An Extension of ML with First-Class Abstract Types

In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, San Francisco, June 1992

Konstantin Laufer,” New York University, laufer@cs.nyu.edu
Martin Odersky,Jr Yale University, odersky@cs.yale.edu

1 Introduction

Many statically-typed programming languages provide an abstract data type construct, such as the package
in Ada, the cluster in CLU, and the module in Modula2. In these languages, an abstract data type consists
of two parts, interface and implementation. The implementation consists of one or more representation types
and some operations on these types; the interface specifies the names and types of the operations accessible
to the user of the abstract data type.

ML [MTH90] provides two distinct constructs for describing abstract data types:

» The (obsolete) abs type mechanism is used to declare an abstract data type with a single implemen-
tation. It has been superseded by the module system.

» The ML module system provides signatures, structures, and functors. Signatures act as interfaces of
abstract data types and structures as their implementations; functors are essentially parametrized
structures. Severa structures may share the same signature, and a single structure may satisfy several
signatures. However, structures are not first-class values in ML for type-theoretic reasons discussed
in[Mac86] [MH88]. Thisleads to considerable difficultiesin anumber of practical programming sit-
uations.

Mitchell and Plotkin show that abstract types can be given existential type [MP88]. By stating that aval-
ueVv hasthe existential type Jo.. T, we mean that for some fixed, unknown type T, v hastype T [1/a] . This
paper presents a semantic extension of ML, where the component types of a datatype may be existentially

guantified. We show how datatypes over existential types add significant flexibility to the language without
even changing ML syntax; in particular, we give examples demonstrating how we express

« first-class abstract types,

» multiple implementations of a given abstract type,

* heterogeneous aggregates of different implementations of the same abstract type, and
» dynamic dispatching of operations with respect to the implementation type.

We have a deterministic Damas-Milner inference system [DM82] [CDDK86] for our language, which
leads to a syntactically sound and complete type reconstruction algorithm. Furthermore, the type systemis
semantically sound with respect to a standard denotational semantics.

Most previouswork on existential types does not consider type reconstruction. Other work appearsto be
semantically unsound or does not permit polymorphic instantiation of variables of existential type. By con-
trast, in our system such variables are 1et-bound and may be instantiated polymorphically.

We have implemented a Standard ML prototype of an interpreter with type reconstruction for our core
language, Mini-ML [CDDK86] extended with recursive datatypes over existentially quantified component
types. All examples from this paper have been devel oped and tested using our interpreter.

" Supported by the Defence Advanced Research Project Agency/I nformation Systems Technology Office under the Office
of Naval Research contract N00014-91-5-1472

T Supported by the Defence Advanced Research Project Agency/Information Systems Technol ogy Office under the Office
of Naval Research contract N0O0014-91-J-4043

2 ML Datatypeswith Existential Component Types

In ML, datatype declarations are of the form
datatype [arg] T = K; of 11 | ... | K, of 71,

wherethe K’sare value constructors and the optional prefix argument arg isused for formal type parameters,
which may appear free in the component typest;. The value constructor functions are universally quantified
over these type parameters, and no other type variables may appear freein thet;’s.

An example for an ML datatype declaration is

datatype ’‘a Mytype = mycons of ‘a * (‘a -> int)

Without altering the syntax of the datatype declaration, we now give a meaning to type variables that
appear free in the component types, but not in the type parameter list. We interpret such type variables as
existentially quantified.

For example,

datatype Key = key of 'a * ('a -> int)

describes a datatype with one value constructor whose arguments are pairs of avalue of type * a and afunc-
tion from type a to int. The question is what we can say about ’ a. The answer is, nothing, except that
thevalueis of the sametype ’ a asthe function domain. To illustrate this further, the type of the expression

key(3,fn x => 5)
iSKey, asisthe type of the expression
key([1,2,3],1length)

where 1ength isthe built-in function on lists. Note that no argument types appear in the result type of the
expression. On the other hand,

key (3,1length)

is not type-correct, since the type of 3 isdifferent from the domain type of 1ength.

We recognize that Key is an abstract type comprised by a value of some type and an operation on that
type yielding an int. It is important to note that values of type Key are first-class; they may be created
dynamically and passed around freely as function parameters. The two different values of type Key in the
previous examples may be viewed as two different implementations of the same abstract type.

Besides constructing values of datatypes with existential component types, we can decompose them us-
ing the 1et construct. We impose the restriction that no type variable that is existentially quantified in a
let expression appears in the result type of this expression or in the type of a global identifier. Analogous
restrictions hold for the corresponding open and abstype constructs described in [CW85] [MP88].

For example, assuming x is of type Key, then

let val key(v,f) = x in
fv
end

has awell-defined meaning, namely the int result of £ applied to v. We know that this application istype-
saf e because the pattern matching succeeds, since x was constructed using constructor key, and at that time
it was enforced that £ can safely be applied to v. On the other hand,

let val key(v,f) = x in
v
end

is not type-correct, since we do not know the type of v statically and, consequently, cannot assign atype to
the whole expression.

Our extension to ML allows us to deal with existential types as described in [CW85] [MP88], with the
further improvement that decomposed values of existential type are 1et-bound and may be instantiated
polymorphically. Thisisillustrated by the following example,

datatype ‘a t = k of (Ya -> ’'b) * (‘b -> int)

let val k(f1l,£f2) = k(fn x => x,fn x => 3) in
(£2(£1 7) ,£f2(£f1 true))

end

whichresultsin (3, 3) . In most previouswork, the value on the right-hand side of the binding would have
to be bound and decomposed twice.

3 Some Motivating Examples

Minimum over a heterogeneous list

Extending on the previous example, we first show how we construct heterogeneous lists over different im-
plementations of the same abstract type and define functions that operate uniformly on such heterogeneous
lists. A heterogeneous list of values of type Key could be defined as follows:

val hetlist =
[key (3,fn x => x), key([1,2,3,4],1length), key(7,fn x => 0),
key(true,fn x => if x then 1 else 0), key(1l2,fn x => 3)]

Thetypeof hetlistisKey list;itisahomogeneouslist of elements each of which could be adifferent
implementation of type Key. We define the function min, which finds the minimum of alist of Key’swith
respect to theinteger value obtained by applying the second component (the function) to thefirst component
(the value).

fun min [x] = x
| min ((key(vl,fl))::xs) =
let val key(v2,£f2) = min xs in
if f1 vl <= £2 v2 then key(vl,fl) else key(v2,£2)
end

Thenmin hetlist returnskey (7, fn x => 0), thethird eement of thelist.

Stacks parametrized by element type

The previous examplesinvolved datatypes with existential types but without polymorphic type parameters.
As an example for atype involving both, we show an abstract stack parametrized by element type.

datatype ‘a Stack = stack of {value : 'b,
empty : 'b,

push : 'a * 'b -> 'b
pop : 'b ->'a * 'b
top : 'b -> 'a,

isempty : ‘b -> bool}
Animplementation of an int Stack interms of the built-in type 1ist can be given as

op ::,
hd, isempty = null}

stack{value = [1,2,3], empty = [], push
pop = fn xs => (hd xs,tl xs), top

An dternative implementation of Stack could be given, among others, based on arrays. Different imple-
mentations could then be combined in alist of stacks. To facilitate dynamic dispatching, constructors of
stacks of different implementations can be provided together with stack operations that work uniformly

acrossimplementations. These“outer” operationswork by opening the stack, applying theintended “inner”
operation, and encapsulating the stack again, for example

fun makeliststack xs = stack{value = xs, empty = []l,push = op ::,
pop = fn xs => (hd xs,tl xs), top = hd, isempty = null}
fun makearraystack xs = stack{...}

fun push a (stack{value = v, push = pu, empty = e,
pop = po, top = t, isempty = i}) =
stack{value = pu(a,v), push = pu, empty = e,
pop = po, top = t, isempty = i}
map (push 8) [makeliststack [2,4,6], makearraystack [3,5,7]1]

4 Type-Theoretical Aspects

A deterministic type inference system for our language is given in the appendix; it leads directly to a syn-
tactically sound and compl ete type reconstruction algorithm to compute principal types. Our type systemis
semantically sound with respect to a standard denotational semantics. Moreover, it is a conservative exten-
sion of ML. That is, for aprogram in our language whose declarations introduce no existentially quantified
type variables, our type reconstruction algorithm and the ML type reconstruction algorithm compute the
same type. A comprehensive treatment of polymorphic type inference with existential types is found
in[L&92].

5 Related Work

Hopet+C

The only other work known to us that deals with Damas-Milner-style type inference for existential types
is[Per90]. However, the typing rules given there are not sufficient to guarantee the absence of runtime type
errors, even though the Hope+C compiler seemsto impose sufficient restrictions. The following unsafe pro-
gram, here given in ML syntax, is well-typed according to the typing rules, but rejected by the compiler:

datatype T = K of ’"’'a
fun £ x = let val K 2z = x in z end
f(K 1) = £(K true)

XML*

The possibility of making ML structures first-class by implicitly hiding their type componentsis discussed
in[MMM91] without addressing the issue of type inference. By hiding the type components of a structure,
itstypeisimplicitly coerced from astrong sum typeto an existential type. Detailed discussions of sum types
can be found in [Mac86] [MH88].

Haskell with existential types

Existential types combine well with the systematic overloading polymorphism provided by Haskell type
classes [WB89]; this point isfurther discussed in [LO91]. Briefly, we extend Haskell’s data declaration in a
similar way asthe ML datatype declaration above. In Haskell [HPW91], it is possible to specify what type
class a (universally quantified) type variable belongs to. In our extension, we can do the same for existen-
tially quantified type variables. Thislets us construct heterogeneous aggregates over a given type class.

Dot notation

MacQueen [Mac86] observes that the use of existential types in connection with an elimination construct
(open, abstype, Or our let) isimpractical in certain programming situations; often, the scope of the
elimination construct hasto be made so large that some of the benefits of abstraction arelost. A formal treat-
ment of the dot notation, an alternative used in actual programming languages, isfound in [CL90]. An ex-
tension of ML with an analogous notation is described in [L&92].

Dynamicsin ML

An extension of ML with objects that carry dynamic type information is described in [LM91]. A dynamic
isapair consisting of avalue and the type of the value. Such an object is constructed from a value by ap-
plying the constructor dynamic. The object can then be dynamically coerced by pattern matching on both
the value and the runtime type. Existential types are used to match dynamic values against dynamic patterns
with incomplete type information. Dynamics are useful for typing functions such as eval. However, they
do not provide type abstraction, since they give access to the type of an object at runtime. It seems possible
to combine their system with ours, extending their existential patternsto existential types. We are currently
investigating this point.

Acknowledgments

We would like to express our thanks to Ben Goldberg, Fritz Henglein, Ross Paterson, Nigel Perry, Benjamin
Pierce, and Phil Wadler, for helpful suggestions and stimulating discussions.

A Formal Discussion of the Extended L anguage

In this appendix, we describe the formal language and the type system underlying our extension of ML. The
typing rules and auxiliary functions tranglate to the type reconstruction a gorithm given below.

