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Abstract. Confluence is an important and desirable property as it al-
lows the program to be understood by considering any desired scheduling
rule, rather than having to consider all possible schedulings. Unfortunate-
ly, the usual operational semantics for concurrent constraint programs is
not confluent as different process schedulings give rise to different sets of
possible outcomes. We show that it is possible to give a natural confluent
calculus for concurrent constraint programs, if the syntactic domain is
extended by a blind choice operator and a special constant standing for
a discarded branch. This has application to program analysis.

1 Introduction

Concurrent constraint programming (ccp) [16, 15] is a recent programming paradigm
which elegantly combines logical concepts and concurrency mechanisms. The
computational model of ccp is based on the notion of a constraint system, which
consists of a set of constraints and an entailment relation. Processes interact
through a common store. Communication is achieved by telling (adding) a giv-
en constraint to the store, and by asking (checking whether the store entails)
a given constraint. Standard ccp provides a non-deterministic guarded choice
operator. In the operational semantics of ccp, non-determinism arises in two dif-
ferent ways. First, if the guards of two branches in a committed choice construct
are both entailed by the store either branch can be picked. Second, different
process schedulings (that is, interleavings of transitions) can lead to different
results since a given process scheduling can prune the decision space by select-
ing a branch in a committed choice before strengthening the store. In this way,
some branches that would be entailed by the stronger store might be excluded
by the weaker one. This second source of non-determinism means that to find
the possible outcomes of a program all process schedulings must be considered
in the operational semantics. This need to consider all process schedulings also
holds for the denotational semantics of ccp, which expresses parallel composition
by interleaving.



Because of the combinatorial explosion of reduction sequences, an interleav-
ing semantics makes reasoning about possible evaluations cumbersome. Yet such
reasoning is necessary for many tasks in program analysis, verification and trans-
formation. This contrasts to the situation in both the lambda calculus and (ide-
alised) Prolog. The semantics for both have confluence properties that make it
unnecessary to consider different process schedulings. In the lambda calculus,
confluence is embodied in the Church-Rosser theorem [1], which says that dif-
ferent reduction sequences starting from the same term can always be re-joined
in a common reduct. As a consequence, evaluation in the lambda calculus is
deterministic. In Prolog, confluence is embodied in the Switching Lemma [10],
which ensures that different literal selection strategies give rise to the same set
of answers.

In the context of concurrency, confluence 1s an even more desirable proper-
ty since concurrent programs are notoriously difficult to reason about and to
analyse. Unfortunately, as we have seen, despite monotonicity of communica-
tion, the standard operational semantics for ccp languages is not confluent in
the sense that different process schedulings can give rise to different outcomes.
This 18 because of the guarded choice. Indeed, it has become part of the pro-
gramming language folklore that it is impossible to have both guarded choice
and confluence.

We present here a calculus for ccp that is equivalent to cep’s standard se-
mantics in that both lead to the same observations, yet is confluent. Actually
we give a calculus for a slightly larger language, ccp, 4, which extends ccp by
providing a blind choice construct and a failure constant 0. The main difference
between our calculus for ccp, g and the standard operational semantics for ccp
lies in the treatment of guarded choice. In ccp, once a choice is made, all other
alternatives of a choice construct are discarded. In ccp g, the other alternatives
are kept around, but extended with a guarded branch which reduces to 0 on
termination, indicating that this alternative is only valid if another branch in
the guard does not suspend. The calculus distinguishes between the two forms
of non-determinism in ccp. Non-determinism arising from multiple guards being
enabled is expressed by the blind choice operator in the term language. Process
scheduling non-determinism is reflected by a choice among different reduction
sequences, analogous to the situation in the lambda calculus. Our main result is
a confluence theorem for this calculus, which essentially says that the choice of
process scheduling has no influence on the observable behaviour. This is equiv-
alent to the Church-Rosser theorem for the lambda calculus or the Switching
Lemma for Prolog. Our result thus refutes the folklore that is impossible to have
both guarded choice and confluence. Monotonicity of communication is crucial
to our result.

Besides its theoretical interest, our confluent calculus has practical applica-
tions in static analysis of ccp. Lack of confluence in the usual operational seman-
tics and denotational semantics means that program analysis cannot be directly
based on these semantics, as the cost of considering all process schedulings in an
analysis is prohibitive. There have been two main approaches to overcome this



difficulty. The first is to use a fixed process scheduling, but then to “re-execute”
the program until a fixpoint is reached. This was suggested in [4] for concurrent
logic programs and extended in [5] to ccp. This may be expensive and is inherent-
ly imprecise because re-execution confuses the behaviour of different branches.
The second approach is to give a non-standard operational semantics for ccp
which 1s confluent but which approximates the usual ccp operational semantics
by allowing more reductions. Analyses are then proved correct with respect to
this approximate operational semantics. This was suggested in [2, 3] for concur-
rent logic programs and couched in [17, 6] in the slightly different context of
ccp as a transformation from a program written in full ccp to an approximating
program written in a subset of ccp for which the usual operational semantics is
confluent. The disadvantage of this approach is an inherent loss of precision in
the analysis because of the approximation introduced in the new semantics or
in the program transformation. Qur calculus, we believe therefore, provides a
better basis for analysis for two reasons. First, because the calculus is confluent,
there is no need to introduce complex artificial semantics or transformations as
efficient analysis can be directly based on the calculus. Second, because the cal-
culus gives the same observational behaviour as the usual operational semantics,
there is no inherent loss of precision and the analysis can be more accurate.

Our result showing that the ccp,, programs are confluent generalizes conflu-
ence results of Maher [11] and Saraswat et al [15] about deterministic ccp subsets
and Falaschi et al [6] identification of subclasses of ccp for which the usual oper-
ational semantics is confluent. Montanari et al [12] give a confluent operational
semantics for a variant of ccp with both indeterminism (blind choice) and nonde-
terminism (angelic choice), however they do not consider guarded choice. Niehren
and Smolka have introduced the é [13] and p [14] calculi which have strong con-
nections to the m-calculus and deterministic ccp respectively. They have shown
that both of these calculi are confluent. However, unlike our calculus neither the
p nor the é calculus has a non-deterministic guarded choice operator.

The rest of this paper is organized as follows. Section 2 introduces the stan-
dard operational semantics of the ccp languages. Section 3 presents our calculus.
Section 4 shows that reduction in our calculus is confluent and Section 5 shows
that the calculus and operational semantics of ccp are observationally equivalent.
Section 6 sketches an application of our calculus to the analysis of ccp programs.
Section 7 concludes.

2 Concurrent Constraint Programming

Concurrent constraint programming was proposed by Saraswat [16, 15]. We fol-
low here the definition given in [15], which is based on the notion of cylindric
constraint system.

A cylindric constraint system [7] is a structure C = (C, <, U, true, false, 3)
such that:

1. {C,<) is a complete algebraic lattice, where Ul is the lub operation (repre-
senting logical and), and true, false are the least and the greatest elements



of C, respectively;
2. For each z € Vars the function 3, : C — C is a cylindrification operator:
(E1) Jze <,
(E2) ¢ < ¢ implies 3¢ < 3¢,
(E3) Jp(cUIpe) = Fpe U I,
(E4) 3.3y¢ = Fy3pe;
3. For each z,y € Vars, C contains the diagonal element, d,, which satisfies:
(D1) dyyp < true,
(D2) if z # 2,y then dyy = 3. (ds. U d,y),
(D3) if @ # y then ¢ < dyy U (cUdyy).

As usual, we take ¢ = ¢/ iff ¢ < ¢/ A ¢ < ¢. The cylindrification operators
essentially model existential quantification and so are useful for defining a hiding
operator in the language. Note that if C models the equality theory, then the
diagonal element d;, can be thought of as the formula z = y.

Deviating slightly from the treatment of [15], we will base our exposition of
ccp on renamings instead of diagonal elements. Renamings can be defined in
terms of diagonal elements as follows.

Definition. Let # and y be variables and let ¢ € C. Then the renaming [y/x]c
of y for « in ¢ is the constraint 3, (dyy U c).

Definition. The free variables fv(c) of ¢ € C is the set {z | Jz¢ # c}.
The following proposition shows that we can consistently rename the free
variables of a constraint.

Proposition 2.1 Let ¢ € C and let # and y be variables such that y ¢ fv(e).
Then 3,[y/z]c = F.c.

The description and semantics of the cep class of languages 1s parametric with
respect to an underlying cylindric constraint system C. The syntax of agents M
and programs P is given by the grammar:

(Agent) Mi=c|R|py | M-M | LM
(Choice) R =R|R|c—M

(Program) P:=D; M

(Declarations) D:=D,D|pz:=M

Two fundamental agents are the tell operation ¢ which adds the constraint ¢ to
the store and the guarded choice among ask operations [ "_,¢; — M; which
evaluates some M;, provided the corresponding guard ¢; is entailed by the store.
An agent can also be a procedure call py, where § is a vector of parameters
(Y1, -+, Yn). We assume that every procedure identifier p has exactly one dec-
laration of the form p(xy, ..., #,) := M in a program and that the lengths of
actual and formal argument lists match. Agents can be combined using parallel
composition (-). The quantifier 3, M hides the use of variable z inside the agent
M. We will often use the word ferm as a synonym for agent.



R1 {c,d) = (true,cUd) where ¢ # true
R2 ([ ici— M;,dy =% (M,,d) where j €[l,n] and ¢; < d
(O, ¢) <2 (0", )

(M- N,cy =2 (M' N,
(N -M,c) =N -M' )

R3

(M, dU3,c) <L (N,d')

R4 d cc, d’ !
A¢M, e) <2 (3TN, cu 3, d)

R5 (py,c) =P, ([y/T]M, c) where (pT :=M) e D

Fig. 1. The transition system Tp.

Free variables fv(M) and renamings [x/y]M have their usual inductive def-
initions, where the cases where M is a constraint are as defined previously.
Following the usual convention for reduction systems, we identify a-renamable
terms. That is, 3, M and 3.[y/2]M are regarded as the same term, provided
that y & fvM. Proposition 2.1 shows that this identification is consistent with
our definition of a constraint system.

The standard operational model of ccp is given as a transition system over
configurations. A configuration consists of a ccp agent and a constraint repre-
senting the current store. The transition system 7Tp is specified with respect
to a set of procedure declarations D. Figure 1 gives the rules in the transition
system. Constraints are added to the store (R1). A guarded choice is reduced
non-deterministically by choosing a branch whose guard is enabled (R2). ( R3)
describes parallelism as interleaving. To describe locality (R4) the syntax of ex-
istentially quantified agents is extended by allowing agents of the form 3¢M .
This represents an agent in which z is local to M and d is the “hidden” store
that has been produced locally by M on x. Initially the local store is empty,
that is, 3, M = 3¢ M. The execution of a procedure call is modelled by (R5).
We write < for the reflexive and transitive closure of <%,

The standard observable behavior of a ccp agent is the set of possible con-
straint stores which can result when the agent is reduced to a normal form.
A configuration S is in normal form if it cannot be reduced further. Infinite
reduction sequences are equated to the constraint false.

Definition. Let P be the ccp program D ; M. Then P (.., c if there is a
normal form (N, ¢) such that (M, true) =% (N, ¢) in the transition system Tp.
P diverges, written P )., iff there is an infinite Tp-transition sequence starting

with (M, true).



Definition. The set of observations of a program P, Obs(—2L+ P) is
{e| M Jeep ¢} U {false | M frecp t-

Example 2.2 The following declaration D defines an agent merge, which non-
deterministically merges its two input streams z and y into an output stream
z. The constraint domain is equations over finite terms. We use [] to denote the
empty stream, and [u | v] to denote the stream with head u and tail v.

merge(x,y,z) =
Iy z=[u| ] —3pTIp(z=[u|2] 2z =[ul| 2] merge(x’,y,z"))
133w y=[uly]—FpTuT (y=[u|y] 2= [u]z] merge(x,y, 2))
le=0—z=y
ly=0—z=2

Let P be the program D ; x = [a] - merge(z,y, z) -y = [b]. A reduction sequence
using left-most agent scheduling is:

(x = [a] - merge(x,y, z) -y = [b], true)

(merge(x y,z) -y =[b],z = [d])

(M -y =[b], = [a])

(ijﬂ Ao (e =[ule]-z=[ul] -merge(x’,y,2)) -y = [b], x = [a])
=t (3, _[]EI“ 3,z =[u]| 2] - merge(x’,y, 2")) -y = [b], . = [a])
(3 []EI“ 4, merge(z’,y,2') -y = [bl,v = [a]UTz = [a]| ]
a Uau a3, M y=[b,z=[a]UT.iz=[a]])

3, []au o3, y=z y=[b,z=[a]UTsz=[a]|#])
(true-y =[b],x =[] Uz = [a]y])
(true - true,y = [b] Uz = [a] U z = [a, b])

-

z'
i
i
i
2!

where M and M’ are appropriate renamings of the definition of merge(z,y, z)
and merge(z’,y, z') respectively. This reduction sequence gives the observable
behavior y = [b] Uz = [a]U z = [a, b].

In fact this is the only reduction sequence possible with a leftmost agent
scheduling. With rightmost agent scheduling, however, the only observation is
y=[bUx =[a]Uz = [b,a]. Thus

Obs(—=L PYD {y=[b|Uuz=[a]Uz=[ba],y=[b]Ux = [a] Uz = [a,b]}.

In fact, examination of the (large number of ) other agent schedulings shows that
these are the only observable behaviours. A more efficient way to show that these
are the only observable behaviours will be discussed in the next section.

This example clearly shows the non-confluence of the standard operational
semantics, as different agent schedulings give different results.



3 The Concurrent Constraint Calculus

In this section, we develop a calculus for concurrent constraint programming
which has the same observable behavior as the operational semantics defined in
the last section. The calculus is formulated as a reduction system modulo a set
of structural congruences.

The calculus describes a slightly larger language than ccp, adding a blind
choice operator (+) and a failure operator 0, which is an identity for (+). In-
formally, using (+) one can collect all possible execution paths of an agent. We
also admit a new form of guarded branch in an ask agent, written / — 0, which
stands for failure upon termination. Hence, a guard g is now a constraint ¢ or
the symbol /. Informally, once an alternative in a guarded choice is selected,
the branch that corresponds to taking some other alternative is marked with a
v/-guard, which causes the branch to be discarded upon termination.

Example 3.1 To see the essential idea for obtaining confluence, consider the
agent

4 Y d— M]e— N,

run in a context where the store entails d. If the store does not also entail e this
should rewrite to M. On the other hand, if the store entails both d and e, A
should rewrite to M + N. The problem is that the property “the store does not
imply €” 1s not monotonic — in fact it is anti-monotonic since the store increases
monotonically during execution. Therefore, it is not possible to make a choice
between the two reductions uniformly for all process schedulings. One solution
to the problem is to consider each possible process scheduling individually, using
an interpretation of parallel composition as interleaving. The resulting calculus
i1s unsuitable for program analysis, however, due to the state space explosion
incurred by the interleaving semantics.
In our calculus, A reduces instead to

M+Ee—N]y/—0 Z B
In effect this defers the decision whether or not to drop the “e — N” branch
until program termination. If further reductions determine that the store also
entails e, this term could further reduce to

M+N+(/—=0]v—0),

which is observationally equivalent to M + N. On the other hand, if the store
never entails e, we end with agent B, which produces the same observations as
M. We thus get a confluent calculus that is observationally equivalent to the
transition system presented in the last section.

We now make these intuitions precise by defining a reduction system over
an extended concurrent constraint language, called ccp,q. Terms in ccp,, are
produced by the grammar.

Agent Mi=c¢c|R|py | M-M|ILM|M+M]|O
Choice R:=R[R|ec— M| /—0



The definitions of renaming and free variables carry over in the obvious way.

The operators have the natural precedence rules: 3, binds strongest, followed
by (-), followed by ( [ ), followed by (+) which binds weakest. Guard prefixes
g — extend as far to the right as possible.

The ccp calculus has a rich set of structural equivalences (=). If M = N,
then M and N are generally identified. If we want to avoid this identification,
speaking only of the concrete term syntax, we will explicitly talk about pre-
agents or pre-programs. Structural equivalence (=) is the least congruence that
satisfies the laws below.

1. (4) is associative and commutative, with identity 0.

(L+ M)+ N=L+(M+N)
M4+N=N+M
M+0=M

2. (+) is associative and commutative, with identity true and zero 0.

(L-M) N=1L-(M-N)

M- N=N-M
M - true= M
M-0=0

3. (+) distributes through (+).
M(N1—|—N2)EMN1—|—MN2
4. (]) is associative and commutative.

(LIM)[N=L](M]N)
MIN=N|M

5. Parallel composition of constraints equals least upper bound.
c-d=cUd
6. The following laws govern existential quantification:

3o(M + N) = 3, M + 3N

M -3, N=3,(M-N) if © ¢fv(M)
ILM=M if © ¢fv(M)
.M =3, [y/z]M ify g tv(M)

33y M =3,.3. M

Reduction — is a binary relation between agents that is parameterized by a
procedure environment D. We write M —p N if M reduces to N in one step
in the procedure environment . We sometimes leave out the D-suffix if the
environment is clear from the context.

In essence there are two reduction rules, one for communication, and one for
procedure unfolding. The rule for procedure unfolding is:

py Lop [Y/TIM (pz:=M € D).



The rule for communication comes in two variants. The first variant handles the
deterministic case, where no choice operator is present:

c-(d—M)=Spe- M (d<c)

The second variant handles the case where the ask agent is part of a guarded
choice:

c-(d—M|R)-Spc-M+c (V—0[R) (d<e)

The standard semantics of cep captures the idea that once a guard in one
of the guarded choice branches i1s enabled then that branch can be chosen and
the other branches can be discarded. By contrast, our rule does not discard any
branches. Instead, we also keep the original ask agent as a (4)-alternative, but
with the taken branch replaced by the branch (y/ — 0). Essentially this indicates
that the alternative cannot lead to suspension, but that other branches in the
alternative can still be taken if their guards are enabled.

Reduction can only occur in the top-level agents, it cannot occur inside the
branches of a guarded choice. That is, our reduction relation, —, is given by

M pUce D M/
F(M -N)+ N —p Iz(M'-N)+ N

We write — for the reflexive and transitive closure of —.

We now define the set of possible observations of a ccp-term M. Since we
express non-determinism by the (+) operator, we might expect that each (+)-
alternative in a reduct would contribute to the set of possible observations.
However, we have to disregard those alternatives that contain a guard of the form
v/ — 0 at top-level, since they represent untaken branches in a committed choice.
Upon termination such alternatives are identified with failure, as is formalized
below.

Definition. Let terminal equivalence = be the least congruence that contains
= and the equality

R|+/~0 = 0.
Definition. The constraint part Con(M) of a term M is | {e | AN.M =¢- N}.
Definition. A term M is in normal form if it cannot be reduced by —p.

Definition. Let P be the ccp,q program D ; M. Then P Yeep,, c if there
is a normal form N and a term M’ such that M —p N + M’ N % 0 and
¢ = Con(N). P diverges, written P ﬂccp+0 if there is an infinite — p-transition
sequence starting with M.

The set of observations of a program P, Obs(—, P) is defined as in the ccp
case.

Obs(—,P)={c| M Yeep ., e} U {false | M ﬂccp+0}.



Thus, the possible observations of a program P are the constraint parts of all non-
zero normal form alternatives of P. In addition, we add false to the observations
of P if there is a possibility that evaluation of P does not terminate. We often
abbreviate Obs(—, P) to Obs(P).

As usual, we define observational equivalence (22) to be the largest congruence
on terms and programs such that P = @ implies Obs(P) = Obs(Q), for all
programs P, .

An equivalent, but more constructive definition of = for terms is based on a
program context, C', which is a program with a hole [ ] in it. Let C[M] denote the
term that results from filling out the hole in C'. Then M = N iff for all program
contexts C' such that C[M] and C[N] are well-formed programs,

Obs(C[M]) = Obs(C[N)).

Proposition 3.2 The following are observational equivalences in ccp .

M4+M=M
My + Ms = true — M, || true — Mo
R|R=R
c-d—=M|R)=c-R (¢ U d = false)
¢ MR/ 0) = (dm M| R) (<0

Note that the second observational equivalence means that the explicit blind
choice construct does not add to the expressiveness of cep.

Example 3.3 A reduction sequence in ccp,q using left-most agent scheduling
from the program given in Example 2.2 is given in Figure 2, where M, M’ and
M'" are appropriate renamings of the definition of merge(x, y, z), merge(2’,y, z")
and merge(z,y, 2') respectively and R’ and R are the remaining branches in
the guarded choices in M’ and M". This reduction sequence gives the observable
behavior

{ly=b|Uz=[a]Uz=[ba,y=[b]Uz = [a]U z = [a,b]}.

This is exactly the observable behaviour with the ccp operational semantics, but
is obtained with a single reduction scheduling.

4 Confluence

In this section we show that — is confluent. The confluence proof has to overcome
the difficulty that agents do not form a free algebra (modulo a-renaming), but
are equivalence classes of pre-agents. Hence, standard techniques such as studied
in [8] or [9] are not applicable.

Instead we adopt the following strategy: We define a canonical form [M] of a
term M, together with a reduction relation on canonical forms. We show that the
canonical form mapping has an inverse, and that both it and its inverse commute
with equivalences and multi-step reductions. We then show that reduction on

10
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Fig. 2. Example reduction in ccp .

canonical forms i1s confluent, using standard techniques. By the properties of
the canonical form mapping, this gives us then confluence of the original ccp
calculus. A similar technique has been used by Niehren and Smolka in their
confluence proofs for the § and p calculi [13, 14].

Definition. A canonical form X is a multi-set of aliernatives. Each alternative
A is a quadruple (s, ¢, ps, rs), where

— s is a set of variables (the bound variables of the alternative).

— ¢ 1s a constraint.

— ps is a multi-set of procedure calls py.

— rsis a multi-set of readers, where each reader is itself a non-empty multi-set
of pairs (g, X), with g a gunard and X a canonical form. We assume that the
termination guard y/ appears only in conjunction with the empty set (which
represents 0).

Let letters X, Y, Z range over canonical forms.

The set of free variables fv(X) of a canonical form X is the union of the sets of
free variables of its alternatives. The free variables of an alternative (zs, ¢, ps, rs)
1s the union of the free variables of its components, minus all variables that occur

11



in zs. We assume that for each alternative (s, ¢, ps,rs) in a canonical form it
holds that zs C fv({, ¢, ps, rs).

Two alternatives A </ (zs,c,ps,rs) and B = (ys,d, gs, ss) are considered
identical if zs Nfv(B) = ys Nfv(A) = 0 and there exists a renaming p from zs
to ys such that B = pA.

Definition. A canonical form environment is a set of procedure definitions
{pT = X} that associate a procedure name p and formal arguments T with
a canonical form X. We use the letter F for canonical form environments.
We now define some useful operations on canonical forms and alternatives.
Let
Ay (xs,c,ps,rs)
B (ys,d, gs, ss)

be two alternatives such that zsNys = zsNfv(B) = ys Nfv(A) = 0. Then their
least upper bound is given by

AUB=((zsUys)Niv(l,cUd psUqgs,rsUss),cUd,psUqs,rsUss).
Existential quantification 3, A of an alternative A 1s defined as follows.

(xs,c,ps,rs) if © fv(xs,c,ps,rs)
. (zs,c,ps,rs) = ¢ (xs,3zc, ps, rs) if © e fv(c) A ¢ fv(xs, true, ps, rs)
(xsU{x}, ¢, ps,rs) otherwise.

Another useful operation is the merge W of two alternatives with a single reader
each into an alternative where both readers are combined.

(xs,c,ps,{r1}) W (xs, c,ps, {ra}) = (xs, ¢, ps, {U(r1 Ura)}).

[[C]] = {((Z)’C’@’@)}
[[p?]] = {((Z)’ true, {py}’ (Z))}
[F.M] ={3.A | Ae[M]}
[M-N]={AUB | Ae[M],Be[N]}
[M + N] = [M]U[N]
[o] = 0
g — M] = {0, true, 0, {{(g, [MD)}})}
[R1ST={AwB | Ae[R],B e[S]}

o] =
[{AL o AN = [ 4 o 4 AL (n>1)
[, ¢ (1T oo T3}, {71 e s NI = Sl T - p¥ - [ - ] ™)
[{(g, X2)s- s (g Xe) ™ = g1 = [X071 0 o [ g [Xn] ™

Fig. 3. Mapping a term to its canonical form and back.
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Figure 3 presents a mapping [-] that maps a pre-term to its canonical form,
together with its right inverse, [-]~.

Lemma 4.1 For all pre-terms M, N, we have M = N iff [M] = [N].

We now define a notion of reduction = on canonical forms that simulates
reduction — on cep,, terms. Analogous to —, = is parameterized by a normal
form environment. There are three different ways a canonical form X can reduce.

1. (pz=Y) € Fand X is X' U{(xs,c, {py} Ups,rs)} then
X =g X' U{(xs,c,ps,rs)UA | Aely/z]V}.
2. Ifd<cand X is X' U{(xs,c,ps,{{(d,Y)}} Urs)} then
X =g X' U{(zs,c,ps,rs)UA | AeY}.
3.Mr#£0,d<cand X is X' U{(xs,¢,ps,{{(d,Y)}Ur}Urs)} then
X =g X' U {(zs,c,ps,rs)UA | AeY}U {(zs,¢,ps,{{(\/,0)}Ur}Urs})}.
We now show that multi-step = reduction can simulate —.

Lemma 4.2 For all terms M, N, procedure environments D, if M —p N, then
[[M]] =¥[D] [[N]]

The reverse of Lemma 4.2 also holds.

Lemma 4.3 For all canonical forms X, Y, canonical form environments F, if
X =gV, then [[X]]_l —[E]-! [[Y]]_l.

We now establish that reduction = is confluent.

Definition. Let =% be the reduction relation generated by the first rule (the
unfolding rule) in the definition of =. Let == be the reduction relation generated
by the second and third rule (the communication rules) in the definition of =

Lemma 4.4 == is Church-Rosser:
If X &5 X, and X £ 5 X, then there is a canonical form X3 s.t. X; ==
=>E X3 and X2 :p>E X3.

Lemma 4.5 —= is Church-Rosser.
Lemma 4.6 = is Church-Rosser.

Proof: By Lemma 4.4 and Lemma 4.5, =% and == are both Church-Rosser.
An analysis of reduction sequences shows that = and == commute. By the
Lemma of Hindley and Rosen [1, Prop. 3.3.5], it follows that === U =5 is
Church-Rosser. 0O
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Fig. 4. Strategy of the CR proof

We are finally in a position to show confluence for the original notion of
reduction — on ccp o terms.

Theorem 4.7 — is Church-Rosser. For all terms M, M;, M, environments
D, if M —p My and M —p M then there is a term M3 s.t. My —p M3 and
My —p Ms.

Proof: The proof strategy is depicted in Figure 4. Assume that M —p M; and
M —p M>. By an induction on the length of the two reduction sequences from
M to My and My, using Lemma 4.1 and Lemma 4.2 at each step, we have that
[M] =rpy [M1] and [M] =[py [M-]. Since by Lemma4.6 = is confluent,
this implies the existence of a canonical form X such that [M;] =»[py X and
[M3] =py X. As [[]7!is an inverse of [-], [[M;]]~* = M; for i = 1,2. Then
by induction on the length of the two reduction sequences from [M;] and [Ms]
to X, using Lemma 4.3 at each step, we have that M; = [[M;]]~* — [X]7},
(i = 1,2). This implies the proposition with Mz = [X]~!. O

5 Relationship to ccp
In this section we show that the observational behaviour of our calculus is iden-

tical to the observational behaviour of ccp in its standard transition system
semantics. To do this we extend [-] so that it maps a ccp configuration to a
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subset of the canonical forms given in the previous section, together with a re-
duction relation == on this canonical form and a notion of observables. We
show that for a given program <2 =% = and — all give rise to the same
observations.

In order to extend [-], we first give a mapping pa() from ccp agents in a
configuration to a ccp o pre-agent. This is needed because ccp agents in a con-

figuration may have hidden stores which are not allowed in pre-agents.

pa(c) =c

pa(py) =py

pa(3 ﬁ ) = 3e(d - pa(M))
pa(M - N) = pa(M) - pa(N)
pa(g— M) =g— M.

Note that terms in the range of pa never contain 0, + or /. The canonical form
of a ccp configuration (A, ¢) is given by

[(4, )] = [pa(A) - ].

As ccp agents and programs do not contain blind choice, the canonical form of
a ccp configuration will always consist of a single alternative. Because there is
no need to distribute blind choice over the parallel operator, there is a bijection
between the readers and the procedure calls in the ccp configuration and the
canonical form. We will make use of this correspondence in the proofs below.

We now define a notion of reduction == on the canonical form of a ccp
agent that simulates reduction =2+ on ccp configurations. Like 2. =L ig
parameterized by an environment £ of definitions, i.e., associations between ccp
procedure names with formal arguments and canonical forms. There are two
different ways a ccp canonical form X can reduce:

1.If (p7 = {A}) € FE then

{(zs,c,{py} Ups,rs)} =L {(zs,c,ps,rs) U A}.

2. If d < ¢ then

{(zs,c,ps, {{(d, {A})}}Urs)} = =L {(zs,c,ps,rs) U A}.

Definition. A canonical form isin normal form if it cannot be reduced. Con(A)
is the constraint component of A. We write == for the reflexive and transitive
closure of =%,

Analogous to the cases for — reductions and (—2) transitions, we now define
two notions of observables for canonical form reductions.

ccp

Definition. Let the notion of reduction — be one of =, . Let P be the
ccp program D ; M. Then the set of possible observations of P wrt — 1s given

by
Obs(—, P) = J{Obs([A]™") | P — {A}UX A {A} is in —-normal form}.
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The following two lemmas are shown by an analysis of =2 transitions and
== reductions.

Lemma 5.1 If S =% 5" in the transition system Tp, then either [S] = [S'] or
[5] %[D]I [S].

Lemma 5.2 Let S be a ccp configuration and D be a set of ccp definitions. If
[S] ==>[p] X then there is a configuration S’ such that X = [5"] and S <L+ S’
in the transition system Tp.

Thus:

cep

Lemma 5.3 For any ccp program P, Obs(—, P) = Obs( cep ,P).

We also have that:

cep

Lemma 5.4 For any ccp program P, Obs(—=, P) = Obs(=, P).

Lemma 5.5 For any program P, Obs(=, P) = Obs(P).

The main result of this section follows from Lemma 5.3, Lemma 5.4 and Lem-
ma 5.5 — the confluent calculus is observationally equivalent to the operational
semantics of cep.

Theorem 5.6 For any ccp program P, Obs(P) = Obs(—L, P).

6 Application to Program Analysis

One application of our confluent semantics is to the static analysis of cep pro-
grams. Codish et al [3, 2] propose a generic approach to the analysis of con-
current logic and constraint programs. They introduce a confluent semantics
which approximates the standard (non-confluent) semantics of the concurrent
constraint logic languages and use this as a basis for program analysis. Correct-
ness of their analysis holds because the confluent semantics approximates the
standard semantics in the sense that any successful reduction sequence in the
usual semantics 1s also a valid reduction sequence in the confluent semantics, and
suspension in the usual semantics implies suspension in the confluent semantics.
The reason for requiring confluence is so that an analysis based on this semantics
need only be proven correct for a single scheduling rule. This provides for accu-
racy as the analysis can choose a scheduling which gives the most precise answer
and also provides for efficiency as there is no need to examine the potentially
exponential or even infinite number of different but “isomorphic” reduction se-
quences corresponding to other schedulings. Zaffanella et al [17] and Falaschi et
al [6] have given a modification of this idea for the slightly different context of
ccp. They formalize the analysis as a transformation from a program written in
full ccp to a an approximating program written in a subset of cep for which the
usual operational semantics is confluent.
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Our calculus provides an alternative semantic basis for program analysis.
Because the calculus is Church-Rosser it has all of the advantages of the ap-
proximate confluent semantics or program transformation. Yet it is inherently
more precise because programs have exactly the same observable behaviour as
in the usual operational semantics and the calculus does not introduce extra
reductions. For example, consider the cep agent

p(x) - choose(x,y, z) - e(2)
with the following ccp definitions.
p(x) =—r=a
choose(x,y,z) =ex=a—z=z|ly=a—z=y

e(2)

z = awr true

No analysis based on the approximate confluent semantics or transformed pro-
gram approach can ever prove that this agent is suspension free as the approx-
imate operational semantics and program transformation introduce a reduction
sequence which leads to suspension. However, an analysis based on our calculus
can show that this agent does not lead to suspension.

7 Conclusion

We have given a calculus for a class of languages, ccp o, which generalize concur-
rent constraint programs (ccp). However, unlike the usual operational semantics
for ccp, the calculus is confluent in the sense that different process schedul-
ings give rise to exactly the same set of possible outcomes. This disproves the
folklore that it is impossible to give a confluent semantics for languages with
non-deterministic guarded choice.

The calculus has application to static analysis of cep programs. As the calcu-
lus is confluent, it provides a good basis on which develop analyses. Confluence
means that not all process schedulings need to be considered in an analysis, al-
lowing for efficiency, and that an analysis can choose a process scheduling which
gives better information, allowing for accuracy.
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