A Second Look at Overloading

In Proc. FPCA’95 Conf. on Functional Programming Languages and Computer Architecture

Martin Odersky*

Abstract

We study a minimal extension of the Hindley/Milner sys-
tem that supports overloading and polymorphic records. We
show that the type system is sound with respect to a stan-
dard untyped compositional semantics. We also show that
every typable term in this system has a principal type and
give an algorithm to reconstruct that type.

1 Introduction

Arithmetic, equality, showing a value as a string: three op-
erations guaranteed to give a language designer nightmares.
Usually they are dealt with by some form of overloading;
but which form is best?

Even if we limit our attention to languages based on the
highly successful Hindley/Milner type system, we find many
differing treatments of overloading. The same language may
treat different operators differently; different languages may
treat the same operator differently; and the same language
may treat the same operator differently over time. For in-
stance, in Miranda arithmetic is defined only on a single
numeric type; equality is a polymorphic function defined at
all types, including abstract types where it breaks the ab-
straction barrier; and the show function may be defined by
the user for new types. In the first version of SML equality
was simply overloaded at all monomorphic types; while the
second version introduced special equality type variables.

Type classes were introduced into Haskell in order to pro-
vide a uniform framework for overloading [WB89]. Tt must
have been an idea whose time had come, as it was indepen-
dently described by Kaes [Kae88]. Since then type class-
es have attracted considerable attention, with many refine-
ments and variants being described [NS91, NP93, HHPW94,
Aug93, PJ93, Jon92b, CHO92, Jon93]. They have also at-
tracted some criticism [App93].

In our view, one of the most serious criticisms of type
classes is that a program cannot be assigned a meaning in-
dependent of its types. A consequence of this is that two of

*Institut flir Programmstrukturen, Universitdt Karlsruhe, 76128
Karlsruhe, Germany; e-mail:odersky,wehr@ira.uka.de

TDepartment of Computing Science, University of Glasgow, Glas-
gow G12 8QQ), Scotland; e-mail: wadler@dcs.gla.ac.uk

Philip Wadler!

Martin Wehr*

the most celebrated properties of the Hindley/Milner type
system are not satisfied in the presence of type classes: there
is no semantic soundness result, and the principal types re-
sult holds only in a weak form.

The semantic soundness result shows a correspondence
between the typed static semantics of program and its un-
typed dynamic semantics. It is summarised by Milner’s
catchphrase ‘well typed programs cannot go wrong’. One
cannot even formulate such a result for type classes, as no
untyped dynamic semantics exists.

The principal type result shows that every typable pro-
gram has a single most general type. This is also true for
type classes. However, much of the utility of this result
arises from another property of the Hindley/Milner system:
every typeable program remains typeable if all type decla-
rations are removed from it, so type declarations are never
required. This fails for type classes: some programs are
inherently ambiguous, and require type declarations for dis-
ambiguation. Put another way: under Hindley/Milner, a
program is untypeable only if it may have no meaning; un-
der type classes, a program may be untypeable because it
has too many meanings.

The absence of these properties is not merely the lack
of a technical nicety: they arise because the meaning of
a program cannot be understood separately from its type.
This reduces the range of ways of understanding programs
available to a programmer, and reduces the range of ways
of implementing programs available to a compiler.

Restricting type classes By a simple restriction to type
classes, we may ensure that a program possesses a meaning
that can be determined independently of its type.

Recall that a type class limits a type variable, say a, to
range over only those types on which an overloaded opera-
tor i1s defined; the overloaded operator may have any type
involving a. Here are some examples, representing in sim-
plified form parts of the Haskell standard prelude.

class (Num a) where

(+) ::a->a->a

(*) ::a->a->a

neg :: a -> a

fromInteger :: Integer -> a

class (Eq a) where
(==) :: (Eq a) => a -> a -> Bool

class (Text a) where
show :: a -> String
showList :: [a] -> String
read :: String -> a

For instance, the first of these states that type a belongs to
class Num only when there are operators (+), (#), neg, and
fromInteger of the specified types defined for a.

The restriction is as follows: for a type class over a type
variable a, each overloaded operator must have a type of
the form a -> t, where t may itself involve a. In the above,
(+), (), neg, (==), and show satisfy this restriction, while
fromInteger, showList, and read do not.

Remarkably, this simple restriction enables one to con-
struct an untyped dynamic semantics, and ensures that no
ambiguity can arise: hence type soundness and the strong
form of principal types do hold. The resulting system is still
powerful enough to handle the overloading of arithmetic,
equality, and showing a value as a string, but not powerful
enough to handle the overloading of numerical constants or
reading a string as a value. The latter are perhaps less es-
sential than the former: neither Miranda nor SML support
overloading of the latter sort, and Kaes considered only this
restricted form of overloading in his original paper [Kae88].

As an example of the value of this restriction, consider
the phrase [1 == [1. In Haskell, this phrase as it stands is
ambiguous, and hence meaningless: one must disambiguate
by specifying the type of the list elements. This is be-
cause the meaning of the program is given by the translation
eqlist eqElt [] [1, where eqList is equality on lists, and
eqElt is equality over on the list elements.

In our restricted system, we are guaranteed that the
phrase [1 == [] has a meaning independent of types; and
that all valid translations yield this meaning. The imple-
mentor has a choice: overloading may be implemented by
run-time branching, corresponding to the untyped dynam-
ic semantics of Section 3, or by compile-time translation,
corresponding to the typed static semantics of Section 4.
In the latter case, a valid translation of the program is
eqlist undef [] [], where undef is the function that is
everywhere undefined; this is because coherence guarantees
that if the program doesn’t force a translation, then any
translation will do. For unrestricted Haskell the compiler
writer must choose a translation, because there is no dy-
namic semantics, and must choose eqElt rather that undef,
because there is no suitable coherence result.

Thus, our restriction of type classes ensures additional
useful properties that hold. These additional properties in
turn make it possible for us to consider a generalisation of
type classes.

Generalising type classes Type classes constrain type vari-
ables to range over types at which certain overloaded op-
erators are defined. This appears to be closely related
to bounded polymorphism, which constrains type variables
to range over types that are subtypes of a given type
[CW85, BTCGS91]. Indeed, one can use type classes to
mimic bounded polymorphism for the usual subtyping re-
lation on records [Pet94]. But, annoyingly, this mimicry
works only for monomorphic records; type classes are not
quite powerful enough to handle polymorphic records.

For instance, one would expect the operations xcoord
and ycoord to apply to any record type that contains those
fields, for instance it should apply both to a type Point
containing just those two fields, and to a type CPoint that
contains both those fields plus a colour. Here is how one can
mimic such records in Haskell .

class (Pointed a) where
xcoord :: a -> Float
ycoord :: a -> Float

data Point MkPoint Float Float
data CPoint = MkCPoint Float Float Colour

instance Pointed Point where
xcoord (MkPoint x y) = x
ycoord (MkPoint x y) =y

instance Pointed CPoint where
xcoord (MkCPoint x y ¢) = x
ycoord (MkCPoint x y ¢) =y

distance :: (Pointed a) => a -> Float
distance p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Function distance computes the distance of a point from
the origin. The type signature is optional, as it may be
inferred given only the class declaration and the function
body.

Note, alas, that this mimicry depends on each field of the
record having a monomorphic type that can appear in the
class declaration. The polymorphic equivalent of the above
would be to have operations first and second that return
the corresponding components of either a pair or a triple,
where these may have any type rather than being restricted
to Float. But there is no way to do this in Haskell.

The source of this problem is class declarations. For
xcoord, the instances

Point -> Float
CPoint -> Float

xcoord ::
xcoord ::

can arise as instantiations of the class declaration

xcoord :: a -> Float .

But for first the instances

first :: (a,b) -> a
first :: (a,b,c) -> a

have no corresponding class declaration.

We solve this problem by getting rid of class declarations.
Instead of declaring that a group of operators belong to a
class and specifying a type declaration, we only specify that
an operator is overloaded and give no type declaration.

Here is the previous example in our new notation.

over xcoord
over ycoord

data Point MkPoint Float Float
data CPoint = MkCPoint Float Float Colour

inst xcoord :: Point -> Float
xcoord (MkPoint x y) = x

inst ycoord :: Point -> Float
ycoord (MkPoint x y) =y

inst xcoord :: CPoint -> Float
xcoord (MkCPoint x y ¢) = x

inst ycoord :: CPoint -> Float
ycoord (MkCPoint x y ¢) =y

distance :: (xcoord,ycoord::a->Float) => a -> Float
distance p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Again, the type declaration for distance may be inferred
from its body (ignoring, for simplicity, the overloading of
sqrt, sqr, and +).

Furthermore, it is now possible to overload first and
second on polymorphic pairs and triples.

over first
over second
over third

inst first :: (a,b) -> a
first (x,y) = x

inst second :: (a,b) -> b
second (x,y) = x

inst first :: (a,b,c) -> a
first (x,y,z) = x

inst second :: (a,b,c) > b
second (x,y,z) =y

inst third :: (a,b,c) -> ¢
third (x,y,z) = ¢

demo :: (first::a->b,second::a->c) => a -> (c,b)
demo r = (second r, first r)

Function demo takes a pair or triple and returns its second
and first components, in that order. Again, its type can be
inferred.

In short, eliminating class declarations makes type class-
es powerful enough to model bounded polymorphism.

Eliminating class declarations means one need no longer
decide in advance which operations belong together in a
class. In many situations, this will be a positive advan-
tage. For instance, if we’re dealing with pairs we only want
first and second grouped together, but if we’re dealing
with triples we’ll want third as well. As a further example,
consider the difficulties that the Haskell designers had decid-
ing how to group numeric operators into classes. This design
is still argued: should + and * be in a ‘ring’ class? The prob-
lem is exacerbated because there is no mechanism in Haskell
whereby a user may break a given class into smaller classes.

On the other hand, eliminating class declarations means
that inferred types become more verbose: the type of every
overloaded operator must be mentioned. Records provide
some relief here, since they allow us to group related op-
erations together, using a common overloaded identifier for
them all. This is explained in more detail in Section 5.

Contributions of this work We combine the above restric-
tions and generalisations of type classes to define System O,
a type system for overloading with the following properties.

e System O possesses an untyped dynamic semantics,
and satisfies a corresponding type soundness theorem.

e System O has a strong principal types property. It
is never necessary to add type declarations to disam-
biguate a program.

e As with type classes, there is a standard dictionary
transform which takes well-typed programs in System
O into equivalent well-typed programs in the Hind-
ley /Milner system.

e System O is powerful enough to model a limited form
of F-bounded polymorphism over records, including
polymorphic records.

We believe that this makes System O an interesting alter-
native to type classes.

Related work. Overloading in polymorphic programming
languages has first been studied by Kaes [Kae88] and Wadler
and Blott [WB8&9]. Similar concepts can be found in earlier
work in symbolic algebra [JT81]. This paper is very much
in the tradition of Kaes in that overloading is restricted to
functions. It can be seen as a simplification of his system
that gets rid of all syntactic declarations of predicates or
type classes. We extend the scope of his work by a proof of
type soundness and the relationship to record typing.

Much of the later work on overloading is driven by the de-
sign and implementation of Haskell’s type classes, e.g. Nip-
kow et al. [NS91, NP93] on type reconstruction, Augustsson
[Aug93] and Peterson and Jones [PJ93] on implementations,
and Hall, Hammond, Peyton Jones and Wadler [HHPW94]
on the formal definition of type classes in Haskell. We have
already compared our system to that of Haskell.

Other generalisations of Haskell type classes have been
proposed. Wadler and Blott, and Jones, consider type class-
es with multiple type variables [WB8&9, Jon92b]. Chen, Hu-
dak and Odersky’s parametric type classes [CHO92] also
have multiple type variables, but a functional dependence is
imposed between a primary class variable and dependent pa-
rameters. Parametric type classes can model container class-
es and records. Constructor classes generalize type classes
to type constructors [Jon93]. Constructor classes are very
good at modeling containers with operations that mediate
between similar containers with different element types. We
consider it an important problem to determine whether our
type system can be generalized to type constructors.

All systems discussed so far implement an open world
approach, where even empty classes, which do not have any
instances at all, are considered legal. This approach works
well in a system with separate compilation, where the type
checker does not have complete knowledge of instance dec-
larations. By contrast, the closed world approach of e.g.
[Rou90, Smi91l, Kae92] rules out empty type schemes. Dug-
gan and Ophel [DOY4] support both approaches by distin-
guishing between open and closed kinds. Volpano [Vol93]
has argued that many previously known open world sys-
tems are unsound. Volpano’s negative results arise because
he works with an untyped dynamic semantics for programs
with type classes. We have argued here that this is not per-
missible for Haskell-like programs. Also, by proving type
soundness with respect to the untyped dynamic semantics
of System O, we show that Volpano’s critique does not apply
to open world systems in general.

An alternative treatment of overloading regards it as a
special case of dynamic typing, using a typecase construct to
discriminate between overloaded variants [DRW95, HM95].
A semantics along these lines was studied by Thatte [Tha94].
Thatte’s semantics maps programs to an explicitly typed
polymorphic language similar to XML [MH8&8]. Type classes
denote sets of recursive types in this language. By contrast,
our semantics maps to an untyped language where types and
type schemes denote ideals.

Outline The rest of this paper is organized as follows. Sec-
tion 2 presents syntax and typing rules of System O. Sec-
tion 3 develops a compositional semantics and proves a type
soundness theorem. Section 4 discusses the dictionary pass-
ing transform. Section 5 presents an encoding of a polymor-
phic record calculus. Section 6 discusses type reconstruction
and the principal type property. Section 7 concludes.

Unique variables u e U
Overloaded variables 0 e O
Constructors k e K=U{Kp | DeD}
Variables T = uwl|ol|k
Terms e = x| due|ee |letu=ceine
Programs p = e |insto:or=cinp
Type variables @ e A
Datatype constructors D e D
Type constructors T e 7T =Du{=}
Types T = a|rt—=7 | Dn..m where n = arity (D)
Type schemes o = 1| VYara=>o
Constraints on o Ta = 01:Q—T1,...,0n:0 — Tnp (n >0, with o1, ..., on distinct)
Typotheses T' = ©1:01,...,0%n:0n (n>0)
Figure 1: Abstract syntax of System O.
Ik : 'k oznion
(TAUT) T'hkaoio (z:oel) g g (SET)
'k z1:01,...,2n:0n
Faa Foe: tv(T 'k e:Va.m, 'k o
(v1))T e .cr (a gtv(I)) e:Va.mg = c.r [r/a]x (VE)
'k e:Vara=>o T'tk e:[r/alo
Tu:rkFe:7 F'Fe:r—=r FFe:7r
—1 - —F
(=D I due:r— 1/ I Fee:r ()
)) . (0:o0p el = T#£T
(LET) LFe:io Luiogbe:r I'Fe:orp T,o:or F p:o’ (INST)

'tk letu=ceine : 7

' Finsto:or=cinp:o’

Figure 2: Typing rules for System O.

2 Type System

We base our discussion on a simple functional language with
overloaded identifiers. Figure 1 gives the syntax of terms
and types. We split the variable alphabet into subalphabets
U for unique variables, ranged over by u, O for overloaded
variables, ranged over by o, and K for data constructors,
ranged over by k. The letter x ranges over both unique and
overloaded variables as well as constructors. We assume that
every non-overloaded variable u is bound at most once in a
program.

The syntax of terms is identical to the language Fxp
in [Mil78]. A program consists of a sequence of instance
declarations and a term. An instance declaration (inst o :
or = e in p) overloads the meaning of the identifier o with
the function given by e on all arguments that are constructed
from the type constructor 7.

A type 7 is a type variable, a function type, or a
datatype. Datatypes are constructed from datatype con-
structors D. For simplicity, we assume that all value con-
structors and selectors of a datatype D 7 ... 7, are pre-
defined, with bindings in some fixed initial typothesis I'o.
With user-defined type declarations, we would simply col-
lect in I['g all selectors and constructors actually declared in
a given program. Let Kp be the set of all value constructors
that yield a value in D7,, 7, for some types 71,...., Tn.

We assume that there exists a bottom datatype 1L € D with
K1 = 0. Note that this type is present in Miranda, where
it is written (), but is absent in Haskell, where () has a value
constructor, also written (). We let T" range over datatype
constructors as well as the function type constructor (—),
writing (—) 7 7’ as a synonym for 7 — 7.

A type scheme o consists of a type 7 and quantifiers
for some of the type variables in 7. Unlike with Hind-
ley/Milner polymorphism, a quantified variable o comes
with a constraint m, which is a (possibly empty) set of
bindings o : @« — 7. An overloaded variable o can appear at
most once in a constraint. Constraints restrict the instance
types of a type scheme by requiring that overloaded identi-
fiers are defined at given types. The Hindley/Milner type
scheme Va.o is regarded as syntactic sugar for Va.() = o.

Figure 2 defines the typing rules of System O. The type
system is identical to the original Hindley/Milner system,
as presented in in [DM82], except for two modifications.

o In rule (VI), the constraint m, on the introduced
bound variable « is traded between typothesis and
type scheme. Rule (VE) has as a premise an instan-
tiation of the eliminated constraint. Constraints are
derived using rule (SET). Note that this makes rules
(VI) and (VE) symmetric to rules (—I) and (—E).

o There is an additional rule (INST) for instance dec-

larations. The rule is similar to (LET), except that
the overloaded variable o has an explicit type scheme
or and it is required that the type constructor T' is
different in each instantiation of a variable o.

We let o7 range over closed type schemes that have T' as
outermost argument type constructor:

(tv(r) € {1, ..., an})
(tv(ma) C tv(or)).

or = Tai..an—T
I
| Vara = op

The explicit declaration of o7 in rule (INST) is necessary
to ensure that principal types always exist. Without it, one
might declare an instance declaration such as

insto=Az.zinp

where the type constructor on which o i1s overloaded cannot
be determined uniquely.

The syntactic restrictions on type schemes o1 enforce
three properties: First, overloaded instances must work uni-
formly for all arguments of a given type constructor. Second
the argument type must determine the result type uniquely.
Finally, all constraints must apply to component types of
the argument. The restrictions are necessary to ensure ter-
mination of the type reconstruction algorithm. An example
is given in Section 6.

The syntactic restrictions on type schemes o7 also ex-
plain why the overloaded variables of a constraint m, must
be pairwise different. A monomorphic argument to an over-
loaded function completely determines the instance type of
that function. Hence, for any argument type 7 and over-
loaded variable o, there can be only one instance type of
o on arguments of type 7. By embodying this rule in the
form of type variable constraints we enforce it at the earliest
possible time.

Example 2.1 The following program fragment gives in-
stance declarations for the equality function (==). We
adapt our notation to Haskell’s conventions, writing :: in-
stead of : in a typing; writing (o::a->t1)=>t2 instead of
Va.(o ca — 7'1) = 72; and writing inst o :: s; o = e
instead of inst o : 0 = e.

inst (== : Int -> Int -> Bool
(==) = primEqlnt
listEq :: ((==)::a->a->Bool) => [a]->[a]->Bool

True
x ==y &% listEq xs ys

listEq [1 []
listEq (x:xs) (y:ys)

inst (==) :: ((==):: a->a->Bool) => [a]->[a]l->Bool

(==) = 1listEq

Note that using (==) directly in the second instance dec-
laration would not work, since instance declarations are not
recursive. An extension of System O to recursive instance
declaration would be worthwhile but is omitted here for sim-
plicity.

Example 2.2 The following example demonstrates an
object-oriented style of programming, and shows where we
are more expressive than Haskell’s type classes. We write
instances of a polymorphic class Set, with a member test
and operations to compute the union, intersection, and dif-
ference of two sets. In Haskell, only sets of a fixed element
type could be expressed. The example uses the record ex-
tension of Section 5; look there for an explanation of record
syntax.

type Set a sa
= (union, inters, diff :: sa -> sa,

member :: a -> Bool |}
inst set :: ((==)::a->a->Bool) => [a] -> Set a [a]
set xs =
(union = \ys -> xs ++ ys,
inters = \ys -> [y | y <- ys | y ‘elem‘ xs],
diff = \ys -> xs \\ ys,
member = \y ->y ‘elem‘ xs)
inst set :: ((==),(<):: a->a->Bool)

=> Tree a -> Set a (Tree a)
set =

m Here are some functions that work with sets.

union :: (set: sa -> Set a sa) => sa -> sa -> sa
union xs ys = #union (set xs) ys

diff :: (set: sa -> Set a sa) => sa -> sa -> sa
diff xs ys = #diff (set xs) ys

simdiff :: (set: sa -> Set a sa) => sa -> sa -> sa
simdiff xs ys = union (diff xs ys) (diff ys xs)

3 Semantics

We now give a compositional semantics of System O and
show that typings are sound with respect it. The semantics
specifies lazy evaluation of functions, except for overloaded
functions, which are strict in their first argument. Alter-
natively, we could have assumed strict evaluation uniformly
for all functions, with little change in our definitions and no
change in our results.

The meaning of a term is a value in the CPO V| where
V is the least solution of the equation

Vo= WL+ V=V 4 D bV Vi) L

ke

Here, (4) and Z denote coalesced sums' and V — V
is the continuous function space. The value W denotes a
type error — it is often pronounced “wrong”. We will show
that the meaning of a well-typed program is always different
from “wrong”.

The meaning function [-] on terms is given in Figure 3. Tt
takes as arguments a term and an environment 7 and yields
an element of V.The environment 1 maps unique variables
to arbitrary elements of V, and it maps overloaded variables
to strict functions:

n:U—=V U O—=Ve=V)

The notation 5[z := v] stands for extension of the environ-
ment 5 by the binding of = to v.

Note that our semantics is more “lazy” in detecting
wrong terms than Milner’s semantics [Mil78]. Milner’s se-
mantics always maps a function application fW to W
whereas in our semantics f W = W only if f is strict. Our
semantics correspond better to the dynamic type checking
which would in practice be performed when an argument is
evaluated. We anticipate no change in our results if Milner’s
stricter error checking is adopted.

We now give a meaning to types. We start with types
that do not contain type variables, also called monotypes.
We use p to range over monotypes. Following [Mil78] and

Hnjection and projection functions for sums will generally be left
implicit to avoid clutter.

[e]n = (<)
[Au.e]ln = dv.[e]n[w:= v]

Ik My ... MyQn = k ([Mi]n) ... ([Ma]n),

where n = arity (k)

[ee'ln = iffe]lneV — V then ([e]n) ([e'ln)
else W

[letu=-cine]n = [eIn[u:=[e]n]

[insto:or =einply =
if [e]n € V — V then

[plnlo := extend(T, [e]n,n(0))]
else W

where

extend((—), f,g9) =

Av.if v € V — V then f(v) else g(v)
extend(D, f,g) =

Av.if 3k e Kp.vek V...V then f(v) else g(v).

arity (k)

Figure 3: Semantics of terms.

[MPS86], we let monotypes denote ideals. For our purposes,
an ideal I is a set of values in V which does not contain
W, is downward-closed and is limit-closed. That is, y € [
whenever y < x and z € I, and |_|X € I whenever z € [for
all elements z of the directed set X.

The meaning function -] takes a monotype p to an ideal.
It is defined as follows.

1D s oo] =
{LYo ULk L] - [und
|[Tobk:pi—...—ph — Dpropim}
[n1 — n2] =
{feV—=V|velm]l= fvelu]}

Proposition 3.1 Let p be a monotype. Then [p] is an
ideal.

Proof: A straightforward induction on the structure of p. O

When trying to extend the meaning function to type
schemes we encounter the difficulty that instances of a con-
strained type scheme Va.7, = o depend on the overloaded
instances in the environment. This is accounted for by in-
dexing the meaning function for type schemes with an envi-
ronment.

Definition. A monotype u is a semantic instance of a type
scheme o in an environment 7, written 5 |= p < o, iff this
can be derived from the two rules below.
(a) n = n = p
(b) nEp =X Vama = o)
if there is a monotype pu’ such that n = p < [p'/a]o
and 5(o) € [[¢'/a]r], for all 0 : 7 € 7q.
Definition. The meaning [#], of a closed type scheme o is
given by

[oy = (el | nE=n =0},

Definition. 5 = e1 : 01, ..., en : oy iff [ei]ln € [o:]n, for
1=1,...,n.

The meaning of type schemes is compatible with the
meaning of types:

Proposition 3.2 Let u be a monotype, and let be an
environment. Then [u], = [x].

Proof: Direct from the definitions of [o], and <. O

We now show that type schemes denote ideals. The proof
needs two facts about the bottom type L.

Lemma 3.3 Let 5 be an environment.

(a) n Eo: L — p, for any variable o, monotype p.

(b) Let 0 = Vay.ma1 = ...Van.Tan = 7 be a type scheme.
Then n |=[1L/a1, ..., LL/ag]r < 0.

Proof: (a) Assume v € [LL]. Since L does not have any
constructors, [UL] = {L}, hence v = L. Since (o) is a
strict function, n(o)v = L, which is an element of every

monotype.
(b) Follows from the definition of < and (a). O

Proposition 3.4 Let o be a type scheme and let 5 be an
environment. Then [o], is an ideal.

Proof: The closure properties are shown by straightforward
inductions on the structure of o. It remains to be shown
that W ¢ [¢]. By Lemma 3.3(b) there is a monotype g
such that 7 |E ¢ < o. Hence, [o]; € []- But [¢] is an
ideal and therefore does not contain W. O

Proposition 3.4 expresses an important property of our se-
mantics: every type scheme is an ideal, even if it contains
a type variable constraint o : @ — 7, where o does not
have any explicitly declared instances at all. Consequently,
there is no need to rule out such a type scheme statical-
ly. This corresponds to Haskell’s “open world” approach to
type-checking, as opposed to the “closed world” approach of
e.g. [Smi91]. Interestingly, the only thing that distinguishes
those two approaches in the semantics of type schemes is
the absence or presence of the bottom type 1L.

We now show that System O is sound, i.e. that syntac-
tic type judgements I' F p : o are reflected by semantic type
judgements T' |=p : 0.

Definition. Let e be a term, let I' be a closed typothesis,
and let o be a closed type scheme. Then T' |= e : o iff, for
all environments 5, 7 =T implies 57 = e : 0.

As a first step, we prove a soundness theorem for terms. This
needs an auxiliary lemma, whose proof is straightforward.

Lemma 3.5 Ifp|=e:ocand n|=pu <o then n|=¢: p.

Theorem 3.6 (Type Soundness for Terms) Let I' - e : o be
a valid typing judgement and let S be a substitution such
that ST and So are closed. Then ST e : So.

Proof: Assume I' e : o and n = ST. We do an induction
on the derivation of I' e : . We only show cases (VI),
(VE), whose corresponding inference rules differ from the
Hindley /Milner system. The proofs of the other rules are
similar to the treatment in [Mil78].

Case (VI): Then the last step in the derivation is

a gtv(l)
TFe:Var, =o'

I
Iwa Fe:o

(TAUT) T Fu:0 > u (u:o0€el) I'tk:oc = u (k:ocel) I'Fo:o > uos (0:0€l)
N T' F e:Va.(o1:71, ...,0n:Tn)=>0 > €
T,o1:71,...,0n:Th F e:o = e agtv(l) r b Oi:[T/(a]ln 1>_ e:)(izl,...,n)
(V) I'' v e:Va(o1:71,...,0n:Th) =0 T - e:[r/alo (VE)
>)\uoly,-l. ...)\uony,-n.e N 6* eiﬂ e:ﬂl
Tu:rke:r = ef F'Fe:r =71 = ¢f I'Foe:r = e}
(=D ' F due:7—r1 ' F erex:r (—E)
= Au.e” = eles
cop el T#£T
'k er:o = €] Tu:o k ex:7 = e I E e oaq;er:>. ;él_ L .
(LET) T F letu=ciines:r <o i € ,0i0r T Pio = P (INST)
= letu=¢cjines : 7 |nst0.ch_*e_|np*.cr
> letugop, =€ inp
Figure 4: The dictionary passing transform
for some a, 7o, 0’ with o = Va.m, = o'. We have to show [T, ..., pn]- v =L then fv= 1 e [p']. Otherwise, by

that e € [u], for all u such that n &= p < Va.S7a = So'.
Pick an arbitrary such p. By definition of (<), there exists
a p' such that 5 |= [p'/a](S7a) and 5 = p < [/a](Scr)
Let S' = [u'/a] 0 S. Thenn|—5ﬂ'a andn|—u-<5cr.
Since o ¢ tv(T'), n = S'T and therefore 5 |= S'(T, 7o). Then
by the induction hypothesis, n | e : S'0’. Tt follows with
Lemma 3.5 that n |=¢ : p

Case (VE): Then the last step in the derivation is

Ik e:Vamg = o I' b [r/a]7a
Tk e:[r/a]o’

for some «, 7o, o', 7 with ¢ = [r/a]o’. We have to show
that e € [u], for all such that n = p < [S7/a]Se’. Pick
an arbitrary such pu. By the induction hypothesis, n |= ¢ :
Va.Sta = So’ and 5 |= [ST/a](S7a). It follows with the
definition of < that n = p < Va.Sma = So’. Then by
Lemma 3.5, n =e:p. O

We now extend the type soundness theorem to whole pro-
grams that can contain instance declarations.

Theorem 3.7 (Type Soundness for Programs)
Let T'Fp:o be a valid closed typing judgement. Then
T'Ep:o.

Proof: By induction on the structure of p. If pis a term, the
result follows from Theorem 3.6. Otherwise p is an instance
declaration at top-level. Then the last step in the derivation
of 'Fp:ois

oo el = T#£T
I'Fe:or
' Finsto:or=cinp’ : 0

Fo:or Fp:o

for some type scheme or. We have to show that |=inst o :
or =einp’ :o. By Theorem 3.6, n |= e : o7, which implies
that [e]; is a function. Therefore, [p]n = [p'Inlo := f]
where f = extend (T, [e]n,n(0)).

Our next step is to show that f e [or],. Let u be
such that 5 = p < opr. Then p = Tu1, ..., gn — p,
for some monotypes g1, ..., in, #'. Now assume that v €

the definition of extend, fv = [e]nv, and [e]nv € [¢']. In
both cases fv € [u']. Since v € [Tu1, ..., pn] was arbitrary,
we have f € [u]. Since p was arbitrary, this implies f €
loz]s

It follows that n[o := f] |= 0 : or. Furthermore, since
n |= T, and T contains by the premise of rule (INST) no
binding o : o7, we have that 5[0 := f] |=T. Taken together,
nlo := f] E T, 0 : or. By the induction hypothesis, n[o :=
flE p' : o, which implies the proposition. O

A corollary of this theorem supports the slogan that “well
typed programs do not go wrong”.

Corollary 3.8 Let ' p : 0 be a valid closed typing judge-
ment and let i be an environment. If 5 =T then [p]n # W.

Proof: Immediate from Theorem 3.7 and Proposition 3.4. O

4 Translation

This section studies the “dictionary passing” transform from
System O to the Hindley/Milner system. Its central idea is
to convert a term of type Va. 7w, = 7 to a function that takes
as arguments implementations of the overloaded variables in
Ta. These arguments are also called “dictionaries”.

The target language of the translation is the Hind-
ley/Milner system, which is obtained from System O by
eliminating overloaded variables o, instance declarations,
and constraints 7, in type schemes. The translation of terms
is given in Figure 4. It is formulated as a function of type
derivations, where we augment type judgements with an ad-
ditional component e* that defines the translation of a term
or program p, e.g. [' F p: o = p*. To ensure the coherence of
the translation, we assume that the overloaded identifiers o;
in a type variable constraint {o1 : a0 — 71, ..., 0p: @ — T}
are always ordered lexicographically.

Types and type schemes are translated as follows.

*

™ =7
(Va.e = 0)* = Va.o*
Vao:a— 1,14 = 0)" = Va(a—71)— (Vra = 0)*

The last clause violates our type syntax in that a type
scheme can be generated as the result part of an arrow.

This is compensated by defining

def
T —Va.o = Va.r — 0.

Bindings and typotheses are translated as follows.

(w:0)* = u:o"
(0:0)" = woo:0".
01:01, ..., 0n:0, = (01:01)% ..., (on:0n)"

This translates an overloaded variable o to a new unique
variable u. ,, whose identity depends on both the name o
and 1its type scheme, o.

Each derivation rule I' F p : o in System O corresponds
to a derivation of translated typotheses, terms and type
schemes in the Hindley/Milner system. One therefore has:

Proposition 4.1 T F p: o = p*is valid then T* - p* : o*
is valid in the Hindley/Milner system

We believe that the translation preserves semantics in
the following sense.

Conjecture Let p be a program, be a monotype, and let
7 be an environment. Let I' be a typothesis which does not
contain overloaded variables. f T'F p: yu > p* and 5 =T

then [p]n = [p*Tn.

Although the above claim seems clearly correct, its formal
proof is not trivial. Note that coherence of the translation
would follow immediately from the above conjecture. Co-
herence, again, is a property that appears obvious but is
notoriously tricky to demonstrate [Blo91, Jon92a], so it is
perhaps not surprising that the above conjecture shares this
property.

5 Relationship with Record Typing

In this section we study an extension of our type system
with a simple polymorphic record calculus similar to Ohori’s
[Oho92]. Figure 5 details the extended calculus. We add to
System O

e record types {li : 11, ..., ln: 70},
e record expressions {l1 = e1,...,l, = en}, and
e selector functions #l1.

It would be easy to add record updates, as in the work
of Ohori, but more difficult to handle record extension, as
in the work of Wand [Wan87] or Rémy [Rem8&9]. Jones
[Jon92a] has shown how to embed Rémy’s system of exten-
sible records by extending unification to an AC theory for
records and using (multi-parameter) type classes for stating
the absence of fields in a record. Both updates and exten-
sions are however omitted here for simplicity.

Leaving open for the moment the type of selector func-
tions, the system presented so far corresponds roughly to
the way records are defined in Standard ML. Selectors are
treated in Standard ML as overloaded functions. As with
all overloaded functions, the type of the argument of a se-
lector has to be known statically; if it isn’t, an overloading
resolution error results.

Our record extension also treats selectors as overloaded
functions but uses the overloading concept of System O. The
most general type scheme of a selector #l is

ViVa.(a <{l:f})=>a— 4.

This says that #I can be applied to records that have a field
[. 7, in which case it will yield a value of type 7. The
type scheme uses a subtype constraint o < p. Subtype con-
straints are validated using the subtyping rules in Figure 5.
In all other respects, they behave just like overloading con-
straints o : o« — T.

Example 5.1 The following program is typable in System
O (where the typing of max is added for convenience).

let max : VB.((<): 8 — 8 — bool) =
Vala <{key:f})=>a—a—a
= Az Ay.if #key © < #key y then y else
in

max {key = 1,data = a} {key = 2, data = b}

In Standard ML, the same program would not be typable
since neither the argument type of the selector #key nor the
argument type of the overloaded function (<) are statically
known.

Note that the bound variable in a subtype constraint can
also appear in the constraining record type, as in

Va.(a < {l: a — bool}) = [o]

Hence, we have a limited form of F-bounded polymorphism
[CCHT89] — limited since our calculus lacks the subsump-
tion and contravariance rules often associated with bounded
polymorphism [CW85]. Tt remains to be seen how suitable
our system is for modeling object-oriented programming.
Some recent developments in object-oriented programming
languages seem to go in the same direction, by restricting
subtyping to abstract classes [SOM93].

We now show that the record extension adds nothing
essentially new to our language. We do this by presenting
an encoding from System O with records to plain System O.
The source of the encoding is a program with records, where
we assume that the labels l1, ..., I, of all record expressions
{li = e1,...,l, = en} in the source program are sorted lex-
icographically (if they are not, just rearrange fields). The
details of the encoding are as follows.

1. Every record-field label ! in a program is represented by
an overloaded variable, which is also called 1.

2. For every record expression {li = e1,...,ln = en} in
a program, we add a fresh n-ary datatype R;, .;, with a
constructor of the same name and selectors as given by the
declaration

data Rl1~~~ln a1 ...0p = Rll...l a1 ...0n.

n

3. For every datatype R, i, created in Step 2 and every
label I; (1 =1,...,n), we add an instance declaration

instl; @ Vaq..an. Ry 1, a1 .cooan —

= ARy 1, T1 ... Tn).5

(where the pattern notation in the formal parameter is used
for convenience).

4. A record expression {li = e1,...,l, = e} now translates
to Ry, .1, €1...€n.

5. A selector function #l! translates to .

6. A record type {li :7i,..,ln: 7} is translated to
Ry, o, T T

Additional Syntax

Field labels l e L
Terms e = .| #H | {i=e€,....,lhn=en} (n>0)
Record types p = {h:m, ..., LT (n >0, with &y, ..., I, distinct)
Types T o= ...]p
Constraints on o« 7, = L] a<p
Typotheses r = L] a<p
Subtyping Rules
(Taut) T,a<pk a<p Al :m, oo b omny lngn 2 Toge1, - oy Ing 2 Tt} (Rec)
S {l1 CT1y ey anTn}
Additional Typing Rules
I'kFe:m I'Foen:m
T Tk #1:V8NVa < {l:B}.a— E
({30 't {ti=e,....ln=€x}:{lh i, ..., ln:mn} # B¥o<A{l: fla—p ({}E)

Figure 5: Extension with record types.

,In: T} becomes an

Jn ta— T

7. A subtype constraint o < {l;:7,...
overloading constraint & : o« — 1, ...

Let ef, ot or T'T be the result of applying this translation
to a term e, a type scheme o, or a typothesis I'. Then one
has:

Proposition 5.2 T'Fe:r ff TTF el : 7.

Proposition 5.2 enables us to extend the type soundness and
principal type properties of System O to its record extension
without having to validate them again. It also points to an
implementation scheme for records, given an implementa-
tion scheme for overloaded identifiers.

Example 5.3 The program of Example 5.1 translates to

inst data : VaVB.Raatakey @ 3 — «
= ARdgatakey T y. & in
s VaV@. Raatakey @ f — 3
=)\Rdata,key ry.y in
let max : VB.((<): f — 8 — bool) =
Va.lkey:a =)= a—a—a
= Az.Ay.if key ¢ < key y then y else z

inst key

max (Rdata,key 1 a) (Rdata,key 2 b)

Records can help to contain the number of overloaded iden-
tifiers in type signatures. The idea is to put related oper-
ations in a record which is constructed with a single over-
loaded identifier. The next example expresses shows how to
model a simplified Num class in this way. In the Haskell-like
syntax we use parentheses (...) instead of braces {...} for
records.

type Num a = (plus :: a -> a -> a,
minus:: a -> a -> a,
neg :: a —-> a)
over num
inst num :: Int -> Num Int
num =
), (=) (num :: a -> Num a) => a -> a -> a
neg (num :: a -> Num a) => a -> a

(#+) x y = #plus (num x) x y

(-) x y = #ninus (num x) x y

neg x = #neg (num x) x

Note the similarity to dictionary passing. One shortcoming

of this scheme with respect to Haskell’s class declarations
concerns subclassing. For instance, we could not pass a
variable of type (num :: a -> Num a) => a to a function
of type

:: a —-> a -> Bool,
a ->a ->Bool)) =>a->b

a -> (plus
minus ::

(num ::

Even without introducing full subtyping on records it may
be helpful to supplement our system with some way for deal-
ing with this common case. Further experience will be re-
quired to determine this.

6 Type Reconstruction

Figures 6 and 7 present type reconstruction and unification
algorithm for System O. Compared to Milner’s algorithm W
[Mil78] there are two extensions.

e The case of binding a type variable in the unification
algorithm is extended. To bind a type variable o to
a type 7 the constraints of I', have to be satisfied.
The function mkinst ensures that type 7 statisfies the
constraints [',.

e The function tp is extended with a branch for instance
declarations inst o : o7 = € in p. In this case it must be
checked that the inferred type o/ for the overloading
term e is less general then the given type o7.

We now state soundness and completeness results for the
algorithms unify and tp. The proofs of these results are
along the lines of [Che94]; they are omitted here.

We use the following abbreviations:

I'a
Ta

{ota—1|o0o:a—r71el}
UaGAFa

where A is a set of type variables.

Definition. A configuration is a pair of a typothesis I' and
a substitution S such that, for all « € dom(S), I'y = 0.

unify = (r,7)— (I',S) — (I, S)
unify(r,m2)(L,S) = case (S71,Sm) of
(a,0) =
(I, 5)

(a, 7), (1, @) where o ¢ tv(r) =
foldr mkinst (I'\I'a,[r/a]o S) T
(IT'7,T72) =
foldr unify (T',5) (ztp (T1,T2))

mkinst : (o:a —71)— (I,5) = (T,5)
mkinst(o:a — 1) ([,5) = case Sa of
8=

if Jo:8—7" el
then wnify (r,7') (T, S)
else (TU{o: B —[8/alr},s)
T7T=
case {newinst (67,I',5) | o: 070 €'} of
{(m1,T1,51)} = unify (. — 7, m1) (I'1, 51)

Figure 6: Algorithm for constrained unification

Definition. The following defines a preorder < on substitu-
tions and configurations and a preorder <r on type schemes.
If X XY we say that Y is more general than X.

o S’ < Siff thereis a substitution R such that S’ = RoS.
o (I, 8"y = (I,5)iff S" X S5, ST' F STaom¢s) and
F/ 2 r \ I‘dom(S’)~

o o/ =p oiff, for all u ¢ dom(I'), T + w:
I Fu:o.

o implies

Definition. A constrained unification problem is a pair of
tuples (m,72)([,S) where 7,7 are types and (I',S) is a
configuration.

A configuration (T, 5") is called a unifying configuration
for (r1,m2)(T,.S) iff (T',5") < (T,S) and S'm = S'rm.

The unifying configuration (T,S’) is most general iff
(", 8"y < (I, 8", for every other unifying configuration
(I\//’ S”).

Definition. A typing problem is a triple (p,I',.S) where
(T',S) is a configuration and p is a term or program with
fv(p) C dom(T).

A typing solution of a typing problem (p, T, S) is a triple
(o,T',5") where (T',S") < (T,5) and S'T' + p:S'o.

The typing solution (o, T, .S") is most general iff for every
other typing solution (", T", 5"} it holds (", S") < (T", 5"
and ”0'” jS”F” SHO'.

Theorem 6.1 Let (r,72)(I,S) be a constrained unifica-
tion problem

(a) If unify(m,=)(T,S) = (T',5") then (T',S’) is a most
general unifying configuration for (1, 2)(T,).

(b) If wunify(m,m2)(T,S) fails then there exists no unifying
configuration for (71, 2)(T, S).

Theorem 6.2 Let (p,I',S) be a typing problem.

(a) If tp (p,T,5) = (o,T',5") then (o,T",5") is a most gen-
eral solution of (p, T, S).

(b) If tp (p, T, S) fails, then (p,T',S) has no solution.

As a corollary of Theorem 6.2, we get that every typable
program has a principal type, which is found by tp.

Corollary 6.3 (Principal Types) Let (p, I, id) be a typing
problem such that tv(I') = §.

(a) Assume gen (tp (p,I',id)) =
So'. Then

I'tp:o
I'Fp:o’=0"<ro,

(¢/,T',5) and let ¢ =
and
for all type schemes o”.

(b) If tp (p, T, id) fails then there is no type scheme o such
that I' + p:o.

10

The termination of untfy and mkinst critically depends on
the form of overloaded type schemes or:

(tv(r) C{ai, ..., an})
(v(m) C t3(o)).

or = Tai..apn—T
I
| Voa.ra = o

We show with an example why o7 needs to be parametric
in the arguments of 7. Consider the following program,
where k € K.

let (;)zy=uyin
insto:Va.o:a—a=TTa) =«
= Xk(kz).oz
in Az Ay Af.ozs0y; f(ky); fe
Then computation of ¢p(p, 0, id) leads to a call tp(fz, T, S)

with z o,y 3, f: T8 — 6 €. This leads in turn to a call
unify(a, TF)(T,S) where the following assumptions hold:

p =

e or =Vao:a—a=>TTa)—a
o' D {o:a—a,0:8—pB0:07},
e S is a substitution with a, 8 ¢ dom(S).

Unfolding unify gives mkinst(o : @« — «)(T' \ T, S") where
S’ = [TB/a] o S, which leads in turn to the following two
calls:

1. newinst(or, '\ Ta,S") = (T(TY) — 7,1, 5")
where I' D {o: 8 — B,0: v —v,0:0r}and vis a
fresh type variable, and

2. unify(oe — o, T(Ty) — v)(T',5").

Since S'@ = Tp, unfolding of (2) results in an at-
tempt to unify 7% and T(T%)), which leads to the call
unify(8, Ty)(T',S’). This is equivalent to the original call
unify(a, TF)(T,S) modulo renaming of o, 8 to 3,v. Hence,
unt fy would loop in this situation.

The need for the other restrictions on o7 are shown by
similar constructions. It remains to be seen whether a more
general system is feasible that lifts these restrictions, e.g. by
extending unification to regular trees [Kae92].

7 Conclusion

We have shown that a rather modest extension to the Hind-
ley/Milner system is enough to support both overloading
and polymorphic records with a limited form of F-bounded
polymorphism. The resulting system stays firmly in the tra-
dition of ML typing, with type soundness and principal type
properties completely analogous to the Hindley/Milner sys-
tem.

newinst (o,1,5) — (7,T,5)
newinst (Va.ro = 0,1, .5)
= let [a new type variable
in newinst

' ([8/alo, L U[B/a]ma, 5)
newinst (r,T,.5)
= (r,T,9)

skolemize (o,1,5) — (7,T,5)
skolemize (Va.7mq = 0,1, 5)
= let T a new 0-ary type constructor
in skolemize
([T/alo, T U [T/a]7a, S)

skolemize (1,1, S

tp (Au.e, I, S)
= let « a new type variable
(T,F1,S1) =1p (S,F U {u : CY},S)
in (a—7,I1,51)

tp (ee',T,5)
= let (T1,F1,S1):tp (S,F,S)
(TQ,FQ,SQ) = tp (6/,F1,S1)
«a a new type variable
(T, S3) = unify (r1, 2 — «a) (T2, S2)
in (a/,rg,Sg)

tp (letu=eine T,5)
= let (0,T1,51)=gen (tp (e, T,5))
in tp(e/,T1U{u:a},51)

tp (insto:or =einp,I',5)
= let (o%,T1,51) = gen (tp (e,T,5))
(m2,T2,52) = skolemize (67,11, 51)
(12,T3,53) = newinst (o/r,T2,52)
in if Yoior eD.T#4T A
unify(m, 73)(I's, Sa) defined then
tp (p, T1U{o:0or},51)

(r,T,5)
gen (,T,8) — (o,T,5)
gen (o,I,5) = if Ja.a etv(Sa) \ tv(S(T'\T'a))
then gen (Va.T'a = 0,T'\T4, S)
else (o,T,5)
tp : (p,T,8) —(7,T,9)
tp (u,T,5) = fu:0el
then newinst (0,1, S)
tp (o,T,5) = mnewinst (ViVa.(o:a —)= a — §,T,5)

Figure 7: Type reconstruction algorithm for System O

The encoding of a polymorphic record calculus in Sys-
tem O indicates that there might be some deeper relation-
ships between F-bounded polymorphism and overloading.
This is also suggested by the similarities between the dic-
tionary transform for type classes and the Penn translation
for bounded polymorphism [BTCGS91]. A study of these

relationships remains a topic for future work.

Acknowledgments We are grateful to Kung Chen and John
Maraist for valuable comments on previous drafts of this
paper. The section on records was motivated in part by
a discussion led by Simon Peyton Jones, Mark Jones and
others on the Haskell mailing list. Many other discussions
with numerous participants have also contributed to this
work.

References

[App93] Andrew W. Appel. A critique of standard
ML. Journal of Functional Programming, 3(4),
1993.

[Aug93] Lennart Augustsson. Implementing Haskell
overloading. In Proc. ACM Conf. on Functional
Programming Languages and Computer Archi-
tecture, pages 65-73, June 1993.

[Blo91] Stephen Blott. An Approach to Overloading

with Polymorphism. PhD thesis, Department
of Computer Science, University of Glasgow,
Sept 1991.

11

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A.
Gunter, and Andre Scedrov. Inheritance as im-
plicit coercion. Information and Computation,
93:172-221, 1991.

Peter Canning, William Cook, Walter Hill,
Walter Olthoff, and John C. Mitchell. F-
bounded polymorphism for object-oriented pro-
gramming. In Functional Programming Lan-
guages and Computer Architecture, pages 273—
280, September 1989.

Kung Chen. A Parametric FExtension of
Haskell’s Type Classes. PhD thesis, Yale Uni-
versity, New Haven, Connecticut, December

1994. YALEU/DCS/RR-1057.

Kung Chen, Paul Hudak, and Martin Odersky.
Parametric type classes. In Proc. ACM Conf.
on Lisp and Functional Programming, pages
170-181, June 1992.

Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471-522, De-
cember 1985.

[CCHT89]

[Che94]

[CHO92]

[CWS8S5]

[DM82] Luis Damas and Robin Milner. Principal type
schemes for functional programs. In Proc. 9th
ACM Symposium on Principles of Program-

ming Languages, January 1982.

[DOY4] Dominic Duggan and John Ophel. Kinded
parametric overloading. Technical Report CS-

94-35, University of Waterloo, September 1994.

[DRW95]

[HHPW94]

[FM95]

[Jon92a]

[Jon92b]

[Jon93]

[IT81]

[Kae88]

[Kae92]

[MI88]

[Mil78]

[MPSs6]

[NP93]

[NS91]

Catherine Dubois, Francois Rouaix, and Pierre
Weis. Extensional polymorphism. In Proc.
22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 118-129, January
1995.

Cordelia Hall, Kevin Hammond, Simon Pey-
ton Jones, and Philip Wadler. Type classes in
Haskell. In Proc. 5th Furopean Symposium on
Programming, pages 241-256, 1994. Springer
LNCS 788.

Robert Harper and Greg Morrisett. Compil-
ing polymorphism using intensional type anal-
ysis. In Proc. 22nd ACM Symposium on Prin-
ciples of Programming Languages, pages 130—
141, January 1995.

Mark P. Jones. Qualified Types: Theory and
Practice. D.phil. thesis, Oxford University,
September 1992.

Mark P. Jones. A theory of qualified types. In
Proc. 4th FEuropean Symposium on Program-

ming, pages 287-306, February 1992. Springer
LNCS 582.

Mark P. Jones. A system of constructor class-
es: Overloading and implicit higher-order poly-
morphism. In Proc. ACM Conf. on Functional
Programming Languages and Computer Archi-
tecture, pages 52—61, June 1993.

R.D. Jenks and B.M. Trager. A language for
computational algebra. In Proc. ACM Sympo-
sium on Symbolic and Algebraic Manipulation,
pages 22-29, 1981.

Stefan Kaes. Parametric overloading. In Proc.
2nd Furopean Symposium on Programming.
Springer-Verlag, 1988. Springer LNCS 300.

Stefan Kaes. Type inference in the presence
of overloading, subtyping, and recursive types.
In Proc. ACM Conf. on Lisp and Functional
Programming, pages 193-204, June 1992.

John C. Mitchell and Robert Harper. The
essence of ML. In Conference Record of the
Fifteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 28—46.
ACM, ACM Press, January 1988.

Robin Milner. A theory of type polymorphism
in programming. Journal of Computer and Sys-
tem Sciences, 17:348-375, Dec 1978.

D. MacQueen, G. Plotkin, and R. Sethi. An
ideal model for recursive polymorphic types. In-
formation and Control, 71:95-130, 1986.

Tobias Nipkow and Christian Prehofer. Type
checking type classes. In Proc. 20th ACM
Symposium on Principles of Programming Lan-
guages, pages 409-418, 1993.

Tobias Nipkow and Gregor Snelting. Type
classes and overloading resolution via order-
sorted unification. In Proc. ACM Conf. on
Functional Programming Languages and Com-
puter Architecture, pages 1-14, August 1991.
Springer LNCS 523.

12

[Oho92]

[Pet94]

[P193]

[Rem89]

[Rou90]

[Smidl]

[SOM93]

[Tha94]

[Vol93]

[Wan87]

[WBsY]

Atsushi Ohori. A compilation method for ML-
style polymorphic record calculi. In Proc. 19th
ACM Symposium on Principles of Program-
ming Languages, pages 154-165, January 1992.

John Peterson. Structures in Yale Haskell. draft
paper, 1994.

John Peterson and Mark Jones. Implement-
ing type classes. In Proc. ACM Conf. on Pro-
gramming Language Design and Implementa-
tion, pages 227-236, June 1993. SIGPLAN No-
tices 28(6).

D. Remy. Typechecking records and variants in
a natural extension of ML. In Proc. 16th ACM
Symposium on Principles of Programming Lan-
guages, pages 77-88. ACM, January 1989.

Frangois Rouaix. Safe run-time overloading. In
Proc. 17th ACM Symposium on Principles of
Programming Languages, pages 355-366, Jan-
uary 1990.

Geoffrey S. Smith. Polymorphic type infer-
ence for languages with overloading and sub-
typing. PhD thesis, Cornell University, [thaca,
NY, August 1991.

Clemens Szyperski, Stephen Omohundro, and
Stephan Murer. Engineering a programming
language: The type and class system of Sather.
In Programming Languages and System Archi-
tectures, pages 208-227. Springer Verlag, Lec-
ture Notes in Computer Science 782, November
1993.

Satish R. Thatte. Semantics of type classes re-
visited. In Proc. Conference on Lisp and Func-
tional Programming, pages 208—219, 1994.

Dennis Volpano. A critique of type systems for
global overloading. Computer Science Techni-
cal Report NPSCS-94-006, Naval Postgraduate
School, October 1993.

Mitchell Wand. Complete type inference for
simple objects. In Proc.IEEE Symposium on
Logic in Computer Science, pages 37-44, June
1987.

Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad-hoc. In Proc. 16th
ACM Symposium on Principles of Program-
ming Languages, pages 6076, January 1989.