A.l Syntax

L anguage syntax
Identifiers X
Constructors K
Expressions e = Xx|(e,e) |ee|ix.e|let x=¢€ in € |

data Vo,...o.x in e|[K|is K|let Kx=e in €

In addition to the usual constructs (identifiers, applications, A-abstractions, and 1et expressions), we intro-
duce desugared versions of the ML constructs that deal with datatypes. A data declaration defines a new
datatype; values of this type are created by applying a constructor K, their tags can be inspected using an
is expression, and they can be decomposed by a pattern-matching 1et expression. The following example
shows a desugared definition of ML's list type and the associated length function.

data Vo. (uUP.Nil unit +Cons axf) in
let length = fix Alength.Axs.
if (is Nil xs)
0
(let Cons ab = xs in + (length(snd ab)) 1)
in
length(Cons (3,Cons (7,Nil())))
Type syntax
Type variables o
Skolem functions

Types T = unit |[bool ot X1, [T > [k(T), .. T) [X

Recursivetypes y :: uB.Kln1+...+Kmnmwhere Kiin if i#]

Existential types mn = da.n |t
Type schemes c:= Va.olr
Assumptions a = o/x|Voy..o.x/K

Our type syntax includes recursive types x and Skolem type constructors x; the latter are used to typeiden-

tifiers bound by a pattern-matching Let whose type is existentially quantified. Explicit existential types
arise only as domain types of value constructors. Assumption sets serve two purposes: they map identifiers
to type schemes and constructorsto the recursive type schemesthey belong to. Thus, when wewrite A (K) ,

we mean the ¢ suchthat 6 = Vo, ...o ... + Kn+.... Further, let £[Kn] stand for sum type contexts
suchasKm, +...+Kmn_,whereK; = Kandn, = n for somei.

A.2 Typelnference

I nstantiation and gener alization of type schemes

Vocl...ocn.r >1 iff there are types Ty T suchthat t' = 1 [t/04, ..., T, /0]
Elocl...ocn.r <t iff there are types Ty Th suchthat t' =t [Tl/ocl, 'tn/ocn]
gen (A, 1) = V(FV(1) \ FV(A)) .1

skolem (A, Jy;...7,-T) = T[K; (g, ...0) /v;] wherex,...x_ arenew Skolem type
constructors such that {xp, ...k} NFS(A) = &, and
{og.noqt = FV(3y...7,-7) \ FV(A)

Thefirst three auxiliary functions are standard. The function skolem replaces each existentially quantified
variable in atype by a unique type constructor whose actual arguments are those free variables of the type
that are not free in the assumption set; this reflects the “maximal” knowledge we have about the type repre-
sented by an existentially quantified type variable. In additionto FV, the set of free type variablesin atype
scheme or assumption set, we use FS, the set of Skolem type constructors that occur in atype scheme or
assumption set.

Inferencerulesfor expressions
Thefirst five typing rules are essentially the same asin [CDDK86].

(VAR) A(X) =21
Al x:it
Al e 1 Ale:z
(FAIR) ety Fe:t,
AL (e,8&) LT X T,
(APPL) Ale:t—>r1 Ale:1

Alee:n

Alt/X] | e:n

(ABYS)
Al Axe: 1T =1

Al et Algen (A1) /X] | e: T

(LET)
Al let x=¢€ in € : 7

Thenew rules DATA, CONS, TEST, and PAT are used to type datatype declarations, value constructors, i s
expressions, and pattern-matching 1et expressions, respectively.

o =Vo ..o .uB.Km, +...+Kn

FV(o) = O Alo/Ky, ...,o/K] et

DATA
() A data 0 in e: 1T

The DATA rule elaborates a declaration of arecursive datatype. It checks that the type schemeis closed and
types the expression under the assumption set extended with assumptions about the constructors.

A(K) 2puB.2[Knl n[uB.Z[Knl/Bl <t
AR K:t—-up.Z[Kn]

(CONS)

The CONS rule observes the fact that existential quantification in argument position means universal quan-
tification over the whole function type; this is expressed by the second premise.

A(K) 2 pp.=[Kn]

(TEST)
Al is K: (uB.X[Kn]) — bool

The TEST ruleensuresthat is K isapplied only to arguments whose typeis the same as the result type of
constructor K.

A} e:uB.Z[Kn] FS(t') c FS(A)
Algen (A skolem (A [uB.Z[Kn]/B]))/X] | € : 1

Al let Kx=e in €: 71

(PAT)

Thelast rule, PAT, governs the typing of pattern-matching Let expressions. It requires that the expression
e be of the same type as the result type of the constructor K. The body €' istyped under the assumption set
extended with an assumption about the bound identifier x. By definition of the function skolem, the new
Skolem type constructors do not appear in A; thisensuresthat they do not appear in thetype of any identifier
freein €' other than x. It isalso guaranteed that the Skolem constructors do not appear in the result type t'.

Relation tothe ML Type Inference System

Theorem 1 [Conservative extension] Let Mini-ML’ be an extension of Mini-ML with recursive datatypes,
but not with existential quantification. Then, for any Mini-ML' expression e, A |- e: 1 iff
A Fminiwme € T

Proof: By structural induction on e.

Coroallary 2 [Conservative extension] Our type system isaconservative extension of the Mini-ML typesys-
tem described in [CDDK8g], in the following sense: For any Mini-ML expression e, A |- e: 1 iff

A Fwminime €7 T
Proof: Follows immediately from the previous theorem.

A.3 Type Reconstruction

Thetype reconstruction algorithm is a straightforward trand ation from the deterministic typing rules, using
a standard unification algorithm [Rob65] [MM82]. We conjecture that its complexity is the same as that of

agorithm W.
Auxiliary functions

In our algorithm, we need to instantiate universally quantified types and generalize existentially quantified
types. Both are handled in the same way.

insty, (Vocl...ocn.r) =1 [Bl/ocl, Bn/ocn] where [31, Bn are fresh type vari-
ables

inst (Elocl...(xn.t) =1 [[31/oc1, Bn/an] where [31, Bn are fresh type vari-
ables

Thefunctions skolem and gen are the same asin the inference rules, with the additional detail that skolem
always creates fresh Skolem type constructors.

Algorithm

Our type reconstruction function takes an assumption set and an expression, and it returns a substitution and
atype expression. Thereisone case for each typing rule.

TC(A X) = (Id,insty (A(X)))

TC(A (e, &)) = let (S, 1)) =TC(A e
(S, 1) =TC(SAe)
in (S5, Szrl XT,)
TC(A e€) =let (S1)=TC(A €
(S,1') =TC(SA €)

B be afresh type variable
U=mgu (S, 1 —p)

in (USSUP)
TC (A, AX.€) = let [} beafreshtypevariable
(S1) =TC(A[B/X], €
in (SSE—1)
TC(A let Xx=¢€e in €) =let (S1)=TC(A €

(S,1') = TC(SA[gen (SA 1) /X], €)
in (SS1')

TC(A,data ¢ in e)

let Voy..o .uB.Km;+...+Kmn =0 in

if FV(6)=O then
TC(A[o/Ky, ...,0/K], €)

TC (A K) = let t=insty (A(K))
up....+Kn+...=1
in (Id, (inst3 ([t/B])) = 1)
TC(A is K) = let t=insty (A(K))

in (ld,t— bool)

TC(A let Kx=e in €'

let %= insty (A(K))

uB....+Kn+...=71
(§St) =TC(A €

U= (mgu(1,7))S
T, = skolem (UA, U (n [T/B]))
(S,1') = TC(UA[gen (UA, ‘CK) /X], e
in
if FS(t') cFS(SUA) A
(FS(TK) \FS(UM[T/B]))) "FS(SUA) =g
then (SU,1")

Theorem 3 [Syntactic Soundness and Completeness] The type reconstruction algorithm TC is sound and
complete with respect to the type inference relation |- .

Proof: We extend the proof given in [CDDK86] to deal with the new constructs.

A.4 Semantics

We give astandard denctational semantics. The evaluation function E maps an expression e e Exp to some
semantic value v, in the context of an evaluation environment p € Env. An evaluation environment is a
partial mapping from identifiersto semantic values. Runtimetype errors are represented by the specia value
wrong . Tagged values are used to capture the semantics of algebraic data types.

We distinguish between the three error situations, runtime type errors (wrong), nontermination, and a
mismatch when an attempt is made to decompose a tagged value whaose tag does not match the tag of the
destructor. Both nontermination and mismatch are expressed by L.

Our type inference system is sound with respect to the evaluation function; awell-typed program never
evaluatesto wrong . The formal proof for semantic soundnessis given below.

It should be noted that we do not commit ourselves to a strict or non-strict evaluation function. There-

fore, our treatment of existential types applies to languages with both strict and non-strict semantics. For
either case, appropriate conditions would have to be added to the definition of the evaluation function.

Semantic domain

Unit value U= {unit}
Boolean values B = {false,true} |

Constructortags C

Semanticdomain V=U+B+ (V—>V) + (VxV) + (CxV) + {wrong} |

In the latter definition of V, + stands for the coalesced sum, so that all types over V share the same L.

Semantics of expressions
The semantic function for expressions,

E:Exp—>Env-oV,

is defined as follows;
Elx] p

EI[(e17 ez)]] p

P (X)

(Eleql p.Ele,l p)

E[ee€e] p =if E[€] p € V— Vthen
(Elel p) (E[€T p)

else wrong
E[Ax.€] p = Ave V.E[e] (p[v/x])

E[let x=e in €] p

Ele] (plE[e]l p/x])

E[data ¢ in e] p = E[e] p
ELK] p = Ave V.(K,v)
E[is K] p = Ave V.if ve {K} xV then true else false

E[let Kx=e in €] p E[e'] (plif E[e] p € {K} xV then
snd (E[e] p)

else 1/x])

Semantics of types

Following [MPS86], we identify types with weak ideals over the semantic domain V. A type environment
v € TEnv isapartia mapping from type variablesto ideals and from Skolem type constructorsto functions
between ideals. The semantic interpretation of types,

T: TExp — TEnv — 3 (V)

is defined as follows,

Tlunit] v =U

T[bool] v =B

Tlalw = y(o)

Tty xt,l v =TIty xTlt,lvy

Tt -7y =Tty =>T[v]v

Tle(ty, -t 1y = (W) (Tt dw,...TIt Jw)

TLuB. X Kn1w =pAleS(V). Y AK I x TInd (wll/B1))
T[Vo.o]y = lg){klefs(V).T[c]l (wil/al)
T[donly = U MeSMW).TIn] (yIl/a])

le R

The universal and existential quantifications range over theset R — 3 (V) of al ideals that do not contain

wrong . Note that the sum in the definition of recursive typesis actually a union, since the constructor tags
are assumed to be distinct. It should also be noted that our interpretation does not handle ML's nonregular,
mutually recursive datatypes; it appears that the PER model described in [BM92] would provide an ade-
guate interpretation.

Theorem 4 The semantic function for typesis well-defined.

Proof: Asin[MPS86]. Weobservethat Al € 3 (V). Y {K;} x T[nl (y[l/a]) isawayscontractive,

since cartesian product and sum of ideals are contractive; therefore, the fixed point of such afunction
exists.

Lemmab5 Let y be atype environment such that for every oo € Domy, wrong ¢ vy (@) . Then for every
typescheme 6, wrong ¢ T[c] v .

Proof: By structural inductionon c.
Lemma 6 [Substitution] T[o [¢'/a]l]v = T[o] (v[T[c'lv /a]) .
Proof: Again, by structura inductionon c.

Definition 1 [Semantic type judgment] Let A be an assumption set, e an expression, and ¢ atype scheme.
We define |:p v A asmeaning that DomA < Domp andfor every xe DomA, p(x) € T[AX)] v ; fur-
ther, wesay A |:p y €0 iff |:p v AimpliesEfe] p € T[o] v ; andfinaly, A F e: ¢ meansthat
forall pe Env and y € TEnv we have A |=p y €0

Theorem 7 [Semantic Soundness] If A |- e: tthen A | e: 1.

Proof: By induction on the size of the proof treefor A |- e : t. Weneed to consider each of the cases given
by thetypeinferencerules. Applying theinductive assumption and the typing judgmentsfrom the pre-

ceding steps in the type derivation, we use the semantics of the types of the partial results of the eval-
uation. In each of the cases below, choose y and p arbitrarily, such that |:p WA. We include only

the nonstandard cases. Lemma 6 will be used with frequency.
A | data Vao,..o .up.Kmn,+...+Kmn in e:r

The premise in the type derivationis A[6 /K, ...,6/K] |- e: 1, where

o= Vocl...ocn.uB.Kln1+ +Kmnm. Since by definition, I:p,\VA[G/Kl’ ..., 6/K], wecan

use the inductive assumption to obtain E [data Vo,...o.x in elp =E[e]lpeTt]v.
AFK:t—-up.XZ[Kn]

Thelast premisein thetypederivationismn [up.Z [Kn]/B] <t,wheren = Elyl...yn.%. By defini-

tion of instantiation of existential types, T = %[rj/yj, up.X [Kn]/B] for sometypes Tys ves Ty
First, choose an arbitrary ve T[[t] v and afinite a<v. Now,

ae (TLrly/ v, uB-Z[Knl/BI1w)°
= (TLT[WB-ZIKn1/BIT (wITLtlw /%1))°

S e (TL7 [uB-Z Kl /BIT (v [J/v]))

= U TR p-ZIKnl /BT (v [3/%])°

= (TIn [uB.Z[Kn]/BITy)".

Hence, v = |l {alafiniteand a<v} e T[n [uB.Z[Kn]/B1] v , by closure of ideals under
limits. Consequently,

(K,vye {K} xT[n [uB.Z[Kn]/BIlwy
c ...+ {K} XT[n [UB.Z[Kn]/BITw +...
= .+ {K}XTI] (WITIuB.Z[KnI v /B +...

TIuB.ZIKnl] v .
Hence E[K] p e T[Tt - uB.Z[Knl]l v .

Al is K: (uB.Z[Kn]) — bool
Choose an arbitrary ve T[uB.Z[Kn]] v . Clearly, (E[is K] p)ve B, whence
E[is K] p e T[(uB.Z[Kn]) — bool J v .

Al let Kx=¢e in €: 1
We follow the proof in [MPS86]. The first premisein the type derivationis A |- e: t, where
T=uB.Z[Kn] andn = Elyl...yn.%. Let {0,o0} = FV(1) \ FV(A) . Then, for every
I s e S(V), I:p,\v[li/ai]
Letv = E[e] p; by theinductive assumption, ve T[t] (v [1;/01) . Conseguently,

A holds, since none of the o 'sarefreein A.

ve " ...le mT[[T]I (v [1;70u1)

= N ERTI[uB.Z[KT]]]] (y [1;7a.])

P I €

=4 {KEx o TIND (wl/e TETD (yil/og]) /B1) + ..o

o €
First, consider the case fst (v) # K. Then, by definition, E[1let K x=e in €] p = 1,and
wearedone, since Le T[Tt J v .
In the more interesting, second case, fst (v) = K. Then

snd(V)e N U TIRD (v /0 3/, TLED Gy [1/0q0) /BD)
by € R I, 00 e R |

Let Oy, e Oy h <k, be those variables among Oy, ey Oy that arefreeint [1/B] .

We now choose afinite a such that a<snd (v) , thus

ae N U EK(T[[% [t/B1T (w [1/0y J/v1)) °

I onlye R Iy, 3,

By definition of set union and intersection, there exist functions f,, ..., f_ e 3 (V) h 53V,
such that

ac N _(TIA (VBT (wi/onfi(ly 1) /3])°
lponleR J

c N EKT|[%[a:/f>]]| (wI1i70g i (oo 1) /)
1ol €

= N _TITIx (o, ..o0) /7, t/BI1 (/o fi/x1)
Iy lpe R J J I

=T[Vocl...och.% [Kj (O s 04) /yj, ©/B1] (v [fj/Kj])
= T[gen (A scolem (A [t/BI)] (wifi/x1)
assuming that the K, 's are the ones generated by skolem (A, [t/B]) .

p=

Since by definition of skolem, none of the Kj'sarefreein A, |:p wif /K] A holds and we can extend
’ 77

A and p, obtaining Algen (A, skolem (A, [t/B])) /X] .

