Evaluation Techniques as a Part of the Verification
Process

Dirk Eisenbiegler and Ramayya Kumar
Forschungszentrum Informatik

Haid—und—Neustrafie 10-14 76131 Karlsruhe, Germany

e-mail: eisen@fzi.de, kumar@fzi.de

August 12, 1994

Abstract

Verifying an implementation means proving that the implementa-
tion meets a given formal specification. For small sized implementa-
tions, exhaustive simulation can be an appropriate way to obtain the
proof. But with the complexity of the implementations growing larger
and larger, the number of cases to be considered increases exponen-
tially and exhaustive simulation is not suitable any more.

In this paper implementations will be represented within a func-
tional programming language. The evaluation of typed A-terms corre-
sponds to the simulation of the implementation. Besides conventional,
nonsymbolic evaluation, advanced evaluation techniques will be pre-
sented dealing with symbolic evaluation and termination detection.
Evaluation as described in this paper can be both an advanced means
for simulation and also a part of a verification tactic.

1 Introduction

The approach presented in this paper is based on a simple functional pro-
gramming language called PML. PML is a subset of HOL used for the rep-
resentation of arbitrary computable functions.

PML is a rather poor language based on the typed A—calculus. In this
paper PML functions will always be represented as HOL-terms. But with
some slight syntactical modifications, a PML program represented as HOL
terms can also be turned into a program of a functional programming lan-
guage such as ML. Within an ML interpreter, PML programs can be run

just as any other ML program. The HOL representation of PML will be used
to prove certain properties of PML functions (verification) or to convert the
PML functions into equivalent but optimized PML functions.

The execution of PML programs (evaluation of PML terms) can also be
performed by a conversion within HOL. The result of such an evaluation
will be a proven theorem stating that the term to be evaluated is equivalent
to a specific result. The execution of PML programs within an ML inter-
preter will also determin the same result but without proving this. For pure
simulation purposes it is convenient to use the ML interpreter rather than
an evaluation conversion within HOL, since the ML interpreter runs much
faster.

Interpreters of functional programming languages expect a term consist-
ing of constructors, constants and functions. Usually free variables are not
allowed. If the result is defined (i.e. f(z)|) the evaluation process will stop
after a certain time returning a term exclusively consisting of constructors.
Whenever the result is not defined (i.e. f(2)]), the evaluation process will
not terminate.

During the verification process it can be helpful to also evaluate terms
comprising free variables. In contrast to conventional evaluation, results of
symbolic evaluations are not unambiguous. The results of the evaluation of
two equivalent terms will be equivalent but they may be unequal. It is not
possible any more to prove the equivalence of two terms by just evaluating
them and afterwards checking whether the results are equal. It will be
discussed, how this problem can be overcome.

Another extension of interest for the verification process is the detection
of termination and nontermination. Conventional evaluation algorithms ter-
minate iff the term is defined (i.e. f(z)]). An evaluation algorithm that
always detects whether or not the term will terminate, is not computable
(halting problem). But it is possible to write an algorithm, that besides
computing the result whenever it is defined (i.e. f(2)]) also sometimes de-
tects nontermination. Such an algorithm becomes the more powerful, the
more nontermination situations he can detect. It will be discussed, how
algorithms for nontermination detection may look like.

The paper is structured as follows: First an introduction to the formal-
ization methodology of PML is given in section 2. Section 3 explains the
reasons for this approach. In section 4 it is explained, which are the ba-
sic HOL transformations that are needed to perform an evaluation. The
order of these basic equivalence transformations has no influence on the cor-
rectness of the result but changing the order may speed up the algorithm.

Such optimizations are discussed in section 5 . Section 6 deals with symbolic
evaluations and section 7 is concerned with the detection of nontermination.

2 A Brief Introduction to PML

The functional programming language PML is used for formalizing p—recur-
sive functions. It allows the user to define data types, constants and func-
tions. PML is closely related to HOL: PML data types correspond to HOL—
style data types and the constant and function definitions of PML corre-
spond to constant definition of HOL. PML is a subset of HOL. Its expressive
power is restricted but the considered functions are all computable.

Conventional functional programming languages such as ML allow the
user to define recursive functions by a set of recursive equations, i.e. equa-
tions where the function symbol that is to be defined may also appear within
the right hand sides. Since function definitions of PML correspond to con-
stant definitions of HOL, such definitions are not allowed. A PML function
definition must consist of a single equation and the function symbol that is
to be defined must not appear on the right hand side. Although recursive
equations are not allowed, recursion can also be expressed in PML.

There are two means for describing recursive PML functions: one fore
primitive recursive functions and another for p—recursive functions.

2.1 Primitive Recursion

There are certain basic functions corresponding to data types: For every
data type xyz there is a corresponding basic function called PRIMREC xyz.
These functions can be used to express primitive recursion over the corre-
sponding data types. They are defined automatically whenever a data type
is added.

The natural numbers for example can be defined as a HOL-style data
type:

num = Zero | Suc of num

From this definition, the function PRIMREC _num is automatically derived
as follows:

F PRIMREC._num f ¢ Zero = ¢ (1)
F PRIMREC_num f ¢ (Sucn) = f n (PRIMREC_num f ¢ n) (2)

Based on this basic function, arbitrary primitive recursive functions over
num can be derived by means of HOL constant definitions. In ML, primitive
recursive functions such as the sum + over two natural numbers, would be
expressed by a set of equations:

+(Zero,b) = b
+(Suca,b) = Suc(+(a,b))

Such a set of equations with the functor being defined appearing on the
right hand side, is not a valid PML function definition. In PML the same
function can be expressed by:

+(a,b) = PRIMREC_num (Az.Suc) a b

In the examples below, it is preassumed that the functions + (sum of two
natural numbers), * (product of two natural numbers) and sqr (the square
of a natural number) and the constants 0, 1,2,... have already been defined
as described in the equations (3) through (8). To improve the readability +
and * will also be used in infix notation with the usual binding priorities.

0= Zero 3
F1=2SucO 4
F2=2Sucl 5

F +(a,b) = PRIMREC_num (Az.Suc)a b
F+(a,b) = PRIMREC_num (Az y. + (y,a)) Zero b

Fsqra=axa

2.2 p—Recursion

There is also a means for describing p—recursion: the basic function WHILE.
In contrast to ML, the result of a PML function is always specified in an
explicit manner — a specific value is given even when it is undefined (i.e.
f(2)7). The data type (‘a)partial is used to express results of pu-recursive
functions.

partial = Defined of ’a | Undefined

f(2) = Undefined stands for f(2)] and f(z) = (Defined y) means that f(z)
is defined (i.e. f(z)|) and that the result is y.

WHILE performs a loop. The term (WHILE g f 2) calculates the result of
the iteration of the function f starting with an initial state . The iteration

is performed until a state y is reached that does not fulfill the predicate g.
If such a state y exists then (WHILE ¢ f 2) is equivalent to (Defined y) else
it is equivalent to Undefined. !

=(g2) F WHILE ¢ f « = Defined (9
gz, fx = Undefined - WHILE ¢ f 2 = Undefined (10
g, fax = Definedyt WHILEg fo = WHILEg fy (11
F (WHILE g f 2 = Undefined) = =(3ny.f"(z) = Defined y A (g y)) (12

3 HOL, PML and ML

The HOL system already provides means for defining ML—style functions:
data type declarations, constant definitions and primitive recursive func-
tions over single data types. Using these three facilities, arbitrary primitive
recursive functions can be defined. All these functions are total and they
are all computable and can easily be evaluated.

p-recursive functions that are not primitive recursive cannot be defined
this way. Therefore these facilities do not provide a sufficient means for
formalizing a functional programming language. This is why the function
WHILE has been introduced. WHILE provides a means for expressing p—
recursion.

Inspite of WHILE, another adequate p—recursive function such as the pu—
operator could have been used to express py—recursion. The function WHILE
has been chosen because of technical reasons: It can easily be implemented in
ML and it allows the user to program loops that can efficiently be evaluated
within a conventional ML interpreter.

The way of expressing recursive functions in PML completely defers from
conventional ML programs. There are no recursive equations, i.e. equations
with the function symbol appearing on the right hand side. Starting from
the primitive recursive functions PRIMREC xyz and the p—recursive function
WHILE, everything is built up by means of constant definitions. This is why
writing PML programs is more difficult than writing ML programs. But it
is rather difficult to prove consistency when using recursive equations for
describing nested primitive or even p—recursive functions. PMIL functions

!The constant WHILE has not really been introduced as described in (9) ... (11) but
by a conventional constant definition (see [EiSK93] for details). This set of equations has
been derived from the original definitions.

are always build up by constant definitions which definitely does preserve
consistency.

There is another difference between PML and ML functions: PML func-
tions are always total, i.e. an explicit value is defined for every input — even
when the function does not terminate. Two PML functions are equivalent
iff the functions terminate/do not terminate for the same inputs and the
results are the same when they terminate. ML-style p—recursive functions
that where defined using recursive equations are partial (they do not assign
an explicit output when the function does not terminate). This is why it
is not possible to prove, that two functions that terminate/do not termi-
nate for the same inputs and the results are the always the same when they
terminate are equivalent.

4 Evaluation

Evaluating a term means converting it into an equivalent term exclusively
consisting of constructors. It must be provided that the term to be evaluated
does not comprise any free variables. The type of the term to evaluated must
be a compound data type. Terms with a type comprising the type operator
are not allowed. The term (Az.sqr(sqr z)) for example is not allowed
since it is of type num — num. In general the result of such terms is not

” ”
—

unambiguous.
There are four basic transformations for performing an evaluation:

1. expanding constants

2. f-reduction

3. evaluation of PRIMREC—functions
4. evaluation of WHILE—functions

Since every PML function definition and every PML constant definition
corresponds to a constant definition in HOL, PML constants and functors
are nothing but abbreviations. All PML constant and function definitions
can be transformed into the form F ¢ =t where ¢ is the constant and ¢ is a
closed term. HOL constants that have been defined by a constant definition
can always be substituted by the term they stand for. Since there are no
recursive equations with the functor to be defined appearing on the right
hand side and since mutual recursive function definitions are not allowed

(constants have to be defined one by one and constants have to be defined
before they are used), the complete expansion of constants and functors can
always be performed in a finite number of steps.

To express functions within PML, A—abstraction is used. When applying
them to terms (-redices arise. (-redices can be reduced by G-reduction.
The g-reduction substitutes the local parameters by the the term the func-
tion has been applied to.

For a technical reason concerning the evaluation of WHILE-expressions
the derived function while is introduced by:

Fwhilecyg fo=

€= . . (13)
(PRIMREC _partial y (A\z.WHILE ¢ f z) Undefined) |
(Defined x)
The following equations can be derived:
FWHILEg f 2 =while (g2)(fy)g fa (14)
F while F y g f © = Defined « (15)
t while T Undefined g f 2 = Undefined (16)
t while T (Defined z) g f = WHILE g f 2 (17)

Basic functions can be evaluated by rewriting. Terms that are exclusively
consisting of constructors and basic functions (PRIMREC—functions and WHILE)
can be evaluated by rewriting using all the definitions of the PRIMREC-
functions (such as (1) and (2)) and the equations (14) through (17).

Summary: The whole evaluation of PML—terms can be performed by -
reduction and rewriting. The set of the equations needed for the rewriting
is fixed. It consists of the equations of the basic functions (the PRIMREC—
functions and WHILE) and the definitions of the derived functions and
constants. The evaluation terminates, when neither an equation nor a -
reduction can be applied. When this state is reached, then there is nothing
left but constructors. Such an evaluation will always terminate except that
there is a non—terminating loop, i.e. the expression to be evaluated is equiv-
alent to Undefined. Fig. 1 gives an example for an evaluation of a PML
term.

5 Optimizing the Evaluation

In a certain state of the evaluation, there usually are several basic transfor-
mations that can alternatively be applied. The result of the evaluation will

| rewriting with (4)

[(Suc0) %0+ (Suc0)|

| rewriting with (3)

‘ (Suc Zero) * Zero + (Suc Zero) ‘

| rewriting with (7)

(PRIMREC_num (Az y. + (y, Suc Zero)) Zero Zero) + (Suc Zero)

| rewriting with (1)

‘ Zero + (Suc Zero) ‘

| rewriting with (6)

‘ PRIMREC_num (Az. Suc) Zero (Suc Zero) ‘

| rewriting with (2)

(Az.Suc) Zero (PRIMREC_num (Az. Suc) Zero Zero)

| rewriting with (1)

‘ (Az.Suc) Zero Zero‘

|l p-reduction

Figure 1: Evaluation of a PML-Term

1+(0+1+2)*(0+0)

1+(1+2)* (0+0)
1+(0+1+2)*0 1+3*(0+0)
1+\13!* 0
111-0
Suc Zero

Figure 2: Variants of Evaluating a Term

always be the same no matter how the evaluation is performed, i.e. which
basic transformations are chosen in certain states of the evaluation. Dis-
tinct subterms can even be evaluated in parallel. Although the evaluation
will always have the same result, the decision of which basic transformation
to apply next is significant as to the evaluation speed and the amount of
data needed during the evaluation.

Fig. 2 sketches two ways to evaluate 14(04+142)%(040). The evaluation
on the left hand side starts with the evaluation of 0 + 0. Since the result is
0, it turns out that the term is independent from the result of the evaluation
of 0 + 1 4+ 2 so that this subterm is not evaluated. The evaluation on the
right hand side is slower since it starts with the (unnecessary) evaluation of
0+ 1+ 2 calculating a result that will not be needed in further steps.

5.1 Strict Evaluation and Lazy evaluation

Good evaluation algorithms must try to minimize the number of basic op-
erations by making a good choice, which basic operation is to be performed
next. There will never be a perfect evaluation algorithm since very often
the best order cannot be determined in advance but depends on the results
of subterm evaluations.

Example: The evaluation of t; * t5 can either start with the evaluation
of 11 or with ¢5. When either ¢ or 9 is equivalent to 0 then the optimal
algorithm would have to start with the one that is equivalent to 0. The
evaluation of the other term may be omitted. But this decision cannot be
made unless ¢; and ? (or at least one of them) have already been evaluated.

There are two basic evaluation techniques: strict evaluation and lazy
evaluation. The strict evaluation algorithm is based on the principle: eval-
uate the parameters first. A term (a b) is evaluated by first evaluating b to
b" and then evaluating (a b’). The lazy evaluation algorithm is based on the
principle: a subterm is not evaluated unless it is needed. The term (a b)
is evaluated by first reducing a to a@’. The term b will only be evaluated if
it occurs in a’ else it is not. The lazy evaluation algorithm minimizes the
number of basic function evaluations, but there is an additional requirement
of time and memory for the organization. It depends on the term to be
evaluated, which algorithm is more efficient.

5.2 Precomputation

During the evaluation it may happen, that subterms have to be evaluated
which have already been evaluated before. Reusing results of former eval-
uations can reduce the expense of the evaluation. During the evaluation
process, results of subterm evaluations could be stored so that if in fur-
ther evaluation steps these subterms can be looked up rather than being
calculated again. Storing and handling such results leads to an additional
requirement of time and data. An advantage can be achieved only if the
result being stored will definitely be reused at least once.

It is also possible to do some calculations even before the evaluation
starts. When a function with a small number of possible input values is
used rather frequently, it may be convincing to calculate all the results and
store them in a table. For a function f : (bool*bool*bool) — bool for example
there are only eight cases that have to be considered: (F, F,F), (F,F,T),
... (I,T,T). Before the evaluation starts, a table with eight entries can be
calculated holding all possible input values and the corresponding results.
Whenever a term such as f(F, T, I) appears during the evaluation, the entry
(F,T,F) can be looked up rather than being calculated.

6 Symbolic Evaluation

In previous sections, it has always been preassumed that there are no free
variables in the terms that are to be evaluated. This section attends to
symbolic evaluation, i.e. the evaluation of terms comprising free variables.
The basic transformations needed for a symbolic evaluation are the same as
those for the conventional evaluation: constant expansion, f—reduction and
the evaluation of the basic functions.

10

Nonsymbolic Evaluation Symbolic Evauation

0+1+0 1+0+0 atb+0 b+0+a

N/]

Suc Zero atb b+a

Figure 3: Symbolic Evaluation
6.1 Motivation

Symbolic evaluation is an extended means for simulation. A class of inputs,
rather than one single input, is executed at once. The term (a + 0) * (0 *
b+ 1) + b can be evaluated (reduced) to a + b. Symbolic evaluation is
a substitute for a large number of single conventional evaluations with all
possible instantiations of the free variables.

Obviously, the term (a4 0) * (0 b+ 1) + b can be converted to a + b.
But since PML functions (basic functions as well as derived functions) need
not be injective (just as in any other functional programming language) the
result of a symbolic evaluation need not be unambiguous. The result of
(a4+0)*(0xb+ 1)+ b may as well be b+ a or a + b+ 0. A nonsymbolic
evaluation of two equivalent terms leads to two equal terms, since the terms
consist of injective constructors only. In contrast to nonsymbolic evaluation,
the symbolic evaluation of two equivalent terms may lead to two results
that are equivalent but not equal. This turns out to be a disadvantage of
symbolic evaluation. It is not possible any more to compare two terms just
by evaluating them.

6.2 Meta—Constructors

In the introductory example (a + 0) % (0% b+ 1) + b has been evaluated to
a + b. In contrast to the previously sketched evaluation algorithm, not all
possible basic transformations have been performed: + is a derived function
and could be expanded. Since the derived functions of PML are nothing but
abbreviations, all derived functions may be eliminated from the result of a
symbolic evaluation such that all functions within the result are but basic
functions. But there seems to be no sense in expanding all derived functions

11

Derived Functions
Meta-Constructors

Basic Functions o

Figure 4: Defining a Set of Meta—Constructors

since it does not lead to an unambiguous representation. Expanding a + b
may lead to

PRIMREC_num (Az y.Sucy) ba
and evaluating an equivalent term may lead to

PRIMREC_num (Az y.Sucy)ab

It is not possible to eliminate all functors from the result of a symbolic
evaluation. An arbitrary set of functions can be chosen, that shall not
be expanded. These functions shall be called meta—constructors. Meta—
constructors may be basic functions or derived functions. All functions to be
considered in evaluation shall either be meta—constructors or functions that
have been derived from meta-constructors (see fig. 4). When performing
a symbolic evaluation the result will exclusively consist of free variables,
constructors and meta—constructors.

In contrast to constructors, meta—constructors must not be injective and
so the result must not be unambiguous. To obtain an unambiguous repre-
sentation, the symbolic evaluation can be succeeded by a normalization step
where different equivalent terms are transformed into equal terms. For such
a normalization it is necessary to built a set of converging transformations
upon the meta—constructors. A set of converging functions can be found
by proving some equations and deriving a converging equation set using
Knuth-Bendix completion.

Example: The set of meta—constructors consists of + and *. After the
evaluation, the result will exclusively consist of constructors (Zero and Suc),

12

sgr(a+1) sgr(1+a)

Evaluation
(at+(Suc Zero))* (a+(Suc Zero)) ((Suc Zero)+a)* ((Suc Zero)+a)
Normalization

a* atatat+(Suc Zero)

Figure 5: Symbolic Evaluation and Normalization

free variables and the meta—constructors + and *. The following equations
can manually be derived:

ax(b+c¢) = axbtaxc (Suca)+b = Suc(a+0b)
a+Zero = a a+ (Sucb) = Suc(a+b)
Zeroxa = Zero (Suca)*xb = b+ (axb)
a+b = b+a a*(Sucb) = b+ (axb)
axb = bxa

An arbitrary term—ordering can be defined and by means of Knuth—Bendix
a converging equation set can automatically be derived, which can be used
to perform the normalization (see fig. 5).

7 Termination/Nontermination Detection

In PML the result of a non—terminating function has an explicit value called
Undefined and the result of a terminating function is (Defined z) rather than
x. Conventional evaluation algorithms will always terminate when the result
is (Defined z) but will not terminate when the result is Undefined. An evalu-
ation algorithm that always decides whether a p—receive function is defined
and that calculates the result whenever it is defined, would be beyond the
limits of computability. But it is possible to extent conventional evaluation
algorithms. Such an extended algorithm calculates the result whenever the
result is defined, and in some cases it also halts even though the result is un-
defined returning the result Undefined. There will always be some situations
left where the result is undefined but the algorithm does not terminate.
Primitive recursive functions do always terminate. Nontermination can
only occur when dealing with p-recursive functions and WHILE is the only

13

basic means for describing p—recursion. Theorem (12) states that the result
of a loop is Undefined whenever

=(Iny.f"(z) = Defined y A (g y)) (18)

is fulfilled. This problem is not computable, i.e. in general it cannot auto-
matically be decided whether this formula holds or not. Although there is
no general solution, algorithms can be constructed that produce results for
certain situations.

Whenever the assumption (18) is not fulfilled, a nonsymbolic evaluation
will find the result using the equations (14) trough (17). But when it is
not, then such an evaluation will not terminate. This kind of evaluation can
be improved by an additional feature: When evaluating a loop, the states
the evaluation algorithm has already passed through are recorded and from
time to time the algorithm takes a look a the list of states and tries to prove
that the evaluation will never terminate.

When dealing with symbolic evaluation, the result may be (Defined z) for
certain instances and Undefined for others. Proving that a an algorithm is
completely correct means proving that for every possible input z the result
will always be (Defined y) with and y standing in a relation described by
the program specification. A successfully applied symbolic evaluation would
do a big part of the correctness proof.

There are two problems that shall now be discussed:

¢ How can nontermination be detected during a nonsymbolic evaluation?

e How to prove that a loop terminates for all inputs of a function?

7.1 Detecting Nontermination

A general scheme to detect nontermination has already been sketched: recor-
ding the states when evaluating a WHILE loop and trying to derive a prove
for nontermination from the states the loop has already passed trough.

The evaluation of a WHILE loop can be performed as follows: First the
predicated (g x) is evaluated where x is the current state. If (g z) equals F
then 2 is the result of the loop else the next state (f z) is calculated and
the evaluation of the loop continues with the new state. Every WHILE loop
evaluation passes through a list of states z, f(z), f%(z), f3(z), ... that all do
hold ¢g. If the result is defined then the number of these states is finite and
there is a smallest n such that g(f"(2)) is not fulfilled. Otherwise this list
is infinite.

14

A nontermination can be proven when a cycle is detected, i.e. when
the evaluation passes through the same state for the second time. If the
number of all possible states is finite (the type of the state represents a finite
set), then the detection of nontermination is computable. If the number of
evaluation steps is larger, than the total number of possible states then a
cycle obviously has occurred. So if n is the total number of states, then after
having calculated at most n states it can be made out whether the loop will
ever terminate or not.

When dealing with sequential circuits, the number of states of an imple-
mentations is always finite. But the number of states of a circuit is growing
exponentially with the size of its memory. For realistic sized circuits the
number of states becomes to large for passing through all states.

To handle loops with a large or infinite number of states improved tech-
niques have to be used. A more general criterion for nontermination is: The
current state is an element of a subset of states that are all fulfilling ¢ and
it can be proven that for every state z within the subset f(z) is also an
element of the subset.

How to find such subsets? When designing sequential circuits, control
unit and operation unit are often separated. Usually the number of states
in the control part is rather small compared with the operation unit. Very
often an infinite loop leads to a rather small cycle within the control states.
The set of states of the entire circuit where the control state is within this
cycle will never be left. Only a small part of the entire circuit must be
analyzed to detect the infinite loop. A big part of the state of the operation
unit will have no influence on the control flow.

7.2 Proving that a Loop Always Terminates

Given a WHILE loop expression with the initial state comprising free vari-
ables it has to be proven, that for every instantiation of the free variables
the loop will terminate, i.e. there exists a number n such that =(g(f"(z)))
is fulfilled. When dealing with a finite number of states, this problem is
computable since the number of instantiations is finite and for every instan-
tiation it can be computed whether or not the loop will halt (see previous
section).

To handle a large or infinite number of states more powerful techniques
have to be used. Often a converging behavior can be detected. If it is
possible to find a strictly monoton declining function & mapping the states
on natural numbers and if —(g(z)) holds whenever h(z) is smaller than a

15

constantly given number m then termination can be derived.

8 Conclusion

The basic mechanisms for the evaluation of PML terms have been intro-
duced. Since the underlying basic steps have been described in terms of
logical transformations within the HOL calculus, correctness of the evalu-
ation mechanisms is guarantied and the techniques described can be used
within a formal proof.

Symbolic evaluation has already been used to perform symbolic circuit
simulations within HOL. The considered circuits where rather small and al-
though using precomputations, the simulation speed has been comparatively
slow — much slower than exhaustive simulations within conventional simu-
lation tools. For larger circuits exhaustive simulation within a conventional
simulation tool is not suitable any more. Better results may be achieved
using advanced evaluation techniques.

Several distinct evaluation techniques have already been implemented.
Still a lot of manual interaction is needed. These algorithms will have to be
improved and be integrated within a unique evaluation tool.

References

[BGGH92] R. Boulton, A. Gordon, M. Gordon, J. Herbert, and J. van
Tassel. Experiences with Embedding hardware description lan-
guages in HOL. In V. Stavridou, T.F. Melham, and R. Boute,
editors, Conference on Theorem Provers in Circuit Design, IFIP
Transactions A-10, pages 129-156. North-Holland, 1992.

[Cami88] J. Camilleri. Executing behavioural definitions in higher order
logic. Technical Report 140, University of Cambridge Computer
Laboratory, 1988.

[EiSK93] D. FEisenbiegler, K. Schneider, and R. Kumar. A functional
approach for formalizing regular hardware structures. In Inter-
national Workshop on Higher-Order Theorem Proving and its
Applications, Vancouver, Canada, 1993. (submitted).

[Jone&7] S.L.P. Jones. The Implementation of Functional Programming
Languages. Prentice Hall, 1987.

16

[KIMAS2]

[OLLA92]

A. J. Kfoury, R. N. Moll, and M. A. Arbib. A Programming
Approach to Computability. Springer, New York, 1982.

John O’Leary, Mark Linderman, Miriam Leeser, and Mark Aa-
gaard. HML: A hardware description language based on SML.
Technical Report EE-CEG-92-7, School of Electrical Engineer-
ing, Cornell University, [thaca, NY 14853, 1992.

17

