
Systematically Generated Diversity to Improve
Online Hardware FaultDetection and Validation of

Results

Heidrun Dücker

Institut für Rechnerentwurf und Fehlertoleranz, Universität Karlsruhe
Postfach 6980, W 7500 Karlsruhe 1, Germany

Tel. ++49-721-608-4353, Fax: ++49-721-370455, mail: duecker@ira.uka.de

Abstract

Existing design diversity, which is generally used to detect software faults, enables
hardware fault detection without any additional measures, but the obtained hardware
fault coverage is insufficient. To improve the hardware fault coverage we present a
method that systematically transforms every instruction of a given program into a
modified instruction (sequence), keeping the algorithm fixed. This transformation bases
on a diverse data representation and accompanying modified instruction sequences. The
original and the systematically modified variants of a program are executed
sequentially. Afterwards both results are compared on-line to detect hardware faults.
First examinations of the hardware fault coverage have shown that the fault coverage
of design diversity can be improved by additionally using systematically generated
diversity.

Keywords: Diversity, hardware faults, software implemented fault tolerance, testing,
dependability.

1 Introduction

Safety-critical applications need dependable hardware and software. Dependable
program execution essentially requires hardware fault detection or hardware fault
tolerance. Instead of the common approach of structural duplication, we present an
approach based on systematically generated diversity: one program is run multiple on
the same system and the computed results are compared. This method is not suitable
for complete hardware test, but it allows validation of results.

While running the same program twice transient faults can be detected easily.
Permanent faults require additionally a transformation of the program to obtain
different results with a high probability. Such a transformation could be gained by
design diversity or by systematically generated diversity.

- 2 -

If design diversity is used, different design teams evolve different solutions of the same
problem to get diverse implementations. If systematically generated diversity is used,
one design team evolves one solution of the problem and the second variant is generated
by a precompiler by using systematic transformations. Instead of an original
instruction an accompanying instruction sequence, applied to operands given in the
diverse data representation, will be executed. This new instruction sequence calculates
the original result in the diverse data representation. If every instruction of a program
is modified with respect to the diverse data representation, a variant is obtained that
calculates the results with the same algorithm but with different instruction sequences
and different data flow.

Data complementation has been suggested as a diverse representation promising good
fault detection and small additional effort. A prototype of a precompiler has been
implemented, which modifies a given program with respect to a complementary data
representation.

Section 2 generally describes how hardware fault detection works by using software
diversity. In section 3, the method for systematically generation of diversity and
realization of the method is described. In section 4 some experimental results are
presented.

2 Theoretical principles

Hardware and software faults may be detected by the following tests:

Absolute tests: Concerning some consistency conditions a computer system or data
could be examined on-line by absolute tests. Checking the address range or kernel calls
also belongs to the class of absolute tests as application-dependent tests of the results
do. The fault coverage of absolute tests depends on known conditions. Only faults that
break the conditions could be detected.

Relative tests: If a function is executed for several times the computed results may be
compared by a relative test. The results could be calculated either parallel or serial.
With a relative test any type of independent faults could be detected, but the number of
detected or tolerated faults depends on the number of redundant calculations of the
functions.

A widespread method to detect software design faults is diversity, where different
variants of a program are used which comply with the same specification. Later the
distinct variants are executed either in parallel or serial. Parallel execution requires
multiple hardware, but scarcely time redundancy. Much time redundancy but no
structural redundancy is required by serial execution.

- 3 -

We distinguish between design diversity and systematically generated diversity:

If design diversity is used, different design teams develop different variants of a
program to minimize the probability of common design fault in the different variants.
Sometimes the teams make an arrangement with regard to specification method,
programming language, compiler or type of the used processor. The most important
arrangement is the one about different algorithms which will be implemented.

In opposite to design diversity, systematically generated diversity produces the
different variants from a given program without changing the implemented algorithm
but through computable modifications of the program or data flow. There are different
possibilities to generate systematically diverse variants:

• The exchange of the registers is an easy way for systematically generated
diversity. Then different variables of the algorithm may be affected by the stuck-
at-faults of the registers, and these faults could be detected.

• An other way is to look for sequences of instructions that may be parallelized.
Then the execution order of these sequences could be changed. The different
execution order causes a different order of interim results and therefore especially
allows a detection of data dependent faults.

• New diverse sequences of instructions can be developed with some knowledge
about the semantic of often used sequences of instructions. Considering the
application dependent features, a precompiler could replace the original sequence
by the new sequence.

• Using a different data representation enables systematically generation of
diversity. The diverse data representation could be realized with a bijective
mapping on the data. Additional modifications of the used instructions are forced
by the diverse representation of data. That means: instead of a given instruction
an accompanying sequence of instructions is executed, that calculates the original
result in the diverse representation. If all instructions of a given program are
transformed concerning a given mapping, a variant is generated that calculates
the results with a different data flow but without changing the implemented
algorithm.

The first three variants of systematically generated diversity make use of
modifications of the program flow without taking data and its representation into
account. The last variants transforms the data of the definition range of the
instructions to the range of modified sequences of instructions provided that

- 4 -

transformed data, modified sequences of instructions, and retransformed data calculate
the same result as the original variant. A precompiler for systematically generation of
diverse variants of a given program can be realized for all explained possibilities,
because they facilitate computable transformations.

2.1 The principle of hardware fault detection using diverse
software

2.1.1 Process of fault detection

If a system is given that runs the software once (simplex system), hardware faults that
affect computed results may be detected only with a concurrent absolute test. Faults
that cause an exchange of the results within the given range of an absolute test, cannot
be detected in such a system.

On virtual-multiple-systems diverse variants are run serially on one hardware. As
diverse variants do not use registers and instructions in the same way, hardware faults
could affect different parts of the calculation. Many faults could be detected by the
absolute tests during the additionally executed variants or by the following relative
tests.

With two variants on one hardware, a fault detecting system is obtained, that detects
hardware and/or software faults depending on the diversity employed:

• If systematically generated diversity is used, only hardware faults could be
detected because design faults are duplicated. The afford in time that is required to
detect hardware faults is very high, since the program execution is duplicated.
Therefore other known methods may be more advantageous.

• If design diversity is used ,hardware and software faults could be detected, but the
hardware fault coverage is low [EHNi 90].

• A combination of systematically generated and design diversity preserves
software fault detection and increases hardware fault detection. Figure 1 shows a
virtual duplex system with two variants, realising design diversity. One of the two
variants additional is modified systematically to increase hardware fault coverage.

- 5 -

variant

2

absolute
 test

relative
test

variant

1b

absolute
 test

variant

1a

processor

Figure 1: Diagram of a virtual duplex system of systematically generated
(variant 1a and 1b) and design diversity (variant 1 and 2)

2.1.2 Fault model

The fault model used is a single-stuck-at fault model for the processor hardware.
Therein only processor dependent faults have been considered, because memory faults
could be detected by coding methods. Accompanying to the family of Motorola 68000
the processor dependent faults can be subdivided into three types of faults:

Bus faults: a single line is stuck at 0 or 1.

Register faults: a single bit is stuck at 0 or 1.

Instruction faults: a single instruction of the instruction set is wrongly executed, i.e.
instruction J is executed instead of instruction I.
= a fault in the control unit causes a wrong execution of an
instruction.

The fault coverage is recorded by a software-implemented fault injector [Hinz 89] which
is realized for the processor M68000. This fault injector simulates the modelled fault
effects for every instruction by executing the program in a single step modus. After the
complete execution of both diverse program variants it checks whether the fault could
be detected or not.

The following classes for the results of the examination exist:
1) correct
2) faulty; detected by an absolute test
3) faulty; detected by the relative test
4) dangerously faulty; not detected, as the number of identically faulty results is

greater than the number of correct results

In a system that runs the application once, Class 3 does not exist. Class 4 always
takes place if a wrong result is calculated.

- 6 -

Besides the detection of software faults the use of design diversity facilitates a low
detection of hardware faults, which results in a small reduction of the appearance of the
situation ´dangerously faulty´. The additional use of systematically generated diversity
makes it possible to detect hardware faults that initially leaded to the situation
´dangerous faulty´.

3 A technique for systematically generation of diversity

3.1 The basic principle

The method presented here is based on modification of the data representation. Since a
divers data representation also affords a modification of all instructions, that may be
executed, new sequences of instructions have to be generated, that calculate the result
of the original instruction in the modified representation. This generation has to be made
regarding the used representation of data as well as to the used processor. Concerning
a definite representation R of data there exists the following relation between the
instructions of the diverse variants:

Definition 1:
Given a processor P with a range D of representable data and an instruction
set F = {fi: DxD → W ⊆ D}. For a representation R of data there exists a
bijective, computable mapping r: D → D so that for every instruction fi there
exists a sequence si of instructions of instructions from F with the following
characteristics:

si : r(D) x r(D) → r(W)

with si(r(a) , r(b)) = r(fi(a,b)) and a,b ∈ D.

Accompanying to the instruction fi, the diverse sequence of instructions

regarding to the representation R is defined by:

r-1 ° si ° r

A modification of both variants is an other method to get comparable sequences of
instructions: si ° r and r ° fi.

To an instruction f that calculates the result f(a,b) from the operands a and b the
accompanying sequence of instructions needs the following three steps to calculate the
result r(f(a,b)) (see fig. 2):

1. Transformation of the operands with the mapping r

- 7 -

2. Execution of a special sequence of instructions s that computes the transformed
operands into the transformation of the result.

3. Retransformation of the result with the inverse function r-1.

a , b

r(a) , r(b)

f(a,b)

s

f

r r

s (r(a),r(b)

-1

Step 2

original instruction

S
tep 1 S

te
p

3

Figure 2: Transformation of an instruction

In a program every instruction is modified with regard to the given mapping r. Thereby
Step 3 of the instruction fi and Step 1 of the instruction fi+1 could be dropped (see Fig. 3)
because these steps only transform the intermediate variables from one representation
into the other. This is valid because the retransformation of r(x) is given by r-1(r(x)) and
for the additional transformation of this value holds:

r(r-1(r(x))) = r(x)

I

r(I)

r

Z

r(Z)

Z

r(Z)

O

r(O)
. . .

. . .

1 2

1 2

f1
f2 fn

s
1

s
2

sn

r-1. . .

original
programm

systematically generated diver
variant

Figure 3: Generation of a systematically generated diverse variant

Fig. 3 shows the transformation of a program into an accompanying systematically
generated diverse variant. An original program calculates the output O from the input I
with the intermediate variables Zi of the instructions fi. Then the systematically
generated diverse variant calculates the output with the intermediate variables r(Zi)
while using the modified sequences of instructions si. The transformations of data
between the sequences si (Step 3 and Step 1) could be dropped.

3.2 Implementation

- 8 -

3.2.1 Choice of the mapping r

In principle every bijective mapping r: D → D that allows a modification of every
instruction of an instruction set of a given processor could be used to implement
systematically generated diversity. But the efficiency of the method requires that the
mapping r must be easy to implement and that the sequences si could be realized
efficiently. In addition the use of the systematically generated diversity accompanying
to this mapping r must improve the detection of hardware faults.

The good detection of real faults of the stuck-at fault model should be picked up in the
choice of the used mapping. A method that is used in memories complements the stored
data to distinguish permanent and transient faults. An other advantage of data
complementation is that the range of data is not modified as it happens with the one-
bit-shifting of the data that Hahn and Gössel [HaGö 91] use. Furthermore for the
mappings r and r-1 data complementation could be realized easily.

Two methods are known to complement binary values: complement-on-one and
complement-on-two. Systematically generated diversity with data complementation
requires an efficient realization of the sequence s for every instruction f of the given
instruction set. To be able to find a good decision the instruction classes that
manipulate data must be examined. The most important classes are the arithmetic and
logical instructions.

According to the complement, logical instructions could be transformed with the rules of
de Morgan. These rules transform disjunction in the following way:

a ∨ b = a ∨ b = a ∧ b

This formula could be applied to the logical instruction OR a,b. To this instruction the
diverse instruction is given through the instruction AND that calculates the inverted
result of ¬c = OR a,b from the inverted operands ¬a and ¬b:

¬c = OR ¬a,¬b

The rules of de Morgan could be applied to all logical instructions of a processor in
analogy (see Table 1):

transformation fi → r-1 (si (r (a,b)))

- 9 -

a ∨ b = a ∨ b = a ∧ b or a,b → ¬(and ¬a,¬b)

a ∧ b = a ∧ b = a ∨ b and a,b → ¬(or ¬a,¬b)

a ≡⏐ b = a ≡⏐ b = a ≡⏐ b xor a,b → ¬(¬(xor ¬a,¬b))

Table 1: Correlation between the logical instructions and the complement-on-one

Regarding the arithmetic instructions the inversion of the all bits of the value x (=
complement-on-one) causes the following modification of the value:

x = –1 – x.

Concerning the arithmetic instruction "signed division" the diverse sequence of
instruction must be generated according to

 ⎝⎜
⎛

 ⎠⎟
⎞

x
y = (–1) –

x
y =!

(–1 – x)
(–1 – y) diverse =

 x
 y diverse

The modified sequence of instructions s =
(–1 – x)
(–1 – y) diverse could be calculated in the

following way:

 ⎝⎜
⎛

 ⎠⎟
⎞

x
y = –1 –

x
y = –1 –

–1– x

–1– y
 = –1 +

1

–1– y
 +

x

–1– y
 =

= –1 +
1

–1– y
 +

1

–1

x
 –

y

x

 = –1 +
1

–1–(–1–y) +
1

–1
–1–x –

–1–y
–1–x

Therefore
 x
 y diverse has to be replaced by –1 +

1
–1–(–1–y) +

1
–1

–1–x –
–1–y
–1–x

to fulfil the required equation. This calculation is very costly. In addition this calculation
is not defined for x = –1 as well as for y = 0, while the original division is not defined for y
= 0 only .

This shows that the complement-on-one is not an efficient realization for data
complementation for all instructions. For arithmetic instructions the complement-

- 10 -

on-two is a more efficient realization, because there exists a similar relation between
the instructions and the complementary representation of data as shown for the logical
instructions and the complement-on-one (see Table 2):

transformation fi → r-1 (si (r (a,b)))

a + b = -((-a) + (-b)) add a,b → –(add –a,–b)
a – b = -((-a) – (-b)) sub a,b → –(sub –a,–b)
a · b = (-a) · (-b) muls a,b → –(–(muls –a,–b))

a / b = (-a) / (-b) divs a,b → –(–(divs –a,–b))

Table 2: Correlation between the arithmetic instructions and the complement-on-two

At the other hand the complement-on-two is not suitable for logical instructions.
Therefore the mapping r realizes the complement-on-one as well as the complement-on-
two.

3.2.2 Optimization of the implementation

3.2.2.1 Updating the status register

After the selection of the diverse representation to all instructions of the instruction set
of the used processor, the modified sequences must be generated. By the examination of
the instructions it has to be recognized that a single instruction not only affects the
explicitly given operands but also the user byte of the status register (see Fig. 4).

0 0 0 X N Z V C

 user byte

Figure 4: Structure of the user byte of the status register of the processor
M68000

The bits 0 - 4 of the user byte, also called condition-code-register, are reserved for
condition flags, bit 5 - 7 always contain the value 0. The flags are automatically set or
cleared in dependency on the operands or on the result of an instruction. They are used
for conditional branches. It depends on the executed instruction which flags are
modified. Not every instruction changes every flag.

- 11 -

In a systematically generated diverse variant of a program the instructions of the
original program are replaced by new sequences of instructions. The bits of the status
register should be set in the complement-on-one. Some of the diverse sequences
automatically fulfil this requirement. Some sequences change the values of the flags in
such a way, that there exists no relationship between the status register of the original
program and of the modified variant. A following instruction, e.g. a branch, which calls
up one or more flags needs a relationship between the original and diverse variants to
execute this instruction correctly. That is the reason for updating the flags of the status
register.

Therefore diverse sequence of instructions must take into account the explicitly given
operand and the implicitly used status register. Updating of flags requires much time on
heat (runtime), but in principle it is needed only if afterwards the status register is
called up.

For reduction of the runtime-overhead a criterion that indicates when updating is
necessary has to be generated. If every executed instruction would change every flag, a
single look on the following instruction could tell if the flags have to be updated or not.
Unfortunately the most instructions only change some of the flags. Therefore for every
flag it has to be stored which instruction changed it the last time. If all flags that are
changed by an executed instruction are modified by the following instruction before an
instruction is executed that calls up one of the flags, updating of the status register is
not necessary for this instruction.