P[a/X],\ll[fj/Kj]
We now apply the inductive assumption to the last premise,
Algen (A skolem (An[t/Bl))/x] }- e : 1,
and obtain
Efe] (plarx]) e TIv] (wifi/x]) =TIv1v,
since FS(t') c FS(A) . Finally,

E[let Kx=e in €] p

E[€e] (plsnd(E[e] p)/x])
= U {E[€e] (plasx]) |afiniteand a<snd (E[e] p)},

by the continuity of E. The latter expressionisin T[t'] w by the closure of ideals under limits.

||
Corollary 8 [Semantic Soundness] If A |- e: t,then E[e] p #wrong.

Proof: We apply Lemma 5 to the previous theorem.

References

[BM92]

[CDDK86]

[CLOO]

[CW85]
[DM82]

[HPWO1]

[L&92]
[LMO1]
[LO91]
[Macse]
[MH88]
[MM82]

[MMMO91]

[MP8S]
[MPS86]

[MTHO0]
[Per90]

[Rob65]

[WB89]

K. Bruce and J. Mitchell. PER models of subtyping, recursive types and higher-order
polymorphism. In Proc. 18th ACM Symp. on Principles of Programming Languages, pages
316-327, January 1992.

D. Clement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:
Mini-ML. In Proc. ACM Conf. Lisp and Functional Programming, pages 13-27, 1986.

L. Cardelli and X. Leroy. Abstract types and the dot notation. In Proc. IFIP Working
Conference on Programming Concepts and Methods, pages 466—491, Sea of Galilee, Isragl,
April 1990.

L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4):471-522, Dec. 1985.

L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 9th
Annual ACM Symp. on Principles of Programming Languages, pages 207-212, Jan. 1982.

P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language Haskell: a
non-strict, purely functional language, version 1.1. Technical Report YALEU/DCSRR-777,
Dept. of Computer Science, Yale University, New Haven, Conn., August 1991.

K. Laufer. Polymorphic Type Inference and Abstract Data Types. PhD thesis, New York
University, Department of Computer Science, 1992. In preparation.

X. Leroy and M. Mauny. Dynamics in ML. In Proc. Functional Programming Languages
and Computer Architecture, pages 406-426. ACM, 1991.

K. Laufer and M. Odersky. Type classes are signatures of abstract types. In Proc. Phoenix
Seminar and Workshop on Declarative Programming, November 1991.

D. MacQueen. Using dependent types to express modular structure. In Proc. 13th ACM
Symp. on Principles of Programming Languages, pages 277-286. ACM, Jan. 1986.

J. Mitchell and R. Harper. The essence of ML. In Proc. Symp. on Principles of Programming
Languages. ACM, Jan. 1988.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, Apr. 1982.

J. Mitchell, S.Meldal, and N. Madhav. An extension of Standard ML modules with
subtyping and inheritance. In Proc. ACM Symp. on Principles of Programming Languages,
Jan. 1991.

J. Mitchell and G. Plotkin. Abstract types have existentia types. ACM Trans. on
Programming Languages and Systems, 10(3):470-502, 1988.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types.
Information and Control, 71, 1986.

R. Milner, M. Tofte, and R. Harper. The Definition of Sandard ML. MIT Press, 1990.

N. Perry. The Implementation of Practical Functional Programming Languages. PhD thesis,
Imperia College, 1990.

J. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc. Comput.
Mach., 12(1):23-41, 1965.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th Annual
ACM Symp. on Principles of Programming Languages, pages 60-76. ACM, Jan. 1989.

