
Applying ��

Towards a Basis for Concurrent Imperative Programming

Martin Odersky

Universit�at Karlsruhe

����� Karlsruhe� Germany

odersky	ira
uka
de

Proc� ACM SIGPLAN Workshop on State in Programming Languages� January ����

Abstract

We study an extension of asynchronous ��calculus where names can be returned from pro�
cesses� We show that with this simple extension an extensive range of functional� state�based
and control�based programming constructs can be expressed by macro expansions� similar to
Church�encodings in lambda calculus�

� Introduction

Most programming languages in use today have some way to express concurrent execution of
processes � either in the language itself �e�g� Ada ����	 Modula
� ���	 Facile ��	 CML ����� or by
means of a library �e�g� Modula
��s Process module ����	 C���s thread library ������ This paper
proposes a formal basis for reasoning about such languages�

Traditionally	 formal foundations for languages with concurrency constructs come in one of two
styles� Most commonly	 one combines a semantic description for the sequential base language with
another one for the concurrency primitives� For instance	 semantic descriptions of Facile �� or
CML ��� de�ne a structured operational semantics for the base language as a special case of a
larger labeled transition system that also models the concurrent aspects of the language� This style
of description has the advantage that a semantics of the sequential part of the language can be
obtained by subsetting� However	 the resulting formal systems tend to be large�

Alternatively	 one can use a standard process calculus such as CCS ���� or �
calculus ���� to reason
about both the base language and the concurrency primitives� An example of this approach is the
PICT programming language ���� that was designed with asynchronous �
calculus ��� as a basis�
PICT stays fairly close to the underlying calculus and consequently does not fully support sequential
programming constructs such as functions or sequential composition� Representing these constructs
in traditional process calculi requires a global encoding	 not unlike a conversion to continuation
passing style in functional programming�� Examples of such encodings are found in work by Milner

�In fact� PICT takes an intermediate approach� There is a notation for function de�nition� which leaves the result

channel implicit� but there is no corresponding notation for function calls� so that an explicit result channel argument

always needs to be passed� In e�ect� this leads to function de�nitions in PICT being CPS�converted one at a time�

�

���� for the case of functions and by Walker ��� or Jones ���� for the case of objects� If our aim
is to reason about source programs such encodings are undesirable since they are all
or
nothing
propositions� To reason about one part of a program one must encode everything�

We would prefer a relationship between programming language and foundation that is similar to the
relationship between functional languages and �
calculus� There	 one is transformed to the other via
Church�encodings	 which are pure macro expansions� In this paper we show that a modest change
to a standard process calculus is su�cient to capture both call
by
value functional programming
and imperative programming via similar encodings� The applied � calculus augments asynchronous
� calculus ��� �which is essentially equivalent to �
calculus ����� with the ability to return a name
from a process� Together with standard name restriction this gives us a way to model anonymous
values in the calculus� It turns out that this is all that is needed to encode essentially all sequential
programming constructs in a concise and straightforward manner�

Interestingly	 with just seven term formation rules and one reduction rule	 applied � is more compact
than calculi for sequential state
based languages ���	 �	 ���� This comparison is not completely fair	
however	 since the encoding into applied � gives us only an operational understanding of functional
and imperative constructs� Much less is known at present about the observational properties of the
encodings� In general	 process contexts discriminate more terms than sequential contexts� Hence	
source language constructs would need to be encapsulated in some way in order to preserve their
observational properties	 but such an encapsulation is not discussed here� Nevertheless	 we believe
that applied � can be useful for gaining semantic intuition about how familiar functional and
state
based programming constructs should behave when extended to a concurrent setting�

Related work� We have already mentioned the work on PICT and the encodings by Milner	 Walker	
and Jones� Sangiorgi has argued that the higher
order � calculus improves on �rst
order � calculus
as a foundation for functional programming ����� In a sense	 applied ��s ability to return a name
from a process is an alternative to higher
order processes	 since �
abstractions can be represented�
Boudol�s �
calculus ��� tries to generalize both CCS and �
calculus� Like in � � and unlike in
applied � � communicating agents are matched by position rather than just channel name�

Our process equivalence relation is based on Milner�s and Sangiorgi�s barbed bisimulation ����
We adapt their de�nitions in a straightforward way to the asynchronous and applied case� Honda
and Yoshida ��� have shown for an asynchronous calculus that barbed bisimulation has a tractable
characterization that does not depend on a quanti�cation over contexts�

The rest of this paper is organized as follows� Section � presents an operational semantics for
applied �� Section � de�nes a notion of process equivalence for the calculus� Section � shows
how functional programming constructs can be encoded in applied �� Section � does the same
for imperative programming	 giving encodings for the essential constructions of state and control�
Section � presents an encoding of applied � in asynchronous �� Section concludes�

� The Core Calculus

Syntactic Domains

Variables x� y� z

Preterms M�N� P � x Variable

j �x�M Restriction

j x�y�M Abstraction �Input�

j xM Application �Output�

j M jN Parallel Composition

j �M Replication

j � Identity

We build on asynchronous �
calculus ���	 modulo some minor notational modi�cations that are
introduced for making the treatment of function application smoother� There is one extension�
Processes may evaluate to names	 and an arbitrary term instead of a single name may appear as
the argument of an application� Roughly speaking	 an application xM is evaluated by evaluating
M to some number of names which are all passed in parallel to the channel x�

Hence	 applied � is a rather small variation of a standard process calculus� However	 it can also
be seen as a generalization of �
calculus where the concept of a �
abstraction is generalized in
two ways� First	 applied ��s abstractions can be used only once	 unless they are pre�xed by a ���
replicator� This is similar to the role of abstractions in linear �
calculus ���� Second	 an abstraction
and its argument are matched by name rather than by position� Fresh local names are introduced
by a restriction pre�x �x �this has also been studied in the context of �
calculus ���	 �����

Notational Conventions� fn�M�	 the set of free names of a term M 	 is given by

fn�x� � fxg fn��x�M� � fn�M�nfxg

fn�x�y�M� � fxg � �fn�M�nfyg� fn�xM� � fxg � fn�M�

fn�M j N� � fn�M�� fn�N� fn��M� � fn�M�

fn��� � fg�

�x�y�M denotes substitution of x for all free occurrences of y in M � To avoid name capture
problems in substitutions	 we assume everywhere that the free and bound variables of a term and
all its subterms are distinct� This can always be achieved by �
renaming �see below��

A note on precedence� Application binds tightest	 followed by replication ��� and the binding
pre�xes �x and x�y	 followed by parallel composition � j �� Application is left
associative and parallel
composition is associative� Grouping can be changed by using parentheses�

We also use the words channel and agent interchangeably for name and term	 respectively� We
sometimes contract multiple input or restriction pre�xes	 using the abbreviations

�x� � � � xn�M
def
� �x�� � � � �xn�M

x�y� � � �yn�M
def
� x�y�� � � � x

�yn�M �

Equivalences

Terms are equivalence classes of preterms� We take syntactic equivalence ��� to be the smallest
congruence that satis�es the laws below�

�� Variables can be �
renamed�

���� �x�M � �y��y�x�M �y �� fn�M��

���� z�x�M � z�y��y�x�M �y �� fn�M��

�� Replication composes arbitrarily many copies of a term in parallel�

�Repl� �M � M j �M

�� Parallel composition is commutative and associative	 with identity ��

�Comm� M j N � N j M

�Assoc� �M j N� j P � M j �N j P �

�Id� M j � � M

�� The scope of a restricted variable x can be extended over parallel composition and application	
provided x is not captured� Restriction with an unused name has no e�ect�

��
Par� M j �x�N � �x��M j N� �x �� fn�M��

��
Apply� y��x�M� � �x�yM �x �� y�

��
Garbage� �x�M � M �x �� fn�M��

�� Application distributes over parallel composition� Application has no e�ect on abstraction
arguments�

�Dist� x�M j N� � xM j xN

�Absorb� x�y�z�M� � y�z�M

Except for ��
Apply�	 equalities ������� all have counterparts in �
calculus� Equalities �Dist� and
�Absorb� are perhaps surprising at �rst� Essentially	 they introduce a fundamental asymmetry
between applications and abstractions� Abstractions are volatile	 in that they can move freely into
and out
of applications� By contrast	 applications are stationary	 they appear only a single �xed
context� Note the similarity to �rst order functional programming	 where abstractions correspond
to function de�nitions �where the location of the de�nition does not matter� and applications
correspond to function calls �where the point of call does matter�� However	 unlike in functional
programming	 an abstraction can be used only once if it is not replicated� We will see that this
resource
consciousness is the essential ingredient that allows applied � to model side
e�ects in
expressions�

Reduction

There is a single reduction rule�

�Reaction� x�y�M j xz � �z�y�M

Reduction is considered modulo syntactic equivalence� Reduction can be applied anywhere in a
term except under an abstraction or a replication� That is	 a binary reduction relation ��� between
terms is given by the axiom �Reaction� and the inference rule

�Context�
M � �M M � N N � N �

E�M �� � E�N ��

where E is an arbitrary evaluation context that can be generated by the grammar

E � � � j �x�E j xE j E jM �

Let �� be the re�exive transitive closure of reduction�

� A Process Equivalence

Our notion of equivalence of applied � terms is based on bisimulation� The central intuition
of bisimulation is that an experiment which tests whether two processes are equivalent can be
constructed from two basic actions� One can observe the interaction of a running process	 and one
can freeze a process in a given state and let in run repeatedly starting from this state� The latter
distinguishes bisimulation from trace equivalence�

For processes whose operational semantics is de�ned by means of a reduction relation	 a particularly
simple form of bisimulation can be devised	 which tests only the possibility of interacting on a
channel	 but disregards what is communicated over it� This relation is called barbed bisimulation
���� For applied �	 barbed bisimulation can be simpli�ed further in that only the action of returning
a name	 but not input or output actions	 can be observed� This is formalized in the following
de�nitions�

De�nition� A symmetric relation R on terms is reduction�closed i� MRN and M �� M � implies
the existence of a term N � such that N �� N � and M �RN ��

De�nition� A term M converges	 written M �	 if M �� �x j N�	 or M �� �x��x j N� for some
name x and term N �

De�nition� A symmetric relation R between terms is a �weak	 barbed bisimulation for applied �
i� R is reduction
closed and MRN and M � implies N �� M ��N i� there is a bisimulation R such
that MRN �

�� is not a congruence	 for instance it is not preserved by parallel composition� x�y�� �� x�y�y	 but
not x�y�� j xz �� x�y�y j xz� We therefore de�ne�

De�nition� Let � be the largest congruence such that �� ���

In the following	 whenever we say that two terms M 	 N are equivalent �written M � N� we mean
that they are barbed congruent	 i�e� M � N �

Proposition ��� �a� The following are bisimulation equivalences in applied ��

x��M� � �xM ���

�M � �M j �M ���

�x�x�y�M � � ���

�x��xy j x�z�M� � �x��y�z�M ���

�x��xy j �x�z�M� � �x��y�z�M ���

�b� If x �� fn�M�N� P � then the following are also bisimulation equivalences�

�x��xM j x�y�zy� � zM ���

�x��xM j xN j �x�y�P � � �x��xM j �x�y�P � j �x��xN j �x�y�P � ��

�x���xM j �x�y�P � � ��x��xM j �x�y�P � ���

Equation ��� is the analogue of the �Absorb� equivalence for replicated abstraction� Equation ���
says that parallel composition is idempotent on replicated terms� Equation ��� says that any term
that reads from a freshly allocated variable is an identity for parallel composition� We also call
such terms inert� Equations ��� and ��� say that reduction via a local variable is an equivalence�
Equation ��� says that forwarding a term via a local variable is equivalent to sending the term
directly to its �nal destination� Finally	 equations �� and ��� are factoring laws for a parallel
composition or replication of output terms in a local computation�

� Encoding Functions

We now encode functional programming constructs in applied �	 using just macro expansions� We
de�ne an a�ne �
abstraction ��x�M 	 which can be applied at most once	 and an unrestricted
call
by
value abstraction �x�M �

��x�M
def
� �f��f j f �x�M� �f fresh�

�x�M
def
� �f��f j �f �x�M� �f fresh�

General function application can be simulated by using a local name for the function part of the
application� Here we have a choice	 whether function and argument part should be evaluated con

currently or in sequence� We start with sequential application	 which is expressed by juxtaposition
of function and argument and is encoded as follows�

M N
def
� �x��xM j �x�f�fN� �x� f fresh�

Application of a channel x is �modulo �� a special case of sequential function application	 as is seen
by looking at the expanded form of xM 	 i�e� �y��yx j �y�f�fM�� where y and f are fresh names�

�y��yx j y�f�fM�

� �y�xM by ���

� xM by ��
GC�

This explains why we have chosen to use x� for abstraction and plain x for application	 whereas in
original � calculus plain x is an input pre�x amd x is an output pre�x�

Example ���

���x�x� ���y�y�
def
� �a��a��g��g j g�x�x�� j a�g�gH� where H

def
� �h��h j h�y�y�

� �a��g��a�g j g�x�x� j a�g�gH� by ��
��

� �a��g���ag j g�x�x� j a�g�gH� by �Dist�	 �Absorb�

� �a��g���ag j a�g�gH� j g�x�x� by �Assoc�	 �Comm�

� �a��g��gH j g�x�x� by reduction

� �a��g��g��h��h j h�y�y�� j g�x�x� substituting the de�nition of H

� �a��g��h��g�h j h�y�y� j g�x�x� by various ��� equivalences

� �a��g��h���gh j h�y�y� j g�x�x� by �Dist�	 �Absorb�

� �a��g��h��gh j g�x�x j h�y�y� by �Assoc�	 �Comm�

� �a��g��h��h j h�y�y� reducing via g

� �h��h j h�y�y� by ��
��	 �GC�
def
� ��y�y by sugaring

Proposition ��� The following are observational equivalences for applied ��

�M j N�P � M P j N P ���

M �N j P � � M N j M P ����

�x�y�M�N � x�y�M ����

��M�N � ��MN� ����

The proofs are all simple equivalence chains� Two examples are� ����

�M j N�P
def
� �x��x�M j N� j �x�y�yP � desugaring the application

� �x��xM j xN j �x�y�yP � by �Dist�

� �x��xM j �x�y�yP � j �x��xN j �x�y�yP � by ��
def
� M P j N P resugaring

�����

��M�N
def
� �x��x��M� j �x�f�fN� desugaring the application

� �x���xM j �x�f�fN� by ���

� ��x��xM j �x�f�fN� by ���
def
� ��MN� resugaring

Note that symmetric versions of ���� and ���� do not hold e�g� in M �x�y�N�	 the abstraction
becomes available only after M reduces to a name�

Parallel application �	� imposes no sequencing constraints on the evaluation of a function and its
argument� It is encoded as follows�

M 	N � �x��y��xM j yN j x�f�y�a�fa�

Local De�nitions

Using lambda abstraction and application	 we can de�ne a let
construct let x � M in N to be sugar
for ��x�N�M � Expanding this and simplifying yields�

let x � M in N
def
� ��x�N�M
def
� �z��z��y��y j �y�x�N�� j �z�w�wM�

� �y���z��zy j �z�w�wM� j �y�x�N�

� �y��yM j �y�x�N� by ��� �

As in the �
calculus	 this gives us a non
recursive local de�nition where the variable x cannot
appear in the body of its de�ning term	 M � Recursive �function� de�nitions are also possible� They
can be de�ned as follows�

letrec f x � M in N
def
� �f��N j �f �x�M� �

This extends naturally to mutual recursion�

letrec f� x� � M�� � � � � fn xn � Mn in N
def
� �f� � � � fn��N j �f �

�x��M� j � � � j �f �
n
xn�Mn� �

� Encoding Imperative Programs

Sequential Composition

We can de�ne the sequential composition of a value
producing term M and a term N by

M N
def
� �x��xM j x�y�N� �x� y fresh� �

This evaluates M until a value is produced	 and then continues with N � The value produced by M

is discarded� We use the convention that � � has higher precedence than � j � but lower precedence
than the unary operators�

If in �M� j � � � j Mn� P each Mi produces a value then P will be enabled as soon as one of the Mi

produces its result� We can force a wait for all Mi�s by de�ning a blocking parallel composition � jjj�
of independent subcomputations � this is essentially Hoare�s interleave operator ���� Interleave is
expressed as follows�

M� jjj � � � jjjMn

def
� �x� � � � xn��x�M� j � � � j xnMn j x�

�y� � � � x�
n
yn����

Here	 the empty tuple �� is a shorthand that stands for some arbitrary reserved name	 whose
identity is unimportant�

Dereferencing

One sometimes wants to use the result of a read operation as an argument in an application�
Writing x�y�z�z� would not do	 as this expression is equivalent to just y�z�z� Instead	 one can use
x�y
� where the read operator �
� is given by�

x

def
� �a��a�� j x�y�a�z�y� �

Note the role of the acknowledgment channel a� Its purpose can be explained as follows� Clearly	
to read from a channel x	 we need a term of the form x�y�M � The problem is that this term is
volatile	 and hence will reduce in the context of the corresponding output operation� But when
writing z�x
�	 for instance	 we want the read value to be passed to z� This is accomplished by
the pair of the output action a�� in the parallel composition and the input action a�z in the reader
term� Figuratively an interaction via a !pulls back" the abstraction a�z�y into the context of the
output term a��� A similar technique is used below in the modeling of mutable variables�

Mutable Variables

We now encode mutable variables with an allocation operation newref x	 where M computes the
initial value of the allocated result variable	 an assignment operation r �� x	 and a dereferencing
operation r
�

newref x
def
� �r��r j rx�

r �� x
def
� �a��a�� j r�y��rx j a�z�x��

r

def
� �a��a�� j r�y��ry j a�z�y��

These constructs model a mutable variable by a name r that always has a pending output operation
rx	 where x denotes the current value of the variable� Consequently	 assignment to a mutable
variable involves reading out the old value before the new value is written� Likewise	 dereferencing
a mutable a variable involves reading out its value and then writing it back� Note that this makes
assignment and read symmetric operations	 which is re�ected in the similarity of their encodings�

Initializations and assignments with structured terms are derived from these encodings as in the
case of functions� That is	

newref M
def
� ��x�newref x� M � �y��y�x�newref x j yM� �

and	 analogously	

r �� M
def
� ��x�r �� x� M � �y��y�x�r �� x j yM� �

Multiple assignments can be expressed by interleaving�

r�� � � � � rn �� M�� � � � �Mn

def
� r� �� M� jjj � � � jjjrn �� Mn �

Example ��� The following reduction shows that � � enforces sequential execution of assign

ments� Consider the sequence of assignments r �� � r �� r
 �� with initial value � of r�

�r �� � r �� r
 ��� j r�
def
� ��a��a�� j r�y��r� j a�z���� r �� r
 ��� j r� by desugaring the

�rst assignment
def
� �s��s��a��a�� j r�y��r� j a�z����� j s�d�r �� r
 ��� j r� by expanding the

sequential composition

� �s��a��s�a��� j r�y��r� j a�z��� j s�d�r �� r
 �� j r�� by various equivalences

