
B
R

IC
S

N
S-95-2

E
ngberg

etal.
(eds.):

T
A

C
A

S
P

roceedings

BRICS
Basic Research in Computer Science

Proceedings of the Workshop on

Tools and Algorithms for the

Construction and Analysis of Systems

19–20 May 1995, Aarhus, Denmark

Uffe H. Engberg
Kim G. Larsen
Arne Skou (editors)

BRICS Notes Series NS-95-2

ISSN 0909-3206 May 1995



Parallelism for Free�

E�cient and Optimal Bitvector Analyses for Parallel Programs�

Jens Knoop y Bernhard Ste�en� J�urgen Vollmer z

Abstract

In this paper we show how to construct optimal bitvector analysis algorithms for parallel
programs with shared memory that are as e�cient as their purely sequential counterparts�
and which can easily be implemented� Whereas the complexity result is rather obvious�
our optimality result is a consequence of a new Kam�Ullman�style Coincidence Theorem�
Thus using our method� the standard algorithms for sequential programs computing liveness�
availability� very business� reaching de�nitions� de�nition�use chains� or performing partially
redundant expression and assignment elimination� partial dead code elimination or strength
reduction� can straightforward be transferred to the parallel setting at almost no cost�

Keywords� Parallelism� interleaving semantics� synchronization� program optimization�
data �ow analysis� bitvector problems� de�nition�use chains� partially redundant expression
elimination� partial dead code elimination�

� Motivation

Parallel implementations are of growing interest� as they are more and more supported by
modern hardware environments� However� despite its importance �SHW� SW� WS�� there is
currently very little work on classical data �ow analysis for parallel languages� Probably� the
reason for this de�ciency is that a naive adaptation fails �MP� and the straightforward correct
adaptation needs an unacceptable e�ort� which is caused by considering all interleavings that
manifest the possible executions of a parallel program�

Thus� either heuristics are proposed to avoid the consideration of all the interleavings �McD��
or restricted situations are considered� which do not require to consider the interleavings at
all� E�g�� in �GS� data independence of parallel components is required� Thus the result of a
parallel execution does not depend on the particular choice of the interleaving� which is exploited
for the construction of an optimal and e	cient algorithm determining the reaching
de�nition
information� Completely di�erent is the approach of abstract interpretation
based state space
reduction proposed in �CH�� CH��� which allows general synchronization mechanisms but still
requires the construction of an appropriately reduced version of the global state space which is
often still unmanageable�

In this paper we show how to construct arbitrary bitvector analysis algorithms for parallel
programs with shared memory that

�� optimally cover the phenomenon of interference

�� are as e�cient as their sequential counterparts and

�For an extended version of this paper see �KSV���
yFakult�at f�ur Mathematik und Informatik� Universit�at Passau� Innstrasse ��� D	
���
 Passau� Germany� E	

mail� fknoop�ste�eng�fmi�uni	passau�de
zInstitut f�ur Programm	 und Datenstrukturen� Universit�at Karlsruhe� Vincenz	Prie�nitz	Stra�e �� D	���
�

Karlsruhe� Germany� E	mail� vollmer�ipd�info�uni	karlsruhe�de


��




� easy to implement�

The �rst property is a consequence of a Kam�Ullman
style ��KU�� Coincidence Theorem for
bitvector analyses stating that the parallel meet over all paths �PMOP � solution� which speci

�es the desired properties� coincides with our parallel bitvector maximal �xed point �PMFPBV �
solution� which is the basis of our algorithm� This result is rather surprising� as it states that
although the various interleavings of the executions of parallel components are semantically dif

ferent� they need not be considered during bitvector analysis� which is the key observation of
this paper�

The second property is a simple consequence of the fact that our algorithms behave like
standard bitvector algorithms� In particular� they do not require the consideration of any kind
of global state space� This is important� as even the corresponding reduced state spaces would
usually still be exponential in size�

The third property is due to the fact� that only a minor modi�cation of the sequential
bitvector algorithm needs to be applied after a preprocess consisting of a single �xed point
routine �cf� Section 
����

Thus all the well
known algorithms for liveness� availability� very business� reaching de�nitions�
de�nition
use chains �cf� �He��� partially redundant expression elimination �cf� �DRZ� KRS��
MR��� partial dead code elimination �cf� �KRS
��� partially redundant assignment elimination
�cf� �KRS���� or strength reduction �cf� �Dh� JD� KRS��� can be adapted for parallel programs
at almost no cost on the runtime and the implementation side�

The next section will recall the sequential situation� while Section 
 develops the corre

sponding notions for parallel programs� Subsequently� Section � sketches some applications
of our algorithm and Section � contains our conclusions� The Appendix� �nally� contains the
detailed algorithm�

� Sequential Programs

In this section we summarize the sequential setting of data �ow analysis�

��� Representation

In the sequential setting it is common to represent procedures as directed �ow graphs G �
�N�E� s�e� with node set N and edge set E �cf� �He��� Nodes n � N represent the statements�
edges �n�m� � E the nondeterministic branching structure of the procedure under consider

ation� and s and e denote the unique start node and end node of G� which are assumed
to possess no predecessors and successors� respectively� and to represent the empty statement
skip� predG�n��df fm j �m�n� � E g and succG�n��df fm j �n�m� � E g denote the set of
all immediate predecessors and successors of a node n� respectively� A �nite path in G is a
sequence �n�� � � � � nq� of nodes such that �nj � nj��� � E for j � f�� � � � � q � �g� PG�m�n�
denotes the set of all �nite paths from m to n� and PG�m�n� the set of all �nite paths from m

to a predecessor of n� Moreover� ��p� denotes the number of node occurrences of p� and � the
unique path of length �� Finally� every node n � N is assumed to lie on a path from s to e�

��� Data Flow Analysis

Data �ow analysis �DFA� is concerned with the static analysis of programs in order to support
the generation of e	cient object code by �optimizing� compilers �cf� �He� MJ��� For imperative
languages� DFA provides information about the program states that may occur at some given
program points during execution� Theoretically well
founded are DFAs that are based on abstract


��



interpretation �cf� �CC�� Ma��� The point of this approach is to replace the �full� semantics by
a simpler more abstract version� which is tailored to deal with a speci�c problem� Usually� the
abstract semantics is speci�ed by a local semantic functional

�� �� � N� �C�C�

which gives abstract meaning to every program statement in terms of a transformation function
from a complete lattice �C�u�v����� into itself� where the elements of C express the DFA

information of interest��

Since s and e are assumed to represent the empty statement skip they are associated with
the identity IdC on C� A local semantic functional �� �� can easily be extended to cover �nite
paths as well� For every path p��n�� � � � � nq� � PG�m�n�� we de�ne�

�� p ���df

�
IdC if p � �

�� �n�� � � � � nq� �� � �� n� �� otherwise

����� The MOP �Solution of a DFA

The MOP 
solution � the solution of the meet over all paths �MOP � strategy in the sense of
Kam and Ullman �KU� � de�nes the intuitively desired solution of a DFA� This strategy directly
mimics possible program executions in that it �meets� �intersects� all informations belonging to
a program path reaching the program point under consideration�

The MOP �Solution� �n � N � c� � C� MOP �G��� ����n��c�� �u f �� p ���c�� j p � PG�s� n� g

In fact� this directly re�ects our desires� but is in general not e�ective�

����� The MFP �Solution of a DFA

The point of the maximal �xed point �MFP � strategy in the sense of Kam and Ullman �KU�
is to iteratively approximate the greatest solution of a system of equations which speci�es the
consistency between pre
conditions expressed in terms of C�

Equation System ���

pre�n� �

�
c� if n � s
u f ��m ���pre�m�� jm � predG�n� g otherwise

Denoting the greatest solution of Equation System ��� with respect to the start information
c� � C by prec� � the solution of the MFP 
strategy is de�ned by�

The MFP �Solution� �n � N � c� � C� MFP �G��� ����n��c�� �prec�

For monotonic functionals�� this leads to a suboptimal but algorithmic description �see Algo

rithm A�� in Appendix A�� The question of optimality of the MFP 
solution was elegantly
answered by Kam and Ullman �KU��

Theorem ��� �The �Sequential� Coincidence Theorem�
Given a �ow graph G��N�E� s�e�� the MFP �solution and the MOP �solution coincide� i	e	
�n � N � c� � C� MOP �G��� ����n��c�� �MFP �G��� ����n��c��� whenever all the semantic functions
�� n ��� n � N � are distributive		

�In the following C will always denote a complete lattice�
�A function f � C�C is called monotonic i� � c� c� � C� c v c� implies f�c� v f�c���
�A function f � C �C is called distributive i� �C � � C� f�uC �� � u ff�c� j c � C �g� It is well	known

that distributivity is a stronger requirement than monotonicity in the following sense� A function f � C�C is
monotonic i� �C � � C� f�uC �� v u ff�c� j c � C �g�


��



����	 The Functional Characterization of the MFP �Solution

From interprocedural DFA� it is well
known that the MFP 
solution can alternatively be de�ned
by means of a functional approach �SP�� Here� one iteratively approximates the greatest solution
of a system of equations specifying consistency between functions ��� n ���� n � N � Intuitively� a
function ��� n ��� transforms data �ow information that is assumed to be valid at the start node
of the program into the data �ow information being valid before the execution of n�

De
nition ��	 �The Functional Approach�
The functional ��� ��� � N� �C�C� is de�ned as the greatest solution of the equation system given
by


��� n ��� �

�
IdC if n� s

uf��m �� � ���m ��� jm � predG�n�g otherwise

The following equivalence result is important �KS��

Theorem ��� �n � N � c� � C� MFP �G��� ����n��c�� � ��� n ����c��

The functional characterization of the MFP 
solution will be the �intuitive� key for computing
the parallel version of the maximal �xed point solution� As we are only dealing with Boolean
values later on� this characterization can easily be coded back into the standard form�

� Parallel Programs

As usual� we consider a parallel imperative programming language with an interleaving seman

tics� Formally� this means that we view parallel programs semantically as �abbreviations� of
usually much larger nondeterministic programs� which result from a product construction be

tween parallel components �cf� �CC�� CH�� CH���� In fact� in the worst case� the size of the
nondeterministic �product� program grows exponentially in the number of parallel components
of the corresponding parallel program� This immediately clari�es the dilemma of data �ow
analysis for parallel programs� even though it can be reduced to standard data �ow analysis
on the corresponding nondeterministic program� this approach is unacceptable in practice for
complexity reasons� Fortunately� as we will see in Section 
�
� bitvector analyses� which are
most relevant in practice� can be performed as e	ciently on parallel programs as on sequential
programs�

The following section establishes the notational background for the formal development and
the proofs� One could therefore try to immediately continue with Section 
�
 and to �backtrack�
to Section 
�� at need�

��� Representation

Syntactically� parallelism is expressed by means of a par statement whose components are as

sumed to be executed independently and in parallel on a shared memory�
 As usual� we assume
that there are neither jumps leading into a component of a par statement from outside nor vice
versa�

Similarly to �GS�� we represent a parallel program by a nondeterministic parallel �ow graph
G� � �N�� E�� s�� e�� with node set N� and edge set E�� Except for subgraphs representing
par statements a parallel �ow graph is a nondeterministic �ow graph in the sense of Section ��

�Integrating a replicator statement in order to allow a dynamical process creation is straightforward �cf�
�CH
� Vo
���


��



i�e�� nodes n � N� represent the statements� edges �m�n� � E� the nondeterministic branching
structure of the procedure under consideration� and s� and e� denote the distinct start node
and end node� which are assumed to possess no predecessors and successors� respectively� As in
Section �� we assume that every node n � N� lies on a path from s� to e�� and that the start
and the end nodes of parallel �ow graphs represent the empty statement skip� Additionally�
predG��n��df fm j �m�n� � E� g and succG��n��df fm j �n�m� � E� g denote the set of all
immediate predecessors and successors of a node n � N�� respectively�

G*

1

2 3

4

5

6

7

8 9

12

12

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

34

33

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

Figure �� The Parallel Flow Graph G�

A par statement as well as every of its components are also considered parallel �ow graphs
�cf� Figure � for illustration�� The start node and the end node of a graph representing a par

statement have the start nodes and the end nodes of the component �ow graphs as their only
successors and predecessors� respectively� The set of all subgraphs of G� representing a par

statement is denoted by GP�G
��� Additionally�

Gmax
P �G���df fG � GP�G

�� j �G� � GP�G
��� G 	 G�
G � G� g

denotes the set of maximal graphs of GP�G���� Moreover� for G� � GP�G��� GC�G�� denotes
the set of component �ow graphs of G�� and CpNodes�G���df N

�nfs�� e�g the set of nodes of its
component �ow graphs�� It is worth noting that for G � GP�G�� every component �ow graph
G� � GC�G� and also G itself is a single
entry�single
exit region of G�� Moreover� we introduce
the following abbreviations for the sets of start nodes and end nodes of graphs of GP�G���

N�
N�df f s jG � GP�G

�� g and N�
X�df f e jG � GP�G

�� g

�For parallel �ow graphs G and G� we de�ne� G � G� if and only if N � N � and E � E��
�We use the convention that the node set and the edge set� and the start node and the end node of a �ow

graph carry the same marking as the �ow graph itself� Hence� G and G� stand for the expanded versions
G � �N�E� s� e� and G� � �N �� E�� s��e��� respectively�


�




Additionally� we need the functions Nodes� start � end � pfg � and cfg � The functions Nodes�
start and end map a �ow graph to its node set� and its start node and end node� respectively�
The function pfg maps a node n occurring in some �ow graph G� � GP�G

�� to the smallest
�ow graph of GP�G�� containing n� and it maps the remaining nodes n of N� to G�� i�e��

pfg�n��df

� T
fG� � GP�G

�� jn � Nodes�G�� g if n � Nodes�Gmax
P �G���

G� otherwise

Similarly� the function cfg maps a node n occurring in a component �ow graph of some graph
G � GP�G

�� to the smallest component �ow graph containing n� and it maps the remaining
nodes n of N� to G�� i�e��

cfg�n��df

� T
fG� � GC�GP�G

��� jn � Nodes�G�� g if n � CpNodes�Gmax
P �G���

G� otherwise

Both pfg and cfg are well
de�ned� since par statements in a program are either unrelated or
properly nested�

Finally� given a parallel �ow graph G we de�ne an associated sequential �ow graph Gseq�
which results from G by replacing all nodes belonging to a component �ow graph of some graph
G� � Gmax

P �G� together with all edges starting or ending in such a node by an edge leading from
start�G�� to end�G��� Note that Gseq is a nondeterministic sequential �ow graph in the sense of
Section �� This is illustrated in Figure �� which shows the sequentialized version of the parallel
�ow graph of Figure ��

G*
seq

1

50

51

2 3

4

5

Figure �� G�
seq

Interleaving Predecessors

Given a sequential �ow graph G� the set of nodes that might dynamically precede a node n

is precisely given by the set of its static predecessors predG�n�� Given a parallel �ow graph�
however� the interleaving of statements of parallel components must be taken care of� In fact�
nodes n occurring in a component of some par statement additionally can have all nodes as
dynamic predecessors� whose execution may be interleaved with that of n� For example� in
the program of Figure � the execution of node ��� whose only static predecessor is node �	�
may be interleaved with the execution of the nodes ��� ��� and 	�� � � �� �
� We denote these
�potentially parallel� nodes as interleaving predecessors� The set of all interleaving predecessors
of a node n � N� is recursively de�ned by means of the function Pred ItlvgG� � N��P�N��� where
P denotes the power set operator and mpe�pfg a function� which maps a node n � N� to its


��



minimal properly enclosing graph of GP�G
�� � fG�g�

PredItlvgG� �n��df

�����
����
� if N�nCpNodes�Gmax

P �G���

CpNodes�mpe�pfg�n��nNodes�cfg�n�� �

PredItlvgG� �start�cfg�start�mpe�pfg�n����� otherwise

where mpe�pfg is de�ned by�

mpe�pfg�n��df

���
��

pfg�start�cfg�n��� if n � N�
N �N�

X

pfg�n� otherwise

Program Paths of Parallel Programs

As mentioned already� the interleaving semantics of an imperative parallel programming lan

guage can be de�ned via a translation that reduces parallel programs to �much larger� nondeter

ministic programs� However� there is also an alternative way to characterize the node sequences
constituting a parallel �program� path� following in spirit the de�nition of an interprocedural
program path as proposed by Sharir and Pnueli �SP�� They start by interpreting every branch
statement purely nondeterministically� which allows to simply use the de�nition of �nite path
as introduced in Section �� This results in a superset of the set of all interprocedurally valid
paths� which they now de�ne by means of an additional consistency condition� In our case� we
are forced to de�ne our consistency condition on arbitrary node sequences� as the considera

tion of interleavings invalidates the �rst step� Here� the following notion of well
formedness is
important�

De
nition 	�� �G�Well�Formedness�

Let G be a �parallel� �ow graph� and p�df �n�� � � � � nq� be a sequence of nodes	 Then p is
G
well
formed if and only if

�	 the projection p
Gseq
of p onto Gseq lies in PGseq

�start�Gseq�� end�Gseq��

�	 for all node occurrences ni � N�
N of the sequence p there exists a j � fi��� � � � � qg such

that

�a� nj � N�
X�

�b� nj is the successor of ni on p
Gseq
and

�c� the sequence �ni��� � � � � nj��� is G��well�formed for all G� � GC�pfg�ni��	

Now the set of parallel paths is de�ned as follows�

De
nition 	�� �Parallel Path�
Let G� � �N�� E�� s�� e�� be a parallel �ow graph� and p�df �n�� � � � � nq� be a sequence of nodes
of N�	 Then


�	 p is a parallel path from s� to e� if and only if p is G��well�formed	

�	 p is a parallel path from n� to nq if it is a subpath of some parallel path from s� to e�	

PPG� �m�n� denotes the set of all parallel paths from m to n� and PPG� �m�n� the set of all
parallel paths from m to a �static or interleaving� predecessor of n� de�ned by

PPG� �m�n��df f�n�� � � � � nq� j �n�� � � � � nq� nq��� � PPG� �m�n�g


��



��� Data Flow Analysis of Parallel Programs

As for a sequential program� a DFA for a parallel program is completely speci�ed by means of
a local semantic functional

�� �� � N�� �C�C�

which gives abstract meaning to every node n of a parallel �ow graph G� in terms of a function
from C to C�

As in the sequential case it is straightforward to extend a local semantic functional to cover
also �nite parallel paths� Thus� given a node n of a parallel program G�� the parallel version
of the MOP 
solution is clear� and as in the sequential case� it marks the desired solution to the
considered data �ow problem�

The PMOP �Solution�

�n � N� � c� � C� PMOP �G���� ����n��c�� �u f �� p ���c� jp � PPG� �s�� n� g

Referring to the nondeterministic �product program�� which explicitly represents all the possible
interleavings� would allow us to straightforward adapt the sequential situation and to state a
Coincidence Theorem� However� this would not be of much practical use� as this approach would
require to de�ne the MFP 
solution relative to the potentially exponential product program�
Fortunately� as we will see in the next section� for bitvector algorithms there exists an elegant
and e	cient way out�

��� Bitvector Analyses

Bitvector problems can be characterized by the simplicity of their local semantic functional

�� �� � N�� �B�B�

which speci�es the e�ect of a node n on a particular component of the bitvector �see Section �
for illustration�� Here B is the lattice �f
 � ttg�u�v� of Boolean truth values with 
 v tt and
the logical �and� as meet operation u� or its dual counterpart with tt v 
 and the logical �or�
as meet operation u�

Despite their simplicity� bitvector problems are highly relevant in practice� as they include
problems like liveness� availability� very business� reaching de�nitions� de�nition
use chains�
partially redundant expression and assignment elimination� partial dead code elimination or
strength reduction�

We are now going to show� how to optimize the e�ort for computing the PMOP 
solution�
This requires the consideration of the semantic domain FB consisting of the monotonic Boolean
functions B�B� Obviously we have�

Proposition 	�	 �	 FB simply consists of the constant functions Const tt and Const� �
together with the identity IdB on B	

�	 FB� together with the pointwise ordering between functions� forms a complete lattice with
least element Const� and greatest element Consttt � which is closed under function com�
position	

�	 All functions of FB are distributive	

The key to the e	cient computation of the �interleaving e�ect� is based on the following simple
observation� which pinpoints the speci�c nature of a domain of functions M�M � M any set�
that only consists of constant functions and the identity�


��



Lemma 	�� �Main�Lemma�
Let fi � FB�FB� � � i � q� q � IN � be functions from FB to FB	 Then we have


� k � f�� � � � � qg� fq � � � � � f� � f� � fk � � j � fk � �� � � � � qg� fj � IdB

The essence of this lemma for our application is that it restricts the way of possible interference
within a parallel program� if there is any interference than this interference is due to a single
statement within a parallel component� Combining this observation with the fact that for
m � Pred ItlvgG� �n�� there exists a parallel path leading to n whose last step requires the execution
of m� we obtain that the potential of interference� which in general would be given in terms
of paths� is fully characterized by the set Pred

Itlvg
G� �n�� In fact� considering the computation of

universal properties that are described by maximal �xed points �the computation of minimal
�xed points requires the dual argument�� the obvious existence of a path to n that does not

require the execution of any statement of PredItlvgG� �n� implies that the only e�ect of interference
is �destruction�� This motivates the introduction of the following predicate�

NonDestructed � N��B de�ned by

�n � N�� NonDestructed�n��df

V
f ��m ���tt� j m � PredItlvgG� �n� g

which indicates that no node of a parallel component destroys the property under consideration�
i�e� ��m �� �� Const� for all m � PredItlvgG� �n�� Note that only the constant function induced by
this predicate is used in De�nition 
�� to model interference� and in fact� Theorem 
� guarantees
that this modelling is su	cient� Obviously� this predicate is easily and e	ciently computable�
Algorithm B�� computes it as a side result�

Besides taking care of possible interference� we also need to take care of the synchronization
required by nodes in N�

X � in order to leave a parallel statement� all parallel components are
required to terminate� The information that is necessary to model this e�ect can be computed
by a hierarchical algorithm that only considers purely sequential programs� The central idea
coincides with that of interprocedural analysis �KS�� we need to compute the e�ect of complete
subgraphs� or in this case of complete parallel components� This information is computed in
an �innermost� fashion and then propagated to the next surrounding parallel statement� The
following de�nition describes the complete three
step procedure�

�� Terminate� if G does not contain any parallel components� Otherwise� select successively
all maximal �ow graphs G� � GP�G� that do not contain a parallel statement� and deter

mine the e�ect ���G� ��� of this �purely sequential� graph according to the equational system
of De�nition ��
 with respect to the local semantic functional �� ���seq � N

�
seq�FB given by

�� n ���seq�df

���
��

IdB u ConstNonDestructed �n� if n � N�
N

��� pfg�n� ���� if n � N�
X

�� n �� otherwise

�� Compute the e�ect ���G�� ���� of the innermost parallel statements G�� of G by

���G�� ���� �uf ��� end�G�
seq� ��� j G

� � GC�G
��� g


� Transform G by replacing all innermost parallel statements G�� � �N ��� E��� s��� e��� by
�fs��� e��g� f�s��� e���g� s��� e���� and replace the local semantics of s�� and e�� by IdBuuf �� n �� j
n � N ��g and ���G�� ����� respectively� Continue with step ��


��



This three step algorithm is a straightforward hierarchical adaptation of the algorithm for com

puting the functional version of the MFP 
solution for the sequential case� Only the third step
realizing the synchronization at nodes in N�

X needs some explanation� which is summarized in
the following lemma�

Lemma 	�� The PMOP �solution of a parallel �ow graph G that only consists of purely se�
quential parallel components G�� � � � � Gk is given by


PMOP �G��� ����end�G�� �uf ��� end�Gi� ��� j � � i � k g

Also the proof of this lemma is a consequence of the Main Lemma 
��� As a single statement
is responsible for the entire e�ect of a path� the e�ect of each complete path through a parallel
statement is already given by some path through one of the parallel components �the one con

taining the vital statement�� Thus in order to model the e�ect �or PMOP 
solution� of a parallel
statement� it is su	cient to meet the e�ects of all paths that are local to one of the components�
and it is exactly this fact� which is formalized in Lemma 
���

Now the following theorem can be proved by means of a straightforward inductive extension
of the functional version of the sequential Coincidence Theorem ���� which is tailored to cover
complete paths� i�e� paths going from the start to the end of a parallel statement�

Theorem 	�� �The Hierarchical Coincidence Theorem�
Let G � GP�G�� be a parallel �ow graph� and �� �� � N��FB a local semantic functional	 Then
we have


PMOP �G��� ����end�G�� � ���G ����

After this hierarchical preprocess the following modi�cation of the equation system for sequential
bitvector analyses is optimal�

De
nition 	�� The functional ��� ��� � N��FB is de�ned as the greatest solution of the equation
system given by



��� n ��� �

�������
������

IdB if n� s�

��� pfg�n� ���� � ��� start�pfg�n�� ��� u ConstNonDestructed �n� if n � N�
X

uf ��m �� � ���m ��� jm � predG��n�g u ConstNonDestructed �n� otherwise

This allows us to de�ne the PMFPBV 
solution� a �xed point solution for the bitvector case� in
the following fashion�

The PMFPBV �Solution�

PMFPBV �G���� ��� � N
��FB de�ned by �n � N� � b � B� PMFPBV �G���� ����n��b� � ��� n ����b�

As in the sequential case the PMFPBV 
strategy is practically relevant� because it can e	ciently
be computed �see Algorithm B�� in Appendix B�� The following theorem� whose proof can be
found in �KSV��� now establishes that it also coincides with the desired PMOP 
solution�

Theorem 	�� �The Parallel Bitvector Coincidence Theorem�

Let G�� �N�� E�� s�� e�� be a parallel �ow graph� and �� �� � N��FB a local semantic functional	
Then we have that the PMOP �solution and the PMFPBV �solution coincide� i	e	�

�n � N�� PMOP �G���� ����n� �PMFPBV �G���� ����n�

�Note that ��� ��� is the straightforward extension of the functional de�ned in De�nition 
��� Thus the overloading
of notation is harmless� as no reference to the sequential version is made in this de�nition�


� 



��� Performance and Implementation

Our algorithm is based on a functional version of an MFP 
solution� as it is common for interpro

cedural analyses� However� as bitvector algorithms only deal with Boolean values� proceeding
argument
wise� would simply require to apply a standard bitvector algorithm twice� In particu

lar� for regular program structures� all the nice properties of bitvector algorithms apply� In fact�
for the standard version of Algorithm B�� a single execution is su	cient� as we can start here
with the same start information as the standard sequential analysis� Thus� even if we count the
e�ort for computing the predicate NonDestructed separately� our analysis would simply be a
composition of four standard bitvector analyses� In practice� however� our algorithm behaves
much better� as the existence of a single destructing statement allows us to skip the analysis of
large parts of the program� In fact� in our experience� the parallel version often runs faster than
the sequential version on a program of similar size�

The same argumentation also indicates a way for a cheap implementation on top of existing
bitvector algorithms� However� we recommend the direct implementation of the functional
version� which to our experience� runs even faster than the decomposed standard version� This
is not too surprising� as the functional version only needs to consider one additional value and
does not require the argumentwise application�

� Applications

As mentioned in Section � and Section 
�
� bitvector problems have a broad scope of appli

cations� In this section we present the local semantic functionals of four bitvector problems
in order to give the �avour of a typical bitvector analysis� Moreover� these analyses are all
practically relevant� since they are the central components of two algorithms for the computa

tionally optimal placement of computations and assignments in a program� which eliminate all
partially redundant expressions �KRS�� and all partially dead assignments in a program �KRS
��
respectively�

According to �KRS�� a computationally optimal placement of computations in a program
requires to compute the set of program points where a computation is up�safe� i�e�� where it has
been computed on every program path reaching the program point under consideration� and
down�safe� i�e�� where it will be computed on every program continuation reaching the end node
of the program�� The DFA
problems for up
safety and down
safety are speci�ed by the local
semantic functionals �� n ��us and �� n ��ds� respectively�

		 n 

us�df

��
�

Const tt if Transp�n
�Comp�n

IdB if Transp�n
��Comp�n

Const� if �Transp�n


		 n 

ds�df

��
�

Const tt if Comp�n

IdB if �Comp�n
�Transp�n

Const� if ��Comp�n
�Transp�n



Details on the complete placement transformation for parallel programs can be found in �KSV���
According to �KRS
� all partially dead assignments in a program can be eliminated by

successively moving assignments as far as possible in the direction of the control �ow and by
subsequently removing all assignments whose left hand side variable is dead after the execution
of the assignment under consideration� In order to capture the second order e�ects of partial
dead code elimination� this two step procedure is repeated until the programs eventually sta

bilizes� Below the local semantic functionals specifying the DFA
problems for the sinking of
assignments �� n ��dl and the detection of dead variables �� n ��dd are presented� which are the
central components of the algorithm of �KRS
��

	Up	safety and down	safety are also known as availability and anticipability �very business�� respectively�


��



		 n 

dd�df

��
�

Const tt if �Used�n
�Mod �n

IdB if ��Used�n
�Mod �n


Const� if Used�n


		 n 

dl�df

��
�

Const tt if LocDelay�n

IdB if ��LocDelay �LocBlock �n


Const� if �LocDelay �LocBlock �n


� Conclusions

We have shown how to construct optimal bitvector analysis algorithms for parallel programs with
shared memory that are as e	cient as their purely sequential counterparts� and which can easily
be implemented� At the �rst sight� the existence of such an algorithm is rather surprising� as the
interleaving semantics underlying our programming language is an indication for an exponential
e�ort� However� the restriction to bitvector analysis constrains the possible ways of interference
in such a way that we could construct a �xed point algorithm that directly works on the parallel
program without taking any interleavings into account� The algorithm is implemented on the
Fixpoint Analysis Machine of �SCKKM�� Moreover� a variant of the computationally optimal
placement algorithm for computations sketched in Section � is implemented in the ESPRIT
project COMPARE �Vo�� Vo���

References

	CC�
 Cousot� P�� and Cousot� R� Abstract interpretation� A uni�ed lattice model for static analysis
of programs by construction or approximation of �xpoints� In Conference Record of the �th

International Symposium on Principles of Programming Languages �POPL����� Los Angeles�
California� ����� ��� � ����

	CC�
 Cousot� P�� and Cousot� R� Invariance proof methods and analysis techniques for parallel
programs� In Biermann� A� W�� Guiho� G�� and Kodrato	� Y� �eds�� Automatic Program Con

struction Techniques� chapter ��� ��� � ���� Macmillan Publishing Company� �����

	CH�
 Chow� J��H�� and Harrison� W� L� Compile time analysis of parallel programs that share mem�
ory� In Conference Record of the ��th International Symposium on Principles of Programming
Languages �POPL��
�� Albuquerque� New Mexico� ����� ��� � ����

	CH�
 Chow� J��H�� and Harrison� W� L� State Space Reduction in Abstract Interpretation of Parallel
Programs� In Proceedings of the International Conference on Computer Languages� �ICCL�����
Toulouse� France� May ������ ����� ��������

	Dh
 Dhamdhere� D� M� A new algorithm for composite hoisting and strength reduction optimisation
�� Corrigendum
� Internat� J� Computer Math� 
� � �����
� � � �� �� �� � ��
�

	DRZ
 Dhamdhere� D� M�� Rosen� B� K�� and Zadeck� F� K� How to analyze large programs e�ciently
and informatively� In Proceedings of the ACM SIGPLAN��
 Conference on Programming Lan

guage Design and Implementation �PLDI��
�� San Francisco� California� SIGPLAN Notices

� � � �����
� ��� � ����

	GS
 Grunwald� D�� and Srinivasan� H� Data �ow equations for explicitely parallel programs�
In Proceedings of the ACM SIGPLAN Symposium on Principles of Parallel Programming
�PPOPP����� SIGPLAN Notices 
� � � �����
�

	He
 Hecht� M� S� Flow analysis of computer programs� Elsevier� North�Holland� �����

	JD
 Joshi� S� M�� and Dhamdhere� D� M� A composite hoisting�strength reduction transformation
for global program optimization� Part I � II� Internat� J� Computer Math� �� � �����
� �� � ���
��� � ����

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Optimal code motion� Theory and practice� Transac

tions on Programming Languages and Systems �� � � �����
� ���� � �����



�



	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Lazy strength reduction� Journal of Programming
Languages � � � �����
� �� � ���

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� Partial dead code elimination� In Proceedings of
the ACM SIGPLAN��� Conference on Programming Language Design and Implementation
�PLDI����� Orlando� Florida� SIGPLAN Notices 
� � � �����
� ��� � ����

	KRS�
 Knoop� J�� R�uthing� O�� and Ste�en� B� The power of assignment motion� To appear in Pro

ceedings of the ACM SIGPLAN��� Conference on Programming Language Design and Imple

mantion �PLDI����� La Jolla� California� June �� � ��� �����

	KS
 Knoop� J�� and Ste�en� B� The interprocedural coincidence theorem� In Proceedings of the � th

International Conference on Compiler Construction �CC��
�� Paderborn� Germany� Springer�
Verlag� LNCS ��� �����
� ��� � ����

	KSV�
 Knoop� J�� Ste�en� B�� and Vollmer� J� Parallelism for free� E�cient and optimal bitvector
analyses for parallel programs� Fakult�at f�ur Mathematik und Informatik� Universit�at Passau�
Germany� MIP�Bericht Nr� ���� �����
� �� pages�

	KSV�
 Knoop� J�� Ste�en� B�� and Vollmer� J� Optimal code motion for parallel programs� To appear
in Proceedings of the �
th Workshop on �Alternative Konzepte f�ur Sprachen und Rechner��
Physikzentrum Bad Honnef� Germany� May � � �� �����

	KU
 Kam� J� B�� and Ullman� J� D� Monotone data �ow analysis frameworks� Acta Informatica � �
�����
� ��� � ����

	Ma
 Marriot� K� Frameworks for abstract interpretation� Acta Informatica �� � �����
� ��� � ����

	McD
 McDowell� C� E� A practical algorithm for static analysis of parallel programs� Journal of
Parallel and Distributed Computing � � � �����
� ��� � ����

	MJ
 Muchnick� S� S�� and Jones� N� D� �Eds�
� Program �ow analysis� Theory and applications�
Prentice Hall� Englewood Cli�s� New Jersey� �����

	MR
 Morel� E�� and Renvoise� C� Global optimization by suppression of partial redundancies� Com

munications of the ACM 

 � � �����
� �� � ����

	MP
 Midki�� S� P�� and Padua� D� A� Issues in the optimization of parallel programs� In Proceedings
of the International Conference on Parallel Processing� Volume II � St� Charles� Illinois� �����
�
��� � ����

	SCKKM
 Ste�en� B�� Cla�en� A�� Klein� M�� Knoop� J�� and Margaria� T� The �xpoint analysis ma�
chine� To appear in Proceedings of the �th International Conference on Concurrency Theory
�CONCUR����� Philadelphia� Pennsylvania� USA� August ������ �����

	SHW
 Srinivasan� H�� Hook� J�� and Wolfe� M� Static single assignment form for explicitly parallel
programs� In Conference Record of the 
�th ACM SIGPLAN Symposium on Principles of
Programming Languages �POPL����� Charleston� South Carolina� ����� ��� � ����

	SP
 Sharir� M�� and Pnueli� A� Two approaches to interprocedural data �ow analysis� In 	MJ
�
�����
� ��� � ����

	SW
 Srinivasan� H�� and Wolfe� M� Analyzing programs with explicit parallelism� In Proceedings of
the �th International Conference on Languages and Compilers for Parallel Computing � Santa
Clara� California� Springer�Verlag� LNCS ��� �����
� ��� � ����

	Vo�
 Vollmer� J� Data �ow equations for parallel programs that share memory� Tech� Rep� ������
of the ESPRIT Project COMPARE �����
� Fakult�at f�ur Informatik� Universit�at Karlsruhe�
Germany�

	Vo�
 Vollmer� J� Data �ow analysis of parallel programs� To appear in Proceedings of the Inter

national Conference on Parallel Architectures and Compilation Techniques �PACT����� �����
Extended version available as� Interner Bericht ����� �����
� �� pages� Fakult�at f�ur Informatik�
Universit�at Karlsruhe� Germany�

	WS
 Wolfe� M� and Srinivasan� H� Data structures for optimizing programs with explicit paral�
lelism� In Proceedings of the �st International Conference of the Austrian Center for Parallel
Computation� Salzburg� Austria� Springer�Verlag� LNCS ��� �����
� ��� � ����



�



A Computing the MFP�Solution

Algorithm A�� �Computing the MFP�Solution�

Input� A �ow graph G � �N�E� s� e
� a local semantic functional 		 

 � N�FB� and a function
finit � FB re�ecting the assumptions on the context in which the procedure under consideration is called�
Usually� finit is given by IdB�

Output� An annotation of G with functions 			 n 


 � FB� n � N � representing the greatest solution
of the equation system of De�nition 
��� In fact� after termination of the algorithm the functional 			 



satis�es� �n � N� 			 n 


�MFP �G��� ����n
�MOP �G��� ����n


BEGIN MFP�G� 		 

� finit
 END�

where

PROCEDURE MFP �G � �N�E� s� e
 � SequentialF lowGraph�
		 

 � N�FB � LocalSemanticFunctional� fstart � FB
�

VAR f � FB�
BEGIN

� Initialization of the annotation array gtr and the variable workset �
FORALL n � Nnfsg DO 			 n 


 �� Const tt OD�
			 s 


 �� fstart� workset �� fn jn� s � 		 n 

�Const� g�
� Iterative �xed point computation �
WHILE workset �� � DO

LET n � workset
BEGIN

workset �� worksetnfn g� f �� 		 n 

 	 			 n 


�
FORALL m � succG�n
 DO

IF 			m 


 � f THEN 			m 


 �� f �workset �� workset 
fm gFI OD END
OD

END�

B Computing the PMFPBV �Solution

Algorithm B�� �Computing the PMFPBV �Solution�

Input� A parallel �ow graph G� � �N�� E�� s�� e�
� a local semantic functional 		 

 � N��FB� a
function finit � FB and a Boolean value binit � B� where finit and binit re�ect the assumptions on the
context in which the procedure under consideration is called� Usually� finit and binit are given by IdB
and 	 � respectively�

Output� An annotation of G� with functions 			G 


� � FB� G � GP�G�
� representing the semantic
functions computed in step 
 of the three step procedure of Section ���� and with functions 			 n 


 � FB� n �
N�� representing the greatest solution of the equation system of De�nition ���� In fact� after the termina

tion of the algorithm the functional 			 


 satis�es� �n � N�� 			 n 


�PMFPBV �G���� ����n
�PMOP �G���� ����n


Remark� The global variables 			G 


�� G �
S
fGC�G�
 jG� � GP�G�
 g� each of which is storing a

function of FB� are used during the hierarchical computation of the PMFPBV 
solution for storing the
global e	ect of graphs that are a component of some graph G � GP�G�
� Additionally� the global variables
harmful�G
� G �

S
f GC�G

�
 jG� � GP�G
�
 g� store whether G contains a node n with 		 n 

�Const� �

These variables are used to compute the value of the predicate NonDestructed of Section ���� Finally�
every �ow graph G � GP�G

�
 is assumed to have a rank� which is recursively de�ned by�

rank�G
�df

�
� if G � Gmin

P �G�

maxf rank�G�
 jG� � GP�G

�
 � G� � G g� � otherwise

where Gmin
P �G�
�df fG � GP�G�
 j �G� � GP�G�
� G� � G
G� � G g denotes the set of minimal graphs

of GP�G�
�



�



BEGIN
GLOBEFF�G�� 		 


� � Synchronization� Computing 			G 




�
for all G � GP�G�
 �

PMFPBV �G�� 		 

� finit� binit
 � Interleaving� Computing the PMFPBV 
Solution 			 n 


 for all n � N� �
END�

where

PROCEDURE GLOBEFF �G � �N�E� s� e
 � ParallelF lowGraph�
		 

 � N�FB � LocalSemanticFunctional
�

VAR i � integer �
BEGIN

FOR i �� � TO rank�G
 DO
FORALL G� � fG�� jG�� � GP�G
 � rank�G��
� i g DO

FORALL G�� � fG���
seq jG

��� � GC�G
�
g where G�� � �N ��� E��� s��� e��
 DO

LET �n � N ��� 		 n 

�� �

��
�

IdB u Const� �G�GC�pfg�n��� �harmful� �G� if n � N�
N

			 pfg�n
 


� if n � N�
X

		 n 

 otherwise
BEGIN

harmful�G��
 �� � j fn � N �� j 		 n 

�� � Const� g j � � 
�
MFP�G��� 		 

��� IdB
� 			G

�� 


� �� 			 end �G��
 


�

END OD�
			G� 




�
�� uf 			G�� 




�
jG�� � GC�G

�
 g OD OD
END�

PROCEDURE PMFPBV �G � �N�E� s� e
 � ParallelF lowGraph�
		 

 � N�FB � LocalSemanticFunctional� fstart � FB� harmful � B
�

VAR f � FB�
BEGIN

IF harmful THEN FORALL n � N DO 			 n 


 �� Const� OD
ELSE

� Initialization of the annotation arrays 			 


 and the variable workset �
FORALL n � Nnfsg DO 			 n 


 �� Const tt OD�
			 s 


 �� fstart� workset �� fn jn� s � 		 n 

�Const� g�
� Iterative �xed point computation �
WHILE workset �� � DO

LET n � workset
BEGIN

workset �� worksetnfn g�
IF n � NnN�

N

THEN
f �� 		 n 

 	 			 n 


�
FORALL m � succG�n
 DO

IF 			m 


 � f THEN 			m 


 �� f �workset �� workset 
fm gFI OD
ELSE

FORALL G� � GC�pfg�n

 DO
PMFPBV �G�� 		 

� 			n 


�

P
G���GC�pfg�n��nfG�g

harmful�G��
 
 OD�

f �� 			 pfg�n
 



�
	 			 n 


�

IF 			 end �pfg�n

 


 � f

THEN 			 end �pfg�n

 


 �� f � workset �� workset 
f end �pfg�n

 g FI FI
END OD FI

END�

Let ��� n ���alg� n � N�� denote the �nal values of the corresponding variables after the termination
of Algorithm B��� and ��� n ���� n � N�� the greatest solution of the equation system of De�nition

��� then we have� �n � N�� ��� n ���alg� ��� n ���







