Negative Boolean Constraints”

Kim Marriott Martin Odersky
Department of Computer Science Institut fir Programmstrukturen

Monash University und Datenorganisation,
Clayton, Vic 3168 AUSTRALIA. Universitat Karlsruhe

76128 Karlsruhe, GERMANY.

Abstract

Systems of Boolean constraints which allow negative constraints such as f € g are investigated. The
results form a basis for algorithms to determine satisfiability, validity, implication, equivalence and vari-
able elimination for such systems. These algorithms have applications in spatial query decomposition,
machine reasoning, and constraint logic programming. Proofs of the results rely on independence of
inequations, which enables results for systems with a single inequation to be lifted to systems with many
inequations.

1 Introduction

Since Boole [2], systems (or conjunctions) of positive constraints f C g over a Boolean algebra have been
extensively studied. Here, we introduce and study a more general notion of Boolean constraint system in
which negative Boolean constraints f € ¢ are also allowed. Systems of positive and negative constraints
have not yet been widely studied in their own right. This may be because in the case of two-valued Boolean
algebras, negative constraints add no power since the constraint z € y is equivalent to ¢ = 1 A y =
(). For more general Boolean algebras, however, systems of general Boolean constraints are strictly more
powerful than systems of positive constraints; for instance, they allow inequality and strict containment to
be expressed.

Our main technical results are in two areas. The first 1s determining satisfiability. The problem whether a
Boolean equation is satisfiable is well known to be NP-complete. We show that deciding satisfiability of propo-
sitional formula over Boolean equations is also NP-complete. This implies as special cases NP-completeness
of testing satisfiability for general Boolean constraints and co-NP-completeness of testing validity, implication
and equivalence. We also show that the height of the Boolean algebra exactly characterizes the propositional
formula which are satisfiable in it.

The second area is variable elimination. Systems of positive Boolean constraints S are closed under
existential quantification, that is, 32.5 can always be expressed as a system of positive Boolean constraints.
Thus, variable z can be eliminated from S. This ceases to be true if negative constraints are added. However,
we show that general systems of constraints are closed under existential quantification for a class of reasonable
Boolean algebras, namely the atomless algebras. Further we give a simple formula to compute the equivalent
unquantified system.

Positive Boolean constraints have many applications in computer science. Negative constraints over
general Boolean algebras also arise naturally in several areas, in particular in applications involving sets.

One such area is spatial query languages with application to geographic information systems, CAD
systems, VLSI design rule checkers, or to visual language parsing. Here, general Boolean constraints allow
us to express overlap and strict containment queries on regions in addition to the non-strict containment
queries which are expressed by just positive constraints. Using the results given here, arbitrary multivariate
spatial queries can be decomposed into sequences of univariate queries. Previously, spatial query languages
were restricted to queries with acyclic variable dependencies in order to make query decomposition feasible
[20]. This has been investigated in more detail in [9, 10].

*Part of this work was done while both authors were at I.B.M. Thomas J. Watson Research Center

Another application is in machine reasoning as simple Boolean inequations suffice to complete all possible
syllogistic moods, and thus complete Aristotelian logic (see Chapter 10 of [17]).

A final application is in programming and database query languages. Recently there has been interest in
constraint logic programming languages [11] which extend logic programming languages and in constraint
query languages [12] which extend relational database query languages by allowing different constraint do-
mains. In particular, systems such as CHIP [18] and Prolog-IIT [6] are extensions of Prolog which provide
positive Boolean constraints. The results given here allow such languages to be further extended to handle
negative Boolean constraints without increasing the worst-case complexity of the constraint solving algo-
rithm.

The rest of this note is organized as follows: In Section 2, properties of positive Boolean constraints are
reviewed. Section 3 investigates systems with a single inequation. Section 4 investigates independence of
negative constraints. Sections b and 6 use these independence results to lift results of Section 3 to systems
with more than one inequation. Section 7 discusses related work.

2 Preliminaries: Boolean Algebras and Positive Boolean Con-
straints

Boolean algebras and positive Boolean constraints were first introduced by Boole [2] in an effort to automate
reasoning. Since that time they have been extensively studied, and have proved fundamental in numerous
application areas. In this section we introduce our terminology and review properties of positive Boolean
constraints that we shall make use of in the sequel. We assume that the reader has an elementary knowledge
of Boolean algebras and Boolean equations. Suitable references are [3] and [13].

A Boolean formula is a variable, a constant) or 1, the complement of a formula, a disjunction of formulas,
or a conjunction of formulas. A formula is atomic if 1t is a variable or a constant. A literal 1s an atomic
formula or its complement. A term is a conjunction of literals. A Boolean function is a function that can
be described by a Boolean formula. A positive Boolean constraint is of the form f C ¢ where f and ¢ are
Boolean formulas.

Boole showed that any system of positive Boolean constraints can be rewritten to an equivalent Boolean
equation of the form f = () where [is a Boolean formula. Boole’s “fundamental theorem of Boolean algebra”
allows us to rewrite a Boolean formula f into a form in which any given variable z in f 1s 1solated. Letting
fz(a) denote the formula obtained by replacing all occurrences of z in f by a, we have that:

Theorem 2.1 (Boole) f =z - (1) + T - f(0).

Applying Theorem 2.1 to all variables in a Boolean formula f yields f’s (extended) disjunctive normal
form, dnf(f). Note that each term in the extended disjunctive normal form contains all variables in the
system.

Theorem 2.2 (Boole) Let 27! =7 and 2! = z. For every Boolean formula f in variables z1, ..., 7,:

f= Z flag, ..., an) -zt - zfm

(ay,...,an)e{—1,1}"7

It follows that positive constraints are closed under existential quantification:
Theorem 2.3 3z . f =0 < f,(0) - fz(1) = 0.

Using Schroder’s theorem we can rewrite an equality f, = () into an equivalent range constraint over
variable z:

Theorem 2.4 (Schréder) f =0 < f,(0) C z C f(1).

One important example of a Boolean algebra is the power set ¢ X of any set X, where set union, inter-
section and complement are the disjunction, conjunction and complement operators respectively. Another
example are the propositional formula.

A field of sets is a subset of a power set that is closed under complements and finite unions and inter-
sections. Fields of sets are important to the study of Boolean algebras because of Stone’s Representation
Theorem:

Theorem 2.5 (Stone) Every Boolean algebra is isomorphic to a field of sets.

A useful corollary is that every finite Boolean algebra is isomorphic to a finite power set. Another useful
consequence (see [13], Proposition 2.19) is that:

Proposition 2.6 A system of positive Boolean constraints is satisfiable in some Boolean algebra iff it is
satisfiable in all Boolean algebras.

Definition. The height of an element z of a Boolean algebra, denoted by h(z), is the least upper bound of
the lengths of all chains between @) and z. The height of a Boolean algebra is the height of the top element
1 in this algebra. A Boolean algebra is nfinite if it has infinite height.

For instance, the height of z € ¢ X is the cardinality of z.

Definition. A non-empty element z of a Boolean algebra M is atomic iff there exists no element y in M
such that 0 C y C z. M is atomless iff it contains no atomic elements.

An example of an atomless Boolean algebra is the set of (equivalence classes of) measurable subsets of R*, in
which two sets are considered equivalent when they are identical “almost everywhere”. This Boolean algebra
corresponds to the data model in spatial databases in which regions are not arranged on a grid.

Here we investigate an extension of Boolean constraints in which negative constraints are allowed. A
negative Boolean constraint is of the form f € ¢ where f and ¢ are Boolean formulas. Systems with negative
and positive Boolean constraints not only provide containment, equality and non-containment, but also
provide inequality and strict containment, as

tCy & zCyAyge.

3 Systems with a Single Inequation

We have seen that any system of positive Boolean constraints can be rewritten to an equivalent Boolean
equation. Thus, any system of Boolean constraints is equivalent to a system of the form:

F=0AG#ADA . Agy#0

where f and the ¢;’s are Boolean formulas.
Before studying the general case, we will look at the “simple” case when the system has a single inequation.
We shall see that they behave very much like positive systems.

Definition. A system of Boolean constraints is simple if it has the form f =0 A g # 0.
Simple systems have a straightforward test for satisfiability. In a rewording of Proposition 10.1 in Rudeanu
[17] we have:

Proposition 3.1 Let S be the simple system f = 0 A g # 0. S is satisfiableiff g Z f. ®
As proven in [9], simple systems admit quantifier elimination:
Lemma 3.2 (Double Diamond) For arbitrary elements a, b, ¢, d:
J2.aCeChbA-(cCeCd)caCbA-(bCdAcCa)

Proof: First consider the “=” direction. Clearly, ¢ C b follows from the antecedent. Assume that the second
part of the consequent does not hold, then o C d A ¢ C a. Together with a C b this implies ¢ C a C b C d,
which contradicts the antecedent.

Now consider the “<” direction. If we assume ¢ C b A b € d, the consequent holds with z = &. On the
other hand, assuming a C b A ¢ € a, the consequent holds with z = a«. ®

Proposition 3.3 Let S be the simple system f = 0 A g # 0. Then

dz.S & Jr. ACzCBA-(CCzCD) (from Theorem 2.4)
& ACBA-(BCDACCA) (from Lemma 3.2)
& ACBA(BZDVCZA)
& A-B=0AB-D#0VC-A#0D)
& A-B=0AB-D+C-A#0. =

In the sequel we will extend these results to the general case. We do this by finding sufficient conditions
for “independence” of inequations to hold. We distinguish two types of independence.

Definition. Weak independence (of inequations) holds for a Boolean algebra M iff for any constraint system

S,of theform f =0 A g AOA...A g, # 0 say,
MEISSI(F=0Aag£DAN AT (F=0Ag, #0)

where 3. .5 denotes the existential closure of system S.
Strong independence (of inequations) holds for M iff for any variable z and constraint system S, of the form

F=0Ag 0N ... A gy #0say,
ME3J. ST (f=0Ag£0)AN . ATz . (f=0Ag, #0).

Clearly, strong independence implies weak. Weak independence allows satisfiability tests for the simple
case to be lifted to the general case, while strong independence allows quantifier elimination techniques to
be lifted. We note that if arbitrary constant symbols are allowed, then strong and weak independence are
equivalent.

Unfortunately, neither strong nor weak independence holds for all Boolean algebras. In the next section we
show that strong independence holds for exactly the atomless Boolean algebras and that weak independence
holds for exactly the Boolean algebras of infinite height.

4 Independence

In this section we characterize when Boolean algebras are strongly or weakly independent. We first consider
weak independence.

The next lemma is a key technical result of the paper. Given the disjunctive normal form of a formula,
it allows us to construct a Boolean algebra M such that there is an assignment for M which satisfies exactly
the terms in the disjunctive normal form. What is technically difficult is to ensure that the height of M is
bounded by the number of terms in the disjunctive normal form.

Lemma 4.1 Let T be the set of terms constructed from the variables z;, ..., z,, » > 1, and Tt a non-empty
subset of T'. Let M be the powerset of height |TF|. Then there is an assignment o from z1, ..., z, to M such
that c t £0 <t e T,

Proof: The proof is by induction on the number of variables n. A simple case analysis shows that the
hypothesis holds when n = 1.

We now prove it for n > 1. Let S be the set of terms constructed from zj,...,z,-1. Then T =
{tn 4,y - |t €S}, Let

St = {teS|z-teTtve, -t Tt}
s* = {teS|z, teTt AT, - teTH}

Then |TF| =[St |+]5%|. Let M’ be the powerset of height |S*|. By the induction hypothesis, there is an
assignment ¢’ from 1, ..., z,_1 to M’ such that V¢ € S.o' t #0 < t € ST. We now embed M’ in M, the
powerset of height | TF|, by adding |S*| extra atoms. For each { € S* pick an atom a; C ¢’ t. Add extra
atoms aj, one for each a;, to M’ to give M. Define

ocr = U/ZE-I-Z{GHMQU/IE}.

Then, forall t € S, ot # 0 < o' t # 0, and, for all t € S*, o t is not an atom. Let X be the following
element of M.
a¢ ifz-teTrandz-teTt
X:Z ot ifz-teTtandz-tg Tt [teST
ol ifz-tgTTandT-te Tt
Extend o to , ..., z, by defining o z, = X. It is straightforward to verify that forallt € T, ct #0 &t €
Tt which proves the inductive step. R

The next lemma allows us to lift this result to Boolean algebras of greater height.

Lemma 4.2 Let ¢’ be an assignment from variables z1, ..., 7, to a Boolean algebra M’ of finite height d.
Then, for any (possibly infinite) Boolean algebra M with A(M) > h(M’) there is an assignment ¢ from
Ti,...,2, to M such that c t =0 < o' t = 0.

Proof: By Stone’s representation theorem, we can choose M’ to be the powerset 9{ay, ..., ag}. Since h(M) >
h(M'"), we can partition M into d pairwise disjoint elements s;, one for each atom {a;} in M’. Define

O'ZEIZ{SZ‘|GZ‘EO'/I}

It is straightforward to verify ¢ t =0 in M iff o’ t =0 in M. W
Proposition 4.3 Given Boolean formula f, g1, ..., g5, in any Boolean algebra M with A(M) > n,
Ff=0AGg 0N Agn#0 & F.F=0Ag£0OA AT (F=0Ag, #0).

Proof: Direction “=" is trivial. We now show “<”. Let >~ 7" be the disjunctive normal form of f and }_ T}
the disjunctive normal form of g;. Since each system f = § A g; # 0 is satisfiable, we have that for each i,
there is a term ¢; € T; \ T’. From Lemma 4.1 there exists an assignment o to the powerset of height n such
that o t # () < 3¢, .t = #;. Thus, o is a solution of the original system in this powerset. The result follows
then from Lemma 4.2. ®

We can now exactly characterize those Boolean algebras which are weakly independent.
Theorem 4.4 (Weak Independence) A Boolean algebra is weakly independent iff it is infinite.

Proof: The “«<” direction follows immediately from Proposition 4.3. Now consider the other direction. The
proof is by contradiction. Assume that M is a finite Boolean algebra of height n. Let S be the system
corresponding to the constraints § C »; C 72 C ... C z, C 1. It is straightforward to verify that weak
independence does not hold for 5. ®

Next we develop a characterization of those Boolean algebras which are strongly independent. Using a
construction similar to that used in the proof of Lemma 4.1 we can show that:

Proposition 4.5 In any atomless Boolean algebra:
e f=0Ag 20N Ngn 20 < Tz . (f=0Ag#£OHA .. ATz (Ff=0Ag,Z0).

Proof: Direction “=" is trivial. The proof of “<” is similar to that of Lemma 4.1. Let the free variables in
the system be 1, ..., z,,. Let S be the set of terms constructed from zy,...,z, and T ={z -, T-1|t € S}.

Consider some assignment ¢’ to 1, ..., 7, such that for each g;, there is an X; such that the assignment
o, =0'[t — X;]isasolutionof f =0 A g, Z0. Let Tt ={t € T|Jo,.0,t# 0} and let ST = {t €
Slz-teTTVvzT-te TT}. Note that for each ¢ € ST, o' { is non-empty and not an atom. Hence, there is
for each t € ST an element s, € M such that 0 C s, C ¢’ t. Define

St ifz-teTtandT-te Tt
X:Z o't ife-teTtandz -t & TT |tesT
o't ifr-tgTtandz-te Tt

and let ¢ = ¢'[z — X]. Tt is straightforward to show that
VieT. oct#0& 3o, .00t #0.
It follows that o is a solutionof f =0 A g1 ZOA ... A g, 0. W

Theorem 4.6 (Strong Independence) A Boolean algebra is strongly independent iff it is atomless.

Proof: The “«<” direction follows immediately from Proposition 4.5. Now consider the other direction. The
proof is by contradiction. Assume that M is a Boolean algebra with atom a. Let S be Ay.z-y ZD A z-7 # 0.
It is straightforward to verify that strong independence does not hold for S when z is assigned «. H

In the sequel we shall see that these results can be used as the basis for algorithms for satisfiability testing
and variable elimination.

5 Satisfiability

In this section we are concerned with determining satisfiability of Boolean constraint systems and propositions
over these systems. There are really a number of different questions depending on whether we are interested
in satisfiability in all Boolean algebras, in some Boolean algebra or in a particular Boolean algebra. It follows
from Proposition 2.6 that for positive systems these three questions are equivalent. However, this is not true
in the general case.

We will lift our discussion to discuss satisfiability of propositional formula constructed from Boolean
constraints. For instance, if S and S’ are general systems of Boolean constraints, then example propositional
formula are S, S < 5" and S = 5’. We are interested in these formula because deciding their satisfiability
not only gives us a means for deciding satisfiability of a Boolean constraint system but also for determining
equivalence and implication between Boolean constraint systems.

Definition. A Boolean formula proposition (Bf-proposition) is a positive Boolean constraint, the comple-
ment of a Bf-proposition, or a disjunction or conjunction of Bf-propositions.

The set of Bf-propositions is clearly a Boolean algebra. Terms in this algebra are just systems of Boolean
constraints. Thus, every Bf-proposition is equivalent to a disjunction of systems of Boolean constraints.
Satisfiability of a Bf-proposition can therefore be tested by first computing the digjunctive normal form of
the Bf-proposition, and then testing if any system of Boolean constraints in the disjunctive normal form is
satisfiable. We will be concerned with the following problems:

S1: Satisfiability in all Boolean algebras: Is a given Bf-proposition satisfiable in all Boolean algebras.

S2: Satisfiability in some Boolean algebra: Is a given Bf-proposition satisfiable in some Boolean alge-
bra.

S3: Satisfiability in a particular Boolean algebra Given a Bf-proposition P and a height d, is S sat-
isfiable in some/all Boolean algebras of height d.

We first consider problem S3: Satisfiability in a Boolean algebra of height d. In the case of finite d, an
(inefficient) way to determine satisfiability is to just consider all assignments in the power set with d atoms.
In the case of infinite d, the following theorem provides the basis for a satisfiability test.

Theorem 5.1 Let S be a system of the form f =0 A gg ZO A ... A g # 0, n > 1. Then, for any Boolean
algebra M with A(M) > n, S is satisfiable in M iff for all ¢, ¢; Z f.

Proof: A simple consequence of Proposition 3.1 and Proposition 4.3.

Corollary 5.2 Let S a system of the form f =0 A g1 20 A ... A g, 20, n > 1, and let M be an infinite
Boolean algebra. S is satisfiable in M iff for all ¢;, ¢; € f.

We now show that problems S1 and S2 reduce to problem S3. We first show that Boolean algebras of the
same height are “equivalent” with respect to satisfiability. As all finite Boolean algebras of the same height
are isomorphic it is immediate that:

Lemma 5.3 A Bf-proposition is satisfiable in some Boolean algebra of finite height d iff it is satisfiable in
all Boolean algebras of height d.

Lemma 5.4 If a Bf-proposition is satisfiable in some Boolean algebra of finite height d, it is satisfiable in
a Boolean algebras of height d 4+ d’ (where d’ need not be finite).

Proof: Analogous to the proof of Lemma 4.2

Proof: Let M be the Boolean algebra ${aj,...,aq4} and let M’ be the Boolean algebra
p{ai, ..., ad, ag41, ..., ag+4'}. Define the function f: M — M’ by

flz) = {ff U{aaq1, ..., aapa} if ag €z
T otherwise
It is straightforward to verify that f is a homomorphism. Thus, if ¢ is a solution to Bf-proposition P for M,
fooisasolution to P for M. ®H

Theorem 5.5

(a) A Bf-proposition is satisfiable in some Boolean algebra of infinite height iff it is satisfiable in all
Boolean algebras of infinite height.
(b) A Bf-proposition is satisfiable in a particular Boolean algebra iff it is satisfiable in all Boolean algebras
of that or greater height.

Proof: Consider (a). This follows because a Bf-proposition is satisfiable in a Boolean algebra iff some term
in its disjunctive normal form is satisfiable. A consequence of Theorem 5.1 i1s that a system of Boolean
constraints is satisfiable in some infinite Boolean algebra iff it is satisfiable in all infinite Boolean algebras.
Thus (a) holds. (b) follows from Lemma 5.3, Lemma 5.4, and (a). W

Thus the height of a Boolean algebra exactly characterizes those Bf-propositions which are satisfiable in
it. It is interesting to compare this to Tarski’s characterization of elementarily equivalent Boolean algebras
in terms of elementary invariants [13]. Other consequences of the theorem are:

Corollary 5.6 Let P be a Bf-proposition. Then P is satisfiable in all Boolean algebras iff P is satisfiable
in the two element Boolean algebra.

Corollary 5.7 Let P be a Bf-proposition. Then P is satisfiable in some Boolean algebra iff P is satisfiable
in some/all infinite Boolean algebras.

We now investigate the complexity of the above satisfiability problems.
Theorem 5.8 Problems S1 and S2 are NP-complete. Problem S3 is strongly NP-complete.

Proof: Since determining satisfiability of a single Boolean formula is NP-hard [7], it follows from Proposi-
tion 2.6 that each of these problems is NP-hard. That S3 is strongly NP-hard follows because the problem
in which d is simply the constant 2 is still NP-hard. Proving that S1, S2 and S3 are in NP is more difficult.
We look at each in turn.

Consider S1. As satisfiability in all Boolean algebras is equivalent to satisfiability in the two element
Boolean algebra, S1 can be determined by non-deterministically guessing an assignment of 0 and 1 to the
variables and checking if it is a solution.

Now consider S2. Let P be a Bf-proposition over m different positive Boolean constraints. Let M, be
the power set with m atoms. Let P have disjunctive normal form S; V ... V 5,. Each 5; is a conjunction
of at most m Boolean constraints. It therefore follows from Theorem 5.1 that each S, is satisfiable in some
Boolean algebra iff 1t is satisfiable in M,,,. Thus, P is satisfiable in some Boolean algebra iff it is satisfiable
in M,,. Clearly each element in M,, can be represented by a bit-vector of length m. Thus, satisfiability in
M, can be determined by non-deterministically guessing an assignment of bit-vectors to the variables in P
and checking if it is a solution.

Finally consider S3. Using a similar argument to that for S2, a Bf-proposition P is satisfiable in a Boolean
algebra of height d iff it is satisfiable in the power set with min {m, d} atoms, where m is the number of
positive Boolean constraints in P. The argument for inclusion in NP proceeds as before. Note that we could
not argue that S3 was in NP by just considering the powerset with d atoms. This is because the length of
the bit vectors required to represent elements in this power set is d, but any reasonable representation of d
in the problem instance has logarithmic length. ®

Consequences of this are that testing for satisfiability of systems of Boolean constraints is NP-complete,
and that testing for validity, implication and equivalence of such systems is co-NP-complete.

6 Variable Elimination

We now turn to the problem of variable elimination in systems of Boolean constraints. That is, given a
system S of Boolean constraints and a variable z, we wish to find an unquantified system which is equivalent
to Jz.5. Boole, Theorem 2.3, showed that positive constraints are closed under existential quantification.
Unfortunately, arbitrary systems of Boolean constraints are not closed under existential quantification. To
see this, consider the following counter-example:

Example 6.1 Consider the system S, z -y #0 AT -y # 0. Then 3z . S implies that |y| > 2, but there is
no system of Boolean constraints over y which can capture exactly this. M

However, as we have seen, simple systems are, unlike general systems, closed under existential quantifi-
cation (Proposition 3.3). Further, strong independence of negative constraints holds in atomless Boolean
algebras (Proposition 4.5). Thus, in atomless Boolean algebras, systems of Boolean constraints are closed
under existential quantification.

Definition. Let S be the system f =0 A g1 ZO A ... A g, # 0. Define proj (S, z) to be
A-B=0ANB-Di+A-Ci#20 AN .. ANB-D,+A4-C,#0
where A is fo(0), B is fu(1), Cy is () () and D is (g:)2(1).
Theorem 6.1 Let S be a system of Boolean constraints. In any atomless Boolean algebra,
dz .S < proj(S, z).
Proof: A simple consequence of Proposition 3.3 and Proposition 4.5.
Corollary 6.2 Atomless Boolean algebras admit quantifier elimination.

Proof: Let P be a Bf-proposition. Then from Theorem 6.1,

dz. P& \/ proj (S, z) and Vi . P& /\ S proj(S,z). N
Sednf(P) Sednf(- P)

For Boolean algebras with atomic elements, 3z .5 < proj(S, z) need not hold, as shown by Example 6.1.
However the system proj(S, z) still gives us information about 3z . 5. We can show that proj(S, z) is the
strongest (unquantified) system which is implied by 3z . S in all Boolean algebras. Thus it can be used as
a “filter” when computing solutions of S, as any solution of S can be obtained by extending a solution of
proj (S, z). This is the basis of the spatial database query optimization illustrated in the next section. More
formally,

Theorem 6.3 proj(S, z) is the strongest Boolean constraint implied by 3z . 5.

Proof: Tt follows from Proposition 3.3 that 3z .5 = proj(S, z). We now show that it is the strongest implied
constraint. Let R be an (unquantified) system, such that 3z .S = R holds. With Theorem 6.1, we have
M = proj(S,z) = R for all atomless Boolean algebras M. Now, a consequence of Corollary 5.7 is that
a Bf-proposition P is valid in all Boolean algebras iff it is valid in all atomless Boolean algebras. Thus,
M’ |= proj(S, z) = R for all Boolean algebras M’. ®

Example 6.2 Consider the system S, z -y 20 A7 -y # 0, from above. In this case proj(5,z) is y # 0, the
strongest implicant of 3z .5. M

Note that Theorem 6.1 and Theorem 6.3 first appeared in [9]. However the presentation and proofs given
here are quite different and substantially simpler.

We can lift Theorem 6.3 to several existentially quantified variables by iteratively projecting on a single
variable. To do this we extend the definition of proj to more than one variable by recursively defining
proj (S, z1, 2, ..., z,) to be proj(proj (S, za, ..., xy), 21).

Theorem 6.4 proj(S, 11, 22, ..., T,) is the strongest Boolean constraint implied by Jz; . Juzo 32, . 5.

Proof: The proof is by induction on the number of variables n. With Theorem 6.1 we have for in all atomless
algebras M:

pTOj(S,l‘l,$2,...,$n)
< drp . das . 3z, S
& proj(Jee ... Tz, .S, 1)
& proj(proj (S, za, ..., 2p), 11)

With Corollary 5.7 this result carries over to all Boolean algebras. ®

7 Related Work

Our results concerning satisfiability and quantifier elimination fall between analogous results obtained for
positive Boolean constraints by Boole [2], and the result of Tarski [19] that the elementary theory of Boolean
algebras is decidable. Boole’s results form the basis for so-called “Boolean unification” [4, 16] used in
constraint logic programming systems that allow positive Boolean constraints.

To prove decidability of the elementary theory of Boolean algebras, Tarski showed that the theory sup-
ports quantifier elimination. This should not be confused with our result, as quantifier elimination for general
formula with disjunctions does not imply that formula without disjunctions are also closed under existential
quantification: in fact Example 6.1 showed that they are not. An alternative proof sketch that proposi-
tional formulae over atomless Boolean algebras are closed under quantification Corollary 6.2 may be found
in Exercise 6.13 of Koppelberg [13]. Note that this implication works only in one direction: the Corollary
(and proof sketch in Koppelberg) does not imply that propositional formulae without disjunctions are closed
under existential quantification (Theorem 6.1).

Kozen [14] has shown that the decision problem for the elementary theory of Boolean algebras and many
interesting subclasses including the atomless Boolean algebras is <j,g-complete for USTA(%,2°", n) where
STA(*,2°" n) is the class of sets accepted by an alternating Turing machine running in time 2°” which may
make only n alternations of universal and existential states, where n is the input length. Related results were
also obtained by Berman [1]. Gridel [8] has shown that the subclasses of formula in which quantification
alternation is bounded by m have essentially the same complexity as the entire theory whenever m > 1. He
did not consider the case when m = 1, that 1s when the variables are either all existentially quantified or all
universally quantified. A consequence of Theorem 5.8 is that, in this case, if all variables are existentially
quantified the complexity is (only) NP complete and if they are all universally quantified then it is co-NP
complete.

The most closely related result appears in Rudenau [17] who gives a characterization of satisfiability for
systems of constraints in which there is a single negative constraint. However he states that the general
problem with arbitrary negative constraints is still unsolved. In fact we show that weak independence is the
key to lifting this result to the general case.

Recently there has been interest in weak independence, usually called independence in the literature, as
a general means of lifting satisfiability and canonicity results from conjunctions of positive constraints to
conjunctions with negative constraints. In particular Lassez and McAloon [15] studied canonical forms and
Colmerauer [5] has investigated sufficient conditions for weak independence of equations and inequations in
a general algebraic setting. However, Colmerauer’s results do not apply in the Boolean domain as positive
Boolean constraints do not admit “eliminable variables” in his precise sense. To our knowledge the notion
of strong independence has not been explicitly identified before.

References
[1] P. Berman. Complexity of the theory of atomless Boolean algebras. In Fundamentals of Computation Theory
(FOT "79), pages 64-70, 1979.

[2] G. Boole. An Investigation of the Laws of Thought. Walton, London, 1847. (Reprinted by Philisophical Library,
New York, 1954).

(3]

[19]

[20]

F. Brown. Boolean Reasoning, The Logic of Boolean Fquations. Kluwer Academic Publishers, Norwell, Mas-
sachusetts, USA, 1990.

W. Buttner and H. Simonis. Embedding Boolean expressions into logic programming. Journal of Symbolic
Computation, 4:191-205, 1987.

A. Colmerauer. Equations and inequations on finite and infinite trees. In International Conference on Fifth
Generation Computer Systems, pages 85-99. I[COT, 1984.

A. Colmerauer. An introduction to Prolog III. Communications of the ACM, 33(7):69-90, 1990.
M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman, 1979.

E. Gradel. Dominoe games with an application to the complexity of Boolean algebras with bounded quantifier
alternations. In Proc. Symp. on Theoretical Aspects of Computer Science, volume 294, pages 98—107. Springer
Verlag, Lecture Notes in Computer Science, 1988.

R. Helm, K. Marriott, and M. Odersky. Constraint-based query optimization for spatial databases. In Proc.
ACM Symp. on Principles of Database Systems, pages 181-191, 1991.

R. Helm, K. Marriott, and M. Odersky. Spatial query optimization: From Boolean constraints to range queries.
Research Report 17231, IBM Thomas J. Watson Research Center, 1991. (Also submitted to JCSS).

J. Jaffar and J.-L.. Lassez. Constraint logic programming. In ACM Symposium on Principles of Programming
Languages, pages 111-119, 1987.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. In Proc. ACM Symp. on Principles
of Database Systems, pages 299-313, 1990.

S. Koppelberg. The Handbook of Boolean Algebras (Vol. I). Elsevier Science Publishers B.V.(North Holland),
New York, N.Y., 1989.

D. Kozen. Complexity of Boolean algebras. Theoretical Computer Science, 10:221-247, 1980.

J.-L. Lassez and K. McAloon. A constraint sequent calculus. In IFEE Symposium on Logic in Computer Science,
pages 52—61. IEEE Press, 1990.

U. Martin and T. Nipkow. Boolean unification — the story so far. Journal of Symbolic Computation, 7:275-293,
1989.

S. Rudeanu. Boolean Functions and Equations. Elsevier Science Publishers B.V.(North Holland), New York,
N.Y., 1974.

H. Simonis and M. Dincbas. Propositional calculus problems in CHIP. In 2nd International Conference on
Algebraic and Logic Programming, volume 490, pages 189-203. Springer Verlag, Lecture Notes in Computer
Science, 1990.

A. Tarski. Arithmetical classes and types of Boolean algebras. Bull. Amer. Math. Soc, 55(64):1192, 1949.

D. Willard. Efficient processing of relational calculus using range query theory. In Proc. ACM Symp. on
Principles of Database Systems, pages 164-175, 1984.

10