� �s��a��s�a��� j r� j a�z�� j s�d�r �� r
 ��� reducing via r

� �s��a��s�a�� j a�z��� j r� j s�d�r �� r
 ��� by �Dist�	 �Absorb�

� �s��a��s� j r� j s�d�r �� r
 ��� reducing via a

� �s��a��r� j r �� r
 ��� reducing via s

� r� j r �� r
 �� by �GC�

Control

We conclude our overview of sequential programming constructs with an encoding of control oper

ators abort and call�cc in applied �� To make a program M abortable	 embed it in the context

�e��M j e��� �

where e is some fresh name� Then abort is given by

abort x
def
� e�y�x �

Note the reverse trigger	 e��	 that gets replaced by the argument x of abort by creating the agent
e�y�x� Since abstractions are volatile	 an occurrence of abort inside an application chain will thus
react with the top
level trigger e��	 thereby returning a result from the program� A similar trick is
used in the encoding of call�cc�

call�cc f
def
� �e��k��fk j �k�x�e�y�x j �e���

This passes a continuation k that captures the current context to the function f � Again	 e�� acts
as a reverse trigger that injects the argument of the continuation variable k into the context of the
call�cc�

� Encoding Applied � in Asynchronous �

Applied � has close relations to asynchronous � calculus� We now formalize this statement by
giving an encoding of applied � in asynchronous �� We use a slight variation of Boudol�s de�nition�
In our version	 �async	 terms are given by

M � �x�M j x�y�M j xy j M jN j �M j � �

modulo syntactic equivalences ���	 �Repl�	 �Comm�	 �Assoc�	 �Id�	 ��
Par�	 ��
Garbage� and re

duction is as in applied ��

As an equivalence theory for asynchronous � terms we also use barbed bisimulation	 which now
takes the following form�

De�nition� A term M � �async outputs on a channel x	 written M �x	 if there is a name y and a
term N such that either M �� xy j N or M �� �y��xy j N��

That is	 we take as observables output actions	 but not input actions� Based on this notion of
observation	 barbed bisimulation and barbed congruence are then de�ned as usual�

De�nition� A symmetric relation R between terms in �async is a �weak� asynchronous barbed
bisimulation i� R is reduction
closed and MRN and M �x implies N �x� M ��asyncN i� there is
an asynchronous bisimulation R such that MRN � let �async be the largest congruence contained
in ���

We now de�ne a mapping ����� that takes as arguments an applied � term M and a name r and
yields a term in �async� The name r represents a channel where the result of the translated term
should be sent to� The translation is given by�

��x��r � rx

���x�M ��r � �x���M ��r

��x�y�M ��r � x��y� s����M ��s

��xM ��r � �s����M ��s j ��t�s�y��x�y� t� j �t�z�rz��

��M j N ��r � ��M ��r j ��N ��r

���M ��r � ���M ��r �

We use for brevity polyadic inputs x��y� z��M and outputs x�y� z� which can be expanded with
Honda and Tokoro�s !zip
lock" technique� �����

x��y� z��M
def
� x�u��v��uv j v�y��w��uw j w�z�M��

x�y� z�
def
� �u��xu j u�v��vy j u�w�wz�� �

To show that this encoding is well
de�ned	 have have to verify that it is insensitive to the preterm
chosen to represent a term�

Proposition 	�� Let r be a name� Let M 	 N be preterms such that M � N � Then ��M ��r � ��N ��r�

Proof Sketch
 Verify that the translations of all syntactic equivalence rules are barbed asynchronous
bisimulations� �

The following lemma shows that forwarding of a result via an intermediary is indistinguishable
from passing the result directly�

Lemma 	�� Assume s� t �� fn�M�� Then ��M ��r � �s����M ��s j s�x�rx��

�Note how parallel compositions in the input term correspond to input pre�xes in the output term and vice versa�

We now show that the encoding preserves the reduction semantics of applied �	 in the following
sense�

De�nition� Let M�N � �async� M ��

async N i� there are terms M � �async M and N � �async N such
that M � �async N

��

Proposition 	�� Let M 	 N be terms in applied � and let r �� fn�M�N�� If M � N then
��M ��r��

async ��N ��r�

Proof
 Assume M � N and r �� fn�M�N�� Then we have�

��x�z�M j xy��r

� x��z� s����M ��s j �s��sy j s�z��t��x�z� t� j t�u�ru��

� x��z� s����M ��s j �t��x�y� t� j t�u�ru�� by local reduction

� �t���y�z� t�s���M ��s j t�u�ru�

� �t�����y�z�M ��t j t�u�ru�

� ���y�z�M ��r by Lemma ���

�

Proposition 	�� Let M 	 N be terms in applied �� If	 for all r �� fn�M�N�	 ��M ��r �async ��N ��r then
M � N �

Proof
 Assume M �� N � Then there is a context C such that one of C�M �	 C�N � converges but
the other does not� W�l�o�g� assume that C�M � �	 C�N � ��� Let a be a fresh name� Then	 because
of Proposition ���	 ��C�M ���a �a but ��C�N ���a ��a� Since the encoding ����� is compositional on terms	
there is a context D in �async and a name r �� fn�P � such that ��C�P �a�� � D���P ��r�	 for all terms P 	
names a� Hence	 D���M ��r� �a but D���N ��r� ��a� It follows that ��M ��r ��async ��N ��r� �

Unfortunately	 the other direction of Proposition ��� seems to be much harder to prove� Propo

sition ��� requires that reductions in applied � can be simulated by reductions in asynchonous �	
which is guaranteed by Proposition ���� The reverse direction would require that every possible
asynchronous reduction sequence that starts and ends in an encoded applied term simulates a re

duction seuquence in applied �� This appears credible	 but a formal proof is still missing� We
therefore can only conjecture that ����� takes equivalences in applied � to equivalences in �async�

Conjecture Let M 	 N be terms in applied �� Let r �� fn�M�N�� If M � N then ��M ��r �async ��N ��r�

� Conclusion

We have presented a modi�cation of asynchronous � calculus that allows us to model sequential
programming constructs in a simple way	 using just macro expansions� We believe that this proposal
might evolve into a formal foundation for programming languages that can express concurrent
execution of processes but at the same time retain their sequential programming heritage� However	
more work needs to be done until this goal is achieved�

In particular	 we would like to get process equivalence criteria that are more tractable than the
barbed congruence we have used� Another open question concerns the relationship between the
process equivalence theory of applied � and the corresponding theory of the pure asynchronous
calculus� Finally	 it should be possible to de�ne a typed version of applied � by generalizing
Milner�s sorting approach for � calculus �����

Acknowledgments I�d like to thank John Maraist	 for reading and commenting on previous
drafts of this work	 and Benjamin Pierce	 for his thorough review	 which was a great help in
improving the paper�

References

��� Samson Abramsky� Computational interpretations of linear logic� Theoretical Computer Science� ����	

��� �	�

��� Dave Berry� Robin Milner� and David N� Turner� A semantics for ML concurrency primitives� In
Conference Record of the Nineteenth Annual ACM SIGPLAN�SIGACT Symposium on Principles of

Programming Languages� pages ��
��� January ���

�	� G�erard Boudol� Towards a lambda�calculus for concurrent and communicating systems� In J� D��az
and F� Orejas� editors� Proceedings TAPSOFT ������ pages ��
���� New York� March ��� Springer�
Verlag� Lecture Notes in Computer Science 	���

��� G�erard Boudol� Asynchrony and the pi�calculus� Research Report ����� INRIA� May ���

��� Luca Cardelli� James Donahue� Lucille Glassman� Mick Jordan� Bill Kalsow� and Greg Nelson� Modula�	
language de�nition� ACM SIGPLAN Notices� ��������
��� August ���

��� Matthias Felleisen and Robert Hieb� The revised report on the syntactic theories of sequential control
and state� Theoretical Computer Science� ��	��	�
���� ���

��� Alessandro Giacalone� Prateek Mishra� and Sanjiva Prasad� Facile� A symmetric integration of concur�
rent and functional programming� International Journal of Parallel Programming� ���������
���� April
���

��� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall� Englewood Cli�s� New Jersey�
����

�� Keiho Honda and Nobuko Yoshida� On reduction�based process semantics� In Proc� ��th Conf� on

Foundations of Softawre Technology and Theoretical Computer Science� pages 	�	
	��� December �	�

���� Kohei Honda and Mario Tokoro� An object calculus for asynchronous communication� In Proc� 	th

European Conference on Object�Oriented Programming� pages �		
���� July ��� Springer LNCS ����

���� C�B� Jones� Process�algebraic foundations for an object�based design notation� Technical Report UMCS�
	������ University of Manchester� �	�

���� Ian Mason and Carolyn Talcott� Equivalence in functional languages with side e�ects� Journal of

Functional Programming� ��	�����
	��� July ���

��	� Robin Milner� Communication and Concurrency� Prentice�Hall International� ���

���� Robin Milner� The polyadic ��calculus� A tutorial� Report ECS�LFCS������� Laboratory for Founda�
tions of Computer Science� Edinburgh University� October ���

���� Robin Milner� Functions as processes� Mathematical Structures in Computer Science� �������
����
���

���� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile processes� I � II� Information

and Computation� �����
��� ���

���� Robin Milner and D� Sangiorgi� Barbed bisimulation� In Automata
 Languages
 and Programming
 ��th

International Colloquium� ��� Lecture Notes in Computer Science ��	�

���� Martin Odersky� A functional theory of local names� In Proc� ��st ACM Symposium on Principles of

Programming Languages� pages ��
�� January ���

��� Martin Odersky� Dan Rabin� and Paul Hudak� Call�by�name� assignment� and the lambda calculus� In
Proc� ��th ACM Symposium on Principles of Programming Languages� pages �	
��� January �	�

���� United States Department of Defense� The Programming Language Ada Reference Manual� Springer�
Verlag� ����

���� Benjamin C� Pierce� Didier R�emy� and David N� Turner� A typed higher�order programming language
based on the Pi�calculus� Draft report� available in the PICT distribution� July �	�

���� Andrew Pitts and Ian Stark� On the observable properties of higher order functions that dynamically
create local names� In SIPL ��� ACM SIGPLAN Workshop on State in Programming Languages

Copenhagen
 Denmark� pages 	�
��� June �	� Yale University Research Report YALEU�DCS�RR�
���

��	� John H� Reppy� CML� A higher�order concurrent language� In Proceedings of the ACM SIGPLAN ���

Conference on Programming Language Design and Implementation� pages �	
	��� June ���

���� Davide Sangiorgi� An investigation into functions as processes� In Proc� �th International Conference

on the Mathematical Foundation of Programming Semantics
 New Orleans
 Lousiana� pages ��	
���
April �	�

���� Bjarne Stroustrup� The C Programming Language� Addison�Wesley� ����

���� Vipin Swarup� Uday S� Reddy� and Evan Ireland� Assignments for applicative languages� In John Hugh�
es� editor� Functional Programming Languages and Computer Architecture� pages ��
���� Springer�
Verlag� August ��� Lecture Notes in Computer Science ��	�

���� David Walker� ��calculus semantics of object�oriented programming languages� In Takayasu Ito and
Albert R� Meyer� editors� Proc� Theoretical Aspects of Computer Software� pages �	�
���� Springer�
Verlag� September ��� LNCS ����

���� Niklaus Wirth� Programming in Modula��� Springer Verlag� �nd edition� ��	�

