
A Con�uent Calculus for Concurrent Constraint
Programming with Guarded Choice

Kim Marriott

Monash University
Clayton ����� Victoria� Australia

marriott�cs�monash�edu�au

Martin Odersky

Universit	at Karlsruhe

���� Karlsruhe� Germany

odersky�ira�uka�de

In Proc� �st Conf� on Principles and Practice of Constraint Programming� Cassis�
France� September �����

Abstract� Con�uence is an important and desirable property as it al�
lows the program to be understood by considering any desired scheduling
rule� rather than having to consider all possible schedulings� Unfortunate�
ly� the usual operational semantics for concurrent constraint programs is
not con�uent as di�erent process schedulings give rise to di�erent sets of
possible outcomes� We show that it is possible to give a natural con�uent
calculus for concurrent constraint programs� if the syntactic domain is
extended by a blind choice operator and a special constant standing for
a discarded branch� This has application to program analysis�

� Introduction

Concurrent constraint programming �ccp
 ���� ��� is a recent programmingparadigm
which elegantly combines logical concepts and concurrency mechanisms� The
computational model of ccp is based on the notion of a constraint system� which
consists of a set of constraints and an entailment relation� Processes interact
through a common store� Communication is achieved by telling �adding
 a giv�
en constraint to the store� and by asking �checking whether the store entails

a given constraint� Standard ccp provides a non�deterministic guarded choice
operator� In the operational semantics of ccp� non�determinism arises in two dif�
ferent ways� First� if the guards of two branches in a committed choice construct
are both entailed by the store either branch can be picked� Second� di�erent
process schedulings �that is� interleavings of transitions
 can lead to di�erent
results since a given process scheduling can prune the decision space by select�
ing a branch in a committed choice before strengthening the store� In this way�
some branches that would be entailed by the stronger store might be excluded
by the weaker one� This second source of non�determinism means that to �nd
the possible outcomes of a program all process schedulings must be considered
in the operational semantics� This need to consider all process schedulings also
holds for the denotational semantics of ccp� which expresses parallel composition
by interleaving�



Because of the combinatorial explosion of reduction sequences� an interleav�
ing semantics makes reasoning about possible evaluations cumbersome� Yet such
reasoning is necessary for many tasks in program analysis� veri�cation and trans�
formation� This contrasts to the situation in both the lambda calculus and �ide�
alised
 Prolog� The semantics for both have con�uence properties that make it
unnecessary to consider di�erent process schedulings� In the lambda calculus�
con�uence is embodied in the Church�Rosser theorem ���� which says that dif�
ferent reduction sequences starting from the same term can always be re�joined
in a common reduct� As a consequence� evaluation in the lambda calculus is
deterministic� In Prolog� con�uence is embodied in the Switching Lemma �����
which ensures that di�erent literal selection strategies give rise to the same set
of answers�

In the context of concurrency� con�uence is an even more desirable proper�
ty since concurrent programs are notoriously di�cult to reason about and to
analyse� Unfortunately� as we have seen� despite monotonicity of communica�
tion� the standard operational semantics for ccp languages is not con�uent in
the sense that di�erent process schedulings can give rise to di�erent outcomes�
This is because of the guarded choice� Indeed� it has become part of the pro�
gramming language folklore that it is impossible to have both guarded choice
and con�uence�

We present here a calculus for ccp that is equivalent to ccp�s standard se�
mantics in that both lead to the same observations� yet is con�uent� Actually
we give a calculus for a slightly larger language� ccp��� which extends ccp by
providing a blind choice construct and a failure constant �� The main di�erence
between our calculus for ccp�� and the standard operational semantics for ccp

lies in the treatment of guarded choice� In ccp� once a choice is made� all other
alternatives of a choice construct are discarded� In ccp��� the other alternatives
are kept around� but extended with a guarded branch which reduces to � on
termination� indicating that this alternative is only valid if another branch in
the guard does not suspend� The calculus distinguishes between the two forms
of non�determinism in ccp� Non�determinism arising from multiple guards being
enabled is expressed by the blind choice operator in the term language� Process
scheduling non�determinism is re�ected by a choice among di�erent reduction
sequences� analogous to the situation in the lambda calculus� Our main result is
a con�uence theorem for this calculus� which essentially says that the choice of
process scheduling has no in�uence on the observable behaviour� This is equiv�
alent to the Church�Rosser theorem for the lambda calculus or the Switching
Lemma for Prolog� Our result thus refutes the folklore that is impossible to have
both guarded choice and con�uence� Monotonicity of communication is crucial
to our result�

Besides its theoretical interest� our con�uent calculus has practical applica�
tions in static analysis of ccp� Lack of con�uence in the usual operational seman�
tics and denotational semantics means that program analysis cannot be directly
based on these semantics� as the cost of considering all process schedulings in an
analysis is prohibitive� There have been two main approaches to overcome this

�



di�culty� The �rst is to use a �xed process scheduling� but then to �re�execute�
the program until a �xpoint is reached� This was suggested in ��� for concurrent
logic programs and extended in ��� to ccp� This may be expensive and is inherent�
ly imprecise because re�execution confuses the behaviour of di�erent branches�
The second approach is to give a non�standard operational semantics for ccp

which is con�uent but which approximates the usual ccp operational semantics
by allowing more reductions� Analyses are then proved correct with respect to
this approximate operational semantics� This was suggested in ��� �� for concur�
rent logic programs and couched in ��
� �� in the slightly di�erent context of
ccp as a transformation from a program written in full ccp to an approximating
program written in a subset of ccp for which the usual operational semantics is
con�uent� The disadvantage of this approach is an inherent loss of precision in
the analysis because of the approximation introduced in the new semantics or
in the program transformation� Our calculus� we believe therefore� provides a
better basis for analysis for two reasons� First� because the calculus is con�uent�
there is no need to introduce complex arti�cial semantics or transformations as
e�cient analysis can be directly based on the calculus� Second� because the cal�
culus gives the same observational behaviour as the usual operational semantics�
there is no inherent loss of precision and the analysis can be more accurate�

Our result showing that the ccp�� programs are con�uent generalizes con�u�
ence results of Maher ���� and Saraswat et al ���� about deterministic ccp subsets
and Falaschi et al ��� identi�cation of subclasses of ccp for which the usual oper�
ational semantics is con�uent� Montanari et al ���� give a con�uent operational
semantics for a variant of ccp with both indeterminism �blind choice
 and nonde�
terminism �angelic choice
� however they do not consider guarded choice� Niehren
and Smolka have introduced the � ���� and � ���� calculi which have strong con�
nections to the ��calculus and deterministic ccp respectively� They have shown
that both of these calculi are con�uent� However� unlike our calculus neither the
� nor the � calculus has a non�deterministic guarded choice operator�

The rest of this paper is organized as follows� Section � introduces the stan�
dard operational semantics of the ccp languages� Section � presents our calculus�
Section � shows that reduction in our calculus is con�uent and Section � shows
that the calculus and operational semantics of ccp are observationally equivalent�
Section � sketches an application of our calculus to the analysis of ccp programs�
Section 
 concludes�

� Concurrent Constraint Programming

Concurrent constraint programming was proposed by Saraswat ���� ���� We fol�
low here the de�nition given in ����� which is based on the notion of cylindric
constraint system�

A cylindric constraint system �
� is a structure C � hC���t� true� false� �i
such that�

�� hC��i is a complete algebraic lattice� where t is the lub operation �repre�
senting logical and
� and true� false are the least and the greatest elements

�



of C� respectively�
�� For each x � V ars the function �x � C � C is a cylindri�cation operator�
�E�
 �xc � c�
�E�
 c � c� implies �xc � �xc��
�E�
 �x�c t �xc�
 � �xc t �xc��
�E�
 �x�yc � �y�xc�

�� For each x� y � V ars� C contains the diagonal element� dxy� which satis�es�
�D�
 dxx � true�
�D�
 if z �� x� y then dxy � �z�dxz t dzy
�
�D�
 if x �� y then c � dxy t �x�c t dxy
�

As usual� we take c � c� i� c � c� � c� � c� The cylindri�cation operators
essentially model existential quanti�cation and so are useful for de�ning a hiding
operator in the language� Note that if C models the equality theory� then the
diagonal element dxy can be thought of as the formula x � y�

Deviating slightly from the treatment of ����� we will base our exposition of
ccp on renamings instead of diagonal elements� Renamings can be de�ned in
terms of diagonal elements as follows�

De�nition� Let x and y be variables and let c � C� Then the renaming �y�x�c
of y for x in c is the constraint �x�dxy t c
�

De�nition� The free variables fv�c
 of c � C is the set fx j �xc �� cg�
The following proposition shows that we can consistently rename the free

variables of a constraint�

Proposition ��� Let c � C and let x and y be variables such that y �� fv�c
�
Then �y�y�x�c � �xc�

The description and semantics of the ccp class of languages is parametric with
respect to an underlying cylindric constraint system C� The syntax of agents M
and programs P is given by the grammar�

�Agent
 M ��� c j R j py j M �M j �xM
�Choice
 R ��� R �� R j c ��M
�Program
 P ��� D �M
�Declarations
 D ��� D� D j px ��M

Two fundamental agents are the tell operation c which adds the constraint c to
the store and the guarded choice among ask operations �� n

i��ci �� Mi which
evaluates some Mi� provided the corresponding guard ci is entailed by the store�
An agent can also be a procedure call py� where y is a vector of parameters
�y�� � � � � yn
� We assume that every procedure identi�er p has exactly one dec�
laration of the form p�x�� � � � � xn
 �� M in a program and that the lengths of
actual and formal argument lists match� Agents can be combined using parallel
composition ��
� The quanti�er �xM hides the use of variable x inside the agent
M � We will often use the word term as a synonym for agent�

�



R� hc�di ccp���� htrue� c t di where c �� true

R� h �	 ni��ci ��Mi� di ccp���� hMj � di where j � �
� n	 and cj � d

R�
hM�ci ccp���� hM �� c�i

hM �N� ci ccp���� hM � �N�c�i
hN �M�ci ccp���� hN �M �� c�i

R�
hM�d t �xci ccp���� hN�d�i

h�dxM�ci ccp���� h�d�x N�c t �xd�i

R� hpy� ci ccp���� h�y�x	M�ci where �px ��M
 � D

Fig� �� The transition system TD�

Free variables fv�M 
 and renamings �x�y�M have their usual inductive def�
initions� where the cases where M is a constraint are as de�ned previously�
Following the usual convention for reduction systems� we identify ��renamable
terms� That is� �xM and �x�y�x�M are regarded as the same term� provided
that y �� fvM � Proposition ��� shows that this identi�cation is consistent with
our de�nition of a constraint system�

The standard operational model of ccp is given as a transition system over
con�gurations� A con�guration consists of a ccp agent and a constraint repre�
senting the current store� The transition system TD is speci�ed with respect
to a set of procedure declarations D� Figure � gives the rules in the transition
system� Constraints are added to the store �R�
� A guarded choice is reduced
non�deterministically by choosing a branch whose guard is enabled �R�
� � R�

describes parallelism as interleaving� To describe locality �R�
 the syntax of ex�
istentially quanti�ed agents is extended by allowing agents of the form �dxM �
This represents an agent in which x is local to M and d is the �hidden� store
that has been produced locally by M on x� Initially the local store is empty�
that is� �xM � �truex M � The execution of a procedure call is modelled by �R�
�
We write ccp			�� for the re�exive and transitive closure of ccp			��

The standard observable behavior of a ccp agent is the set of possible con�
straint stores which can result when the agent is reduced to a normal form�
A con�guration S is in normal form if it cannot be reduced further� In�nite
reduction sequences are equated to the constraint false�

De�nition� Let P be the ccp program D � M � Then P 
ccp c if there is a
normal form hN� ci such that hM� truei ccp			�� hN� ci in the transition system TD�
P diverges� written P �ccp i� there is an in�nite TD�transition sequence starting
with hM� truei�

�



De�nition� The set of observations of a program P � Obs� ccp			�� P 
 is

fc jM 
ccp cg � ffalse jM �ccpg�

Example ��� The following declaration D de�nes an agent merge� which non�
deterministically merges its two input streams x and y into an output stream
z� The constraint domain is equations over �nite terms� We use �� to denote the
empty stream� and �u j v� to denote the stream with head u and tail v�

merge�x� y� z
 ��
�x��u x � �u j x�� �� �x��u�z��x � �u j x�� � z � �u j z�� �merge�x�� y� z�



�� �y��u y � �u j y�� �� �y��u�z� �y � �u j y�� � z � �u j z�� �merge�x� y�� z�


�� x � �� �� z � y
�� y � �� �� z � x�

Let P be the program D � x � �a� �merge�x� y� z
 �y � �b�� A reduction sequence
using left�most agent scheduling is�

hx � �a� �merge�x� y� z
 � y � �b�� truei
�R�


ccp			� hmerge�x� y� z
 � y � �b�� x � �a�i
�R�
 ccp			� hM � y � �b�� x � �a�i
�R�
 ccp			� h�x��u�z� �x � �u j x�� � z � �u j z�� �merge�x�� y� z�

 � y � �b�� x � �a�i
�R�
 ccp			� h�x����x� �u�au �z� z � �u j z�� �merge�x�� y� z�

 � y � �b�� x� �a�i
�R�
 ccp			� h�x����x� �u�au �z� merge�x�� y� z�
 � y � �b�� x� �a�t �z�z � �a j z��i
�R�
 ccp			� h�x����x� �u�au �z� M � � y � �b�� x� �a�t �z�z � �a j z��i
�R�
 ccp			� h�x����x� �u�au �z� y � z� � y � �b�� x � �a�t �z�z � �a j z��i
�R�


ccp			� htrue � y � �b�� x � �a�t z � �a j y�i
�R�
 ccp			� htrue � true� y � �b�t x � �a�t z � �a� b�i

where M and M � are appropriate renamings of the de�nition of merge�x� y� z

and merge�x�� y� z�
 respectively� This reduction sequence gives the observable
behavior y � �b�t x � �a�t z � �a� b��

In fact this is the only reduction sequence possible with a leftmost agent
scheduling� With rightmost agent scheduling� however� the only observation is
y � �b�t x � �a�t z � �b� a�� Thus

Obs� ccp			�� P 
 
 fy � �b�t x � �a�t z � �b� a�� y � �b�t x � �a� t z � �a� b�g�

In fact� examination of the �large number of
 other agent schedulings shows that
these are the only observable behaviours� A more e�cient way to show that these
are the only observable behaviours will be discussed in the next section�

This example clearly shows the non�con�uence of the standard operational
semantics� as di�erent agent schedulings give di�erent results�

�



� The Concurrent Constraint Calculus

In this section� we develop a calculus for concurrent constraint programming
which has the same observable behavior as the operational semantics de�ned in
the last section� The calculus is formulated as a reduction system modulo a set
of structural congruences�

The calculus describes a slightly larger language than ccp� adding a blind
choice operator ��
 and a failure operator �� which is an identity for ��
� In�
formally� using ��
 one can collect all possible execution paths of an agent� We
also admit a new form of guarded branch in an ask agent� written

p� �� which
stands for failure upon termination� Hence� a guard g is now a constraint c or
the symbol

p
� Informally� once an alternative in a guarded choice is selected�

the branch that corresponds to taking some other alternative is marked with ap
�guard� which causes the branch to be discarded upon termination�

Example ��� To see the essential idea for obtaining con�uence� consider the
agent

A
def
� d ��M �� e �� N�

run in a context where the store entails d� If the store does not also entail e this
should rewrite to M � On the other hand� if the store entails both d and e� A
should rewrite to M �N � The problem is that the property �the store does not
imply e� is not monotonic � in fact it is anti�monotonic since the store increases
monotonically during execution� Therefore� it is not possible to make a choice
between the two reductions uniformly for all process schedulings� One solution
to the problem is to consider each possible process scheduling individually� using
an interpretation of parallel composition as interleaving� The resulting calculus
is unsuitable for program analysis� however� due to the state space explosion
incurred by the interleaving semantics�

In our calculus� A reduces instead to

M � �e �� N ��
p �� �


def
� B�

In e�ect this defers the decision whether or not to drop the �e �� N� branch
until program termination� If further reductions determine that the store also
entails e� this term could further reduce to

M �N � �
p �� � ��

p �� �
�

which is observationally equivalent to M � N � On the other hand� if the store
never entails e� we end with agent B� which produces the same observations as
M � We thus get a con�uent calculus that is observationally equivalent to the
transition system presented in the last section�

We now make these intuitions precise by de�ning a reduction system over
an extended concurrent constraint language� called ccp��� Terms in ccp�� are
produced by the grammar�

Agent M ��� c j R j py j M �M j �xM j M �M j �
Choice R ��� R �� R j c ��M j p �� �






The de�nitions of renaming and free variables carry over in the obvious way�
The operators have the natural precedence rules� �x binds strongest� followed

by ��
� followed by � �� 
� followed by ��
 which binds weakest� Guard pre�xes
g �� extend as far to the right as possible�

The ccp calculus has a rich set of structural equivalences ��
� If M � N �
then M and N are generally identi�ed� If we want to avoid this identi�cation�
speaking only of the concrete term syntax� we will explicitly talk about pre�
agents or pre�programs� Structural equivalence ��
 is the least congruence that
satis�es the laws below�

�� ��
 is associative and commutative� with identity ��

�L �M 
 �N � L� �M �N 

M �N � N �M
M � � �M

�� ��
 is associative and commutative� with identity true and zero ��

�L �M 
 �N � L � �M �N 

M �N � N �M

M � true �M
M � � � �

�� ��
 distributes through ��
�

M � �N� � N�
 � M �N� �M �N�

�� � �� 
 is associative and commutative�

�L ��M 
 �� N � L �� �M �� N 

M �� N � N ��M

�� Parallel composition of constraints equals least upper bound�

c � c� � c t c�

�� The following laws govern existential quanti�cation�

�x�M �N 
 � �xM � �xN
M � �xN � �x�M �N 
 if x �� fv�M 


�xM �M if x �� fv�M 

�xM � �y�y�x�M if y �� fv�M 


�x�yM � �y��xM
Reduction � is a binary relation between agents that is parameterized by a

procedure environment D� We write M �D N if M reduces to N in one step
in the procedure environment D� We sometimes leave out the D�su�x if the
environment is clear from the context�

In essence there are two reduction rules� one for communication� and one for
procedure unfolding� The rule for procedure unfolding is�

py
p	�D �y�x�M �px ��M � D
�

�



The rule for communication comes in two variants� The �rst variant handles the
deterministic case� where no choice operator is present�

c � �d ��M 
 cc		�D c �M �d � c


The second variant handles the case where the ask agent is part of a guarded
choice�

c � �d ��M �� R
 cc		�D c �M � c � �p �� � �� R
 �d � c


The standard semantics of ccp captures the idea that once a guard in one
of the guarded choice branches is enabled then that branch can be chosen and
the other branches can be discarded� By contrast� our rule does not discard any
branches� Instead� we also keep the original ask agent as a ��
�alternative� but
with the taken branch replaced by the branch �

p �� �
� Essentially this indicates
that the alternative cannot lead to suspension� but that other branches in the
alternative can still be taken if their guards are enabled�

Reduction can only occur in the top�level agents� it cannot occur inside the
branches of a guarded choice� That is� our reduction relation� �� is given by

M p�cc				�D M �

�x�M �N 
 � N � �D �x�M � �N 
 �N �
�

We write �� for the re�exive and transitive closure of ��
We now de�ne the set of possible observations of a ccp�term M � Since we

express non�determinism by the ��
 operator� we might expect that each ��
�
alternative in a reduct would contribute to the set of possible observations�
However� we have to disregard those alternatives that contain a guard of the formp �� � at top�level� since they represent untaken branches in a committed choice�
Upon termination such alternatives are identi�ed with failure� as is formalized
below�

De�nition� Let terminal equivalence � be the least congruence that contains
� and the equality

R ��
p �� � � ��

De�nition� The constraint part Con�M 
 of a term M is
Ffc j �N�M � c �Ng�

De�nition� A term M is in normal form if it cannot be reduced by �D�

De�nition� Let P be the ccp�� program D � M � Then P 
ccp�� c if there
is a normal form N and a term M � such that M ��D N � M �� N �� � and
c � Con�N 
� P diverges� written P �ccp�� if there is an in�nite �D�transition
sequence starting with M �

The set of observations of a program P � Obs��� P 
 is de�ned as in the ccp

case�

Obs��� P 
 � fc jM 
ccp�� cg � ffalse jM �ccp��g�

 



Thus� the possible observations of a programP are the constraint parts of all non�
zero normal form alternatives of P � In addition� we add false to the observations
of P if there is a possibility that evaluation of P does not terminate� We often
abbreviate Obs��� P 
 to Obs�P 
�

As usual� we de�ne observational equivalence ���
 to be the largest congruence
on terms and programs such that P �� Q implies Obs�P 
 � Obs�Q
� for all
programs P � Q�

An equivalent� but more constructive de�nition of �� for terms is based on a
program context� C� which is a program with a hole � � in it� Let C�M � denote the
term that results from �lling out the hole in C� Then M �� N i� for all program
contexts C such that C�M � and C�N � are well�formed programs�

Obs�C�M �
 � Obs�C�N �
�

Proposition ��� The following are observational equivalences in ccp���

M �M ��M
M� �M�

�� true ��M� �� true ��M�

R �� R �� R
c � �d ��M �� R
 �� c �R �c t d � false


c � �d ��M �� R ��
p �� �
 �� c � �d ��M �� R
 �d � c


Note that the second observational equivalence means that the explicit blind
choice construct does not add to the expressiveness of ccp�

Example ��� A reduction sequence in ccp�� using left�most agent scheduling
from the program given in Example ��� is given in Figure �� where M � M � and
M �� are appropriate renamings of the de�nition ofmerge�x� y� z
� merge�x�� y� z�

and merge�x� y�� z�
 respectively and R� and R�� are the remaining branches in
the guarded choices inM � andM ��� This reduction sequence gives the observable
behavior

fy � �b�t x � �a�t z � �b� a�� y � �b�t x � �a�t z � �a� b�g�
This is exactly the observable behaviour with the ccp operational semantics� but
is obtained with a single reduction scheduling�

� Con�uence

In this section we show that� is con�uent� The con�uence proof has to overcome
the di�culty that agents do not form a free algebra �modulo ��renaming
� but
are equivalence classes of pre�agents� Hence� standard techniques such as studied
in ��� or � � are not applicable�

Instead we adopt the following strategy� We de�ne a canonical form ��M �� of a
termM � together with a reduction relation on canonical forms�We show that the
canonical formmapping has an inverse� and that both it and its inverse commute
with equivalences and multi�step reductions� We then show that reduction on

��



x � �a	 �merge�x� y� z
 � y � �b	
p�� y � �b	 t x � �a	 �M
cc��� y � �b	 t x � �a	�

� �x��u�z� �x � �u j x�	 � z � �u j z�	 �merge�x�� y� z�


��y��u�z� �y � �u j y�	 � z � �u j z�	 �merge�x� y�� z�


�
p �� � �	 x � �	 �� z � y �	 y � �	 �� z � x



	� y � �b	 t x � �a	�

� �x��u�z� �x � �u j x�	 � z � �u j z�	 �merge�x�� y� z�


��y��u�z� �y � �u j y�	 � z � �u j z�	 �merge�x� y�� z�





p�� y � �b	 t x � �a	�
� �x��u�z� �x � �u j x�	 t z � �u j z�	 �M �

��y��u�z� �y � �u j y�	 t z � �u j z�	 �M ��




cc��� y � �b	 t x � �a	�
� �x��u�z� �x � �u j x�	 t z � �u j z�	 � �z� � y�

p �� � �	 R�


��y��u�z� �y � �u j y�	 t z � �u j z�	 � �z� � x�

p �� � �	 R��





	� y � �b	 t x � �a	�
� �x��u�z� �x � �u j x�	 t z � �u j z�	 t z� � y

��y��u�z� �y � �u j y�	 t z � �u j z�	 t z� � x





 y � �b	 t x � �a	 t z � �a� b	 � y � �b	 t x � �a	 t z � �b� a	�

Fig� �� Example reduction in ccp���

canonical forms is con�uent� using standard techniques� By the properties of
the canonical form mapping� this gives us then con�uence of the original ccp��
calculus� A similar technique has been used by Niehren and Smolka in their
con�uence proofs for the � and � calculi ���� ����

De�nition� A canonical form X is a multi�set of alternatives� Each alternative
A is a quadruple �xs� c� ps� rs
� where

� xs is a set of variables �the bound variables of the alternative
�
� c is a constraint�
� ps is a multi�set of procedure calls py�
� rs is a multi�set of readers� where each reader is itself a non�empty multi�set

of pairs �g�X
� with g a guard and X a canonical form� We assume that the
termination guard

p
appears only in conjunction with the empty set �which

represents �
�

Let letters X� Y � Z range over canonical forms�
The set of free variables fv�X
 of a canonical formX is the union of the sets of

free variables of its alternatives� The free variables of an alternative �xs� c� ps� rs

is the union of the free variables of its components� minus all variables that occur

��



in xs� We assume that for each alternative �xs� c� ps� rs
 in a canonical form it
holds that xs � fv��� c� ps� rs
�

Two alternatives A
def
� �xs� c� ps� rs
 and B

def
� �ys� d� qs� ss
 are considered

identical if xs � fv�B
 � ys � fv�A
 � � and there exists a renaming � from xs
to ys such that B � �A�

De�nition� A canonical form environment is a set of procedure de�nitions
fpx � Xg that associate a procedure name p and formal arguments x with
a canonical form X� We use the letter E for canonical form environments�

We now de�ne some useful operations on canonical forms and alternatives�
Let

A
def
� �xs� c� ps� rs


B
def
� �ys� d� qs� ss


be two alternatives such that xs� ys � xs� fv�B
 � ys � fv�A
 � �� Then their
least upper bound is given by

A tB � ��xs � ys
 � fv��� c t d� ps � qs� rs � ss
� c t d� ps � qs� rs � ss
�

Existential quanti�cation �xA of an alternative A is de�ned as follows�

�x�xs� c� ps� rs
 �
��
�

�xs� c� ps� rs
 if x �� fv�xs� c� ps� rs

�xs� �xc� ps� rs
 if x � fv�c
 � x �� fv�xs� true� ps� rs

�xs � fxg� c� ps� rs
 otherwise�

Another useful operation is the merge � of two alternatives with a single reader
each into an alternative where both readers are combined�

�xs� c� ps� fr�g
 � �xs� c� ps� fr�g
 � �xs� c� ps� fS�r� � r�
g
�

��c		 � f��� c� �� �
g
��py		 � f��� true� fpyg� �
g

���xM 		 � f�xA j A � ��M 		g
��M �N 		 � fA tB j A � ��M 		�B � ��N 		g
��M �N 		 � ��M 		� ��N 		

���		 � �
��g ��M 		 � f��� true� �� ff�g� ��M 		
gg
g
��R �	 S		 � fA 
B j A � ��R		�B � ��S		g

���		�� � �

��fA�� ����Ang		�� � ��A�		
�� � ���� ��An		

�� �n � 


���x� c� fp�y�� ���� pjyjg� fr�� ���� rkg
		�� � �x�c � p�y� � � � � � pjyj � ��r�		�� � � � � � ��rk		��


��f�g��X�
� � � � � �gm�Xm
g		�� � g� �� ��X�		
�� �	 � � � �	 gm �� ��Xm		

��

Fig� �� Mapping a term to its canonical form and back�

��



Figure � presents a mapping ����� that maps a pre�term to its canonical form�
together with its right inverse� ��������

Lemma ��� For all pre�terms M�N � we have M � N i� ��M �� � ��N ���

We now de�ne a notion of reduction � on canonical forms that simulates
reduction � on ccp�� terms� Analogous to �� � is parameterized by a normal
form environment� There are three di�erent ways a canonical formX can reduce�

�� If �px � Y 
 � E and X is X� � f�xs� c� fpyg � ps� rs
g then

X �E X � � f�xs� c� ps� rs
tA j A � �y�x�Y g�
�� If d � c and X is X� � f�xs� c� ps� ff�d� Y 
gg � rs
g then

X �E X� � f�xs� c� ps� rs
 tA j A � Y g�
�� If r �� �� d � c and X is X � � f�xs� c� ps� ff�d� Y 
g � rg � rs
g then

X �E X� � f�xs� c� ps� rs
tA j A � Y g� f�xs� c� ps� ff�p��
g� rg� rsg
g�
We now show that multi�step � reduction can simulate ��

Lemma ��� For all terms M � N � procedure environments D� ifM �D N � then
��M ������D�� ��N ���

The reverse of Lemma ��� also holds�

Lemma ��� For all canonical forms X� Y � canonical form environments E� if
X �E Y � then ��X���� ���E���� ��Y �����

We now establish that reduction � is con�uent�

De�nition� Let
p
��� be the reduction relation generated by the �rst rule �the

unfolding rule
 in the de�nition of�� Let
cc
���� be the reduction relation generated

by the second and third rule �the communication rules
 in the de�nition of ��

Lemma ���
p
��� is Church�Rosser�

If X
p
����E X� and X

p
����E X� then there is a canonical form X� s�t� X�

p
���

�E X� and X�
p
����E X��

Lemma ��	
cc
���� is Church�Rosser�

Lemma ��
 � is Church�Rosser�

Proof� By Lemma ��� and Lemma ����
p

��� and
cc
���� are both Church�Rosser�

An analysis of reduction sequences shows that
p

��� and
cc

���� commute� By the
Lemma of Hindley and Rosen ��� Prop� ������� it follows that ��

p
��� � cc

���� is
Church�Rosser� �

��



M

M� M�

��X		����M�		 ��M�		

X

�
�
�
�
�
�
���

�
�
�
�
�
�
�RR�

���		

�

���		

�

���		

�

���		��

�

���		��

�

���		��

�
�
�
�

�
�
���

n

�

�
�
�
�
�
�
��R

n

R

�
�
�
�
�
�
�
�
�
�
�
�R

n

R

�
�

�
�

�
�

�
�

�
�

�
��

n

�

�
�
�
�
�
�
�
�
�
�
�
�RR

�
�

�
�

�
�

�
�

�
�

�
���

Fig� �� Strategy of the CR proof

We are �nally in a position to show con�uence for the original notion of
reduction � on ccp�� terms�

Theorem ��� � is Church�Rosser� For all terms M � M�� M�� environments
D� if M ��D M� and M ��D M� then there is a term M� s�t� M� ��D M� and
M� ��D M��

Proof� The proof strategy is depicted in Figure �� Assume that M ��D M� and
M ��D M�� By an induction on the length of the two reduction sequences from
M to M� and M�� using Lemma ��� and Lemma ��� at each step� we have that
��M �� ����D�� ��M��� and ��M �� ����D�� ��M���� Since by Lemma ��� � is con�uent�
this implies the existence of a canonical form X such that ��M��� ����D�� X and
��M��� ����D�� X� As ������� is an inverse of ������ ����Mi����

�� � Mi for i � �� �� Then
by induction on the length of the two reduction sequences from ��M��� and ��M���
to X� using Lemma ��� at each step� we have that Mi � ����Mi����

�� �� ��X�����
�i � �� �
� This implies the proposition with M� � ��X����� �

� Relationship to ccp

In this section we show that the observational behaviour of our calculus is iden�
tical to the observational behaviour of ccp in its standard transition system
semantics� To do this we extend ����� so that it maps a ccp con�guration to a

��



subset of the canonical forms given in the previous section� together with a re�
duction relation

ccp
����� on this canonical form and a notion of observables� We

show that for a given program ccp			��
ccp
������ � and � all give rise to the same

observations�
In order to extend ������ we �rst give a mapping pa�
 from ccp agents in a

con�guration to a ccp�� pre�agent� This is needed because ccp agents in a con�
�guration may have hidden stores which are not allowed in pre�agents�

pa�c
 � c
pa�py
 � py
pa��dxM 
 � �x�d � pa�M 


pa�M �N 
 � pa�M 
 � pa�N 

pa�g ��M 
 � g ��M�

Note that terms in the range of pa never contain �� � or
p
� The canonical form

of a ccp con�guration hA� ci is given by

��hA� ci�� � ��pa�A
 � c���
As ccp agents and programs do not contain blind choice� the canonical form of
a ccp con�guration will always consist of a single alternative� Because there is
no need to distribute blind choice over the parallel operator� there is a bijection
between the readers and the procedure calls in the ccp con�guration and the
canonical form� We will make use of this correspondence in the proofs below�

We now de�ne a notion of reduction
ccp

����� on the canonical form of a ccp

agent that simulates reduction ccp			� on ccp con�gurations� Like ccp			��
ccp

����� is
parameterized by an environment E of de�nitions� i�e�� associations between ccp

procedure names with formal arguments and canonical forms� There are two
di�erent ways a ccp canonical form X can reduce�

�� If �px � fAg
 � E then

f�xs� c� fpyg � ps� rs
g ccp
�����E f�xs� c� ps� rs
tAg�

�� If d � c then

f�xs� c� ps� ff�d� fAg
gg� rs
g ccp
�����E f�xs� c� ps� rs
tAg�

De�nition� A canonical form is in normal form if it cannot be reduced� Con�A


is the constraint component of A� We write
ccp
������ for the re�exive and transitive

closure of
ccp
������

Analogous to the cases for� reductions and �
ccp			�
 transitions� we now de�ne

two notions of observables for canonical form reductions�

De�nition� Let the notion of reduction �� be one of ��
ccp

������ Let P be the
ccp program D � M � Then the set of possible observations of P wrt �� is given
by

Obs���� P 
 �
SfObs���A����
 j P ��� fAg �X � fAg is in ���normal formg�

��



The following two lemmas are shown by an analysis of ccp			� transitions and
ccp

����� reductions�

Lemma 	�� If S ccp			� S� in the transition system TD� then either ��S�� � ��S��� or

��S��
ccp
�������D�� ��S

����

Lemma 	�� Let S be a ccp con�guration and D be a set of ccp de�nitions� If
��S��

ccp
�������D�� X then there is a con�guration S� such that X � ��S��� and S

ccp			�� S�

in the transition system TD �

Thus�

Lemma 	�� For any ccp program P � Obs� ccp			�� P 
 � Obs�
ccp
������ P 
�

We also have that�

Lemma 	�� For any ccp program P � Obs�
ccp

������ P 
 � Obs��� P 
�

Lemma 	�	 For any program P � Obs��� P 
 � Obs�P 
�

The main result of this section follows from Lemma ���� Lemma ��� and Lem�
ma ��� � the con�uent calculus is observationally equivalent to the operational
semantics of ccp�

Theorem 	�
 For any ccp program P � Obs�P 
 � Obs� ccp			�� P 
�

� Application to Program Analysis

One application of our con�uent semantics is to the static analysis of ccp pro�
grams� Codish et al ��� �� propose a generic approach to the analysis of con�
current logic and constraint programs� They introduce a con�uent semantics
which approximates the standard �non�con�uent
 semantics of the concurrent
constraint logic languages and use this as a basis for program analysis� Correct�
ness of their analysis holds because the con�uent semantics approximates the
standard semantics in the sense that any successful reduction sequence in the
usual semantics is also a valid reduction sequence in the con�uent semantics� and
suspension in the usual semantics implies suspension in the con�uent semantics�
The reason for requiring con�uence is so that an analysis based on this semantics
need only be proven correct for a single scheduling rule� This provides for accu�
racy as the analysis can choose a scheduling which gives the most precise answer
and also provides for e�ciency as there is no need to examine the potentially
exponential or even in�nite number of di�erent but �isomorphic� reduction se�
quences corresponding to other schedulings� Za�anella et al ��
� and Falaschi et
al ��� have given a modi�cation of this idea for the slightly di�erent context of
ccp� They formalize the analysis as a transformation from a program written in
full ccp to a an approximating program written in a subset of ccp for which the
usual operational semantics is con�uent�

��



Our calculus provides an alternative semantic basis for program analysis�
Because the calculus is Church�Rosser it has all of the advantages of the ap�
proximate con�uent semantics or program transformation� Yet it is inherently
more precise because programs have exactly the same observable behaviour as
in the usual operational semantics and the calculus does not introduce extra
reductions� For example� consider the ccp agent

p�x
 � choose�x� y� z
 � c�z

with the following ccp de�nitions�

p�x
 �� x � a

choose�x� y� z
 �� x � a �� z � x �� y � a �� z � y

c�z
 �� z � a �� true

No analysis based on the approximate con�uent semantics or transformed pro�
gram approach can ever prove that this agent is suspension free as the approx�
imate operational semantics and program transformation introduce a reduction
sequence which leads to suspension� However� an analysis based on our calculus
can show that this agent does not lead to suspension�

� Conclusion

We have given a calculus for a class of languages� ccp��� which generalize concur�
rent constraint programs �ccp
� However� unlike the usual operational semantics
for ccp� the calculus is con�uent in the sense that di�erent process schedul�
ings give rise to exactly the same set of possible outcomes� This disproves the
folklore that it is impossible to give a con�uent semantics for languages with
non�deterministic guarded choice�

The calculus has application to static analysis of ccp programs� As the calcu�
lus is con�uent� it provides a good basis on which develop analyses� Con�uence
means that not all process schedulings need to be considered in an analysis� al�
lowing for e�ciency� and that an analysis can choose a process scheduling which
gives better information� allowing for accuracy�

Acknowledgements

We thank the referees for their detailed comments�

References


� H� P� Barendregt� The Lambda Calculus� its Syntax and Semantics� volume 
�� of
Studies in Logic and the Foundations of Mathematics� North�Holland� Amsterdam�
revised edition� 
����

�




�� M� Codish� M� Falaschi� and K� Marriott� Suspension analyses for concurrent logic
programs� ACM Transactions on Programming Languages and Systems� 
���
�����
���� 
����

�� M� Codish� M� Falaschi� K� Marriott� and W� Winsborough� E�cient analysis of
concurrent constraint logic programs� In Proc� �	th International Colloquium on
Automata� Languages� and Programming� pages �������� Springer Verlag� 
����
LNCS ����

�� C� Codognet� P� Codognet� and M� Corsini� Abstract interpretation for concurrent
logic languages� In Proc� North American Conf� on Logic Programming� pages �
��
���� 
����

�� M� Falaschi� M� Gabbrielli� K� Marriott� and C� Palamidessi� Compositional anal�
ysis for concurrent constraint programming� In Proc� 
th IEEE Symposium on
Logic In Computer Science� pages �
����
� 
����

�� M� Falaschi� M� Gabbrielli� K� Marriott� and C� Palamidessi� Con�uence and con�
current constraint programming� In to appear in Proc� AMAST� 
����

�� Leon Henkin� J�Donald Monk� and Alfred Tarski� Cylindric Algebras� volume ��
of Studies in Logic and the Foundations of Mathematics� North Holland� 
��
�

�� G�erard Huet� Con�uent reductions� Abstract properties and applications to term
rewriting systems� Journal of the ACM� ����
�������
� 
����

�� Jan Willem Klop� Combinatory Reduction Systems� PhD thesis� Mathematisch
Centrum� Kruislaan �
�� 
��� SJ Amsterdam� 
���� Mathematical Centre Tracts
n� 
���


�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� second
edition� 
����



� M� Maher� Logic semantics for a class of committed�choice programs� In Proc�
Fouth Int� Conf� on Logic Programming� pages �������� 
����


�� U� Montanari� F� Rossi� and V� Saraswat� CC programs with both in� and non�
determinism� A concurrent semantics� In Second Int� Workshop on Principles and
Practice of Constraint Programming �PPCP��
�� pages 
�
�
�
� Springer Verlag�

���� LNCS ����


�� Joachim Niehren� Funktionale Berechnung in einem uniform nebenl�au�gen Kalk�ul
mit logischen Variablen� PhD thesis� Universit�at des Saarlandes� 
����


�� Joachim Niehren and Gert Smolka� A con�uent relational calculus for higher�order
programming with constraints� In Jean�Pierre Jouannaud� editor� �st International
Conference on Constraints in Computational Logics� Lecture Notes in Computer
Science� vol� ���� pages ���
��� M�unchen� Germany� ��� September 
���� Springer�
Verlag�


�� Vijay Saraswat� Martin Rinard� and Prakash Panangaden� The semantic founda�
tions of concurrent constraint programming� In Conference Record of the Eigh�
teenth Annual ACM Symposium on Principles of Programming Languages� Orlan�
do� Florida� pages �������� ACM Press� January 
��
�


�� Vijay A� Saraswat and Martin Rinard� Concurrent constraint programming� In
Proceedings of the Seventeenth Annual ACM Symposium on Principles of Program�
ming Languages� pages �������� San Francisco� California� January 
����


�� E� Za�anella� G� Levi� and R� Giacobazzi� Abstracting synchronization in con�
current constraint programming� In Proc� �th Int�l Symposium on Programming
Language Implementation and Logic Programming� Springer Verlag� 
���� LNCS
����

This article was processed using the LaTEX macro package with LLNCS style

��


