
Evaluation Techniques as a Part of the Veri�cation

Process

Dirk Eisenbiegler and Ramayya Kumar

Forschungszentrum Informatik

Haid�und�Neustra�e ����� �	�
� Karlsruhe� Germany

e�mail� eisenfzi�de� kumarfzi�de

August ��� ����

Abstract

Verifying an implementation means proving that the implementa�

tion meets a given formal speci�cation� For small sized implementa�

tions� exhaustive simulation can be an appropriate way to obtain the

proof� But with the complexity of the implementations growing larger

and larger� the number of cases to be considered increases exponen�

tially and exhaustive simulation is not suitable any more�

In this paper implementations will be represented within a func�

tional programming language� The evaluation of typed ��terms corre�

sponds to the simulation of the implementation� Besides conventional�

nonsymbolic evaluation� advanced evaluation techniques will be pre�

sented dealing with symbolic evaluation and termination detection�

Evaluation as described in this paper can be both an advanced means

for simulation and also a part of a veri�cation tactic�

� Introduction

The approach presented in this paper is based on a simple functional pro�
gramming language called PML� PML is a subset of HOL used for the rep�
resentation of arbitrary computable functions�

PML is a rather poor language based on the typed ��calculus� In this
paper PML functions will always be represented as HOL�terms� But with
some slight syntactical modi�cations� a PML program represented as HOL
terms can also be turned into a program of a functional programming lan�
guage such as ML� Within an ML interpreter� PML programs can be run

�

just as any other ML program� The HOL representation of PML will be used
to prove certain properties of PML functions �veri�cation	 or to convert the
PML functions into equivalent but optimized PML functions�

The execution of PML programs �evaluation of PML terms	 can also be
performed by a conversion within HOL� The result of such an evaluation
will be a proven theorem stating that the term to be evaluated is equivalent
to a speci�c result� The execution of PML programs within an ML inter�
preter will also determin the same result but without proving this� For pure
simulation purposes it is convenient to use the ML interpreter rather than
an evaluation conversion within HOL� since the ML interpreter runs much
faster�

Interpreters of functional programming languages expect a term consist�
ing of constructors� constants and functions� Usually free variables are not
allowed� If the result is de�ned �i�e� f�x	�	 the evaluation process will stop
after a certain time returning a term exclusively consisting of constructors�
Whenever the result is not de�ned �i�e� f�x	�	� the evaluation process will
not terminate�

During the veri�cation process it can be helpful to also evaluate terms
comprising free variables� In contrast to conventional evaluation� results of
symbolic evaluations are not unambiguous� The results of the evaluation of
two equivalent terms will be equivalent but they may be unequal� It is not
possible any more to prove the equivalence of two terms by just evaluating
them and afterwards checking whether the results are equal� It will be
discussed� how this problem can be overcome�

Another extension of interest for the veri�cation process is the detection
of termination and nontermination� Conventional evaluation algorithms ter�
minate i
 the term is de�ned �i�e� f�x	�	� An evaluation algorithm that
always detects whether or not the term will terminate� is not computable
�halting problem	� But it is possible to write an algorithm� that besides
computing the result whenever it is de�ned �i�e� f�x	�	 also sometimes de�
tects nontermination� Such an algorithm becomes the more powerful� the
more nontermination situations he can detect� It will be discussed� how
algorithms for nontermination detection may look like�

The paper is structured as follows� First an introduction to the formal�
ization methodology of PML is given in section �� Section explains the
reasons for this approach� In section � it is explained� which are the ba�
sic HOL transformations that are needed to perform an evaluation� The
order of these basic equivalence transformations has no in�uence on the cor�
rectness of the result but changing the order may speed up the algorithm�

�

Such optimizations are discussed in section � � Section � deals with symbolic
evaluations and section � is concerned with the detection of nontermination�

� A Brief Introduction to PML

The functional programming language PML is used for formalizing ��recur�
sive functions� It allows the user to de�ne data types� constants and func�
tions� PML is closely related to HOL� PML data types correspond to HOL�
style data types and the constant and function de�nitions of PML corre�
spond to constant de�nition of HOL� PML is a subset of HOL� Its expressive
power is restricted but the considered functions are all computable�

Conventional functional programming languages such as ML allow the
user to de�ne recursive functions by a set of recursive equations� i�e� equa�
tions where the function symbol that is to be de�ned may also appear within
the right hand sides� Since function de�nitions of PML correspond to con�
stant de�nitions of HOL� such de�nitions are not allowed� A PML function
de�nition must consist of a single equation and the function symbol that is
to be de�ned must not appear on the right hand side� Although recursive
equations are not allowed� recursion can also be expressed in PML�

There are two means for describing recursive PML functions� one fore
primitive recursive functions and another for ��recursive functions�

��� Primitive Recursion

There are certain basic functions corresponding to data types� For every
data type xyz there is a corresponding basic function called PRIMREC xyz�
These functions can be used to express primitive recursion over the corre�
sponding data types� They are de�ned automatically whenever a data type
is added�

The natural numbers for example can be de�ned as a HOL�style data
type�

num � Zero � Suc of num

From this de�nition� the function PRIMREC num is automatically derived
as follows�

� PRIMREC num f c Zero � c ��	

� PRIMREC num f c �Suc n	 � f n �PRIMREC num f c n	 ��	

Based on this basic function� arbitrary primitive recursive functions over
num can be derived by means of HOL constant de�nitions� In ML� primitive
recursive functions such as the sum � over two natural numbers� would be
expressed by a set of equations�

��Zero� b	 � b

��Suc a� b	 � Suc���a� b		

Such a set of equations with the functor being de�ned appearing on the
right hand side� is not a valid PML function de�nition� In PML the same
function can be expressed by�

��a� b	 � PRIMREC num ��x� Suc	 a b

In the examples below� it is preassumed that the functions � �sum of two
natural numbers	� � �product of two natural numbers	 and sqr �the square
of a natural number	 and the constants �� �� �� � � � have already been de�ned
as described in the equations �	 through ��	� To improve the readability �
and � will also be used in in�x notation with the usual binding priorities�

� � � Zero �	

� � � Suc � ��	

� � � Suc � ��	

� ��a� b	 � PRIMREC num ��x� Suc	 a b ��	

� ��a� b	 � PRIMREC num ��x y� � �y� a		Zero b ��	

� sqr a � a � a ��	

��� ��Recursion

There is also a means for describing ��recursion� the basic function WHILE�
In contrast to ML� the result of a PML function is always speci�ed in an
explicit manner � a speci�c value is given even when it is unde�ned �i�e�
f�x	�	� The data type ��a�partial is used to express results of ��recursive
functions�

partial � Defined of �a � Undefined

f�x	 � Unde�ned stands for f�x	� and f�x	 � �De�ned y	 means that f�x	
is de�ned �i�e� f�x	�	 and that the result is y�

WHILE performs a loop� The term �WHILE g f x	 calculates the result of
the iteration of the function f starting with an initial state x� The iteration

�

is performed until a state y is reached that does not ful�ll the predicate g�
If such a state y exists then �WHILE g f x	 is equivalent to �De�ned y	 else
it is equivalent to Unde�ned� �

��g x	 �WHILE g f x � De�ned x ��	

g x� f x � Unde�ned �WHILE g f x � Unde�ned ���	

g x� f x � De�ned y � WHILE g f x � WHILE g f y ���	

� �WHILE g f x � Unde�ned	 � ���ny�fn�x	 � De�ned y � �g y		 ���	

� HOL� PML and ML

The HOL system already provides means for de�ning ML�style functions�
data type declarations� constant de�nitions and primitive recursive func�
tions over single data types� Using these three facilities� arbitrary primitive
recursive functions can be de�ned� All these functions are total and they
are all computable and can easily be evaluated�

��recursive functions that are not primitive recursive cannot be de�ned
this way� Therefore these facilities do not provide a su�cient means for
formalizing a functional programming language� This is why the function
WHILE has been introduced� WHILE provides a means for expressing ��
recursion�

Inspite of WHILE� another adequate ��recursive function such as the ��
operator could have been used to express ��recursion� The function WHILE
has been chosen because of technical reasons� It can easily be implemented in
ML and it allows the user to program loops that can e�ciently be evaluated
within a conventional ML interpreter�

The way of expressing recursive functions in PML completely defers from
conventional ML programs� There are no recursive equations� i�e� equations
with the function symbol appearing on the right hand side� Starting from
the primitive recursive functions PRIMREC xyz and the ��recursive function
WHILE� everything is built up by means of constant de�nitions� This is why
writing PML programs is more di�cult than writing ML programs� But it
is rather di�cult to prove consistency when using recursive equations for
describing nested primitive or even ��recursive functions� PML functions

�The constant WHILE has not really been introduced as described in ��� � � � ���� but
by a conventional constant de�nition �see �EiSK��	 for details�
 This set of equations has
been derived from the original de�nitions

�

are always build up by constant de�nitions which de�nitely does preserve
consistency�

There is another di
erence between PML and ML functions� PML func�
tions are always total� i�e� an explicit value is de�ned for every input � even
when the function does not terminate� Two PML functions are equivalent
i
 the functions terminate�do not terminate for the same inputs and the
results are the same when they terminate� ML�style ��recursive functions
that where de�ned using recursive equations are partial �they do not assign
an explicit output when the function does not terminate	� This is why it
is not possible to prove� that two functions that terminate�do not termi�
nate for the same inputs and the results are the always the same when they
terminate are equivalent�

� Evaluation

Evaluating a term means converting it into an equivalent term exclusively
consisting of constructors� It must be provided that the term to be evaluated
does not comprise any free variables� The type of the term to evaluated must
be a compound data type� Terms with a type comprising the type operator
��� are not allowed� The term ��x�sqr�sqr x		 for example is not allowed
since it is of type num � num� In general the result of such terms is not
unambiguous�

There are four basic transformations for performing an evaluation�

�� expanding constants

�� ��reduction

� evaluation of PRIMREC�functions

�� evaluation of WHILE�functions

Since every PML function de�nition and every PML constant de�nition
corresponds to a constant de�nition in HOL� PML constants and functors
are nothing but abbreviations� All PML constant and function de�nitions
can be transformed into the form � c � t where c is the constant and t is a
closed term� HOL constants that have been de�ned by a constant de�nition
can always be substituted by the term they stand for� Since there are no
recursive equations with the functor to be de�ned appearing on the right
hand side and since mutual recursive function de�nitions are not allowed

�

�constants have to be de�ned one by one and constants have to be de�ned
before they are used	� the complete expansion of constants and functors can
always be performed in a �nite number of steps�

To express functions within PML� ��abstraction is used� When applying
them to terms ��redices arise� ��redices can be reduced by ��reduction�
The ��reduction substitutes the local parameters by the the term the func�
tion has been applied to�

For a technical reason concerning the evaluation of WHILE�expressions
the derived function while is introduced by�

� while c y g f x �
c ��
�PRIMREC partial y ��z�WHILE g f z	 Unde�ned	 j
�De�ned x	

��	

The following equations can be derived�

�WHILE g f x � while �g x	 �f y	 g f x ���	

� while F y g f x � De�ned x ���	

� while T Unde�ned g f x � Unde�ned ���	

� while T �De�ned z	 g f x � WHILE g f z ���	

Basic functions can be evaluated by rewriting� Terms that are exclusively
consisting of constructors and basic functions �PRIMREC�functions andWHILE	
can be evaluated by rewriting using all the de�nitions of the PRIMREC�
functions �such as ��	 and ��		 and the equations ���	 through ���	�

Summary� The whole evaluation of PML�terms can be performed by ��
reduction and rewriting� The set of the equations needed for the rewriting
is �xed� It consists of the equations of the basic functions �the PRIMREC�
functions and WHILE	 and the de�nitions of the derived functions and
constants� The evaluation terminates� when neither an equation nor a ��
reduction can be applied� When this state is reached� then there is nothing
left but constructors� Such an evaluation will always terminate except that
there is a non�terminating loop� i�e� the expression to be evaluated is equiv�
alent to Unde�ned� Fig� � gives an example for an evaluation of a PML
term�

� Optimizing the Evaluation

In a certain state of the evaluation� there usually are several basic transfor�
mations that can alternatively be applied� The result of the evaluation will

�

� � � � �

� rewriting with ��	

�Suc �	 � � � �Suc �	

� rewriting with �	

�Suc Zero	 � Zero� �Suc Zero	

� rewriting with ��	

�PRIMREC num ��x y� � �y� Suc Zero		 Zero Zero	 � �Suc Zero	

� rewriting with ��	

Zero� �Suc Zero	

� rewriting with ��	

PRIMREC num ��x� Suc	 Zero �Suc Zero	

� rewriting with ��	

��x� Suc	 Zero �PRIMREC num ��x� Suc	 Zero Zero	

� rewriting with ��	

��x� Suc	 Zero Zero

� ��reduction

Suc Zero

Figure �� Evaluation of a PML�Term

�

1+(0+1+2)*(0+0)

1+3*(0+0)

1+(1+2)*(0+0)

1+3*0

1+0

1+(0+1+2)*0

Suc Zero

Figure �� Variants of Evaluating a Term

always be the same no matter how the evaluation is performed� i�e� which
basic transformations are chosen in certain states of the evaluation� Dis�
tinct subterms can even be evaluated in parallel� Although the evaluation
will always have the same result� the decision of which basic transformation
to apply next is signi�cant as to the evaluation speed and the amount of
data needed during the evaluation�

Fig� � sketches two ways to evaluate ��������	�����	� The evaluation
on the left hand side starts with the evaluation of � � �� Since the result is
�� it turns out that the term is independent from the result of the evaluation
of � � � � � so that this subterm is not evaluated� The evaluation on the
right hand side is slower since it starts with the �unnecessary	 evaluation of
� � � � � calculating a result that will not be needed in further steps�

��� Strict Evaluation and Lazy evaluation

Good evaluation algorithms must try to minimize the number of basic op�
erations by making a good choice� which basic operation is to be performed
next� There will never be a perfect evaluation algorithm since very often
the best order cannot be determined in advance but depends on the results
of subterm evaluations�

Example� The evaluation of t� � t� can either start with the evaluation
of t� or with t�� When either t� or t� is equivalent to � then the optimal
algorithm would have to start with the one that is equivalent to �� The
evaluation of the other term may be omitted� But this decision cannot be
made unless t� and t� �or at least one of them	 have already been evaluated�

�

There are two basic evaluation techniques� strict evaluation and lazy
evaluation� The strict evaluation algorithm is based on the principle� eval�
uate the parameters �rst� A term �a b	 is evaluated by �rst evaluating b to
b� and then evaluating �a b�	� The lazy evaluation algorithm is based on the
principle� a subterm is not evaluated unless it is needed� The term �a b	
is evaluated by �rst reducing a to a�� The term b will only be evaluated if
it occurs in a� else it is not� The lazy evaluation algorithm minimizes the
number of basic function evaluations� but there is an additional requirement
of time and memory for the organization� It depends on the term to be
evaluated� which algorithm is more e�cient�

��� Precomputation

During the evaluation it may happen� that subterms have to be evaluated
which have already been evaluated before� Reusing results of former eval�
uations can reduce the expense of the evaluation� During the evaluation
process� results of subterm evaluations could be stored so that if in fur�
ther evaluation steps these subterms can be looked up rather than being
calculated again� Storing and handling such results leads to an additional
requirement of time and data� An advantage can be achieved only if the
result being stored will de�nitely be reused at least once�

It is also possible to do some calculations even before the evaluation
starts� When a function with a small number of possible input values is
used rather frequently� it may be convincing to calculate all the results and
store them in a table� For a function f � �bool�bool�bool	� bool for example
there are only eight cases that have to be considered� �F� F� F 	� �F� F� T 	�
� � � �T� T� T 	� Before the evaluation starts� a table with eight entries can be
calculated holding all possible input values and the corresponding results�
Whenever a term such as f�F� T� F 	 appears during the evaluation� the entry
�F� T� F 	 can be looked up rather than being calculated�

� Symbolic Evaluation

In previous sections� it has always been preassumed that there are no free
variables in the terms that are to be evaluated� This section attends to
symbolic evaluation� i�e� the evaluation of terms comprising free variables�
The basic transformations needed for a symbolic evaluation are the same as
those for the conventional evaluation� constant expansion� ��reduction and
the evaluation of the basic functions�

��

...
...

...
...

a+b+0 b+0+a

b+aa+b

Symbolic Evaluation

0+1+0 1+0+0

Suc Zero

Nonsymbolic Evaluation

Figure � Symbolic Evaluation

��� Motivation

Symbolic evaluation is an extended means for simulation� A class of inputs�
rather than one single input� is executed at once� The term �a � �	 � �� �
b � �	 � b can be evaluated �reduced	 to a � b� Symbolic evaluation is
a substitute for a large number of single conventional evaluations with all
possible instantiations of the free variables�

Obviously� the term �a � �	 � �� � b � �	 � b can be converted to a � b�
But since PML functions �basic functions as well as derived functions	 need
not be injective �just as in any other functional programming language	 the
result of a symbolic evaluation need not be unambiguous� The result of
�a � �	 � �� � b� �	 � b may as well be b � a or a � b � �� A nonsymbolic
evaluation of two equivalent terms leads to two equal terms� since the terms
consist of injective constructors only� In contrast to nonsymbolic evaluation�
the symbolic evaluation of two equivalent terms may lead to two results
that are equivalent but not equal� This turns out to be a disadvantage of
symbolic evaluation� It is not possible any more to compare two terms just
by evaluating them�

��� Meta�Constructors

In the introductory example �a� �	 � �� � b� �	 � b has been evaluated to
a � b� In contrast to the previously sketched evaluation algorithm� not all
possible basic transformations have been performed� � is a derived function
and could be expanded� Since the derived functions of PML are nothing but
abbreviations� all derived functions may be eliminated from the result of a
symbolic evaluation such that all functions within the result are but basic
functions� But there seems to be no sense in expanding all derived functions

��

Basic Functions

Derived Functions
Meta-Constructors

Figure �� De�ning a Set of Meta�Constructors

since it does not lead to an unambiguous representation� Expanding a � b

may lead to

PRIMREC num ��x y� Suc y	 b a

and evaluating an equivalent term may lead to

PRIMREC num ��x y� Suc y	 a b

It is not possible to eliminate all functors from the result of a symbolic
evaluation� An arbitrary set of functions can be chosen� that shall not
be expanded� These functions shall be called meta�constructors� Meta�
constructors may be basic functions or derived functions� All functions to be
considered in evaluation shall either be meta�constructors or functions that
have been derived from meta�constructors �see �g� �	� When performing
a symbolic evaluation the result will exclusively consist of free variables�
constructors and meta�constructors�

In contrast to constructors� meta�constructors must not be injective and
so the result must not be unambiguous� To obtain an unambiguous repre�
sentation� the symbolic evaluation can be succeeded by a normalization step
where di
erent equivalent terms are transformed into equal terms� For such
a normalization it is necessary to built a set of converging transformations
upon the meta�constructors� A set of converging functions can be found
by proving some equations and deriving a converging equation set using
Knuth�Bendix completion�

Example� The set of meta�constructors consists of � and �� After the
evaluation� the result will exclusively consist of constructors �Zero and Suc	�

��

sqr(a+1)

(a+(Suc Zero))*(a+(Suc Zero))

Normalization

Evaluation

sqr(1+a)

((Suc Zero)+a)*((Suc Zero)+a)

a*a+a+a+(Suc Zero)

Figure �� Symbolic Evaluation and Normalization

free variables and the meta�constructors � and �� The following equations
can manually be derived�

a � �b� c	 � a � b� a � c �Suc a	 � b � Suc�a� b	
a� Zero � a a � �Suc b	 � Suc�a� b	
Zero � a � Zero �Suc a	 � b � b� �a � b	

a� b � b� a a � �Suc b	 � b� �a � b	
a � b � b � a

An arbitrary term�ordering can be de�ned and by means of Knuth�Bendix
a converging equation set can automatically be derived� which can be used
to perform the normalization �see �g� �	�

� Termination	Nontermination Detection

In PML the result of a non�terminating function has an explicit value called
Unde�ned and the result of a terminating function is �De�ned x	 rather than
x� Conventional evaluation algorithms will always terminate when the result
is �De�ned x	 but will not terminate when the result is Unde�ned� An evalu�
ation algorithm that always decides whether a ��receive function is de�ned
and that calculates the result whenever it is de�ned� would be beyond the
limits of computability� But it is possible to extent conventional evaluation
algorithms� Such an extended algorithm calculates the result whenever the
result is de�ned� and in some cases it also halts even though the result is un�
de�ned returning the result Unde�ned� There will always be some situations
left where the result is unde�ned but the algorithm does not terminate�

Primitive recursive functions do always terminate� Nontermination can
only occur when dealing with ��recursive functions and WHILE is the only

�

basic means for describing ��recursion� Theorem ���	 states that the result
of a loop is Unde�ned whenever

���ny�fn�x	 � De�ned y � �g y		 ���	

is ful�lled� This problem is not computable� i�e� in general it cannot auto�
matically be decided whether this formula holds or not� Although there is
no general solution� algorithms can be constructed that produce results for
certain situations�

Whenever the assumption ���	 is not ful�lled� a nonsymbolic evaluation
will �nd the result using the equations ���	 trough ���	� But when it is
not� then such an evaluation will not terminate� This kind of evaluation can
be improved by an additional feature� When evaluating a loop� the states
the evaluation algorithm has already passed through are recorded and from
time to time the algorithm takes a look a the list of states and tries to prove
that the evaluation will never terminate�

When dealing with symbolic evaluation� the result may be �De�nedx	 for
certain instances and Unde�ned for others� Proving that a an algorithm is
completely correct means proving that for every possible input x the result
will always be �De�ned y	 with x and y standing in a relation described by
the program speci�cation� A successfully applied symbolic evaluation would
do a big part of the correctness proof�

There are two problems that shall now be discussed�

	 How can nontermination be detected during a nonsymbolic evaluation�

	 How to prove that a loop terminates for all inputs of a function�

��� Detecting Nontermination

A general scheme to detect nontermination has already been sketched� recor�
ding the states when evaluating a WHILE loop and trying to derive a prove
for nontermination from the states the loop has already passed trough�

The evaluation of a WHILE loop can be performed as follows� First the
predicated �g x	 is evaluated where x is the current state� If �g x	 equals F
then x is the result of the loop else the next state �f x	 is calculated and
the evaluation of the loop continues with the new state� Every WHILE loop
evaluation passes through a list of states x� f�x	� f��x	� f��x	� � � � that all do
hold g� If the result is de�ned then the number of these states is �nite and
there is a smallest n such that g�fn�x		 is not ful�lled� Otherwise this list
is in�nite�

��

A nontermination can be proven when a cycle is detected� i�e� when
the evaluation passes through the same state for the second time� If the
number of all possible states is �nite �the type of the state represents a �nite
set	� then the detection of nontermination is computable� If the number of
evaluation steps is larger� than the total number of possible states then a
cycle obviously has occurred� So if n is the total number of states� then after
having calculated at most n states it can be made out whether the loop will
ever terminate or not�

When dealing with sequential circuits� the number of states of an imple�
mentations is always �nite� But the number of states of a circuit is growing
exponentially with the size of its memory� For realistic sized circuits the
number of states becomes to large for passing through all states�

To handle loops with a large or in�nite number of states improved tech�
niques have to be used� A more general criterion for nontermination is� The
current state is an element of a subset of states that are all ful�lling g and
it can be proven that for every state x within the subset f�x	 is also an
element of the subset�

How to �nd such subsets� When designing sequential circuits� control
unit and operation unit are often separated� Usually the number of states
in the control part is rather small compared with the operation unit� Very
often an in�nite loop leads to a rather small cycle within the control states�
The set of states of the entire circuit where the control state is within this
cycle will never be left� Only a small part of the entire circuit must be
analyzed to detect the in�nite loop� A big part of the state of the operation
unit will have no in�uence on the control �ow�

��� Proving that a Loop Always Terminates

Given a WHILE loop expression with the initial state comprising free vari�
ables it has to be proven� that for every instantiation of the free variables
the loop will terminate� i�e� there exists a number n such that ��g�fn�x			
is ful�lled� When dealing with a �nite number of states� this problem is
computable since the number of instantiations is �nite and for every instan�
tiation it can be computed whether or not the loop will halt �see previous
section	�

To handle a large or in�nite number of states more powerful techniques
have to be used� Often a converging behavior can be detected� If it is
possible to �nd a strictly monoton declining function h mapping the states
on natural numbers and if ��g�x		 holds whenever h�x	 is smaller than a

��

constantly given number m then termination can be derived�

 Conclusion

The basic mechanisms for the evaluation of PML terms have been intro�
duced� Since the underlying basic steps have been described in terms of
logical transformations within the HOL calculus� correctness of the evalu�
ation mechanisms is guarantied and the techniques described can be used
within a formal proof�

Symbolic evaluation has already been used to perform symbolic circuit
simulations within HOL� The considered circuits where rather small and al�
though using precomputations� the simulation speed has been comparatively
slow � much slower than exhaustive simulations within conventional simu�
lation tools� For larger circuits exhaustive simulation within a conventional
simulation tool is not suitable any more� Better results may be achieved
using advanced evaluation techniques�

Several distinct evaluation techniques have already been implemented�
Still a lot of manual interaction is needed� These algorithms will have to be
improved and be integrated within a unique evaluation tool�

References

�BGGH��� R� Boulton� A� Gordon� M� Gordon� J� Herbert� and J� van
Tassel� Experiences with Embedding hardware description lan�
guages in HOL� In V� Stavridou� T�F� Melham� and R� Boute�
editors� Conference on Theorem Provers in Circuit Design� IFIP
Transactions A���� pages �������� North�Holland� �����

�Cami��� J� Camilleri� Executing behavioural de�nitions in higher order
logic� Technical Report ���� University of Cambridge Computer
Laboratory� �����

�EiSK�� D� Eisenbiegler� K� Schneider� and R� Kumar� A functional
approach for formalizing regular hardware structures� In Inter�

national Workshop on Higher�Order Theorem Proving and its

Applications� Vancouver� Canada� ���� �submitted	�

�Jone��� S�L�P� Jones� The Implementation of Functional Programming

Languages� Prentice Hall� �����

��

�KfMA��� A� J� Kfoury� R� N� Moll� and M� A� Arbib� A Programming

Approach to Computability� Springer� New York� �����

�OLLA��� John O�Leary� Mark Linderman� Miriam Leeser� and Mark Aa�
gaard� HML� A hardware description language based on SML�
Technical Report EE�CEG������ School of Electrical Engineer�
ing� Cornell University� Ithaca� NY ����� �����

��

