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Abstract

Systems of Boolean constraints which allow negative constraints such as f �� g are investigated� The
results form a basis for algorithms to determine satis�ability� validity� implication� equivalence and vari�
able elimination for such systems� These algorithms have applications in spatial query decomposition�
machine reasoning� and constraint logic programming� Proofs of the results rely on independence of
inequations� which enables results for systems with a single inequation to be lifted to systems with many
inequations�

� Introduction

Since Boole ���� systems �or conjunctions� of positive constraints f � g over a Boolean algebra have been
extensively studied� Here� we introduce and study a more general notion of Boolean constraint system in
which negative Boolean constraints f �� g are also allowed� Systems of positive and negative constraints
have not yet been widely studied in their own right� This may be because in the case of two	valued Boolean
algebras� negative constraints add no power since the constraint x �� y is equivalent to x 
 � � y 

�� For more general Boolean algebras� however� systems of general Boolean constraints are strictly more
powerful than systems of positive constraints� for instance� they allow inequality and strict containment to
be expressed�

Our main technical results are in two areas� The 
rst is determining satis
ability� The problem whether a
Boolean equation is satis
able is well known to be NP	complete� We show that deciding satis
ability of propo	
sitional formula over Boolean equations is also NP	complete� This implies as special cases NP	completeness
of testing satis
ability for general Boolean constraints and co	NP	completeness of testing validity� implication
and equivalence� We also show that the height of the Boolean algebra exactly characterizes the propositional
formula which are satis
able in it�

The second area is variable elimination� Systems of positive Boolean constraints S are closed under
existential quanti
cation� that is� �x �S can always be expressed as a system of positive Boolean constraints�
Thus� variable x can be eliminated from S � This ceases to be true if negative constraints are added� However�
we show that general systems of constraints are closed under existential quanti
cation for a class of reasonable
Boolean algebras� namely the atomless algebras� Further we give a simple formula to compute the equivalent
unquanti
ed system�

Positive Boolean constraints have many applications in computer science� Negative constraints over
general Boolean algebras also arise naturally in several areas� in particular in applications involving sets�

One such area is spatial query languages with application to geographic information systems� CAD
systems� VLSI design rule checkers� or to visual language parsing� Here� general Boolean constraints allow
us to express overlap and strict containment queries on regions in addition to the non	strict containment
queries which are expressed by just positive constraints� Using the results given here� arbitrary multivariate
spatial queries can be decomposed into sequences of univariate queries� Previously� spatial query languages
were restricted to queries with acyclic variable dependencies in order to make query decomposition feasible
����� This has been investigated in more detail in ��� ����

�
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Another application is in machine reasoning as simple Boolean inequations su�ce to complete all possible
syllogistic moods� and thus complete Aristotelian logic �see Chapter �� of ������

A 
nal application is in programming and database query languages� Recently there has been interest in
constraint logic programming languages ���� which extend logic programming languages and in constraint
query languages ���� which extend relational database query languages by allowing di�erent constraint do	
mains� In particular� systems such as CHIP ���� and Prolog	III ��� are extensions of Prolog which provide
positive Boolean constraints� The results given here allow such languages to be further extended to handle
negative Boolean constraints without increasing the worst	case complexity of the constraint solving algo	
rithm�

The rest of this note is organized as follows� In Section �� properties of positive Boolean constraints are
reviewed� Section � investigates systems with a single inequation� Section � investigates independence of
negative constraints� Sections � and � use these independence results to lift results of Section � to systems
with more than one inequation� Section � discusses related work�

� Preliminaries� Boolean Algebras and Positive Boolean Con�

straints

Boolean algebras and positive Boolean constraints were 
rst introduced by Boole ��� in an e�ort to automate
reasoning� Since that time they have been extensively studied� and have proved fundamental in numerous
application areas� In this section we introduce our terminology and review properties of positive Boolean
constraints that we shall make use of in the sequel� We assume that the reader has an elementary knowledge
of Boolean algebras and Boolean equations� Suitable references are ��� and �����

A Boolean formula is a variable� a constant � or �� the complement of a formula� a disjunction of formulas�
or a conjunction of formulas� A formula is atomic if it is a variable or a constant� A literal is an atomic
formula or its complement� A term is a conjunction of literals� A Boolean function is a function that can
be described by a Boolean formula� A positive Boolean constraint is of the form f � g where f and g are
Boolean formulas�

Boole showed that any system of positive Boolean constraints can be rewritten to an equivalent Boolean
equation of the form f 
 � where f is a Boolean formula� Boole�s �fundamental theorem of Boolean algebra�
allows us to rewrite a Boolean formula f into a form in which any given variable x in f is isolated� Letting
fx �a� denote the formula obtained by replacing all occurrences of x in f by a� we have that�

Theorem ��� �Boole� f 
 x � fx ��� � x � fx ����

Applying Theorem ��� to all variables in a Boolean formula f yields f �s �extended� disjunctive normal
form� dnf �f �� Note that each term in the extended disjunctive normal form contains all variables in the
system�

Theorem ��� �Boole� Let x�� 
 x and x� 
 x � For every Boolean formula f in variables x�� ���� xn�

f 

X

�a������an ��f����gn

f �a�� ���� an� � x
a�
� � ��� � xann �

It follows that positive constraints are closed under existential quanti
cation�

Theorem ��� �x � f 
 � � fx ��� � fx ��� 
 ��

Using Schr�oder�s theorem we can rewrite an equality fx 
 � into an equivalent range constraint over
variable x �

Theorem ��� �Schr	oder� f 
 � � fx ��� � x � fx ����

One important example of a Boolean algebra is the power set �X of any set X � where set union� inter	
section and complement are the disjunction� conjunction and complement operators respectively� Another
example are the propositional formula�

A �eld of sets is a subset of a power set that is closed under complements and 
nite unions and inter	
sections� Fields of sets are important to the study of Boolean algebras because of Stone�s Representation
Theorem�
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Theorem ��
 �Stone� Every Boolean algebra is isomorphic to a 
eld of sets�

A useful corollary is that every 
nite Boolean algebra is isomorphic to a 
nite power set� Another useful
consequence �see ����� Proposition ����� is that�

Proposition ��� A system of positive Boolean constraints is satis
able in some Boolean algebra i� it is
satis
able in all Boolean algebras�

De�nition� The height of an element x of a Boolean algebra� denoted by h�x �� is the least upper bound of
the lengths of all chains between � and x � The height of a Boolean algebra is the height of the top element
� in this algebra� A Boolean algebra is in�nite if it has in
nite height�
For instance� the height of x � �X is the cardinality of x �

De�nition� A non	empty element x of a Boolean algebra M is atomic i� there exists no element y in M
such that � 	 y 	 x � M is atomless i� it contains no atomic elements�
An example of an atomless Boolean algebra is the set of �equivalence classes of� measurable subsets of 
k � in
which two sets are considered equivalent when they are identical �almost everywhere�� This Boolean algebra
corresponds to the data model in spatial databases in which regions are not arranged on a grid�

Here we investigate an extension of Boolean constraints in which negative constraints are allowed� A
negative Boolean constraint is of the form f �� g where f and g are Boolean formulas� Systems with negative
and positive Boolean constraints not only provide containment� equality and non	containment� but also
provide inequality and strict containment� as

x �
 y � x � y � x � y �� ��
x 	 y � x � y � y �� x �

� Systems with a Single Inequation

We have seen that any system of positive Boolean constraints can be rewritten to an equivalent Boolean
equation� Thus� any system of Boolean constraints is equivalent to a system of the form�

f 
 � � g� �
 � � � � � � gn �
 �

where f and the gi �s are Boolean formulas�
Before studying the general case� we will look at the �simple� case when the system has a single inequation�

We shall see that they behave very much like positive systems�

De�nition� A system of Boolean constraints is simple if it has the form f 
 � � g �
 ��
Simple systems have a straightforward test for satis
ability� In a rewording of Proposition ���� in Rudeanu

���� we have�

Proposition ��� Let S be the simple system f 
 � � g �
 �� S is satis
able i� g �� f �

As proven in ���� simple systems admit quanti
er elimination�

Lemma ��� �Double Diamond� For arbitrary elements a� b� c� d �

�x � a � x � b � � �c � x � d� � a � b � � �b � d � c � a��

Proof� First consider the ��� direction� Clearly� a � b follows from the antecedent� Assume that the second
part of the consequent does not hold� then b � d � c � a� Together with a � b this implies c � a � b � d �
which contradicts the antecedent�
Now consider the �
� direction� If we assume a � b � b �� d � the consequent holds with x 
 b� On the
other hand� assuming a � b � c �� a� the consequent holds with x 
 a�

Proposition ��� Let S be the simple system f 
 � � g �
 �� Then

�x � S � fx ��� � fx ��� 
 � � fx ��� � gx ��� � fx ��� � gx ��� �
 ��
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Proof� Let A be fx ���� B be fx ���� C be gx ��� and D be gx ����

�x � S � �x �A � x � B � � �C � x � D� �from Theorem ����
� A � B � � �B � D � C � A� �from Lemma ����
� A � B � �B �� D � C �� A�
� A � B 
 � � �B �D �
 � � C �A �
 ��
� A � B 
 � � B �D �C �A �
 ��

In the sequel we will extend these results to the general case� We do this by 
nding su�cient conditions
for �independence� of inequations to hold� We distinguish two types of independence�

De�nition� Weak independence �of inequations� holds for a Boolean algebraM i� for any constraint system
S � of the form f 
 � � g� �
 � � � � � � gn �
 � say�

M j
 � � S � � � �f 
 � � g� �
 �� � ��� � � � �f 
 � � gn �
 ��

where � � S denotes the existential closure of system S �
Strong independence �of inequations� holds for M i� for any variable x and constraint system S � of the form
f 
 � � g� �
 � � � � � � gn �
 � say�

M j
 �x � S � �x � �f 
 � � g� �
 �� � ��� � �x � �f 
 � � gn �
 ���

Clearly� strong independence implies weak� Weak independence allows satis
ability tests for the simple
case to be lifted to the general case� while strong independence allows quanti
er elimination techniques to
be lifted� We note that if arbitrary constant symbols are allowed� then strong and weak independence are
equivalent�

Unfortunately� neither strong nor weak independence holds for all Boolean algebras� In the next section we
show that strong independence holds for exactly the atomless Boolean algebras and that weak independence
holds for exactly the Boolean algebras of in
nite height�

� Independence

In this section we characterize when Boolean algebras are strongly or weakly independent� We 
rst consider
weak independence�

The next lemma is a key technical result of the paper� Given the disjunctive normal form of a formula�
it allows us to construct a Boolean algebra M such that there is an assignment for M which satis
es exactly
the terms in the disjunctive normal form� What is technically di�cult is to ensure that the height of M is
bounded by the number of terms in the disjunctive normal form�

Lemma ��� Let T be the set of terms constructed from the variables x�� ���� xn� n � �� and T� a non	empty
subset of T � Let M be the powerset of height jT�j� Then there is an assignment � from x�� ���� xn to M such
that � t �
 � � t � T��

Proof� The proof is by induction on the number of variables n� A simple case analysis shows that the
hypothesis holds when n 
 ��

We now prove it for n � �� Let S be the set of terms constructed from x�� ���� xn��� Then T 

fxn � t � xn � t j t � Sg� Let

S� 
 ft � S j xn � t � T� � xn � t � T�g�
S� 
 ft � S j xn � t � T� � xn � t � T�g�

Then jT�j 
 jS� j� j S�j� Let M � be the powerset of height jS�j� By the induction hypothesis� there is an
assignment �� from x�� ���� xn�� to M � such that �t � S ��� t �
 � � t � S�� We now embed M � in M � the
powerset of height jT�j� by adding jS�j extra atoms� For each t � S� pick an atom at � �� t � Add extra
atoms a�t � one for each at � to M � to give M � De
ne

� x 
 �
� x �

X
fa �t j at � �

� xg�
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Then� for all t � S � � t �
 � � �� t �
 �� and� for all t � S�� � t is not an atom� Let X be the following
element of M �

X 

X
��
�

at if x � t � T� and x � t � T�

� t if x � t � T� and x � t �� T�

� t if x � t �� T� and x � t � T�

��� t � S�

��
� �

Extend � to x�� ���� xn by de
ning � xn 
 X � It is straightforward to verify that for all t � T � � t �
 � � t �
T�� which proves the inductive step�

The next lemma allows us to lift this result to Boolean algebras of greater height�

Lemma ��� Let �� be an assignment from variables x�� ���� xn to a Boolean algebra M � of 
nite height d �
Then� for any �possibly in
nite� Boolean algebra M with h�M � � h�M �� there is an assignment � from
x�� ���� xn to M such that � t 
 � � �� t 
 ��

Proof� By Stone�s representation theorem� we can choose M � to be the powerset �fa�� ���� adg� Since h�M � �
h�M ��� we can partition M into d pairwise disjoint elements si � one for each atom faig in M �� De
ne

� x 

X

fsi j ai � �
� xg

It is straightforward to verify � t 
 � in M i� �� t 
 � in M ��

Proposition ��� Given Boolean formula f � g�� ���� gn� in any Boolean algebra M with h�M � � n�

� � f 
 � � g� �
 � � ��� � gn �
 � � � � �f 
 � � g� �
 �� � ��� � � � �f 
 � � gn �
 ���

Proof� Direction ��� is trivial� We now show �
�� Let
P

T � be the disjunctive normal form of f and
P

Ti

the disjunctive normal form of gi � Since each system f 
 � � gi �
 � is satis
able� we have that for each i �
there is a term ti � Ti nT

�� From Lemma ��� there exists an assignment � to the powerset of height n such
that � t �
 � � �ti � t 
 ti � Thus� � is a solution of the original system in this powerset� The result follows
then from Lemma ����

We can now exactly characterize those Boolean algebras which are weakly independent�

Theorem ��� �Weak Independence� A Boolean algebra is weakly independent i� it is in
nite�

Proof� The �
� direction follows immediately from Proposition ���� Now consider the other direction� The
proof is by contradiction� Assume that M is a 
nite Boolean algebra of height n� Let S be the system
corresponding to the constraints � 	 x� 	 x� 	 ��� 	 xn 	 �� It is straightforward to verify that weak
independence does not hold for S �

Next we develop a characterization of those Boolean algebras which are strongly independent� Using a
construction similar to that used in the proof of Lemma ��� we can show that�

Proposition ��
 In any atomless Boolean algebra�

�x � f 
 � � g� �
 � � ��� � gn �
 � � �x � �f 
 � � g� �
 �� � ��� � �x � �f 
 � � gn �
 ���

Proof� Direction ��� is trivial� The proof of �
� is similar to that of Lemma ���� Let the free variables in
the system be x�� ���� xm� Let S be the set of terms constructed from x�� ���� xm and T 
 fx � t � x � t j t � Sg�

Consider some assignment �� to x�� ���� xm such that for each gi � there is an Xi such that the assignment
�i 
 ���x �� Xi � is a solution of f 
 � � gi �
 �� Let T� 
 ft � T j ��i � �i t �
 �g and let S� 
 ft �
S j x � t � T� � x � t � T�g� Note that for each t � S�� �� t is non	empty and not an atom� Hence� there is
for each t � S� an element st �M such that � 	 st 	 �� t � De
ne

X 

X
��
�

st if x � t � T� and x � t � T�

�� t if x � t � T� and x � t �� T�

�� t if x � t �� T� and x � t � T�

��� t � S�

��
�

and let � 
 ���x �� X �� It is straightforward to show that

�t � T � � t �
 � � ��i � �i t �
 ��

It follows that � is a solution of f 
 � � g� �
 � � ��� � gn �
 ��
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Theorem ��� �Strong Independence� A Boolean algebra is strongly independent i� it is atomless�

Proof� The �
� direction follows immediately from Proposition ���� Now consider the other direction� The
proof is by contradiction� Assume thatM is a Boolean algebra with atom a� Let S be �y �x �y �
 � � x �y �
 ��
It is straightforward to verify that strong independence does not hold for S when x is assigned a�

In the sequel we shall see that these results can be used as the basis for algorithms for satis
ability testing
and variable elimination�

� Satis�ability

In this section we are concerned with determining satis
ability of Boolean constraint systems and propositions
over these systems� There are really a number of di�erent questions depending on whether we are interested
in satis
ability in all Boolean algebras� in some Boolean algebra or in a particular Boolean algebra� It follows
from Proposition ��� that for positive systems these three questions are equivalent� However� this is not true
in the general case�

We will lift our discussion to discuss satis
ability of propositional formula constructed from Boolean
constraints� For instance� if S and S � are general systems of Boolean constraints� then example propositional
formula are S � S � S � and S � S �� We are interested in these formula because deciding their satis
ability
not only gives us a means for deciding satis
ability of a Boolean constraint system but also for determining
equivalence and implication between Boolean constraint systems�

De�nition� A Boolean formula proposition �Bf�proposition� is a positive Boolean constraint� the comple	
ment of a Bf	proposition� or a disjunction or conjunction of Bf	propositions�

The set of Bf	propositions is clearly a Boolean algebra� Terms in this algebra are just systems of Boolean
constraints� Thus� every Bf	proposition is equivalent to a disjunction of systems of Boolean constraints�
Satis
ability of a Bf	proposition can therefore be tested by 
rst computing the disjunctive normal form of
the Bf	proposition� and then testing if any system of Boolean constraints in the disjunctive normal form is
satis
able� We will be concerned with the following problems�

S�
 Satis�ability in all Boolean algebras
 Is a given Bf	proposition satis
able in all Boolean algebras�

S�
 Satis�ability in some Boolean algebra
 Is a given Bf	proposition satis
able in some Boolean alge	
bra�

S�
 Satis�ability in a particular Boolean algebra Given a Bf	proposition P and a height d � is S sat	
is
able in some�all Boolean algebras of height d �

We 
rst consider problem S�� Satis
ability in a Boolean algebra of height d � In the case of 
nite d � an
�ine�cient� way to determine satis
ability is to just consider all assignments in the power set with d atoms�
In the case of in
nite d � the following theorem provides the basis for a satis
ability test�

Theorem 
�� Let S be a system of the form f 
 � � g� �
 � � ��� � gn �
 �� n � �� Then� for any Boolean
algebra M with h�M � � n� S is satis
able in M i� for all gi � gi �� f �

Proof� A simple consequence of Proposition ��� and Proposition ����

Corollary 
�� Let S a system of the form f 
 � � g� �
 � � ��� � gn �
 �� n � �� and let M be an in
nite
Boolean algebra� S is satis
able in M i� for all gi � gi �� f �

We now show that problems S� and S� reduce to problem S�� We 
rst show that Boolean algebras of the
same height are �equivalent� with respect to satis
ability� As all 
nite Boolean algebras of the same height
are isomorphic it is immediate that�

Lemma 
�� A Bf	proposition is satis
able in some Boolean algebra of 
nite height d i� it is satis
able in
all Boolean algebras of height d �
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Lemma 
�� If a Bf	proposition is satis
able in some Boolean algebra of 
nite height d � it is satis
able in
a Boolean algebras of height d � d � �where d � need not be 
nite��

Proof� Analogous to the proof of Lemma ���

Proof� Let M be the Boolean algebra �fa�� ���� adg and let M � be the Boolean algebra
�fa�� ���� ad� ad��� ���� ad�d �g� De
ne the function f �M �M � by

f �x � 

n
x � fad��� ���� ad�d �g if ad � x
x otherwise

It is straightforward to verify that f is a homomorphism� Thus� if � is a solution to Bf	proposition P for M �
f � � is a solution to P for M ��

Theorem 
�

�a� A Bf	proposition is satis
able in some Boolean algebra of in
nite height i� it is satis
able in all
Boolean algebras of in
nite height�
�b� A Bf	proposition is satis
able in a particular Boolean algebra i� it is satis
able in all Boolean algebras
of that or greater height�

Proof� Consider �a�� This follows because a Bf	proposition is satis
able in a Boolean algebra i� some term
in its disjunctive normal form is satis
able� A consequence of Theorem ��� is that a system of Boolean
constraints is satis
able in some in
nite Boolean algebra i� it is satis
able in all in
nite Boolean algebras�
Thus �a� holds� �b� follows from Lemma ���� Lemma ���� and �a��

Thus the height of a Boolean algebra exactly characterizes those Bf	propositions which are satis
able in
it� It is interesting to compare this to Tarski�s characterization of elementarily equivalent Boolean algebras
in terms of elementary invariants ����� Other consequences of the theorem are�

Corollary 
�� Let P be a Bf	proposition� Then P is satis
able in all Boolean algebras i� P is satis
able
in the two element Boolean algebra�

Corollary 
�� Let P be a Bf	proposition� Then P is satis
able in some Boolean algebra i� P is satis
able
in some�all in
nite Boolean algebras�

We now investigate the complexity of the above satis
ability problems�

Theorem 
�� Problems S� and S� are NP	complete� Problem S� is strongly NP	complete�

Proof� Since determining satis
ability of a single Boolean formula is NP	hard ���� it follows from Proposi	
tion ��� that each of these problems is NP	hard� That S� is strongly NP	hard follows because the problem
in which d is simply the constant � is still NP	hard� Proving that S�� S� and S� are in NP is more di�cult�
We look at each in turn�

Consider S�� As satis
ability in all Boolean algebras is equivalent to satis
ability in the two element
Boolean algebra� S� can be determined by non	deterministically guessing an assignment of � and � to the
variables and checking if it is a solution�

Now consider S�� Let P be a Bf	proposition over m di�erent positive Boolean constraints� Let Mm be
the power set with m atoms� Let P have disjunctive normal form S� � ��� � Sn � Each Si is a conjunction
of at most m Boolean constraints� It therefore follows from Theorem ��� that each Si is satis
able in some
Boolean algebra i� it is satis
able in Mm � Thus� P is satis
able in some Boolean algebra i� it is satis
able
in Mm � Clearly each element in Mm can be represented by a bit	vector of length m� Thus� satis
ability in
Mm can be determined by non	deterministically guessing an assignment of bit	vectors to the variables in P
and checking if it is a solution�

Finally consider S�� Using a similar argument to that for S�� a Bf	proposition P is satis
able in a Boolean
algebra of height d i� it is satis
able in the power set with min fm� dg atoms� where m is the number of
positive Boolean constraints in P � The argument for inclusion in NP proceeds as before� Note that we could
not argue that S� was in NP by just considering the powerset with d atoms� This is because the length of
the bit vectors required to represent elements in this power set is d � but any reasonable representation of d
in the problem instance has logarithmic length�

Consequences of this are that testing for satis
ability of systems of Boolean constraints is NP	complete�
and that testing for validity� implication and equivalence of such systems is co	NP	complete�
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	 Variable Elimination

We now turn to the problem of variable elimination in systems of Boolean constraints� That is� given a
system S of Boolean constraints and a variable x � we wish to 
nd an unquanti
ed system which is equivalent
to �x �S � Boole� Theorem ���� showed that positive constraints are closed under existential quanti
cation�
Unfortunately� arbitrary systems of Boolean constraints are not closed under existential quanti
cation� To
see this� consider the following counter	example�

Example ��� Consider the system S � x � y �
 � � x � y �
 �� Then �x � S implies that jy j � �� but there is
no system of Boolean constraints over y which can capture exactly this�

However� as we have seen� simple systems are� unlike general systems� closed under existential quanti
	
cation �Proposition ����� Further� strong independence of negative constraints holds in atomless Boolean
algebras �Proposition ����� Thus� in atomless Boolean algebras� systems of Boolean constraints are closed
under existential quanti
cation�

De�nition� Let S be the system f 
 � � g� �
 � � ��� � gn �
 �� De
ne proj �S � x � to be

A � B 
 � � B �D� � A �C� �
 � � ��� � B �Dn �A �Cn �
 �

where A is fx ���� B is fx ���� Ci is �gi �x ��� and Di is �gi �x ����

Theorem ��� Let S be a system of Boolean constraints� In any atomless Boolean algebra�

�x � S � proj �S � x ��

Proof� A simple consequence of Proposition ��� and Proposition ����

Corollary ��� Atomless Boolean algebras admit quanti
er elimination�

Proof� Let P be a Bf	proposition� Then from Theorem ����

�x � P �
	

S�dnf �P�

proj �S � x � and �x �P �



S�dnf �� P�

� proj �S � x ��

For Boolean algebras with atomic elements� �x �S � proj �S � x � need not hold� as shown by Example ����
However the system proj �S � x � still gives us information about �x � S � We can show that proj �S � x � is the
strongest �unquanti
ed� system which is implied by �x � S in all Boolean algebras� Thus it can be used as
a �
lter� when computing solutions of S � as any solution of S can be obtained by extending a solution of
proj �S � x �� This is the basis of the spatial database query optimization illustrated in the next section� More
formally�

Theorem ��� proj �S � x � is the strongest Boolean constraint implied by �x � S �

Proof� It follows from Proposition ��� that �x �S � proj �S � x �� We now show that it is the strongest implied
constraint� Let R be an �unquanti
ed� system� such that �x � S � R holds� With Theorem ���� we have
M j
 proj �S � x � � R for all atomless Boolean algebras M � Now� a consequence of Corollary ��� is that
a Bf	proposition P is valid in all Boolean algebras i� it is valid in all atomless Boolean algebras� Thus�
M � j
 proj �S � x �� R for all Boolean algebras M ��

Example ��� Consider the system S � x �y �
 � � x � y �
 �� from above� In this case proj �S � x � is y �
 �� the
strongest implicant of �x � S �

Note that Theorem ��� and Theorem ��� 
rst appeared in ���� However the presentation and proofs given
here are quite di�erent and substantially simpler�

We can lift Theorem ��� to several existentially quanti
ed variables by iteratively projecting on a single
variable� To do this we extend the de
nition of proj to more than one variable by recursively de
ning
proj �S � x�� x�� ���� xn� to be proj �proj �S � x�� ���� xn�� x���

�



Theorem ��� proj �S � x�� x�� ���� xn� is the strongest Boolean constraint implied by �x� � �x� � ����xn � S �

Proof� The proof is by induction on the number of variables n� With Theorem ��� we have for in all atomless
algebras M �

proj �S � x�� x�� ���� xn�
� �x� � �x� � ����xn � S
� proj ��x� � ����xn � S � x��
� proj �proj �S � x�� ���� xn�� x��

With Corollary ��� this result carries over to all Boolean algebras�


 Related Work

Our results concerning satis
ability and quanti
er elimination fall between analogous results obtained for
positive Boolean constraints by Boole ���� and the result of Tarski ���� that the elementary theory of Boolean
algebras is decidable� Boole�s results form the basis for so	called �Boolean uni
cation� ��� ��� used in
constraint logic programming systems that allow positive Boolean constraints�

To prove decidability of the elementary theory of Boolean algebras� Tarski showed that the theory sup	
ports quanti
er elimination� This should not be confused with our result� as quanti
er elimination for general
formula with disjunctions does not imply that formula without disjunctions are also closed under existential
quanti
cation� in fact Example ��� showed that they are not� An alternative proof sketch that proposi	
tional formulae over atomless Boolean algebras are closed under quanti
cation Corollary ��� may be found
in Exercise ���� of Koppelberg ����� Note that this implication works only in one direction� the Corollary
�and proof sketch in Koppelberg� does not imply that propositional formulae without disjunctions are closed
under existential quanti
cation �Theorem �����

Kozen ���� has shown that the decision problem for the elementary theory of Boolean algebras and many
interesting subclasses including the atomless Boolean algebras is �log 	complete for �STA��� �cn� n� where
STA��� �cn� n� is the class of sets accepted by an alternating Turing machine running in time �cn which may
make only n alternations of universal and existential states� where n is the input length� Related results were
also obtained by Berman ���� Gr�adel ��� has shown that the subclasses of formula in which quanti
cation
alternation is bounded by m have essentially the same complexity as the entire theory whenever m � �� He
did not consider the case when m 
 �� that is when the variables are either all existentially quanti
ed or all
universally quanti
ed� A consequence of Theorem ��� is that� in this case� if all variables are existentially
quanti
ed the complexity is �only� NP complete and if they are all universally quanti
ed then it is co	NP
complete�

The most closely related result appears in Rudenau ���� who gives a characterization of satis
ability for
systems of constraints in which there is a single negative constraint� However he states that the general
problem with arbitrary negative constraints is still unsolved� In fact we show that weak independence is the
key to lifting this result to the general case�

Recently there has been interest in weak independence� usually called independence in the literature� as
a general means of lifting satis
ability and canonicity results from conjunctions of positive constraints to
conjunctions with negative constraints� In particular Lassez and McAloon ���� studied canonical forms and
Colmerauer ��� has investigated su�cient conditions for weak independence of equations and inequations in
a general algebraic setting� However� Colmerauer�s results do not apply in the Boolean domain as positive
Boolean constraints do not admit �eliminable variables� in his precise sense� To our knowledge the notion
of strong independence has not been explicitly identi
ed before�
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