The most used instructions that call up the flags are conditional branches. During the
generation of the diverse variant it is not known which way in the program flow the
execution will take. Therefore the status register has to be updated before every
conditional branch for both possibilities: fulfilled and not fulfilled condition. If the
precompiler is implemented as a one-pass-compiler it is not known which instructions
will be executed after a branch, because the transformation is done serially through the
program listing. In this case the status register has to be updated before every branch.

3.2.2.2 Switching between complement-on-one and complement-on-
two

An efficient realization of a precompiler for systematically generating diversity requires
the application of the complement-on-one and the complement-on-two (see Section 3.1).
Dependent on the used class of instructions the used type of diverse representation of
data is changed between the complement-on-one and the complement-on-two.
Switching between the two types of complement could be implemented easily by the

- 12 -

addition or subtraction of "1". Nevertheless, often switching between two different
representations of data leads to an enormous waste of time.

Most instructions cannot be modified by one type of complement, but one type normally
is more efficient than the other. Regarding the efficiency of a transformation it has to be
taken into account that switching between the two types of complement also needs
time. Therefore for some instructions the modification in the non-efficient type of
complement is more efficient than the switching between the types of complement
together with the efficient transformation:

Example:

The transformation in the complement-on-one of a single addition of integers that are
enclosed into logical instructions is more efficient than changing and rechanging of the
representation of data and the efficient transformation (see Table 3). The
transformation in the complement-on-one only needs one additional addition for
compensation. On the other hand changing into the complement-on-two and rechanging
into the complement-on-one needs two additions as well as a subtraction.

transformation in the transformation in the
f complement-on-one switching complement-on-two

 add a,b add ¬a,¬b add #1,¬a

add #1,¬b add #1,¬b

add –a,–b
sub #1,–b

Table 3: Comparison of the different transformations of instruction "addition"

The type of complement which has to be used for the most efficient realization for the
given instruction, could be derived from the context in which the instruction is
embedded.

- If a single instruction is embedded in a sequence of instructions that are
transformed more efficiently with the non-efficient type of transformation for this
special instruction (see Fig. 5.b), then the transformation with the non-efficient
type of complement could be a more efficient solution for the whole program
(compare Table 3).

- 13 -

- Sequences of instructions that are efficiently transformed with the same type of
complement, are transformed usefully with the efficient type of complement. If a
new sequence follows that is transformed efficiently with the other type of
complement, then the switching is an efficient solution. The instructions for
switching only take a small share of all instructions, because they are executed
only if a change of sequence appears that use different types of complement (see
Fig. 5a).

logical
instructions

arithmetic
instructions

a) b)

Figure 5: Diagram of sequences of instructions:
a) big sequences of instructions with the same representation of data
b) sequences of instructions with the same representation of data,

that are interrupted by single instructions that are normally
transformed in the other representation

Dependent on the context of an instruction it can be decided if use of the current
representation of data should be used or if switching is the more efficient solution.
Variants can be generated to the same given program while using the complement-on-
one and the complement-on-two several diverse. The goal of switching is to generate the
most efficient variant with regard to runtime.

Definition 2:
All possible diverse variants based on a given program P with the
instructions fi, i ∈ {1,...,n}, could be obtained from a transformation-graph
TGP.

Node N0,i, i ∈ {1,...,n}, of the transformation graph corresponds to the internal
values of the original program before executing the instruction fi.

Node Nd,i, d ∈ {1,2} and i ∈ {1,...,n}, of the transformation graph corresponds
to the internal values of a diverse variant in which the last instruction fi-1 is
transformed with the complement-on-one (d=1) or with the complement-on-
two (d=2), respectively.

- 14 -

Edges sd,i, d ∈ {1,2} and i ∈ {1,...,n}, of the transformation graph corresponds
to the modified sequences of instructions in the complement-on-one (d=1) or
in the complement-on-two (d=2) accompanying to the instruction fi,
respectively.

 Edge td,i, d ∈ {1,2} and i ∈ {1,...,n}, of the transformation graph corresponds
to the transformation of the operands of the instruction fi from the
complement-on-one into the complement-on-two (d=1) and vice versa (d=2).

Figure 6 shows a transformation graph as defined in definition 2.

I

t 1,1

t 2,1

t 1,2

t 2,2

t 1,n

t 2,n

N1,1

N
1,2

.

.

.

N
1,n

s1,1

s1,2

s
1,n

N1,n+1

N2,1

N2,2

.

.

.

N2,n

s 2,1

s 2,2

s
2,n

N2,n+1

complement-on-one complement-on-two

O

t 1,n+1

t 2,n+1

s = not(I) s = neg(I)

s = not(O) s = neg(O)

1,0 2,0

1,n+1 2,n+1

original
program

.

.

.

N0,1

N
0,2

N
0,n

f 1

f 2

f
n

N
0,n+1

Figure 6: Transformation graph TGP of a program P with input I and output O

An assembler program of a diverse variant corresponds to a simple path through the
transformation graph from I to O in which every node of the graph is joined maximally
once. Such a path through the transformation graph is a subgraph of TGP and is called
TGP´ in the following. This subgraph TGP´ includes exactly one modified sequence of
instructions sd,i and at most one transformation sequence td,i for the operands at every
level i (see Fig. 7).

- 15 -

I

t1,1

2,1

1,2

2,2

1,n

2,n

1,1

1,2

1,n

1,1

1,2

1,n

1,n+1

2,1

2,2

2,n

2,1

2,2

2,n

2,n+1

1,n+1

2,n+1

1,0 2,0

1,n+1 2,n+1

1,n-1

2,n-1
1,n-1

1,n-1

2,n-1

2,n-1

t

t

t

t

t

N

N

.

.

.

N

s

s

s

N

N

N

.

.

.

N

s

s

s

N

complement-on-one complement-on-two

O

t

t

s = not(I) s = neg(I)

s = not(O) s = neg(O)

t

t
N

s

N

s

.

.

.

Figure 7: Diagram of a subgraph TGP´

For an original program P with the instructions fi, i ∈ {1,...,n}, a diverse variant is

required, that is systematically generated by a precompiler which bases on the
complementary representation of data and takes minimal runtime. With the following
transformation function a formula can be generated that gives the effort of a diverse
variant.

Definition 3:
The transformation function trans(i) indicates the representation of data
(complement-on-one or complement-on-two), corresponding to which the
instructions fi are transformed. This function is defined in the following way:

trans(i) :=
 ⎩
⎪
⎨
⎪⎧1 if s1,i is an edge of TGP´
 i ∈ {0,...,n+1}
0 if s2,i is an edge of TGP´

trans(-1) := trans(0)

- 16 -

Theorem:
Let E(x) be the number of clock cycles that are used for the execution of a
sequence of instructions x and let TGP be the transformation graph to a
program P with n instructions. The effort E(TGP´) of a diverse variant
accompanying to a subgraph TGP´ is calculated by:

E(TGP´) =
n+1
∑

i=0
{(1-trans(i))·[trans(i-1)·E(t1,i) + E(s2,i)]

 + trans(i)·[[1-trans(i-1)]·E(t2,i) + E(s1,i)]}

Proof:
The proof is divided into two parts:
1. Without regarding the retransformation of the results, the effort of a diverse

variant of a program P with n instruction is calculated by:

E´(TGP´) =
n
∑

i=0
{(1-trans(i))·[trans(i-1)·E(t1,i) + E(s2,i)]

 + trans(i)·[[1-trans(i-1)]·E(t2,i) + E(s1,i)]} [3.1]

2. The effort of the retransformation is calculated by:

(1-trans(i))·[trans(i-1)·E(t1,i) + E(s2,i)] + trans(i)·[[1-trans(i-1)]·E(t2,i) + E(s1,i)]

Therefore follows: E(TGP´) = E´(TGP´) + E(retransformation)

The first part is proven through induction over the number of instructions n of the
original program P:

With regard to the subgraph TGP´ and the accompanying diverse variant E´(TGP´)i

denotes the effort of the modified sequences of instructions accompanying to the
instructions f1, ..., fi-1 of the program P.

Basis Step:
To a minimal program (n=1) the transformation graph contains exactly 3 levels
(transformation of inputs, modified sequence of instructions to instruction f1,
retransformation of the results).
 Case 1: s1,0 and s1,1 are edges of TGP´

⇒ trans(0) = trans(1) = 1
E´(TGP´)1 = 0·[...] + 1 ·[0 · E(t2,0) + E(s1,0] +

+ 0 ·[...] + 1 ·[0 · E(t2,1) + E(s1,1)]
= E(s1,0) + E(s1,1)

 Case 2: s1,0 and s2,1 are edges of TGP´

⇒ trans(0) = 1, trans(1) = 0

- 17 -

E´(TGP´)1 = 0·[...] + 1 ·[0 · E(t2,0) + E(s1,0] +
+ 0 ·[...] + 1 ·[1 · E(t1,1) + E(s2,1)]

= E(s1,0) + E(t1,1) + E(s2,1)
 Case 3: s2,0 and s2,1 are edges of TGP´

⇒ trans(0) = trans(1) = 0
E´(TGP´)1 = 1 ·[0 · E(t1,0) + E(s2,0] + 0·[...] +

1 ·[0 · E(t1,1) + E(s2,1)] + 0 ·[...] +
= E(s2,0) + E(s2,1)

 Case 4: s2,0 and s1,1 are edges of TGP´

⇒ trans(0) = 0, trans(1) = 1
E´(TGP´)1 = 1 ·[0 · E(t1,0) + E(s2,0] + 0·[...] +

+ 0 ·[...] + 1 ·[1 · E(t2,1) + E(s1,1)]
= E(s2,0) + E(t2,1) + E(s1,1)

⇒ With n=1 equation 3.1 is fulfilled.

Induction Hypothesis:

Let 3.1 be fulfilled for any n ≥ 1, i.e. following equation holds:

 E´(TGP´)n =
n
∑

i=0
{(1-trans(i))·[trans(i-1)·E(t1,i) + E(s2,i)]

 + trans(i)·[[1-trans(i-1)]·E(t2,i) + E(s1,i)]}

Induction Step:

For E´(TGP´)n+1 follows with the induction hypothesis :

Case 1:
s1,n and s1,n+1 are edges of TGP´ ⇒ trans(n) = trans(n+1) = 1
The effort E´(TGP´)n+1 ensues from the effort E´(TGP´)n that is required until the
instruction fn additional to the effort of the modified sequence s1,n+1, because the
instructions fn and fn+1 are transformed with regard to the complement-on-one.
⇒ E´(TGP´)n+1 = E´(TGP´)n + E(s1,n+1)

Concerning 3.1 follows:
E´(TGP´)n+1 = E´(TGP´)n + 0 ·[...] + 1 ·[0 · E(t2,n) + E(s1,n+1)] = E´(TGP´)n +

E(s1,n+1)
Case 2:
s1,n and s2,n+1 are edges of TGP´ ⇒ trans(n) = 1, trans(1) = 0
The effort E´(TGP´)n+1 ensues from the effort E´(TGP´)n that is required until the
instruction fn additional to the effort of the transformation of the operands into the
complement-on-two as well as to the effort of the modified sequence s2,n+1, because the
instructions fn and fn+1 both are transformed with regard to different kinds of

complement.
⇒ E´(TGP´)n+1 = E´(TGP´)n + E(t1,n) + E(s2,n+1)

- 18 -

Concerning 3.1 follows:
E´(TGP´)n+1

= E´(TGP´)n + 1 ·[1 · E(t1,n) + E(s2,n+1)] + 0 ·[...]
= E´(TGP´)n + E(t1,n) + E(s2,n+1)

Case 3:
s2,n and s2,n+1 are edges of TGP´ ⇒ trans(n) = trans(n+1) = 0
The effort E´(TGP´)n+1 ensues from the effort E´(TGP´)n that is required until the
instruction fn additional to the effort of the modified sequence s2,n+1, because the
instructions fn and fn+1 both are transformed with regard to the complement-on-two.
⇒ E´(TGP´)n+1 = E´(TGP´)n + E(s2,n+1)

Concerning 3.1 follows:
E´(TGP´)n+1 = E´(TGP´)n + 1 ·[0 · E(t1,n) + E(s2,n+1)] + 0 ·[...] = E´(TGP´)n +

E(s2,n+1)
Case 4:
s2,n and s1,n+1 are edges of TGP´ ⇒ trans(n) = 0, trans(1) = 1
The effort E´(TGP´)n+1 ensues from the effort E´(TGP´)n that is required until the
instruction fn additional to the effort of the transformation of the operands into the
complement-on-one as well as to the effort of the modified sequence s1,n+1, because the
instructions fn and fn+1 both are transformed with regard to different types of

complement.
⇒ E´(TGP´)n+1 = E´(TGP´)n + E(t2,n) + E(s1,n+1)

Concerning 3.1 follows:
E´(TGP´)n+1

= E´(TGP´)n + 1 ·[1 · E(t1,n) + E(s2,n+1)] + 0 ·[...]
= E´(TGP´)n + E(t2,n) + E(s1,n+1)

Part 2 can be proven by analogy . ■

To obtain a practicable tool, the precompiler should generate the variant Pmin that
requires the minimal time effort. Let SV = {V1, ..., Vm} be the set of all variants that are
represented by a transformation graph TGP, then variant Vmin complies with the

following equation:

E(Vmin) = min {E(V1), ..., E(Vm)}

Therefore, the problem that selects the most appropriate type of complement could be
reduced to a problem of graph theory. If every edge of the transformation graph is
weighted by the execution time that is required by the accompanying sequence of
instructions, then the problem that has to be solved by the algorithms could be defined
as: "Searching for the least cost path in the weighted graph TGP". The determination of
the least cost path is an often investigated problem, for which many algorithms are
known [Nolt 76, Mehl 84].

- 19 -

4 Results

Based on the examinations of hardware fault coverage of divers applications made by
[EHNi 90, Hinz 89], all faults that had not been detected by design diversity were
analysed. For this examinations two diverse algorithms were used for different
examples, which had been implemented in C. The diverse algorithms had used a set of
library routines. As library routines correspond to a large number of instruction
sequences which are executed identically in both variants, the used library routines
were replaced by diverse routines. This replacement improved the detection of wrong
results caused by a hardware fault, but it was not sufficient.
The detection of wrongly calculated results should be improved further by using
systematically generated diversity additionally. To evaluate the achieved improvement
of the fault coverage one of the design diverse variant was executed unchanged. The
other variant was modified additionally by the implemented precompiler, before it was
executed. Then the hardware fault detection was examined with the given software-
implemented fault injector which injected the modelled faults while executing the
different variants in the trace-mode.

The examination of the hardware fault coverage showed that calculating a wrong result
could be perceptibly reduced while using systematically diversity additionally. This
result is not astonishing, as still forced design diverse variants realize some functions
often in a similar way (for example: transmission of input or output). Systematically
generated diversity changes the use of the hardware and therefore reduces the
possibility of the same falsification of the computed results.

5 References

 EHNi 90 K. Echtle, B. Hinz, T. Nikolov: On Hardware fault detection by diverse software; 13th
International conference on fault-tolerant systems and diagnostics, conf. proc., Verlag
der Bulgarischen Akademie der Wissenschaften, 1990, S. 362 - 367.

HaGö 91 W. Hahn, M. Gössel: Pseudoduplication of floating point addition - a method of compiler
generated checking of permanent hardware faults, Third European Workshop on
Dependable Computing EWDC-3, Munich, April 1991.

Hinz 89 B. Hinz: Erkennung von Mikroprozessor-Hardware-Fehlern mittels diversitär
entwickelter Software; Diplomarbeit, Fakultät für Informatik, Univ. Karlsruhe, 1989.

Mehl 84 K. Mehlhorn: Data Structures and Algorithms 2 - Graph Algorithms and NP-
Completeness, Springer Verlag, 1984.

Nolt 76 H. Noltemeier: Graphentheorie mit Algorithmen und Anwendungen, de Gruyter, Berlin,
1976.

- 20 -

bezüglich = concerning, regarding
zugehörig = accompanying

recieved - erhalten (Vorgang)
obtained - erhalten (hinterher ist was da)

