Constraint-Based Query Optimization

for Spatial Databases

Richard Helm, Kim Marriott, Martin Odersky

I.B.M. Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights
NY 10598, USA

Abstract

We present a method for converting a system of
multivariate Boolean constraints into a sequence of
univariate range queries of the type supported by
current spatial databases. The method relies on
the transformation of a Boolean constraint system
into triangular form. We extend previous results in
this area by considering negative as well as positive
constraints. We also present a method to approx-
imate triangular Boolean constraints by bounding

box constraints.

1 Introduction

In spatial database systems, there is a gap between
the high-level query language required by applica-
tions and users, and the simpler query language
supported by the underlying spatial data-structure.
Typically, applications such as geographic informa-
tion systems [5, 8, 10], visual language parsers [7],
VLSI design rule checkers [14], require a query lan-
guage in which queries and integrity constraints may
be expressed over a number of variables subject to
Boolean constraints (that is, constraints over sets).
In contrast, spatial data-structures [6, 9, 12, 13]
generally support only range queries. These are
queries over a single unknown variable x of the form
z Ca,bC a,x-c# () where a, b, and ¢ are given
bounding boxes. (A bounding box is a rectangular
region with sides parallel to the axes). Here, we give

0

a query optimization technique to bridge this gap
between Boolean constraints over many variables
and range queries over a single variable.

The essential idea behind the optimization is to use
the Boolean constraints to eliminate useless par-
tial solution tuples as soon as possible. Consider
a query involving variables x4, ..., z, constrained by
Boolean constraints €. We wish to find assignments
of objects from the database to the variables which
satisfy the constraints. That is, we wish to find
solution tuples (ay,...,a,) such that each a; is in
the database and C' A 2y = a1 A ... N z, = a,
holds. In our approach, the set of solution tuples is
constructed incrementally as follows. We find the
partial solution tuples (a;) for z,, then the tuples
(ay,as) for x; and 25, and so on until the solution
tuples (ai,as, ...,a,) to the query are obtained. At
each step, the constraints C' can be used to elim-
inate useless partial solution tuples in two ways.
First, we need only keep those partial solutions for
which there is some possible assignment to the re-
maining unknown variables which satisfies C'. Thus
we need only keep those (ay,as,...,a;) for which
da;yy32, . O is satisfiable, where C” is obtained
by replacing each known z; by a;. Second, when re-
trieving objects a; from the database to join to the
tuple (ay,as,...,a;,_1), we use a range query which
approximates 3z,3x, . C’ to filter the choices
for z;. This approach requires us to compute the
following “triangular solved form” for C':

Ci(xy)
02(3517352)

Co(®y, Tounr, Tp).

Fach C; is a conjunction of (unquantified) Boolean

...3x, . C or is some approximation to this formula.
Note that this is similar to the solved form obtained
using Gaussian elimination in equations over the re-
al numbers. Furthermore, we must be able to find
a range query which approximates each C;. Effec-
tive methods to compute the triangular solved form
and the approximating range queries are the main
contribution of this paper.

We consider Boolean constraints as our high-level
query language. We allow both positive constraints
of the form f C g, and negative constraints of the
form f ¢ g where f and g are Boolean formulas.
These are sufficient to provide equality, dis-equality
and strict containment, as

r=y < zCyAyCua,
rCy & zCyAhyZa,
vty & z-y+zT-yg0.

Although systems of positive Boolean constraints
have been extensively studied since Boole [2], see
for example [3] or [11], the extension to negative
constraints has not, to our knowledge, been ad-
dressed. This may be because in the case of two-
valued Boolean algebras, negative constraints add
no power since the constraint @ Z y is equivalent to
z =1 A y=1{. For more general Boolean algebras,
however, systems of arbitrary Boolean constraints
are strictly more powerful than systems of positive
constraints.

Our main technical results can be summarized as
follows:

e In general, systems of Boolean constraints are
not closed under existential quantification.
However, we give an effective method of com-
puting the best approximation to an existen-
tially quantified system.

e A special — and in our setting quite natural —
class of Boolean algebras, which includes the
measurable subsets of R¥, is closed under ex-
istential quantification. In these algebras, the
computed approximation is exactly the exis-
tentially quantified system.

e The best approximation, C;, to each

d;44, ..., 32, . C can be expressed in solved

sCa; CUAG(2i) ZDN o A gm(a;) # 0

where each g;(z;) is of the form z; - p + 7; -
g, and p, ¢, s and t are Boolean functions
over xi,...,r;_i. For systems in solved form,
we give a method of effectively computing the
best approximating range query.

The only other approach that we are aware of to ap-
plication independent multivariable spatial queries
is that of Orenstein and Manola [10]. Their query
language provides a spatial join, a binary overlay
constraint, which can be efficiently implemented us-
ing z-order based methods. The query language
we consider is more expressive because arbitrary
Boolean constraints are allowed. Furthermore, our
technique does not require a special purpose data
structure. However, it seems possible to extend our
approach to make use of z-ordering methods.

This paper is organized as follows. Section 2 illus-
trates our approach with an example. Section 3
gives a method for computing the triangular solved
form of a Boolean constraint system. Section 4 gives
a method to approximate this system by bounding
box constraints. Section 5 concludes.

2 Example

Let’s assume smugglers are “importing” prohibit-
ed goods into a given country C, and wish to know
where to site their distribution operation. The goods
must be imported at some border town T, and trans-
ported into some destination area A in C. Assume
further that, while it is relatively easy to enter the
country C, there are massive police patrols along
the country’s internal state boundaries. The trans-
port of the prohibited goods is safe as long as no in-
ternal state boundary is crossed. Hence, the smug-
glers want to find a border town T, and a road R,
from T to A, which does not cross a state boundary
between T and A, that is, which proceeds entirely
within some state B. Assuming the smugglers have
access to a spatial database, they could formalize
their problem as given in Figure 1.

+B4+T

Nhm W
N

R N IN 1IN 1IN

assEan

Figure 1: A system of Boolean constraints

We can re-write this system into a single equation
and three disequations:

A-C+B-C+R-A-B-T=0,
R-A#0,R-T#0,C-T#0.

Assume we are given C and A, then T, R, and B
must be found. We arbitrarily pick the retrieval
order T, R, B. That is, we first search for the border
town, then the road, and finally for the state. Then,
using the methods described in the next section, we
can convert the constraint system of Figure 1 into
the triangular form:

g ¢ T C 1, C-T#0
R-T#0
R-A-T C B C (.

Note that every variable is constrained only by vari-
ables which precede it in the retrieval order. This
means that a range query can in principle be used
for every retrieval step. For example, T is accessed
using the range query [C'] 1 [T] # 0 where [f] is
the minimal surrounding bounding box of f and M
denotes bounding box intersection. However, this
would entail the precise computation of comple-
ments and intersections of arbitrary regions, a po-
tentially expensive operation. Alternatively, using
the methods of Section 4, we can approximate the
triangular Boolean system by a system solely de-
fined in terms of bounding boxes. The result of this
step is:

O c T ct,

0 < [R] € [CTU[TT], [A] N [R] #0,
[RITVTT #0

b c [B] cIC]

Every line of this system can be implemented by
a single range query which combines containment
and overlap constraints on bounding boxes.

3 Systems of Boolean Constraints

Consider a system of Boolean constraints 5 in vari-
ables z1,...,z,. In this section we will develop an
effective method of computing the following trian-
gular solved form of 5:

Ci(xy)
02(3517352)

Co(@1,Tay ey Tp).

Each C; is the strongest system of Boolean con-
straints which is a necessary condition for =4, ..., z;
to be a solution of §. Each C; is of the form:

$(21y ey tim1) Cay CSH@y, oy @img) A (1)
MEOAN AT, ED

where each r; has the form
i p(@y,y e o) T q(@, ey).

The method to find the triangular solved form is
obtained in two stages. In the first stage, we de-
velop a method to find a system which is a maxi-
mal necessary condition for da;4, . ;45 32, . 5.
This is complicated by the fact that Boolean con-
straints are not closed under existential quantifica-
tion. However, we give a way to find the best ap-
proximating unquantified system. Furthermore, for
a class of reasonable Boolean algebras, namely the

to the existentially quantified system. One exam-
ple of an atomless algebra which is important in a
spatial database context are the measurable sets in
¥, In the second stage we show how to use this
approximation to transform a system of Boolean
constraints into solved form.

First, some preliminary definitions: An atom is a
variable or a constant. A Boolean formula is an
atom, the complement of a formula, a disjunction of
formulas, or a conjunction of formulas. A literal as
an atom or its complement. A termis a conjunction
of literals. A Boolean function is a function which
can be described by a Boolean formula. A positive
Boolean constraint is of the form f C ¢ where f
and ¢ are Boolean formulas. A negative Boolean
constraint is of the form f & g. A system of Boolean
constraints is a conjunction of positive and negative
Boolean constraints.

Boole showed that any system of positive Boolean
constraints can be rewritten to an equivalent Bool-
ean equation of the form f = (). Similarly, any
negative Boolean constraint can be rewritten to an
equivalent Boolean dis-equation of the form f # ().
It therefore follows:

Theorem 3.1 Any system of Boolean constraints
can be rewritten into an equivalent system of the
form:

F=0ANg#0N .. Ng, #0

where f and the ¢;’s are Boolean formulas.

A fundamental result of Boole is that positive con-
straints are closed under existential quantification.
More precisely, letting f.(a) denote the formula ob-
tained by replacing all occurrences of z in f by a,
we have that:

Theorem 3.2 (Boole)

Unfortunately arbitrary systems of Boolean con-
straints are not closed under existential quantifica-
tion. To see this, consider the existentially quanti-
fied system Jz.2-y # 0 A T-y # (. This system im-
plies that |y| > 2, but there is no system of Boolean
constraints over y which can capture this.

prozimation for a quantified system Az . S, that is,
the maximal system implied by dz . 5. The best
approximation always exists, namely:

/\{C | C'is a constraint s.t. vars(C') C vars(9)
Az .S = Ch.

Although this is a finite conjunction, computation-
ally it is not a very satisfactory characterization.
We now develop a more tractable characterization.
This hinges on two results. First, that systems in
which there is only one dis-equation are, unlike gen-
eral systems, closed under existential quantification.
Second, that a sort of “weak” independence of neg-
ative constraints holds, namely that the best ap-
proximation to

o f=0NGZON NG, 0

is equivalent to

Jz (f=0Ag DA ATz (f=0Ag, #0).

Lemma 3.3 For arbitrary elements a, b, ¢, d:

Jz.aCaCbA-(cCaCd)
& aCbA-(bCdAcCa)

Proof: “=7: Clearly, a C b follows from the an-
tecedent. Assume that the second part of the con-
sequent does not hold, then b C d A ¢ C a. Together
with @ C b this implies ¢ C @ C b C d, which con-
tradicts the antecedent.

“<”: If we assume @ C b A b € d, the consequent
holds with 2 = b. On the other hand, assuming
a CbAc¢ a,the consequent holds with z = a.
|

Theorem 3.4 Let S be the system f =0 A g # (.
Then

dz. 5 &

Proof: Let A be f,(0), B be f.(1), C be g.(0) and
D be g.(1).

dz .95 < (from Theorem 3.9

)
J2. ACaCBA-(CCxCD)

ACBA-(BCDACCA)
& ACBA(BZDVCEA)
& A-B=0A(B-D#0VvC-A#0D)
& A-B=0AB-D+C-A#0. =m

Definition. Let S be the system

f=0Ag 20N .. Ng, #0.
Define proj(5,z) to be
AB=0ANBD+AC, Z0NA ... AN B-D,+A-C,, £ 0

where A is £,(0), B is (1), C; is (g:).(0) and D,
is (g:)(1).

It follows from Theorem 3.4 that Jz . S implies
proj(9,x). Moreover, we can show that proj(,z)
is the maximal necessary condition. To show this,
we first prove that there is a class of Boolean alge-
bras in which 3.5 is in fact equivalent to proj(5,).

Definition. A non-empty element x of a Boolean
algebra M is atomic iff there exists no element y
in M such that § C y C 2. M is atomless iff it
contains no atomic elements [4].

An example of an atomless Boolean algebra is the
set of (equivalence classes of) measurable subsets
of R*, in which two sets are considered equivalent
when they are identical “almost everywhere”. This
Boolean algebra corresponds to the data model in
spatial databases in which regions are not arranged
on a grid. An important property of atomless Bool-
ean algebras is that independence of negative con-
straints holds:

Theorem 3.5 (Independence) For all atomless
Boolean algebras M:

M E . f=0Ag#£0N. NG, £0
=4
Jz (f=0AgZD)A . A
Jz (f=0ANg,#0).

Proof: (Sketch) Direction “=7" is trivial. To show
“ec” assume that 3. (f = 0 A g; # 0) holds for

disjunctive normal form as follows:
f:Zx-rj + Zf-sj
J J

where terms r; and s; are nonempty, mutually dis-
joint, and do not contain variable z. Likewise, we
can represent each ¢; as:

!]iIE Ty + g TV
J J

where again w;; and v;; are nonempty, mutually
disjoint, and do not contain xz. Furthermore, we re-
quire that every u; ; and v; ; is either equal to some
r; or s;, or that it is disjoint from every r; and s;.
That such a representation exists, is a consequence
of Theorem 3.10. Since M is atomless, we can find
for every u;; and v;; a proper, nonempty subset
u; ; and v] ;. Define

i
! !
X=D i+ vl +2 85— 27
i i i i

Then, using f = 0 and ¢; # 0, we can show that
fo(X) = 0, and (g:)(X) # 0, for i = 1,...,n.
Hence, the left side of the equivalence holds with
zr=X. n

Thus, atomless boolean Algebras admit quantifier
elimination for systems of Boolean constraints:

Theorem 3.6 For all atomless Boolean algebras
M:
M =3z .5 < proj(9,).

Proof: A simple consequence of Theorem 3.4 and
Theorem 3.5.

Theorem 3.7 Let S and 5’ be two systems of
Boolean constraints. Then § = 5’ iff, for all atom-
less Boolean algebras M, M |= 5 = 5.

Proof: Direction “=" is trivial. To show “<”, as-
sume that S = 5’ does not hold. Then there is a
Boolean algebra My and a substitution ¢ from vari-
ables in S and 5’ to elements in M, such that ¢5 is
true and 0.5 is false. We extend M, to an atomless

ing completion step: For every atomic element z of
My, add two atomic elements x; and x5 to M, such
that @ = oy + 5. Then, {2;+y|y € My, i=1,2}is
a Boolean algebra in which x is non-atomic. Rep-
etition of this step for all atomic z in M, gives us
a Boolean algebra T'(My), in which all elements of
M, are non-atomic. It follows that (s, 7%(M,) is
an atomless algebra (call it M) which contains M,
as a sub-algebra. Since M contains My, 05 is true
and 057 is false in M. Hence, M as well as M is
a Boolean algebra of S # 5. Since M is atomless,
the right-hand side of the equivalence cannot hold.
|

Theorem 3.8 proj(5,z)is the best approximation
of dz . 5.

Proof: Let R be another approximation of dx . S,
such that 42 .5 = R holds. With Theorem 3.6, we
have M |= proj(S,z) = R for all atomless Boolean
algebras M. With Theorem 3.7, this implies M’ |=
proj(9,z) = R for all Boolean algebras M’. ®

Example 3.1 Consider the system S, 2 -y # 0 A
T -y # 0, from above. In this case proj(9,z) is
y # 0, the best approximation of 3z . 5.

We can iteratively use the function proj to compute
the strongest Boolean constraint 5’ which is a nec-
essary condition for Jx; ;. J2;y532, . 5. Using
the following two theorems we can transform this
system S’ into the solved form given in (1).

First, Schréder’s theorem that any Boolean equali-
ty is equivalent to a range constraint, allows us to
rewrite the Boolean equality in 5" into a range con-
straint over z;.

Theorem 3.9 (Schroder)

[=0e [(0) Sz C f(D)

Second, Boole’s “fundamental theorem of Boolean
algebra” allows us to rewrite the Boolean dis-
equations into a form in which x; is isolated.

Theorem 3.10 (Boole) f=2a- f.(1)+7- f.(0).

in Figure 2 to compute the triangular solved form
of a system of Boolean constraints.

Algorithm 3.1

let S =be a system of Boolean constraints
in n variables x4, ...
let 5, = 5;
for : :=n to 1 do
let [f=0Ag Z0A.
let C; = fu,(0)CxZC

A @i - (gr)ei (1
I

7$n7

#@]]:Sﬁ
) A
Ti - (1), (0) # 0

(
I
where k ranges over all formulas

1y .-y g in which z; occurs;
let S;_y = proj(S;, z;);

then 'y, ..

.C, is a triangular solved form of .

Figure 2: Computing Triangular Form

The algorithm first constructs the constraint ¢, in
Z1,..., 2, by rewriting the original system according
to Theorem 3.9 and Theorem 3.10. Then, variable
x, is eliminated using Theorem 3.8 and the rewrite-
step is applied to the resulting system in n —1 vari-
ables, yielding constraint C,_; in x4, ..., The
process continues until all variables are eliminated.
Using the results we have established in this section,
the following theorem is straightforward to prove:

Tp—_1.

Theorem 3.11 Every system of Boolean constraints

has a triangular solved form, which is computed by
Algorithm 3.1.

4 Bounding-Box Approximations

In this section, we investigate how to approximate
Boolean constraints in solved form by constraints
over bounding boxes. In the following, we restrict
our attention to Boolean algebras in which bound-
ing box approximations make sense. We are chiefly
interested in the k-dimensional space of real num-
bers, denoted ®* and the k-dimensional space of
integers. However, our results hold for any Boolean
algebra of the form B = ¢ X* where X is a to-
tally ordered infinite set, and X* has the standard
Cartesian ordering.

the set {z € X*|inf r Cx C sup r}. For example,
in ®? the bounding box of a region is the minimal
enclosing rectangle which has sides parallel to the
axes. Operators on bounding boxes are M (infimum,
equivalent to “”), and U (supremum). Functions
constructed from these operators are called bound-
ing box functions. An ordering relation on bounding
boxes, C, is given by containment. Note that U is
not equivalent to set union. Rather, bounding-box
union gives the minimal enclosing rectangle of set
union.

Bounding boxes are important because queries in-
volving certain constraints over bounding boxes can
be efficiently answered with a spatial database which
supports range queries. As shown in [12], for ex-
ample, a single range query can be used to find
those objects z satisfying some given conjunction
of bounding box constraints of the forms:

where a, b and ¢ are given bounding boxes. This is
done by representing rectangles in a X* as points
in space X?* and performing a range query on X %%,
Figure 3 shows a combination of three such con-
straints over intervals on the real line. Fach axis
of the diagram corresponds to one endpoint of an
interval. The shaded rectangle represents the set of
intervals {z|a C [2] A [2] T b A [2]Mec # 0}, with
constant intervals a, b, and c.

Recall that a system C;(z4, ...
if it is of the form

,x;) is in solved form

Sy, ey @i1) Cay CSH@y, @) A
AN AT, 2D

where each r; has the form
i P(@yy e 1)+ Ti - (@1, ey Ti1).

We are interested in finding the strongest bound-
ing box constraints over [z;| which are necessary
conditions for C; to hold.

Figure 3: Range Query

Given that we have retrieved values for zq, ..., z;_q,
the best bounding-box constraint approximation to
the range constraint

s(21, 0y 2imy) Cay CH(@y, 0, 2im)
is just
[s(1,.,zi21)] C ;] C [Ha1, .y @io1)]-

The dis-equality constraints are a little harder to
approximate. The best approximation to

Py i)+ Ti (X1, i) £ 0

is [@;] - [p(@y, ..o, 2;_1)] # 0 when [q(2y,...;2;_1)] =

(0, and the (trivial) constraint true otherwise.

The problem with this approximation is that it re-
quires the Boolean functions s, t, p, ¢ to be repeated-
ly evaluated during query execution. However, this
may be too expensive since intersections, unions
and complements of arbitrary retrieved regions have
to be computed. A cheaper alternative is to find,
at compile time, bounding-box functions which ap-
proximate these Boolean functions. These bounding-
box functions are then used instead of the original
Boolean functions when evaluating the query. In
general, this will be much cheaper because intersec-
tions and unions over bounding boxes are relatively
cheap to compute. To retain correctness, we must

low” and must approximate the upper bound func-
tion ¢t and the dis-equality functions p and ¢ from
“above”.

Definition. Let f be a Boolean function and F
a bounding box function. F approzimates [from
below, written £ 1 f, if, for all z,,...,2, € B:

F([zy],...,[za]) E [fl2,. .. 20)].

F approximates f from above, written I | f, if, for
all z¢,...,2, € B:

[flar,...,2,)] C F(Jar],-. ., [2a])

Note that F' T f is not equivalent to F' C f. This
is because F' | f means only that the result of tak-
ing bounding boxes first and then applying F|, is
contained in the result of applying f first and then
taking the bounding box.

Of course, we are interested in finding the best
bounding-box approximation to these Boolean func-
tions. Having found these functions, we can substi-
tute these into the original system to obtain the
best bounding box constraint approximation.

Definition. The best lower and upper bounding-
box approximations to a Boolean function f are the
bounding box functions L; and U; which satisfy:

o Ly 1 fAGT f=GE Ly,
« U | fAG| f=>GOU,

That these optimal approximations exist is a sim-
ple consequence of the fact that bounding boxes
form a complete lattice. The question remains how
to find them. A simple syntactic transformation
such as replacing all (4+) and () operators in the
Boolean function by (U) and (M) is not sufficient
to arrive at the best upper or lower bound. In
part, this is because two Boolean formulas denot-
ing the same Boolean function may denote different
bounding-box functions when the above syntactic
transformation is performed on them. For exam-
ple, although z -y 4+ 2 -2 = 2 - (y + 2), in general
sNyUzNz#£aN(yUz).

effective algorithm for computing the best lower and
upper bounding-box approximations to a Boolean
formula.

Lemma 4.1 For all Boolean functions f and g,

[f-g1 C[f1N gl

Lemma 4.2 For all Boolean functions f, g and h,

(fOgU(fNh)C fO(gUhA).

Lemma 4.3 For all Boolean functions f and g,

f<g=T/TE gl

Lemma 4.4 For all Boolean functions f and vari-
ables z;,

[z] 0.0z,] C[f] = a1 CfV..Vaz, Cf
Proof: (Sketch) The proof is by contradiction. As-
sume [z,] N ...0 Jz,| E [f] and @; € f for all 1.
Then there exist terms s,,...,s, such that s; C x;
and s; - f = (. Partition X* into n disjoint sets ¢;
such that the intersection of their bounding-boxes
M;[c;] is non-empty. Consider then the variable as-
signment o defined by:

oz = ¢; | z 1s a positive literal 1n s;

Then o s; + ...+ ¢ s, = 1. Now all s; are disjoint
from f,so o f =0, thus [o f] = (. On the other
hand, we have [o s;]M...M[0 s,] # 0, and therefore,
since s; C @y, also [o 2| M ..M o z,] # 0. But
this means that [o 2| N ..M [oz,] € [0 f], a
contradiction. H

We can now give a simple characterization of the
best lower bound of a Boolean function. Note that
we have proved it for the case when () and 1 are
the only constants in the Boolean function. We
conjecture that it holds when arbitrary constants
are allowed.

Theorem 4.5 For all Boolean functions f,

of atoms. Let I’ be the “disjunctive normal form” of
L¢. From Lemma 4.2, F'C L;. If I contains some
non-unary conjunction, [z,] M ...M [z,] then from
Lemma 4.4, for some ¢, z; C F, and so [z;] U L;
will be a bigger lower bounding-box approximation
to f, contradicting that L; is the best. Thus F’
must consist only of unary conjunctions, and thus
L; must be a disjunction of atoms. That L; should
be this disjunction of atoms follows from Lemma 4.3
and Lemma 4.4. &

Lemma 4.6 Let F be a bounding box function, ¢
a term and z a variable. Then,

[-f]CF=[t]CF

Proof: We must have that [t] C F.(0). As Fis

monotonic, [{| C F. m

Lemma 4.7 The best upper bounding box approx-
imation to the conjunction of variables z; -...- z, is
(2] 1.0 [2,].

Lemma 4.8 Let f and ¢ be Boolean functions.

Then, Uf+g = Uf L Ug.

Theorem 4.9 For all Boolean functions f,

Uy = | |

term t€SOP(f)

(l_latom TEt [x—‘)

where SO P(f) stands for any sum-of-products rep-
resentation of f.

Proof: Tt follows from Lemma 4.1, Lemma 4.6 and
Lemma 4.7 that Muom «e: [2] is the best upper
bounding box approximation to a term ¢. The re-
sult therefore follows from Lemma 4.8. &

We now present an algorithm for computing L; and
U;. This algorithm makes use of the Blake canoni-
cal form [1], BC'F(f) of a Boolean function f, which
consists of the sum of all prime implicants of f.

Definition. A prime implicant of a function f is
a term p such that p C f and ¢ € f for all true

syllogistically less than a sum-of-products formula
g (in symbols: f << g), iff all terms in f have
subterms in g.

The following proposition gives the reason why we
are interested in Blake-canonical forms and their
duals: They allow us to replace semantic inequal-
ity by syllogistic inequality, which can be checked
syntactically:

Theorem 4.10 (Blake) For all Boolean formulas
f and sum-of-products formulas g:

g C feg<< BOF(f).

There exist a number of algorithms to compute
BCF(f). One method [3] first converts f to an ar-
bitrary sum-of-products formula and then repeated-
ly forms the consensus of two terms in f and simpli-
fies by absorption until a fixpoint is reached. Form-
ing consensus means rewriting according to the rule:

Tp+T-q=a-p+T-q+p-q.

Simplifying by absorption means rewriting accord-
ing to the rule:

P-qg+p = p.

Example 4.1 Consider f =7 -y+2-(y+ z-©).
BCEF(f) is computed as follows:

f = ZT-y+a-y+a-z-w (Distribution).
= y+7Z-y+a-y+a-z-w (Consensus)
= y+z-yta-z-w (Absorption)
= y+z-2-W (Absorption)

Theorem 4.10 shows that an atom is stronger than a
formula f iff it occurs as an atom in BC'F(f). This
observation gives rise to the following algorithm for
computing L; and Uy:

Algorithm 4.1

Given a Boolean function f,

1. compute BCF(f),

2. take the bounding-box union of all terms in
BCF(f) consisting of single atoms, yielding
Ly,

then simplify; yielding U;.

Theorem 4.11 Algorithm 4.1 computes the best
lower an upper bounding-box approximations to a
given Boolean function f.

Proof: Immediate from Theorem 4.5, Theorem 4.9
and Theorem 4.10. =

Example 4.2 Consider function f from Example
4.1. We have seen that BC'F(f) = y+z-2z-w. Since
the only atom in BCF(f) is y, we have L; = y.
U; is computed by dropping all negative literals of
f and converting to bounding box form, yielding
Up=yU(znz).

The time to compute BCF is exponential in the
number of variables in the formula. Hence, Algo-
rithm 4.1 has (just as Algorithm 3.1) complexity
exponential in the number of variables in in the
solved constraint system. We feel that in practice
this will not be a problem, since both algorithms
are executed during query compilation rather than
in query evaluation, and the number of variables in
a constraint system can be expected to be reason-
ably small.

5 Conclusions

We have presented a method to approximate a sys-
tem of multivariate Boolean constraints by a se-
quence of univariate range queries. The method is
a special case of a more general optimization which
maps constraints in several variables into database
searches for individual objects. It can be extend-
ed to other application areas, such as constraints
over the real closed fields. The optimization relies
on converting a given system into triangular form.
The triangular form is obtained by repeatedly com-
puting the existential quantification 3z.C' of a con-
straint system (. If the constraint language is not
closed under existential quantification, an approxi-
mation may be used.

[1]

[2]

[11]

[12]

A. Blake. Canonical Expressions in Boolean
Algebra. PhD thesis, Uni. of Chicago, 1937.

G. Boole. An Investigation of the Laws of
Thought. Walton, London, 1847. (Reprinted
by Philisophical Library, New York, 1954).

F.M. Brown. Boolean Reasoning, The Logic of
Boolean Equations. Kluwer Academic Publish-
ers, Norwell, Massachusetts, USA, 1990.

C.C. Chang and H.J. Keisler. Model Theory,
2nd Edition. North-Holland, 1977.

N.S. Chang and K.S. Fu. Picture query lan-
guages for pictorial database systems. IFFFE
Computer Magazine, 14(11):23-33, 1981.

A. Guttman. R-trees: a dynamic index struc-
ture for spatial searching. In ACM/SIGMOD
Annual Conference on Management of Data,
pages 47-57, Boston, MA, 1984.

R. Helm, K. Marriott, and M. Odersky. Build-
ing visual language parsers. In Computer Hu-
man Interaction (CHI), pages 105-112. ACM
Press, 1991.

T. Joseph and A. F. Cardenas. PICQUERY: a
high level query language for pictorial database
management. IFEE Transactions on Software
FEngineering, 14(5):630-638, May 1988.

J. Nievergelt, H. Hinterberger, and K. C. Sev-
cik. The grid file: an adaptable, symmet-
ric multi-key file structure. ACM Trans. on
Database Systems, 9(1):38-71, 1984.

J.A. Orenstein and F.A. Manola. PROBE spa-
tial data modelling and query processing in an
image database application. IEFFE Trans. on
Software Eng., 14(5):611-629, May 1988.

S. Rudeanu. Boolean Functions and Fquations.
Elsevier Science Publishers B.V.(North Hol-
land), New York, N.Y., 1974.

H. Samet. Hierarchical representations of col-
lections of small rectangles. ACM Computing
Surveys, 20(4):271-309, December 1988.

_ sos. The R+-tree: a dynamic index for multi-
dimensional objects. In Very Large Databases

(VLDB), 1987.

[14] J.D. Ullman. Computational aspects of VLSI.
Computer Science Press, Rockville, Maryland,
1984.

