
Parametric Type Classes
�Extended Abstract�

Kung Chen� Paul Hudak� Martin Odersky�

Yale University� Department of Computer Science�

Box ���� Yale Station� New Haven� CT �	���

ACM Conf� on LISP and Functional Programming� June ����

Abstract

We propose a generalization to Haskell�s type classes where
a class can have type parameters besides the placeholder
variable� We show that this generalization is essential to
represent container classes with overloaded data constructor
and selector operations� We also show that the resulting
type system has principal types and present uni�cation and
type reconstruction algorithms�

� Introduction

Haskell�s type classes provide a structured way to introduce
overloaded functions� and are perhaps the most innovative
�and somewhat controversial� aspect of the language design
�HJW	
�� Type classes permit the de�nition of overloaded
operators in a rigorous and �fairly� general manner that inte�
grates well with the underlying Hindley�Milner type system�
As a result� operators that are monomorphic in other typed
languages can be given a more general type� Examples in�
clude the numeric operators� reading and writing of arbi�
trary datatypes� and comparison operators such as equality�
ordering� etc�

Haskell�s type classes have proven to be quite useful� Most
notably missing� however� are overloaded functions for data
selection and construction� Such overloaded functions are
quite useful� but the current Haskell type system is not ex�
pressive enough to support them �of course� no other lan�
guage that we know if is capable of supporting them in a
type�safe way either��

A Motivating Example

As a simple example� consider the concept of a sequence

a linearly ordered collection of elements� all of the same
type� There are at least two reasonable implementations of
sequences� linked lists and vectors� There is an e�ciency
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tradeo� in choosing one of these representations
 lists sup�
port the e�cient addition of new elements� whereas vectors
support e�cient random �including parallel� access� Cur�
rently the choice between representations is made at the pro�
gramming language level� Most functional languages pro�
vide lists as the �core� data structure �often with special
syntax to support them�� relegating arrays to somewhat of
a second�class status� Other languages� such as Sisal and
Nial� reverse this choice and provide special syntax for ar�
rays instead of lists �this often re�ects their bias toward
parallel and�or scienti�c computation��

Of course� it is possible to design a language which places
equal emphasis on both �container structures�� However�
a naive approach faces the problem that every function on
sequences has to be implemented twice� once for lists and
once for arrays� The obvious cure for this name�space pol�
lution and duplicated code is overloading� In our context�
that means specifying the notion of a sequence as a type
class with �at least� lists and vectors as instance types� Us�
ing Haskell�like notation� this would amount to the following
declarations


class Sequence a s
where cons �� a �� s �� s

nth �� s �� Int �� a
len �� s �� Int

instance Sequence a �List a�
where cons � ���

nth � ���
len � �	�

instance Sequence a �Vector a�
where cons � vecCons

nth � vecNth
len � vecLen

This de�nes the overloaded constructor cons� overloaded in�
dexing selector nth� and a length function len� �Note the
resemblance to a �container class� in object�oriented pro�
gramming��

The only problem with this code is that it is not valid
Haskell� since Haskell�s type classes are permitted to con�
strain only one type� thus ruling out a declaration such as
�class Sequence a s�� In essence� this restriction forces
overloaded constructors and selectors to be monomorphic
�which makes them fairly useless��



Even if this restriction did not exist� there is another prob�
lem with the current type class mechanism� which can be
demonstrated through the typing of len


Sequence a s �� s �� Int

Even if multi�argument type classes were allowed� this qual�
i�ed type would still not be valid Haskell since it is am�
biguous
 Type variable a occurs in the context �Sequence a
s�� but not in the type�part proper �s��Int�� Ambiguous
types need to be rejected� since they have several� possibly
con�icting� implementations�

A related� but harder� problem arises if we extend our exam�
ple to include an overloaded map function� Having such a
function is attractive� since together with join and filter�
it allows us to generalize �i�e� overload� the notion of a �list
comprehension� to include all instances of Sequence� not
just lists� In Section � we elaborate on this� extending it
further to comprehensions for arbitrary instances of class
monad� such as bags and lists� This seems quite natural
since� after all� the domain of sets is where the �compre�
hension� notation came from� However� a problem becomes
evident as soon as we attempt to give a type for map�

map� �Sequence a sa
 Sequence b sb�
�� �a �� b� �� sa �� sb�

This type is too general� since it would admit also imple�
mentations that take one sequence type �e�g� a list� and
return another �e�g� a vector�� Generality is costly in this
context since it again leads to ambiguity� For instance� the
function composition �map f � map g� would be ambigu�
ous� the type of map g� which does not appear in the type
of the enclosing expression� can be either a list or a vector�

What is needed is some way to specify that map returns the
same kind of sequence as its argument� but with a possibly
di�erent element type� A nice way to notate this type would
be


map� Sequence �s a� �� �a �� b� �� s a �� s b

where s is a variable which ranges over type constructors
instead of types� To accommodate this� Sequence should
now be viewed as a type constructor class instead of a type
class� However� because the instance relationships are now
expressed at the functor�level� there is the danger �as has
been conjectured in �Lil	
�� that second order uni�cation
is needed to reconstruct types� thus rendering the system
undecidable�

Our Contributions

To solve these problems� we introduce the notion of para�
metric type classes as a signi�cant generalization of Haskell�s
type classes� Our contributions can be summarized as fol�
lows



� Parametric type classes can have type arguments in
addition to the constrained type variable� and thus
are able to express classes such as Sequence de�ned
earlier�

�� Through a simple encoding scheme� we show that para�
metric type classes are able to capture the notion of
�type constructor variables�� thus permitting the def�
inition of overloaded operators such as map�

�� Parametric type classes are a conservative extension of
Haskell�s type system
 If all classes are parameterless�
the two systems are equivalent�

�� We prove that our system is decidable� and provide an
e�ective type inference algorithm�

�� As a concrete demonstration of the power and practi�
cality of the system� we formulate classes monad and
monad� that allow us to generalize the concept of list
comprehensions to monads� This is done using the
standard translation rules for list comprehensions� no
special syntax is needed�

Related Work

Wadler and Blott �WB�	� introduced type classes and pre�
sented an extension of the Hindley�Milner type system that
incorporates them� They proposed a new form of type�
called a predicated type� to specify the types of overloaded
functions� A quite similar notion was used under the name
of category in the Scratchpad II system for symbolic compu�
tation �JT�
�� Also related are Kaes� work on parametric
overloading �Kae���� F�bounded polymorphism in object�
oriented programming �CCH��	�� and �Rou	��� The type
class idea was quickly taken up in the design of Haskell� Its
theoretical foundation� however� took some time to develop�
The initial approach of �WB�	� encoded Haskell�s source�
level syntax in a type system that was more powerful than
Haskell itself� since it could accommodate classes over multi�
ple types� This increased expressiveness can� however� lead
to undecidability� as has been investigated by Volpano and
Smith �VS	
�� Indeed� the system published in �WB�	� is
apparently undecidable�

The source�level syntax of Haskell� on the other hand� has
a su�cient number of static constraints to guarantee de�
cidability� This was shown in �NS	
�� where Nipkow and
Snelting modeled type classes in a three�level system of val�
ues� types� and partially ordered sorts� In their system�
classes correspond to sorts and types are sorted accord�
ing the class hierarchy� Order�sorted uni�cation �MGS�	�
is used to resolve overloading in type reconstruction� The
use of an order�sorted approach is mathematically elegant�
yet we argue that the ordering relation between classes is a
syntactic mechanism and thus not necessary for developing
a type system for type classes� Furthermore� it is not obvi�
ous how to extend their system to incorporate our proposed
extensions�

Work was also done to extend the type class concept to pred�
icates over multiple types� Volpano and Smith �VS	
� looked
into modi�cations of the original system in �WB�	� to ensure
decidability of type reconstruction and to get a sharper no�
tion of well�typed expressions� Jones �Jon	
� Jon	�b� gave
a general framework for quali�ed types� His use of predicate
sets is at �rst sight quite similar to our context�constrained
instance theory� The main di�erence between the two ap�
proaches lies in our use of normal forms �Jones does not ad�
dress this issue� and our distinction between constrained and
dependent variables� This distinction allows us to solve the



ambiguity problems previously encountered in de�nitions of
container classes�

The rest of this paper is organized as follows
 Section � in�
troduces parametric type classes� Section � presents them
formally� in a non�deterministic type system� Section �
presents an equivalent syntax�directed system that bridges
the gap between the non�deterministic system and a type
reconstruction algorithm� Section � discusses type recon�
struction and uni�cation� Section � explains when a type
scheme is ambiguous� Section � applies our system in de�n�
ing monads as parametric classes� Section � conclues�

� Parametric Type Classes

A parametric type class is a class that has type parameters in
addition to the placeholder variable which is always present
in a class declaration� To distinguish between placeholder
and type parameters� we write the placeholder in front of
the class� separated by an in�x �

�� For instance


class t �� Eq where
class s �� Sequence a where

The �rst de�nition introduces a class without parameters�
in Haskell this would be written class Eq t� The second
de�nition de�nes a type class Sequencewith one parameter�
this cannot be expressed in standard Haskell� The in�x �

�
notation is also used in instance declarations and contexts�
The two instance declarations of Sequence presented in the
last section would now be written


inst List a �� Sequence a where ���
inst Vector a �� Sequence a where ���

In an instance declaration� of form T �� Sequence a� say�
the type T must not be a variable� Furthermore� if two types
T� and T
 are both declared to be instances of Sequence�
then their top�level type constructors must be di�erent� Thus�
the instance declarations given above are both valid� On the
other hand�

inst a �� Sequence �List a�

would violate the �rst restriction� and

inst List Int �� Sequence Int
inst List Char �� Sequence Char

would violate the second restriction� E�ectively� these re�
strictions ensure that in a proof of an instance relationship
every step is determined by the class name and the type
in placeholder position� The class parameter types� on the
other hand� depend on the placeholder type�

One consequence of these restrictions is that there is at most
one way to deduce that a type is an instance of a class� This
is necessary to guarantee coherence� It is not su�cient� since
types might be ambiguous� see Section � for a discussion�
Another consequence is that sets of instance predicates are
now subject to a consistency criterion
 If we have both T ��
Sequence a and T �� Sequence b then we must have a �
b� That is� a � b is a logical consequence of the two instance

predicates and the restrictions on instance declarations� The
type reconstruction algorithm enforces consistency in this
situation by unifying a and b�

Enforcing consistency early helps in keeping types small�
Otherwise� we could get many super�uous instance con�
straints in types� As an example� consider the composition
�tl � tl�� where tl is typed �s �� Sequence a� �� s
�� s� Without the consistency requirement� the most gen�
eral type for the composition would be �s �� Sequence
a
 s �� Sequence b� �� s �� s� Composing tl n times
would yield a type with n Sequence constraints� all but one
being super�uous�

� The Type System of Parametric Classes

This section presents our type system formally� We �rst
de�ne the abstract syntax of classes and types in the context
of a small example language� We then explain formally what
it means for a type to be an instance of a class� Based on
these de�nitions� we de�ne a non�deterministic type system
with the same six rules as in �DM���� but with parametric
type classes added� We claim that� in spite of its added
generality� the system is actually simpler than previously
published type systems for standard Haskell�

For lack of space� we refer the reader to �COH	�� for detailed
proofs of the results presented in this and the following sec�
tions�

Syntax

The example language is a variant of Mini�Haskell �NS	
��
augmented with parameterized type classes� Its abstract
syntax and types are shown in Figure 
� A parametric type
class � in this syntax has the form c � � where c is a class
constructor� corresponding to a class in Haskell� and � is
a type� Classes with several parameters are encoded using
tuple types� e�g� c ������ Parameterless classes are encoded
using the unit type� e�g� Eq ��� The instance relationship
between a type and a type class is denoted by an in�x �

��
the predicate � � 

c � reads � � is an instance of c � �

One simpli�cation with respect to standard Haskell concerns
the absence of a hierarchy on classes� The subclass�superclass
relationship is instead modeled by class sets �� Consider for
instance the class Eq �� of equality types in Haskell and its
subclass Ord �� of ordered types� We can always represent
Ord �� as a set of two classes� fEq ���Ord � ��g� where Ord �

contains only operations ������ which are de�ned in Ord

but not in Eq� Translating all classes in a program in this
way� we end up with sets over a �at domain of classes� This
shows that we can without loss of generality disregard class
hierarchy in the abstract syntax�

Instance Theories

In this section� we make precise when a type � is an instance
of a class set �� a fact which we will express � 

�� Clearly�
the instance relation depends on the instance declarations
Ds in a program� We let these declarations generate a theory
whose sentences are instance judgments of the form C �� � 





Type variables �

Type constructors �

Class constructors c

Types � 

� �� j � � j � j �� � �� j �� � ��

Type schemes � 

� �� 

�	� j �

Type classes � 

� c �

Class sets � 

� fc� ��� 			� cn �ng �n � �� ci pairwise disjoint�

Contexts C 

� f�� 

��� 	 	 	 � �n 

�ng �n � ��

Expressions e 

� x j e e � j 
x 	e j let x � e � in e

Programs p 

� class � 

� where x 
� in p

j inst C � � 

� where x � e in p

j e

Figure 

 Abstract Syntax of Mini�Haskell�

C �� � 

� �� 

f	 	 	 � 	 	 	g 	 C �

C �� C �

C �� � 

�
� inst C � � � 

� 	 Ds�

C �� � 

�� 	 	 	 C �� � 

�n

C �� � 

f��� 			� �ng
�n � ��

C �� �� 

�� 	 	 	 C �� �n 

�n

C �� f�� 

��� 	 	 	 � �n 

�ng
�n � ��

Figure �
 Inference Rules for Entailment

�� An instance judgment is true in the theory i� it can be
deduced using the inference rules in Figure ��

Context

In these rules the context C is a set of instance assumptions
� 

 � �all ��s in C are disjoint�� Where convenient� we will
also regard a context as a �nite mapping from type variables
to class sets� i�e� C� � � i� � 

� 	 C � Thus the domain of
C � dom�C � � is de�ned as the set of type variables � such
that � 

� 	 C � As type classes can now contain parameters�
we de�ne the region of a context C �

reg�C � �
�

��dom�C �

fv�C��

and the closure of C over a set of type variables�  � written
C �� �� as the least �xpoint of the equation

C
�� � �  
 C �C �� ��	

We say C� is contained in C�� written C� � C�� if dom�C�� �
dom�C�� and C�� � C�� for each � 	 dom�C��� We write
C� 
 C� for the disjoint union of two contexts and Cn� for
restriction of a context C to all type variables in its domain
other than �� A context C is called closed if C ��dom�C �� �
dom�C �� or� equivalently� reg�C � � dom�C �� A context C
is called acyclic if all the type variables �� � 	 dom�C ��

can be topologically sorted according to the order
 � � � if
� 	 fv�C��� We shall restrict our discussion to only closed
acyclic contexts in the remainder of the paper�

Constrained Substitution

In the following� we will apply variable substitutions not
only to types� but also to �sets of� classes and �sets of� in�
stance predicates� On all of these� substitution is de�ned
pointwise� i�e� it is a homomorphism on sets� class construc�
tor application and �

�� Since a context is a special form
of an instance predicate set� substitutions can be applied to
contexts� However� the result of such a substitution is in
general not a context� as the left hand side � of an instance
predicate � 

� can be mapped to a non�variable type� Our
typing rules� on the other hand� require contexts instead of
general predicate sets� Thus� we need a means to �nd a
context that is a conservative approximation to a predicate
set� We use the following de�nitions


De�nition� A constrained substitution is a pair �S �C � where
S is a substitution and C is a context such that C � SC �

De�nition� A constrained substitution �S �C � preserves a
constrained substitution �S��C�� if there is a substitution R
such that S � R � S� and C �� RC�� We write in this case
�S �C � � �S��C���



It is easy to show that � is a preorder�

De�nition� A constrained substitution �S �C � is most gen�
eral among those constrained substitutions that satisfy some
requirement R if �S �C � satis�es R� and� for any �S ��C ��
that satis�es R� �S ��C �� � �S �C ��

De�nition� A constrained substitution �S �C � is a normal�
izer of an instance predicate set P if C �� SP �

To ensure the principal type property of our type system
with parametric classes� we have to place the following re�
quirements on the entailment relation ��


� monotonicity� for any contexts C and C �� if C � � C
then C �� C ��

� transitivity under substitution� for any substitu�
tion S � contexts C and C �� predicate set P � if C �� SC �

and C � �� P then C �� SP �

� most general normalizers� If a predicate set P has
a normalizer then it has a most general normalizer�

From the viewpoint of type reconstruction� the �rst two re�
quirements are needed to ensure that once established en�
tailments are not falsi�ed by later substitutions or additions
to contexts� They follow directly from the inference rules in
Figure �� The last requirement ensures that there is a most
general solution to an entailment constraint� To establish
existence of most general normalizers� we have to place two
restrictions on the instance declarations in a program


�a� There is no instance declaration of the form
inst C � � 

c �	

�b� For every pair of type and class constructor ��� c��
there is at most one instance declaration of the form
inst C � � � � 

c �	 Furthermore� � � must be the unit
type� or a possible empty tuple of distinct type vari�
ables and both dom�C � and fv��� are contained in
fv�� ���

Restriction �a� is part of current Haskell� and restriction �b�
is a direct generalization of current Haskell�s restriction to
incorporate parametric type classes�

Theorem ��� If the instance declarations Ds of a program
satisfy the restrictions �a� and �b�� then �� admits most
general normalizers�

Typing Rules

Given an entailment relation �� between contexts and in�
stance predicates� we now formalize a theory of typing judg�
ments� Typing judgments are of the form A�C � e 
 ��
where A is an assumption set of type predicates x 
 � �all
x disjoint�� C is a context� and e is an expression or a pro�
gram� A typing judgment A�C � e 
 � holds in the theory
i� it can be deduced using the inference rules in Figures �
and ��

The rules in Figure � form a non�deterministic type sys�
tem for expressions� along the lines of of the standard Hind�
ley�Milner system �DM���� One notable di�erence between

this system and the standard Hindley�Milner system is that
the bound variable in a type scheme �� 

�	� can be instan�
tiated to a type � only if we know from the context that
� 

 � �rule ��elim�� The second di�erence concerns rule
���intro�� where the instance predicate on the generalized
variable � is �discharged� from the context and moved into
the type scheme �� 

�	��

The rules in Figure � extend this system from expressions
to programs� In rule �class�� the overloaded identi�er x
is added to the assumption set� Rule �inst� expresses a
compatibility requirement between an overloaded identi�er
and its instance expressions� These rules have to be taken
in conjunction with the requirements �a�� �b� on instance
declarations listed in the last subsection� We say a pro�
gram p � Ds e has type scheme �� i� Ds satis�es these
requirements and generates an entailment relation ��� and
A�� fg � p 
 �� for some given closed initial assumption set
A��

The Instance Relation and Principal Type Schemes

A useful fact about Hindley�Milner type system is that when
an expression e has a type� there is a principal type scheme

which captures the set of all other types derivable for e
thruogh the notion of generic instances� The remainder of
this section introduces the de�nitions of generic instance and
principal type schemes in our system�

De�nition� A type scheme �� � ���j 

 �
�

j 	�
� is a generic

instance of a type scheme � � ��i 

�i	� under a context C �
if there exists a substitution S on f�ig� such that S� � � ��
��j is not free in �� and C 
 f��j 

 �

�

j g �� S�i 

 S�i � We

write in this case� �� �C ��

The de�niton of �C is an extension of the ordering relation
de�ned in �DM���� The only new requirement on instance
entailment is needed for the extension with parametric type
classes� It is easy to see that �C de�nes a preorder on the
set of type schemes�

The following property is a direct consequence of the de�ni�
tion�

Lemma ��� If �� �C � and C � C � then �� �C � ��

The next lemma shows that the ordering on type schemes is
preserved by constrained substitutions�

Lemma ��� If �� �C � and C � �� SC then S�� �C � S��

With the de�niton of ordering on type schemes� we can de�
�ne the notion of principal type schemes in our system�

De�nition� Given A� C � and e� we call � a principal type
scheme for e under A and C i� A�C � e 
 � � and for every
��� if A�C � e 
 �� then �� �C ��

We shall develop an algorithm to compute principal type
schemes in the following sections�

� A Deterministic Type Inference System

We present a deterministic type inference system in this sec�
tion� Compared to the typing rules in Section �� the rules



�var� A�C � x 
 � �x 
 � 	 A�

���elim�
A�C � e 
 �� 

�	� C �� � 

�

A�C � e 
 �� �� � � �

���intro�
A�C 	� 

� � e 
 �

A�C � e 
 �� 

�	�
�� �	 fv A 
 reg C �

�
�elim�
A�C � e 
 � � � � A�C � e � 
 � �

A�C � e e � 
 �

�
�intro�
A	x 
� ��C � e 
 �

A�C � 
x 	e 
 � � � �

�let�
A�C � e � 
 � A	x 
��C � e 
 �

A�C � let x � e � in e 
 �

Figure �
 Typing Rules for Expressions

�class�
A	x 
�fv ��� 

f�g	��C � p 
 �

A�C � class � 

� where x 
� in p 
 �

�inst�
A�C � x 
�� 

f�g	� A�C � e 
 �� �� � ��� A�C � p 
 �

A�C � inst C � � � � 

� where x � e in p 
 �

Figure �
 Typing Rules for Declarations

here are so formulated that the typing derivation for a given
term e is uniquely detrmined by the syntactic structure of
e� and hence are better suited to use in a type inference
algorithm� We show that the system is equivalent to the
previous one in terms of expressiveness and� in addition�
has all the nice properties toward the construction of a type
reconstruction algorithm�

Deterministic Typing Rules

The typings rules for the deterministic system are given in
Figure �� The rules ��intro and ��elim have been removed
and typing judgements are now of the form A�C �� e 
 �
where � ranges over the set of type expressions as opposed to
type schemes in the typing judgements of Section �� Other
major di�erences are that rule �var �� instantiates a type
scheme to a type according to the de�nition of generic in�
stance and rule �let �� use the generalization function� gen�
to introduce type schemes�

The function gen takes as arguments a type scheme� an as�
sumption set� and a context� and returns a generalized type
scheme and a discharged context� It is de�ned by

gen ���A�C � �

if �� 	 dom�C �n�fv A 
 reg C � then

gen ��� 

C�	��A�Cn��

else ���C �

In other words� instance assumptions in the given context�
except those constraining type variables in the assumption
set� are discharged and moved to form a more general type

scheme in an order so that type variables are properly quan�
ti�ed�

Equivalence of the two Systems

We now present a number of useful properties of the deter�
ministic type system� They are useful not only in estab�
lishing the congruence of the two type systems� but also in
investigating the relation between the type system and the
type reconstruction algorithm�

Lemma ��� �Substitution lemma� If A�C �� e 
 � and
C � �� SC then SA�C � �� e 
S� �

This result assures us that typing derivations are preserved
under constrained substitution�

The next two lemmas express a form of monotonicity of
typing derivations with respect to the context and the as�
sumption set�

Lemma ��� If A�C �� e 
 � and C � C � then A�C � ��

e 
� �

Lemma ��� If A	x 
 ��C �� e 
 � and � �C �� then
A	x 
���C �� e 
� �

Now we can show that the deterministic system �� is equiv�
alent to the non�deterministic system � in the following
sense�

Theorem ��� If A�C �� e 
� then A�C � e 
� �



�var �� A�C �� x 
 � �x 
 � 	 A� � �C ��

�
�elim ��
A�C �� e 
 � � � � A�C �� e � 
 � �

A�C �� e e � 
 �

�
�intro��
A	x 
� ��C �� e 
 �

A�C �� 
x 	e 
 � � � �

�let ��
A�C � �� e � 
 � � A	x 
��C �� e 
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 �
���C ��� � gen�� ��A�C ��� C �� � C

Figure �
 Determinstic Typing Rules for Expressions

Theorem ��	 If A�C � e 
� then there is a context C ��
and a type � such that C � C �� A�C � �� e 
� and � �C ��

where ����C ��� � gen���A�C ���

� Uni�cation and Type Reconstruction

This section discusses type reconstruction� As usual� type
reconstruction relies on uni�cation� and we will �rst work
out what kind of uni�cation is needed for parametric type
classes� We then go on to present a type reconstruction
algorithm� and state its soundness and completeness with
respect to the inference rules given in Section � using those
rules in the last section and the equivalence result estab�
lished therein� As a corollary of these results� we obtain
a prinicpal type scheme property of our system analogous
to the one in �DM���� The type reconstruction algorithm
has been implemented in the Yale Haskell compiler� Its size
and complexity compare favorably to the type reconstruc�
tion parts of our prior Haskell compiler�

Context�Preserving Uni�cation

Type reconstruction usually relies on uni�cation to compute
most general types� One consequence of rule ���elim� is that
the well�known syntactic uni�cation algorithm of Robinson
�Rob��� cannot be used since not every substitution of vari�
ables to types satis�es the given instance constraints� Nip�
kow and Snelting have shown that order�sorted uni�cation
can be used for reconstructing of types in Haskell �NS	
�� but
it is not clear how to extend their result to parametric type
classes� We show in this section that algorithm mgu� shown
in Figure �� yields the most general context�preserving uni�
�er of two types�

Function mgu takes two types and returns a transformer on
constrained substitutions� The application mgu �� �� �S��C��
returns a most general constrained substitution that uni�es
the types �� and �� and preserves �S��C��� if such a substitu�
tion exists� The algorithm is similar to the one of Robinson�
except for the case mgu � � �S��C��� where � may be sub�
stituted to � only if � can be shown to be an instance of C���
This constraint translates to an application of the subsidary
function mgn to � and C�� The call mgn � � �S��C�� com�
putes a most general normalizer of C� 
 f� 

 �g� provided
one exists�

Theorem 	�� Given a constrained substitution �S��C�� and
types ��� ��� if there is a �S��C���preserving uni�er of �� and
�� then mgu �� �� �S��C�� returns a most general such uni�
�er� If there is no such uni�er then mgu �� �� �S��C�� fails
in a �nite number of steps�

Type Reconstruction

An algorithm for type reconstruction is shown in Figure ���

Function tp takes as arguments an expression� an assump�
tion set� and an initial constrained substitution� and returns
a type and a �nal constrained substitution� The function is
straightforwardly extended to programs� The remainder of
this section establishes the correspondence between tp and
the type system of Section � and� thereby� that of Section ��

We need the following lemmas to establish the soundness
and completeness of our algorithm� We begin by showing
that tp is indeed a constrained substitution transformer�

Lemma 	�� Let �S �C � be a constrained substitution and
���S ��C �� � tp�e�A�S �C �� then �S ��C �� is a constrained
substitution�

Hence we will omit the requirement of constrained substitu�
tion from now on�

Lemma 	�� If tp�e�A�S �C � � ���S ��C �� then �S ��C �� �
�S �C ��

This result can be established by a straightforward induc�
tion except in the let�case� Recall the typing rule �let ��
presented in Section �� There are two contexts used in the
antecedent part of that rule 
 one for deriving the type of the
let�de�nition and one for the type of the let�body� But only
the second one appears in the conclusion part and it is those
instance assumptions contained in the �rst one that are gen�
eralized by the gen function� While in tp� we maintain a
single context and pass it through the whole algorithm� If
we were to use the gen function in the let�case in tp we
would overgeneralize those instance assumptions generated
in the previous stages and passed to tp as part of the initial
context�

�This is actually a simpli
cation of the real algorithm becuase we
can get a cyclic context after the call to uni
cation function and thus
violate our restriction on contexts	 So what is missing here is a clique�
detection algorithm� which is simply a variant of occur checking	 We
omit it here for simplicity	



mgu 
 � � � � S � C � S �C

mgn 
 � � �� S �C � S � C

mgu �� �� �S �C � � mgu � �S��� �S��� �S �C �

mgu � � � � idS�C

mgu � � � �S �C � j � �	 fv��� � mgn � �C�� ��� �� � � � S � �� �� � �Cn��

mgu � � � �S �C � � mgu � � �S �C �

mgu � �� �� � idS�C

mgu � � � � � � �S �C � � mgu � � � �S �C �

mgu � ��� � ��� ��
�

� � � ��� � �mgu �� �
�

�� � �mgu �� �
�

��

mgu � ��� � ��� ��
�

� � � ��� � �mgu �� �
�

�� � �mgu �� �
�

��

mgn � fg � idS�C

mgn � f�g �S �C � � mgn � �S�� �S�� �S �C �

mgn � ��� 
 ��� � �mgn � ��� � �mgn � ���

mgn � � c � �S �C � � if �� �	�c � � 	 C�� then mgu � � � �S �C �

else �S �C �� �� C� 
 fc �g��

mgn � � � � c � �S �C � j � inst C � � � !� � 

c !� 	 Ds

� let S � � match !� � � �

�S ���C ��� � mgu � �S �!�� �S �C �

f�� 

��� 	 	 	 � �n 

�ng � S �C �

in �mgn �� �� � 	 	 	 �mgn �n �n �S
���C ������

�and similarly for �� �� ���

Figure �
 Uni�cation and Normalization Algorithms

To avoid such overgeneralization� we need to con�ne the do�
main of generalization to only those instance assumptions
generated while reconstructing the type of the let�de�nition�
We de�ne a new generalization function� tpgen� which� com�
pared to gen� takes an extra context parameter� C �� whose
instance assumptions will be excluded from generalization�
Then in the algorithm� when doing generalization� we pass
the initial context to tpgen as the second context argument
to restrict the domain of generalization� Thus only those
newly generated instance assumptions will be generalized�

Now we can proceed to state the soundness of our algorithm�

Theorem 	�� If tp�e�A�S �C � � ���S ��C �� then S �A�C � ��

e 
 � �

Together with Theorem ���� we have the following soundness
result�

Corollary 	�	 �Soundness of tp� If tp�e�A�S �C � � ���S ��C ��
then S �A�C � � e 
 � �

Ultimately� we will state the principal typing result�

Theorem 	�
 Suppose that S �A�C � �� e 
 � � and �S ��C �� �
�S��C��� Then tp�e�A�S��C�� succeeds with ���S �C �� and
there is a substitution R such that

S
�
A � RSA� C

� �� RC � and �
� � R�	

Together with Theorem ���� we have the completeness re�
sult�

Corollary 	�� �Completeness of tp� Suppose that S �A�C � �
e 
 �� and �S ��C �� � �S��C��� Then tp�e�A�S��C�� succeeds
with ���S �C �� and there is a substitution R such that

S
�
A � RSA� and �

� �C � R�

where ��� !C � � gen���SA�C ��

As a corollary� we have the following result for principal type
schemes�

Corollary 	�� Suppose that tp�e�A�S��C�� � ���S �C � and
gen���SA�C � � ���C ��� Then � is a principal type scheme
for e under SA and C � �

	 Ambiguity Revisited

As we have seen in the introduction� parametric type classes
share with standard type classes the problem that type
schemes might be ambiguous�

De�nition� Given a type scheme � � ��i 

�i 	� � let C� �
f�i 

�ig be the generic context of ��

De�nition� A generic type variable � in a type scheme � �
��i 

 �i 	� is �weakly� ambiguous if �
� C� � �� �� and ���
� �	 C �

� �fv ���

Ambiguous type variables pose an implementation prob�
lem� The usual approach to implement overloading poly�
morphism is to pass extra dictionary arguments for every
type class in the context of a function signature� Since the



tp �x �A�S �C � � inst �S�Ax ��S �C �

tp �e� e��A�S �C � � let ���� S��C�� � tp �e��A�S �C �

���� S��C�� � tp �e��A�S��C��

� a fresh type variable

�S��C�� � mgu �� ��� � �� �S��C�	� 

fg�

in �S���S��C��

tp �
x 	e�A�S �C � � let � a fresh type variable

���� S��C�� � tp �e��A	x 
��S �C 	� 

fg�

in �S��� ���S��C��

tp �let x � e� in e��A�S �C � � let ���� S��C�� � tp �e��A�S �C �

���C�� � tpgen ����S�A�C��C �

in tp �e��A	x 
��S��C��

where

inst ��� 

�	��S �C � � let � a fresh type variable

in inst ��� �� �� ��S �C 	� 

��

inst ���S �C � � ��� S �C �

tpgen ���A�C �C �� � if �� 	 dom�C �n�fv�A� 
 reg�C � 
 dom�C ���then

tpgen ��� 

C�	��A�Cn��C
��

else ���C �

Figure �
 Type Reconstruction Algorithm

constraints on ambiguous variables are non�empty �
�� dic�
tionaries need to be passed� But since the ambiguous vari�
able does not occur free in the type ���� it is never instanti�
ated� hence we do not know which dictionaries to pass� Seen
from another perspective� any dictionary of an appropriate
instance type would do� but we have a problem of coher�
ence
 There are several implementations of an expression
with possibly di�erent semantics �Jon	�a��

The problem is avoided by requiring that the programmer
disambiguate expressions if needed� by using explicit type
signatures� Conceptually� the ambiguity check takes place
after type reconstruction� would it be part of type recon�
struction then the principal type property would be lost� In
a way� the ambiguity problem shows that sometimes recon�
structed types are too general� Every ambiguous type has
a substitution instance which is unambiguous �just instan�
tiate ambiguous variables�� The trouble is that there is not
always a most general� unambiguous type�

Compared to multi�argument type classes� our type system
often produces types with less ambiguity� Consider


len �� �sa �� Sequence a� �� sa �� Int

Seen as a multi�argument type class� a would be ambiguous�
since it occurs in a predicate but not in the type itself� Seen
as a parametric type class� however� a is not ambiguous
 Al�
though it does not occur in the type� it both unconstrained
and dependent on sa through �sa �� Sequence a�� Hence
both �
� and ��� fail�

Ambiguity problems can be further reduced by making use
of the following observation
 Because of restriction �b� in
Section �� the top�level type constructor of a type uniquely
determines the dictionary that needs to be passed� Hence�
if two types have the same top�level type constructor �but

possibly di�erent type arguments�� their dictionaries share
the same data constructor �but have possibly di�erent pa�
rameters�� We can recognize equality of top�level type con�
structors statically� using the following technique


We introduce a special �root� class TC � with one type pa�
rameter but no operations� Every type is an instance of TC
by virtue of the following instance declaration �which can be
thought of being implicitely generated for every type � ���

inst � � 

TC �� ���

E�ectively� TC is used to �isolate� the top�level type con�
structor of a type� That is� if two types are related by a TC
constraint� we know that they have the same top�level type
constructor� The two types are then called similar


De�nition� Given a context C � let similarity in C � ��C ��
be the smallest transitive and symmetric relation such that
C �� �� 

TC �� implies �� �C ���

TC is treated like every other type class during type re�
construction� It is treated specially in the ambiguity check�
allowing us to strengthen the ambiguity criterion


De�nition� A generic type variable � in a type scheme � is
strongly ambiguous if � is weakly ambiguous in �� and� for
every type � � � �C� � implies that � is a strongly ambiguous
type variable in ��

The TC technique enables us to type map precisely�

map 
 �a	�b	�t 	

�sa 

fSequence a�TC tg	

�sb 

fSequence b�TC tg	�a � b�� sa � sb

�Previously� it has been conjectured that this required second�
order uni
cation	



This states that sa and sb are instance types of Sequence
with element types a and b� and that sa and sb share the
same type constructor�

The knowledge that sa and sb have the same type construc�
tor is initially on the meta�level� derived from the form of the
compiler�generated instance declarations� We can formalize
it in the type system as follows


De�nition� A type scheme � � ��i 

 �i 	�
� is in reduced

form if none of the �i contains a class TC �� ��� for arbitrary
constructor � and type � � We use �R for type schemes in
reduced form�

De�nition� Two type schemes ��� �� are equivalent under
a context C � �� �C ��� i� for all reduced type schemes
�R�

�R �C �� � �R �C ��	

We extend the de�nition of generic instance to include equiv�
alence
 A type scheme �� is a generic instance of a type
scheme �� under a context C if there is a type scheme ��

s�t� �� �C ��� and �� �C �� according to the de�nition of
�C in Section �� This stronger notion of generic instance is
important to check user�de�ned type signatures�

Example� After substituting List a for sa� the type signa�
ture of map would become


�sb 

fSequence b�TC �List ���g	�a � b�� List a � sb

The usual de�nition of map for lists� on the other hand�
would have type


�a � b�� List a � List b

Equivalence is necessesary to verify that the �rst type is an
instance of the second�

To keep contexts short� we will use in the next section the
similarity relation ��� directly� instead of its de�nition in
terms of TC �


 From Monads to Lists

In this section� we show how to use parametric type classes
to generalize many of the operations and concepts which
were previously restricted to lists� As sketched in the in�
troduction� a �rst step overloads operations that are com�
mon to all implementations of sequence� Some important
operations can even be applied in the more general Moand
context�Wad	��� hence it makes sense to have �Monad� and
�Monad with zero� as superclasses of �Sequence�� The fol�
lowing enumeration shows on which levels in the hierarchy
some familiar list operations are de�ned�

Monad� unit
 join
 map� monad comprehensions�

Monad
� nil
 filter� comprehensions with �lters�

Sequence� cons
 hd
 tl
 reverse
 foldl
 foldr
 �����

The use of monads in functional programming was explored
in �Wad	�� Wad	
�� for a motivation of the concept we refer
the reader to the examples given there� The point we want
to explore here is how to express monads �and their special�
izations� in the type system of a programing language such
that we can abstract from their concrete implementations�
We show how the monad operations can be overloaded� us�
ing parametric type classes� This is useful since it allows to
de�ne functions over arbitrary Monads� to reuse the same
names for operations on di�erent monads� and to generalize
list comprehensions without changing their present syntax�

We formulate class Monad as follows


class ma �� Monad a where
unit �� a �� ma
bind �� �mb �� Monad b
 ma � mb�

�� ma �� �a �� mb� �� mb
map �� �mb �� Monad b
 ma � mb�

�� �a �� b� �� ma �� mb
join �� �mma �� Monad ma
 mma � ma�

�� mma �� ma
�� Default definitions�

map f xs � xs �bind �unit � f�
join xss � xss �bind� id
bind xs f � join �map f xs�

This introduces two equivalent formulations of a monad� one
in terms of unit and bind� the other in terms of unit� map
and join� The default de�nitions in the class express one
formulation in terms of the other� hence instances can al�
ternatively de�ne bind or map and join� To qualify for a
monad� an instance has to satisfy three laws� which are not
enforced by the type system� bind must be associative� with
unit as left and right unit


�m �bind� f� �bind� g � m �bind� �x �� f x �bind� g
�x �� unit x �bind� f � f
m �bind� unit � m

Lists form a monad� as witnessed by the following instance
declaration� and a check that monad laws hold


inst List a �� Monad a where
unit x � �x�
map f �� xs � ��
map f �x�xs� � f x � map f xs
join �� � ��
join �xs��xss� � xs �� join xss

Another example of a monad are �reply��types� as witnessed
by


data Maybe a � Some a � None

inst Maybe a �� Monad a where
unit x � Some x
bind �Some x� f � f x
bind None f � None

As a consequence� code can now be written that works on
lists as well as on reply types or any other monad instance�
In particular� we can use the list comprehension notation



in each case� by applying the standard translation to unit �
map and join


�t � "� unit t

�t j g�� g�� "� join � �t j g�� j g��
�t j x � e� "� map �
x 	t� e

Here� t and e are terms� x is a variable� and g� and g� are
generators x � e�

Monad� is a subclass of Monad� It adds a zero monad� nil�
and a filter function�

class �ma �� Monad a� �� ma �� Monad� a where
nil �� ma
filter �� �a �� Bool� �� ma �� ma

Monads with zero are the most general type class on which
list comprehensions with �lters can be de�ned� The stan�
dard translation functions are �p is a �lter� i�e� a Boolean
term�


� � "� nil
�t j p� "� �lter p �unit t�

Lists and reply types both have zeros� as witnessed by


instance List a �� Monad� a where
nil � ��
filter p �� � ��
filter p �x�xs� � if p x then

x � filter p xs
else filter p xs

instance Maybe a � Monad� a where
nil � None
filter p None � None
filter p �Some x� � if p x then Some x

else None

As an example of programming with Monads we discuss
abstract parsers� adapting and extending an example from
�Wad	��� A parser is a function that maps a sequence of in�
put symbols to some output� or to a failure value� if no legal
parse exists� If a parse exists� then it will consist of the un�
used portion of the input stream� plus some application de�
pendent result value� such as a parse tree� If the parser uses
backtracking� there might exist several such parses� whereas
if it is determinstic� there will be zero or one� We construct
in the following a library for determinstic parsers� Such
parsers all have type signature


data Parser a � P �String �� Maybe �a
 String��

The constructor tag P is necessary because of the restriction
that instances may only be formed of datatypes� Parsers
form themselves a monad with zero� as witnessed by the
following instance declarations�

inst Parser a �� Monad a where
unit x � P ��i �� ��x
 i���
map f �P p� � P ��i ��

��f x
 i�� � �x
 i�� �� p i��
join �P pp� � P ��i ��

��x
 i��� � �P p
 i�� �� pp i


�x
 i��� �� p i���

inst Parser a �� Monad� a where
nil � P ��i �� ���
filter b �P p�

� P ��i ��
��x
 i�� � �x
 i�� �� p i


b x��

Note that we have overloaded the comprehension notation�
The monad comprehensions in the previous two instance
declarations work on option types� not lists�

We need two primitive parsers and one more parser combi�
nator


sym �� Parser Char
sym � P p

where p Nil � ��
p �Cons c cs� � ��c
 cs��

lookahead �� Parser Char
lookahead � P p

where p Nil � ��
p cs � ��hd cs
 cs��

����� �� Parser a �� Parser a �� Parser a
P p ��� P q � P ��i �� case p i of

None �� q i
� Some x �� Some x�

A deterministic parser for lambda terms can then be written
as follows


data Term � Lambda Term Term
� Apply Term Term
� Id Char
� Error

term �� Parser Term
term � �Lambda x y � ��� �� sym


x �� ident
 y �� term�
��� �y � x �� aterm
 y �� aterms x�

aterm �� Parser Term
aterm � �x � ��� �� sym
 x �� aterm��

��� ident

aterm� �� Parser Term
aterm� � �x � x �� term
 ��� �� sym�

��� �Error�

aterms �� Term �� Parser Term
aterms x � �z � c �� lookahead


�a� �� c �� c �� �z� �� c � ���

y �� aterm

z �� aterms �Apply x y��

��� �x�

ident �� Parser Term
ident � �Id c � c �� sym
 �a� �� c �� c �� �z��

��� �Error�

The de�ned parser is determinstic� it never backtracks�
Therefore� parse failure has to be treated di�erently accord�
ing to whether it occurs at the start of a production� or in



the middle� If failure occurs at the start of a production�
it signals that another alternative should be tried� Failure
in the middle of a production signals a syntax error that is
reported by returning an Error node�

Note that most of the productions are expressed in terms of
monad comprehensions� This time� comprehensions refer to
parsers instead of option types or lists� Unlike in �Wad	���
monad comprehensions need not be labelled with the monad
they refer to� we rely instead on the type system for disam�
biguation �including programmer de�ned typings if ambigu�
ities arise otherwise�� The monad style gives us a �exible
interface between parsing and abstract tree generation� The
resulting parser resembles an attribute grammar with both
synthesized and inherited attributes �see the de�nition of
aterm��

� Conclusion

We have proposed a generalization of Haskell�s type classes
to support container classes with overloaded data construc�
tors and selectors� The underlying type system is an ex�
tension of the Hindley�Milner system with parametric type
classes� This extension preserves two important properties
of the original system� namely decidable typability and prin�
cipal types� Its type scheme uses bounded quanti�cation
whose introduction and elimination depend on a separate
context�constrained instance theory� The decoupling of the
instance theory from the type inference system makes our
system more modular than previous work� We believe that
the gained modularity can also be a great aid to implemen�
tors�

A point we have not discussed so far is how to implement
parametric type classes at run�time� Essentially� a trans�
lation scheme into Haskell along the lines of �WB�	� can
be employed� Additional parameters for type classes trans�
late then into parameters for run�time dictionaries� Such a
translation can provide a �transformational� semantics for
parametric type classes� Whether it can also provide a good
run�time model is debatable� Existing implementations that
are based on this translation scheme have been criticized for
their run�time performance� We argue that� in principle�
the run�time performance of a program with type classes
should not be any worse than the performance of a program
written in an object�oriented language� Moreover� similar
optimization techniques can be used �CU	���
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