind,
Kathail and Pingali [7], full laziness can always be obtained by
extracting the maximal free expressions of a function at compile-
time [25].

6 Although we rejected the liberalized let-V rule which pro-
duced this particular expression, it is perfectly reasonable to ex-
pect similar terms to appear. In fact, any left-nesting of two
applications (LM)N could produce such a term!

this manipulation is generalized by the let-C axiom.

The let-A and let-C rules may be viewed as allow-
ing the scope of a bound identifier to be expanded over
broader expressions. To avoid copying unreduced ex-
pressions, such an expansion is required when the argu-
ment of a function contains a binding (the let-A rule)
and when a expression which is itself a binding is ap-
plied to some argument (the let-C rule).

It is precisely these two rules let-A and let-C which
allow us to do without a separate store. Rather than
creating references to new, unique global addresses, we
simply extend the scope of identifiers as needed.

Example 3.1 (Az.z 2) (Ay.y).

(Az.xz) (Ay.y)

T Ifet xr = Ay.y o Ifet T = Ay.y
inzzx in (Az.z) x
T let * = Ay.y

i . o let x = Ay.y
inlet z =2«

1 .
inlet z = Aw.w
inz inz

ST Ifet xr = Ay.y
inlet z = Aw.w

in Av.v

In the call-by-name calculus, the terms we identified
as observable results, or answers, were simply abstrac-
tions. However, in this formulation of call-by-need the
notion of answer must reflect the possibility that such
an abstraction can be under bindings. The appropriate
definition given in Figure 2 means that answers are a
syntactic representation of closures.

4 Basic Syntactic Properties

Following Plotkin’s technique, we define the call-by-
need evaluator as a partial relation eval,..q from pro-
grams, or closed terms, to the singleton consisting of
the tag closure based on equality in our call-by-need
calculus:

evalpeeq(M) = closure iff Mg W M = A .

Furthermore, from the following result, a program eval-
uates to closure if and only if it reduces to an answer in
the call-by-need calculus.

Theorem 4.1 A @5 confluent:

M
Alekt/ \“Alet
M/ M//

Alet’ . “ " : ’Alet
N

Proof: The system consisting of just let-I is triv-
1ally confluent; then by marked and weighted redexes as
in Barendregt [8] the remaining reductions let-V, let-C
and let-A are both weakly Church-Rosser and strongly
normalizing, and thus Church-Rosser as well. Since
both subsystems commute, the theorem follows from
the Lemma of Hindley and Rosen [8, Proposition 3.3.5].
O

This result does not imply that all reduction sequences
lead to an answer in A;. We therefore introduce the
notion of standard reduction, which always reaches an
answer if there is one. Figure 3 details our notion of
standard reduction. An expression is only reduced when
it appears in the hole of an evaluation context. The first
two productions for evaluation contexts are those of the
call-by-name calculus. Since arguments to procedures
are evaluated only when needed, the standard reduc-
tion system postpones the evaluation of the argument
and instead proceeds with the evaluation of the proce-
dure body. Once the formal parameter of the procedure
appears in the hole of an evaluation context, and only
then, the value of the argument is needed to complete
the evaluation. In this case, the standard reduction sys-
tem evaluates the argument before substituting it into
the body of the procedure.

Given a program M e Ay, M standard reduces to
N, written as M +—=— N, iff M = E[K]and N = E[L],
where K and L are a standard redex and its contractum,
respectively. M ———» N means M and N are related

need
via the transitive-reflexive closure of ——. As usual,

we will omit the tags from the arrows Wﬁgeﬁl the meaning
is clear from the context. Verifying that the standard
relation, —, is indeed a function from programs to
programs relies on the usual Unique Evaluation Context
Lemma [11]. This lemma states that there is a unique
partitioning of a non-answer into an evaluation context
and a redex, which implies that there is precisely one

way to make progress in the evaluation.

Lemma 4.2 Gwen a program M € Ay, either M s
an answer, or there exists a unique evaluation context
FE and a standard redex N such that M = E[N].

Proof: By structural induction on M. a
Theorem 4.3 Given a program M € Ay,

evalpeeq(M) = closure iff 3A, M — A .

Proof: The proof relies on two subsidiary results: that
all answers are In ———-normal form, and that a se-
quence of non-standard reductions followed by a se-
quence of standard reductions can be transformed into
an equivalent sequence of first standard reductions, then
non-standard reductions. The proof is somewhat rem-
iniscent of Barendregt’s standardization proof for the

call-by-name calculus, but without the convenience of
a finiteness of developments theorem for all redex types
[8, Lemma 11.4.3]. O

5 Completeness of the Call-by-Need calcu-
lus

Replacing the call-by-name interpreter with the call-by-
need interpreter requires an equivalence proof for the
two evaluators:

evalyeeq = evalygme -

In this section, we will show the completeness direction,
that is, each result obtained with the call-by-name inter-
preter is also produced by the call-by-need interpreter.
Formally, we have for any program M,

evalpame(M) = closure = evalye.q(M) = closure .

We introduce an ordering between terms of A and
Ajet . Intuitively, M < N if M can be obtained by un-
winding N, that is, N contains more sharing than M
[3]. In other words, the ordering relation < expresses
whether the terms have homomorphic graphs. For ex-
ample, the tree of M = (Az.2z)(Az.x) can be homomor-
phically embedded into the graph of N = let y = Az.z

in yy,

- — — >

—_
—

i =

which shows that M < N. Notation: given a term
M € Ay, let Dag(M) be the corresponding dag, and
given a term N € A, let Tree(N) be the corresponding
tree.

Definition 5.1 For M € A and N € A, M < N
iff there exists an homomorphism o : Tree(M) —

Dag(N).

If M < N, then each call-by-name evaluation of M
can be simulated in the call-by-need calculus by evalu-
ating N. The term obtained in the call-by-need calculus
is not necessarily greater (in terms of the above order-
ing) than the one obtained following the call-by-name
evaluation. This is because a one-step call-by-need re-
duction may correspond to multiple call-by-name re-
ductions. For example, the evaluation

M = (Qz.zx)(Ay.y)(Az.2))
— M) = (Az.2)((Ay.y)(A2.2))

Syntactic Domains:

Values: V o= AeM
Answers: A = V]lete=MinA
Evaluation Contexts: E = []J|EM|letea=Min E|let = Fin E[x]

Standard Reduction rules:

(lets-T) (Az.M)N

(lets-V) let © =V in E[x]

(lets-C) (let x = M in A)N

(lets-A) let z = (let y= M in A) in F[z]

let e =N in M

let . =V in E[V]

let x = M in AN

let y= M inlet # = A in E[z]

—
—
—
—

Figure 3: Standard call-by-need reduction.

corresponds to the following call-by-need evaluation: Example 5.2
(i) The term let z = Az.z in z is drawn as

M = (Qz.zx)(Ay.y)(Az.2))

I
—— let 2 = (Ay.y)(Az.2) in zz z i
—— letz=(lety=Azziny)inzz=N . A
Obviously M; « N. However, there exists an M» such X+
that My ——— M5 and M5 < N:

e The name z associated with the root pointer 1s

e My = (Az.2)(Az.2) <N . drawn outside the shaded area.
(ii) We can also have nested boxes, e.g., the term

M,y

Since M < M, the last point shows how to reconstruct

a call-by-name evaluation in the call-by-need calculus. let z = let y = let w = Ax.x
Hence, the completeness direction follows. in w
If M <N and M is a B-redex, N is not necessarily iny
a lets-I redex. Suppose in
M = (AII)(AII) is drawn as
N = let z=(let w=Az.z inw)in zz b2

then M < N, yet N does not contain a lets-I redex. The
example points out that our graph model of A}y terms
must be able to express the let-structure of a term in
addition to its sharing structure if we want to use it for
a correctness proof.

We solve this problem by enriching dags with boxes
and labeled edges [6]. Dago(M) is the decorated dag as-
sociated with an expression M. A box can be thought of
as a refined version of a node; the label associated with where the path to the A-node must follow the label
an edge is just a sequence of let-bound variable names.
The label can be thought of as a direction to be followed
in order to get to a particular node. Each let induces

<

zyw and hit three walls.
In contrast, in the term

one box, and each edge to the shared term is deco- let 2 = Ax.x
rated with the variable name. We pictorially represent inlety =z

a term let x = N in M by a box divided in two parts: inletw =y
the upper part corresponds to M (the unshaded area of inw ,

a box) and the lower part contains N (the shaded area

of a box). Let us illustrate the extended dag notation drawn as

and terminology with a number of examples.

]

AX

X

the path to the A-node must follow the label wyz,
and i1t penetrates three walls but leaves two encas-
ings.

In our running example, Dago(N) is :

y
z(z

y

In this decorated dag, the path from the application
(root) node to the A-node has label zw, and it pene-
trates the wall of one box. To expose the redex means
that the function pointer (of the root node) must point
to the A-node directly. In terms of our graphical lan-
guage, we must eliminate the names z, w, the internal
box, and pull the A-node out of the shaded area, exactly
the task of the lets-A, let;-V, and lets-C rules. Their
dag-based representation in Table 1 reveals that let,-V
pulls a value out of the shaded area, eliminating a name
on an edge; let,-C moves a wall; and let;-A moves a wall
that is in the shaded area. The sequence lets-V, lets-A,
let;-V suffices to expose the redex in our example:

let z = (let w = Az.x in w)in zz

P let z = (let w = Az.x in Az.z) in zz

et A let w=Az.zin (let z = Az.zin zz)

TV let w = Az.zin (let z = Az.z in (Az.x)z) .

Figure 4 (without unreachable dags) illustrates these
steps.

From Table 1 it is clear that let,-C and let,-A do
not change the dag associated with a term, while let;-V
causes a duplication.

Lemma 5.3

(i) Given M € Ay,

Dag(M) = Dag(N).

(ii) Given M € Ay, ZfMWN then N < M.

Zf Mm» N then

The language and notation for decorated dags 1s use-
ful in proving the following three key lemmas. All could
be formulated in plain term-based language, but at the
cost of introducing more technical details.

Lemma 5.4 Giwven M € A,N € A, of M < N and

M = Ep[(Ax.P)R] then there exists P', R/, and E[],
/ /

such that N e (VOAT E[(Ax.P)R.

Proof: Let z be the root in Tree(M) of the S-redex
being evaluated. Let z’ and z5 be the corresponding
nodes in Dag(N) and Daga(N), respectively. We know
that the left branch of 2z’ points to a A-node, while in
Dago(N) the path from z§ to the A-node may contain
some obstacles. Thus, we show that by using let;-A,
let;-V, and lets-C we can remove all the obstacles from
that path. We reason by induction on the number n of
names associated with the path in Dago(N) from z{ to

the A-node.

n = 0. This means that the path from 25 to the A-node
1s free of names, but it still may penetrate inter-
vening walls. With m walls, we need m let,-C
steps to move the walls and expose the redex.

n > 0. By the induction hypothesis, we can remove n-1
names. Now we need to show how to eliminate the
last one. There are two cases:

1. The name associated with the A-node 1s w:

W
\

el

&

M

Since w occurs in head position, an applica-
tion of let;-V exposes the A-node;

2. The branch labeled w points to m boxes that
surround the A-node, e.g.

w

L :

M

Since w occurs in head position, m applica-
tions of let;-A followed by a single application
of lets-V expose the A-node.

let,-C :

let,-A :

Table 1: Standard call-by-need reduction rules in dag-based form.

V4
X
X
|—

Figure 4: Exposing the redex in let z = (let w = Az.x in w) in zz.

Let N/ N eV .OAT N’: under the assumption

that N’ = C[(Az.P")R'] for C[] not an evaluation con-
text (that is, the redex (Az.P’)R’ is not needed) and
hence z not the root of the leftmost-outermost redex in
M, we have a contradiction.

O

Lemma 5.5 Giwven M € A,N € Ay, of M < N and
M = Az.P then there exists an answer A such that

N let,-{V,A} A.

Proof: The proof is similar to but simpler than the
previous one. In fact, we need not move the walls sur-
rounding the lambda-node; that is, no use of let;-C is
required. a

Lemma 5.6 Gwen a program M € A and N € Ay, of
M < N and M ———=>" My, then IM{ € A, Ny € Aoy
such that

My———M| N ——=" Ny and M| < Nj.

name need
Pictorially:
|—>n /
M M- ~3M]
i
< <
<n :
N need E'N
................... ~ 3N,
Proof: By induction on the length n of the reduction
M name " Ml

n=1 Let M = FE,[(Az.P)R], and let z be the root in
Tree(M) of the f-redex in the hole of E,[]. From
Lemma 5.4, there exists P/, R’ and E[]:
N—= N’ and N' = E[(Ax.P")R'] .
Let 2’ be the root in Dag(N’) of the let;-I-redex.
From Lemma 5.3 and the fact that M does not
contain any sharing we have M < N’. Thus:
M +——— M, = F,[P[x := R]]

name

and

N’ wr = Ellet « = R in P'] .
If there exists a node z1 in Tree(M), where z; # z,
such that o(z;) = 2/, where ¢ is the homomor-
phism associated with the ordering M < N’, then
My £ Ny. Let F be the set of all such nodes.
Let M{, M{————MjJ, by reducing all redexes in
F and their residuals. We have: M < Nj.

n>1 Let M ——""" M’ and M’ ——— M. By

name name

the induction hypothesis, ANy € Ay, M € A,

N ——S0=D N A M and M < N .

need name

From the Strip Lemma [8] IMo,

M —Y My and My —— Mo .

name name

If My = M" then we have:

N need S(n_l) Nl and M/ name M//
where M"” < Nj. Otherwise, by the induction
hypothesis IN| € Aj¢, MS € A,

Ny ——Y NI My——— M3 and M} < N| .

need name

Lemma 5.7 Given a program M € A,

M+—" X e N = Mr——> 4 .

name need

Proof: Since M < M, from Lemma 5.6, IM; ¢
Mt N1 € A such that:

M Wsn M1 and Al‘.NWAl’.Nl

where Axz.N;y < M;. The result then follows from
Lemma 5.5. 0O

With these lemmas we can prove the main result of this
section, namely, that call-by-need can simulate a call-
by-name evaluation.

Theorem 5.8 If M € A and evalygme(M) = closure,
then evaly..q(M) = closure.

Proof: The assumption implies M +——070- o Az.N.

Hence, the result follows from Lemma 5.7. a

6 A Let-Less Formulation of Call-by-Need

In the A calculus, we have treated the expression
let # = M in N as a term distinct from (Az.N) M. An
alternate treatment is also quite reasonable: that the
former is merely syntactic sugar for the latter. In other
words, it is possible to completely eliminate let’s from
the call-by-need calculus and still have a system with
the same desired properties. By expanding let-bindings
into applications, we can derive the A, calculus shown
in Figure 5 from A.;. There is of course no analogue of
the let-I rule in Ay, since we must no longer convert away
from plain applications. We call the evaluator for this
language eval’,__, to distinguish it from the evaluator
for Ajet-

While A; is perhaps somewhat less intuitive than
Met, its simpler syntax can make some of the basic

Syntactic Domains

Variables x,Y, 2
Values VW = Az M
Answers A = V]| AM
Terms LMN = 2|V|MN
Evaluation contexts E = [l EM | Qe M)E | (Ax.E[z]))E
Reduction Axioms
(&-V) (A .Cle]) V = (Aze.C[V)V
(t-C) (Ax.L)MN = (Ax.LN)M
(¢-A) (Az.L)(Ay.M)N) = (Ay.(Ax.L)M)N

Figure 5: Let-less call-by-need.

(syntactic) results easier to derive. It also allows bet-
ter comparison with the call-by-name calculus, since no
additional syntactic constructs are introduced.

Clearly, Aot and A, are closely related. More pre-
cisely, the following theorem states that reduction in
Alet can be simulated in A,, and that the converse is
also true, provided we identify terms that are equal up
to let-I introduction.

Proposition 6.1 For all M € Ay, M' € Ay,

M Y N M- N =N
let-7 EIet-I let-7 :Iet-I
Y Y
M e »]\'7/ M’]\'7/
Alet Alet

Proposition 6.1 can be used to derive the essential syn-
tactic properties of A; from those of Aj;; In particular
the confluence result for A, follows from Theorem 4.1
by the proposition.

A¢ has close relations to both the call-by-value cal-
culus Ay and the call-by-name calculus A. Its notion of
equality =5, — #.e., the least equivalence relation gen-
erated by the reduction relation — fits between those
of the other two calculi, making A, an extension of Ay
and A an extension of A,.

Theorem 6.2 =,, C =5, C =,
Proof: (1) 8V can be expressed by a sequence of),
reductions as was shown at the beginning of this section.
Therefore, =5, C =a,. (2) Each Ay reduction rule is an
equality in A. For instance, in the case of £~V one has:
Az Cle) V. =5 [V/2](Clz])

= [V/=)(CV])

=5 (Az.C[V])V
The other rules have equally simple translations, and so
we have =), C =,.
O

Each of the inclusions of Theorem 6.2 is proper, e.g.,

(Ar.z) (Ayy) Q) =

where) stands for a non-terminating computation, is
an instance of rule ~A, but it is not an equality in the
call-by-value calculus (2 stands for a non-terminating
computation). On the other hand, the following in-
stance of 3 is not an equality in Ag:

(Ay.(Ae.x) Q) Q

Az.x)Q = Q.

However, one can show that the observational equiv-
alence theories of A, and A are identical (and are in-
compatible with the observational equivalence theory

of Ay):
Theorem 6.3 For all programs M € A,

evalpame(M) = evalﬁeed(M) .

Proof: Follows from Theorem 5.8 and 6.2.

O

Theorem 6.2 implies that any model of call-by-name
A-calculus is also a model of Ay, since it validates all
equalities in A;. Theorem 6.3 implies that any ade-
quate (respectively, fully-abstract) model of A is also
adequate (fully-abstract) for Az, since the observational
equivalence theories of both calculi are the same”:

Corollary 6.4 For all terms M, N € A,

M Ename N ZﬁM = need N .

7 Extensions

Most lazy functional languages extend the pure calculus
in several ways. In this section we consider two such
extensions, for constructors and for recursion.

"For instance, Abramsky and Ong’s model of the lazy lambda
calculus [2] is adequate for A,.

7.1 Constructors and Primitive Operators

Figure 6 extends Aj,; with data constructors & of ar-
bitrary arity n and primitive operators p (of which se-
lectors are a special case). There is one new form of
value: k" Vq ... V,, where the components V; through
V., must be values — otherwise sharing would be lost
when copying the compound value [14]. For instance,
inl (1 4+ 1) is not a legal value, since copying it would
also copy the unevaluated term (1 + 1). Instead, one
writes
let z=14+1innlz .

There are two new reduction rules. Rule -V is the
usual rewrite rule for primitive operator application. It
is defined in terms of a partial function — also called
6 — from operators and values to terms. This function
can be arbitrary, as long as it does not “look inside”
lambda abstractions. That is, we postulate that for
all operators p and contexts C' there is a context D
such that for all terms M, §(p, C[Ax.M]) = D[Az.M] or
8(p, C[Ax.M]) is undefined. Note that rule §-V makes
all primitive operators unary and strict. Operators of
more than one argument can still be simulated by curry-
ing. Rule 6-A allows let-bindings of operator arguments
to be pulled out of applications of primitive operators.

Alternatively, one could phrase these constructs in
terms of constructors and case statements in reduction
rules.

7.2 Recursion

A deficiency of our treatment of call-by-need is its treat-
ment of recursive or cyclic values. Traditionally one re-
lies on the Y combinator for recursion. In the absence of
data constructors, this solution is fine. However, once
data constructors are included, the sharing in the source
language no longer reflects the sharing in the evaluator.
For example, the term

M = Y(Ay.cons(1,y))

evaluates to a term containing fwo distinct cons cells
even though an actual implementation would allocate
only one cell, representing M as a cyclic structure.

To cope with recursion, we extend the call-by-need
calculus with a letrec construct, where no ordering
among the bindings is assumed. This extended calculus
is given in Figure 7. Unlike the calculus Ay of Sec-
tion 3, we now have a restricted notion of substitution.
In other words, substitutions only occur when a variable
appears in the hole of an evaluation context. Otherwise,
an unrestricted notion of substitution in the presence of
cycles would cause interesting non-confluence phenom-

ena [5].

(@) M | (V) V

Id (P, — M, Tz (¥, z2—V, 1)V

Abs

(®) Ae. N (@) Ae. N

(@)L § (W) Ae. N
App (¥, 2’ M) ['/z]N | (1) V
(YL M U (T V

Figure 8: Operational semantics.

This extended call-by-need calculus corresponds to
Ariola and Klop’s call-by-name calculus with cycles [5],
in the same way that our call-by-need calculus corre-
sponds to the call-by-name calculus. The correctness
proof of the calculus with recursion can be obtained by
showing its soundness and completeness with respect to
a calculus of infinitary graphs.

8 Relation to Natural Semantics

This section presents an operational semantics for call-
by-need in the natural semantics style of Plotkin and
Kahn, similar to one given by Launchbury [18]. We
state a proposition that relates the natural semantics
to standard reduction.

A heap abstracts the state of the store at a point
in the computation. It consists of a sequence of pairs
binding variables to terms,

l‘1I—>M1, ,l‘n'—>Mn .
The order of the sequence of bindings is significant:
all free variables of a term must be bound to the left
of it.® Furthermore, all variables bound by the heap
must be distinct. Thus the heap above is well-formed
if fv(M;) C {x1,...,2i—1} for each ¢ in the range
1 <i < n, and all the ; are distinct. Let ®, ¥ T range
over heaps. If ® is the heap #1 — My, ..., 2, — M,,
define vars(®) = {x1,...,2,}. A configuration pairs a
heap with a term, where the free variables of the term
are bound by the heap. Thus (®) M is well-formed if ®
is well-formed and fv(M) C vars(®). The operation of
evaluation takes configurations into configurations. The
term of the final configuration is always a value. Thus
evaluation judgments take the form (®) M | (¥) V.
The rules defining evaluation are given in Figure 8.
There are three rules, for identifiers, abstractions and
applications.

880 this model of the heap is incompatible with the extension
for recursion given in Section 7.2; see the end of this discussion.

Syntactic Domains

Operators p
Constructors k"
Values V. W =
Terms LM N =
Additional Axioms
(6-V) pV =
(6-A) p(lete=MinN) =

&(p, V)
letx=Minp N

(of arity n)
z|Ae. M| k™ V)LV,
VIMN|lete =MinN|p

(n>0)

(6(f, V) defined)

Figure 6: Data constructors and primitive operations.

Syntactic Domains

Values vV = x| Ae.M
Terms M,N =2 | V| MN | {(M|xg=N1, -, 2, =Np)
Evaluation contexts E =[]l EM | (F|D) | (Elx]| Dlx,zn], 2o = E, D)
D[l‘,l‘n] = l‘:E[$1],l‘1:E[l‘2],~~~,l‘n_1IE[l‘n]
Axloms

(6need) (Al‘M)N = <M | x = N>

(lift) (V| D)HN = (VN | D)

(deref) (E[x] | 2=V, D) = (E[V]|x=V,D)

(deref;) (E[#]) | Dl®,zn], 2, = V, D) = (E[z] | D[z, V], 2, =V, D)

(assoc) (V| D1) | D2) = (V| D1, D2)

(assocs) {Ble] | Dle, 2ol 20 = (V | D), Dy) = (B[e] | Dli, 2], 00 = V, D, D)

Figure 7: Recursion.

As abstractions are al-
ready values, the heap is left unchanged and the
abstraction is returned.

e Abstractions are trivial.

Applications are straightforward. Evaluate the
function to yield a lambda abstraction, extend the
heap so that the the bound variable of the ab-
straction is bound to the argument, then evaluate
the body of the abstraction. In this rule, z’ is a
new name not appearing in ¥ or N. The renam-
ing guarantees that each identifier in the heap is
unique.

Variables are more subtle. The basic idea is
straightforward: find the term bound to the vari-
able in the heap, evaluate the term, then update
the heap to bind the variable to the resulting value.
But some care 1s required to ensure that the heap
remains well-formed. The original heap is parti-
tioned into @, — M, T. Since the heap is well-
formed, only ® is required to evaluate M. Evalu-
ation yields a new heap ¥ and value V. The new
heap ¥ will differ from the old heap ® in two ways:
binding may be updated (by Var) and bindings

may be added (by App). The free variables of V
are bound by ¥, so to ensure the heap stays well-
formed, the final heap has the form ¥, z — V| T.

As one would expect, evaluation uses only well-
formed configurations, and evaluation only extends the
heap.

Lemma 8.1 Given an evaluation tree with root config-
uration (DY M | (OYV, if (B) M is well-formed then
every configuration n the tree s well-formed, and fur-
thermore vars(®) C vars(WV).

Thanks to the care taken to preserve the ordering
of heaps, it is possible to draw a close correspondence
between evaluation and standard reductions. If ® is the
heap 1 — My, ..., x, — M,, write let®in N for the
term letx; = Myin -+« letx, = M, in N. Every answer
A can be written let Win 1 for some heap ¥ and value
V. Then a simple induction on |}-derivations yields the
following result.

Proposition 8.2 (&) M | (T V iff

A F Ietq)ianm»let\I!inV .

The semantics given here is similar to that presented
by Launchbury [18]. An advantage of our semantics
over Launchbury’s is that the form of terms is stan-
dard, and care is taken to preserve ordering in the heap.
Launchbury uses a non-standard syntax, in order to
achieve a closer correspondence between terms and eval-
uations: in an application the argument to a term must
be a variable, and all bound variables must be uniquely
named. Here, general application is supported directly
and all renaming occurs as part of the application rule.
It is interesting to note that Launchbury presents an
alternative formulation quite similar to ours, buried in
one of his proofs.

One advantage of Launchbury’s semantics over ours
is that his copes more neatly with recursion, by the
use of multiple, recursive let bindings. In particular,
our heap structure is incompatible with the extension
for recursion of Section 7.2. This extension would al-
ter both the ordering property and the connection to
standard reduction.

9 Applications

Call-by-need calculi have a number of potential applica-
tions. Their primary purpose is as a reasoning tool for
the implementation of lazy languages. We sketch three
ideas.

Call-by-need and assignment

Call-by-need can be implemented using assignments.
Crank [9, 10] briefly discusses a rewriting semantics of
call-by-need based on Felleisen and Hieb’s A-calculus
with assignments [12]. We believe that a call-by-need
calculus 1s the correct basis for proving this implementa-
tion technique correct with a simple simulation theorem
for the respective standard reductions.

Call-by-need and cps conversion

Okasaki et. al. [24] recently suggested a continuation-
passing transformation for call-by-need languages. In
principle, this transformation should satisfy the same
theorems as the continuation-passing transformation for
call-by-name and call-by-value calculi [26]. Plotkin’s
proof techniques should immediately apply. Since this
transformation appears to be used in several implemen-
tations of lazy languages, it is important to explore its
properties with standard tools.

Garbage collection

Modeling the sharing relationship of an evaluator’s
memory in the source syntax suggests that the calcu-

lus can also model garbage collection. Indeed, garbage
collection can be easily expressed in our call-by-need
calculus by adapting the garbage collection rule for ref-
erence cells of Felleisen and Hieb [10, 12]:

letz=Min N=N if e d FV(N)

We expect that the work on garbage collection in func-
tional languages by Morrisett et. al. [23] will apply to
call-by-need languages. Such a rigorous treatment of
garbage collection would strengthen the calculus and
its utility for reasoning about the implementations of
lazy languages.

10 Conclusion

The calculus we have presented here has several nice
properties which make it suitable as a reasoning tool
for lazy functional programs. With operations on the
lambda-terms themselves (or perhaps a mildly sugared
version) rather than on a separate store of bindings,
and with a small set of straightforward rules, we feel
that our approach is clearer and simpler than previous
approaches. The unsugared calculus fits naturally be-
tween the call-by-name and call-by-value versions of A.

Acknowledgements. The authors would like to
thank H. Barendregt, J. Field, J.W. Klop and D.N.

Turner for numerous helpful discussions.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.
Explicit substitutions. Journal of Functional Pro-
gramming, 4(1), 1991.

[2] S. Abramsky. The lazy lambda calculus. In
D. Turner, editor, Declarative Programming.

Addison-Wesley, 1990.

[3] Z. M. Ariola and Arvind. Properties of a first-
order functional language with sharing. Theoretical
Computer Science, September 1995.

[4] Z. M. Ariola and M. Felleisen. The call-by-need
lambda calculus. Technical Report CIS-TR-94-
23, Department of computer science, University of

Oregon, October 1994.

[5] Z. M. Ariola and J. W. Klop. Cyclic lambda graph
rewriting. In Proc. of the Eighth IEEE Symposium
on Logic in Computer Science, Paris, 1994.

[6] Z. M. Ariola and J. W. Klop. Equational term
graph rewriting. Acta Informatica, 1994.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[15]

[18]

[19]

Arvind, V. Kathail, and K. Pingali. Sharing of
computation in functional language implementa-
tions. In Proc. International Workshop on High-
Level Computer Architecture, 1984.

H. P. Barendregt. The Lambda Calculus: Its Syn-
tar and Semantics. North-Holland, Amsterdam,

1984.

E. Crank. Parameter-passing and the lambda cal-
culus. Master’s thesis, Rice University, 1990.

E. Crank and M. Felleisen. Parameter-passing and
the lambda calculus. In Proc. ACM Conference on
Principles of Programming Languages, 1990.

M. Felleisen and D. P. Friedman. Control opera-
tors, the SECD-machine, and the lambda-calculus.
In 3rd Working Conference on the Formal Descrip-
tion of Programming Concepts, Ebberup, Den-
mark, August 1986.

M. Felleisen and R. Hieb. The revised report on the
syntactic theories of sequential control and state.
Theoretical Computer Science, 102, 1992.

J. Field. On laziness and optimality in lambda in-
terpreters: Tools for specification and analysis. In
Proc. ACM Conference on Principles of Program-
ming Languages, San Francisco, 1990.

D. P. Friedman and D. S. Wise. Cons should
not evaluate its arguments. In Proc. International
Conference on Automata, Languages and Program-
ming, 1976.

G. Gonthier, M. Abadi, and J.-J Lévy. The ge-
ometry of optimal lambda reduction. In Proc.
ACM Conference on Principles of Programming
Languages, 1992.

V. K. Kathail. Optimal Interpreters for Lambda-
calculus Based Funtional Languages. PhD thesis,
Dept. of Electrical Engineering and Computer Sci-
ence, MIT, 1990.

J. Lamping. An algorithm for optimal lambda
calculus reduction. In Proc. ACM Conference on
Principles of Programming Languages, San Fran-
cisco, January 1990.

J. Launchbury. A natural semantics for lazy eval-
uation. In Proc. ACM Conference on Principles of
Programming Languages, 1993.

J. Maraist, M. Odersky, and P. Wadler. The call-
by-need lambda calculus (unabridged). Technical
Report 28/94, Universitat Karlsruhe, Fakultat fir
Informatik, October 1994.

[20]

[26]

[27

=

L. Maranget. Optimal derivations in weak lambda-
calculi and in orthogonal term rewriting systems.
In Proc. ACM Conference on Principles of Pro-
gramming Languages, Orlando, Florida, January

1991.

I. A. Mason and C. Talcott. Reasoning about
programs with effects. In Proc. of Programming
Language Implementation and Logic Programming,

Springer-Verlag LNCS 456, Berlin, 1990.

I. A. Mason and C. L. Talcott. Equivalence in func-
tional languages with effects. Journal of Functional
Programming, 1(2), 1991.

G. Morrisett, M. Felleisen, and R. Harper. Mod-
eling memory management. Technical report, De-
partement of computer science, Carnegie Mellon
University, forthcoming 1994.

C. Okasaki, P. Lee, and T. Tarditi. Call-by-need
and continuation-passing style. In Lisp and Sym-
bolic Computation, 1994.

S. L. Peyton Jones. A fully-lazy lambda lifter
in haskell. Software Practice and Ezrperience, 21,
1991.

G. D. Plotkin. Call-by-name, call-by-value and the
lambda calculus. Theoretical Computer Science, 1,

1975.

Purushothaman and J. Seaman. An adequate oper-
ational semantics of sharing in lazy evaluation. In
Proc. jth Buropean Symposium on Programming,

Springer Verlag LNCS 582, 1992.

K. H. Rose. Explicit cyclic substitutions. In
3rd International Workshop on Conditional Term
Rewriting Systems, July 1992.

J. M. Seaman. An Operational Semantics of Lazy
FEvaluation for Analysis. PhD thesis, The Pennsyl-
vania State University, 1993.

C. Wadsworth. Semantics And Pragmatics Of The
Lambda-Calculus. PhD thesis, University of Ox-
ford, September 1971.

N. Yoshida. Optimal reduction in weak-A-calculus
with shared environments. In Proc. ACM Confer-
ence on Functional Programming Languages and
Computer Architecture, Copenhagen, 1993.

